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Abstract
Steenrod operations were defined by Voedvodsky in motivic

cohomology in order to prove the Milnor and Bloch-Kato conjec-
tures. These operations have also been constructed by Brosnan
for Chow rings [5]. The purpose of this paper is to provide a
setting for the construction of the Steenrod operations in alge-
braic geometry, for generalized cohomology theories whose for-
mal group law has order two. We adapt the methods used by
Bisson-Joyal in studying Steenrod and Dyer-Lashof operations
in unoriented cobordism and mod 2 cohomology.

1. Introduction

The mod 2 cohomology ring H∗(X; Z/2) of any space X is naturally endowed
with operations; see Steenrod [21]. The Steenrod square operations satisfy natural
compatibility relations such as the Adem relations, which are complicated to state.
Bullet and McDonald [6] (and Bisson [1]) noticed that it is possible to formulate
these relations in a convenient way using formal power series. The theory of Q-rings
described in Bisson, Joyal [2], [3], [4] incorporates this approach and provides a setting
for Steenrod operations within an algebra of covering spaces, interpreted as extended
power functors in the category of topological spaces. Unoriented cobordism and the
Thom realization functor transport the extended power functors to give operations in
Z/2-cohomology. In this setting the structure of Q-ring appears naturally, and then
the proof of the Adem relations, and the rest of the theory is straightforward.

Some of the ideas described by Bisson and Joyal were inspired by the paper of
Quillen [20], which has also motivated Levine and Morel in their work on algebraic
cobordism [12], [13], [14]. Let k be a field and let S be the category of quasi-projective
schemes defined over k. In the terminology of Levine and Morel, an oriented cohomol-
ogy theory on S is a ring valued functor which satisfies various axioms. We will refer
to these as LM cohomology theories. Over characteristic zero, Levine and Morel’s
algebraic cobordism is the universal example of this type of functor. The purpose of
this paper is to define extended power functors on S as a setting for the construction
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of Steenrod operations. In this we adapt methods from Bisson, Joyal [2]. As back-
ground, we note that the theory of mod 2 Q-rings is based on the fact that the mod 2
cohomology of the topological classifying space of Z/2 is free on a formal variable t.
Classifying spaces for finite groups in algebraic geometry have recently been defined
by Morel and Voedvodsky and Totaro. We will follow Totaro [22] in working with
certain affine schemes built from representations as classifying space approximations.
In particular, for any finite group G we will define a sequence BnG of affine schemes
determined by the action of G on the group algebra k[G].

Let A be an LM cohomology theory. In order to define Steenrod-type operations,
we need to make some additional assumptions on A:
• We assume that the formal group law FA(x, y) determined byA satisfies FA(x, x)

= 0, and similarly for the double covering formal group law.
• We assume that limn→∞A(BnZ/2) = A[[t]], the ring of formal power series over

the coefficient ring for the theory A, where t is the characteristic class for double
coverings.

• We assume, for G = Σ4, that any inner automorphism on G induces the identity
on limn→∞A(BnG).

• We assume the existence of a well-defined external extended power operation
on A that satisfies a few simple naturality conditions.

• We assume that the resulting diagonal extended power operation on A is addi-
tive for double coverings.

We note that some of these assumptions follow from axioms for oriented cohomol-
ogy suggested by Panin and Smirnov [19].

The use of methods of algebraic topology in algebraic geometry has a long history,
including the work of Grothendieck and his collaborators on defining a good frame-
work for proving the Weil conjectures. The approach of Grothendieck is widespread in
algebraic geometry and has led to the proofs of many conjectures. Recently, Voedvod-
sky has proved the Milnor and Bloch-Kato conjectures by using Steenrod operations
in motivic cohomology. These operations have also been constructed in Chow rings
by Brosnan. Our method is an attempt to situate their work in a simple framework.
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2. Extended power functors in topology

In the topological setting, a covering space is a continuous map p : T → B which is
locally trivial, with a finite number of sheets over each connected component. Such a
covering space can be used to define a functor from the category of topological spaces
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to itself. This concept is developed and applied in two Comptes Rendus by Bisson
and Joyal [2], [3] and we will closely follow that presentation here. For any topological
space X, we define

p(X) = {(u, b) | b ∈ B, u : p−1(b)→ X}.

This construction is functorial for topological spaces and continuous maps. We will
say that such a functor is an extended power functor.

The extended power functors could also be called polynomial functors. Since the
term “extended power” seems well established in topology, we have chosen that ter-
minology here.

Here is another way of thinking about this extended power construction. Let n =
{1, . . . , n}, and let Σn denote the group of bijections of n. Suppose that all the fibers
of the covering p : T → B have cardinality n; for any b ∈ B, let Frameb(p) denote the
set of bijections from n to p−1(b). The principle Σn-bundle E(p)→ B associated to
p : T → B has total space

E(p) = {(b, f) | b ∈ B, f ∈ Frameb(p)}

with Σn acting freely on it. Then T = (E(p)× n)/Σn and p(X) = (E(p)×Xn)/Σn.
In this way we see that p(X) is the total space of a bundle over B with fiber Xp−1(b)

for b ∈ B.
Suppose that we think of isomorphism classes of topological spaces as forming a

“ring” with disjoint union as + and cartesian product as ×. It is observed in Bisson,
Joyal [2] that these extended power functors are closed under these operations of
sum, product, and composition of functors from the category of topological spaces to
itself. In other words, given coverings p and q, there exist coverings p+ q, p× q, and
p ◦ q such that for all X we have

(p+ q)(X) = p(X) + q(X) and (p× q)(X) = p(X)× q(X) and

(p ◦ q)(X) = p(q(X)).

We can explicate these operations by using the derivative p′ of a covering p : T →
B, which is defined to be the covering with base space T such that the fiber of p′ over
t ∈ T is the set p−1(p(t))− {t}. We have rules like those for differential calculus:

(p+ q)′ = p′ + q′ and (p× q)′ = p′ × q + p× q′ and (p ◦ q)′ = (p′ ◦ q)× q′.

In fact, the covering p can be expressed as p′(1)→ p(1) (where 1 denotes a singleton),
and the pull-back of p along the natural map p(X)→ p(1) can be identified with a
natural map p′(X)×X → p(X), which is thus a covering.

Then the coverings p+ q, p× q, and p ◦ q are given by the natural maps

p+ q : p′(1) + q′(1)→ p(1)× q(1),

p× q : p′(1)× q(1) + p(1)× q′(1)→ p(1)× q(1)

and p ◦ q : p′(q(1))× q′(1)→ p′(q(1))× q(1)→ p(q(1)).

This shows that in the topological setting there is an algebra of coverings, wherein
the sum, product, and composition satisfy identities appropriate to an algebra of
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polynomials. Several applications of these concepts in algebraic topology are given in
Bisson, Joyal [2], [3]. One observation there is that if the base space of covering p is
a smooth manifold, then X 7→ p(X) is a functor from the smooth category to itself.

We want to transport the above concepts into the setting of algebraic geometry,
and show that they are relevant to the description of Steenrod-type operations in
algebraic geometry.

3. Some background in algebraic geometry

It seems appropriate to work in the category of smooth quasi-projective schemes
over a field. We start by sketching some definitions and results from algebraic geom-
etry.

Let k be a field. Each commutative k-algebra R determines an affine k-scheme
Spec(R). The elements x ∈ Spec(R) correspond to the prime ideals of R; the set of
elements is given the Zariski topology and a distinguished sheaf of local rings over this
topology. Morphisms are defined so that the category of affine k-schemes is opposite
to the category of commutative k-algebras. The category of k-schemes, including
notions of image and of open and closed subschemes, is modeled on this category.
Eisenbud and Harris [7] give a very nice treatment. They describe, for instance, how
any k-scheme X can be understood through its functor of points, which assigns to
each R the set X(R) of scheme morphisms from Spec(R) to X.

As an example, let An denote affine n-space Spec(k[x1, . . . , xn]) so that An(R) =
{(a1, . . . , an) : ai ∈ R}. Similarly, projective space Pn is the scheme whose functor of
points assigns to each R the set of equivalence classes [a0, . . . , an], where the ai ∈ R
are not all zero and [a0, . . . , an] ≡ [λa0, . . . , λan] for λ ∈ k non-zero. A projective k-
scheme is a closed subscheme of some projective space; a quasi-projective k-scheme
is any open subscheme in a projective k-scheme. For instance the affine schemes of
finite type (opposite to the category of finitely generated commutative k-algebras)
are quasi-projective, since each can be identified with an open subscheme in some
projective scheme.

A morphism of k-schemes f : X → Y is a closed embedding if and only if there
exists a closed subscheme Y ′ of Y such that f factors by an isomorphism X → Y ′.
The morphism f is a projective morphism if and only if f is the composition of a
closed embedding X → PnY by the canonical surjection PnY → Y (here PnY denotes
the relative projective n-space over Y , which is often just Pn × Y ).

Within the category of k-schemes, let S denote the full subcategory of smooth
quasi-projective schemes. The category S has terminal object 1 = Spec(k), and is
closed under finite products and coproducts, denoted by × and +. The existence of
fiber products in S depends on transversality. The affine spaces and projective spaces
and their smooth closed subschemes are in S. If E → B is a vector bundle in S, then
the associated projective bundle P(E)→ B is in S. Eisenbud and Harris [7] give the
relevant definitions.

Suppose that E → X is a vector bundle over X; then an E-torsor is a fiber bundle
S → X together with a map E ×X S → S over X such that the associated map
E ×X S → S ×X S is an isomorphism over X. This gives a principal action of each
fiber of E on the corresponding fiber of S. Since a principal action of a vector space
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on a set gives that set the structure of an affine space, S → X may be called a bundle
of affine spaces on X.

We end this section with some comments about the existence of categorical quo-
tients by finite group actions. If a finite group acts on a scheme X, then one would like
to have a morphism of schemes X → Y satisfying the universal property of categorical
quotient. This is impossible in general. Even for a free action of a finite group, such a
quotient of a scheme does not exist automatically in the category of schemes; see for
instance the example of Hironaka [10], or its description on page 15 in Knutson [11].

But for a free action of a finite groupG on a quasi-projective k-schemeX, there does
exist a k-scheme X/G and a morphism of k-schemes X → X/G which is a categorical
quotient. This follows from the fact that any orbit of G acting on quasi-projective X
is contained in an affine open subscheme of X; see page 69 in Mumford [18] (the argu-
ment there holds for any field). For context, see also the discussion of Proposition 1.8
in Exposé V of Grothendieck [9].

A principal G-bundle E → B, for a finite group G, is just a free action of G on
an affine scheme E of finite type, with B = E/G. For example, let ρ : G× V → V be
a faithful representation of G on a finite dimensional k-vector space V . The affine
space V has a closed subscheme S on whose complement G acts freely; S = ∪g 6=1Vg,
where Vg is the linear subspace fixed by g. This gives a free action of G on V − S, a
smooth affine scheme of finite type. Totaro [22] shows that every principal G-bundle
E → B (with B an affine k-scheme) is the pullback of one of these, for some V .

4. Extended power functors in algebraic geometry

The discussion of quotients from Section 3 leads us to a convenient notion of
covering spaces in algebraic geometry.

Any principal Σn bundle E → B gives a morphism of affine schemes p : T → B,
by taking T = (E × n)/Σn, where n = 1 + · · ·+ 1 = Spec(kn). We will refer to such
p : T → B as geometric coverings with n sheets; a geometric double covering is just a
geometric covering with 2 sheets.

We can recover E = E(p) from the geometric covering p as in the topological
setting. The scheme Tn is affine, and the symmetric group Σn acts naturally on Tn

(by permutating the indices of the n-tuples). We consider the subscheme of all n-
tuples (t1, . . . , tn) in Tn such that p(ti) = p(tj) for all i, j; this can be defined by
repeatedly taking the fiber product of T → B with affine schemes over B, and is thus
affine. The symmetric group Σn acts naturally here, and E(p) is defined to be the
open subscheme with ti 6= tj if i 6= j. Then E(p) is the total scheme of a principal
Σn-bundle over B.

We say that p : T → B is a smooth geometric covering if and only if T and B are
smooth; by transversality of the fiber products defining E(p), this is equivalent to the
condition that E(p) be smooth.

Suppose that p : T → B is a smooth geometric covering with n sheets. For any
smooth quasi-projective scheme X we define p(X) to be the quotient of E(p)×Xn

by the diagonal action of Σn. The existence of this quotient is ensured by the result
mentioned in Section 3, since E(p)×Xn is a quasi-projective scheme. Since E(p) and
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X are smooth, so is p(X). We can use the following argument to show that p(X) is
quasi-projective. Totaro shows the existence of a Σn-equivariant closed embedding
E(p)→ V − S for some linear representation, as discussed above. But X is an open
subscheme of some projective k-scheme X̄, and the quotient of the Σn action on the
projective k-scheme P(V ⊕ k)× X̄n is a projective k-scheme. The result follows.

Thus this construction defines a functor p : S → S for each covering in S. Any
functor F : S → S which is isomorphic, via a natural transformation, to such a functor
(for some p) is called an extended power functor.

Given coverings p and q in S, we use the same formulations as for topological
spaces to define coverings p+ q, p× q, and p ◦ q.

Proposition 4.1. If F and G are extended power operations, then the functors F +
G,F ×G,F ◦G, defined respectively by (F +G)(X) = F (X) +G(X), (F ×G)(X) =
F (X)×G(X), and (F ◦G)(X) = F (G(X)), are extended power functors.

The proof is the same as for topological spaces.

5. LM cohomology theories

Levine and Morel [12] introduced axioms for a notion of “oriented cohomology the-
ory” in algebraic geometry. These axioms are inspired by the method for developing
complex cobordism theory which is presented in Quillen [20]. There Quillen suggests
working with contravariant functors (from smooth manifolds to rings) which have
covariant (or Gysin) morphisms for proper smooth maps endowed with a complex
orientation. Multiplicative generalized cohomology theories which are oriented over
complex cobordism provide examples for Quillen’s discussion, but Quillen does not
require that his contravariant functors satisfy the full, usual axioms for a generalized
cohomology theory.

Levine and Morel work on the category S. They assume the existence of Gysin
homomorphisms for a restricted category S ′ of morphisms, those which are projective
morphisms of pure codimension. A morphism f : Y → X in S has pure codimension
d if we have dimk(X, f(y))− dimk(Y, y) = d at every point y in Y , where dimk(Y, y)
is the Krull dimension of Y in a neighborhood of y. Note that S ′ contains the identity
morphisms and is closed for composition, so it does in fact form a subcategory of S
(with all smooth quasi-projective schemes as objects).

To allow for different conventions in handling dimensions, we will attach some fixed
“grade multiple” a to the theory; see LM1 below. In our examples, a is one or two.

Suppose that a is a fixed integer, and A is a contravariant functor from S to the
category of graded commutative rings and grade-preserving ring homomorphisms; a
morphism of schemes f gives a ring homomorphism f∗. We will say that the pair
(A, a) is a LM cohomology theory if the functor A and integer a satisfy the following
axioms LM1–LM4 from Levine and Morel [12].

LM 1. A is also a covariant functor from S ′ to the category of graded abelian groups,
taking a morphism f : Y → X of pure codimension d to a homomorphism f∗ : A(Y )→
A(X) which raises the grading by ad.



EXTENDED POWERS AND STEENROD OPERATIONS IN ALGEBRAIC GEOMETRY 91

From the contravariance, we have a natural map A(X)×A(Y )→ A(X × Y ) for
all X and Y , given by the multiplication in the ring A(X × Y ).

As a consequence of the covariance along S ′, each projective morphism f : Y → X
of codimension d in S ′ gives a class cl(f) in Aad(X), defined by cl(f) = f∗(1) for
1 ∈ A0(Y ). Another consequence is the definition of an Euler class for each vector
bundle in S. More precisely, if ν : E(ν)→ X is a rank n vector bundle in S, then the
zero section s : X → E(ν) is a smooth projective morphism of pure codimension n,
and we define e(ν) = s∗s∗(1) in Aan(X), where 1 is the identity in the ring A(X). It
follows that the Euler class satisfies e(ν1 ⊕ ν2) = e(ν1)e(ν2) for vector bundles ν1 and
ν2 on X in S.

For the next axiom, π : P (ν)→ X is the projective bundle of a rank n vector
bundle ν on X in S, and γ is the tautological line-bundle on P (ν).

LM 2. A(P (ν)) is a free A(X)-module with basis 1, e(γ), . . . , e(γ)n−1 for every rank
n vector bundle ν : E(ν)→ X in S.

By methods of Grothendieck [8], this axiom allows the definition of a complete
family of characteristic classes for vector bundles, with results like those in Milnor,
Stasheff [16]. Also, since P (0) = ∅ for the rank 0 vector bundle, this axiom implies
A(∅) = 0.

Let f : Y → X be a projective morphism in S ′, and let g : Z → X be a morphism
in S which is transverse to f , giving the scheme Z ′ : = Y ×X Z in S with projections
f ′ : Z ′ → Z, g′ : Z ′ → Y , as in the following diagram. Then we say that f and g form
a transversal pullback diagram.

LM 3. If f in S ′ and g in S form a transversal pullback diagram, then f ′∗ ◦ g′∗ =
g∗ ◦ f∗. More precisely,

if

Z ′
f ′ - Z

Y

g′

? f - X

g

?

is transversal pullback, then

A(Z ′)
f ′∗- A(Z)

A(Y )

g′∗
6

f∗- A(X)

g∗
6

commutes.

In particular, this axiom computes g∗(cl(f)) = cl(f ′) for any projective morphism f
with transversal g. Also, we can deduce that A(X + Y ) = A(X)⊕A(Y ) (the coprod-
uct of rings), by applying this axiom to the transversal pullback diagrams given by
X → X + Y , X → X + Y and X → X + Y , Y → X + Y .

The next axiom is a partial “homotopy” axiom, among other consequences.

LM 4. If ν : E → X is a vector bundle over X in S, then ν∗ : A(X)→ A(E) is an
isomorphism, and the same is true for any bundle of affine spaces on X in S.

A formal group law defined over a commutative ring R is a formal power series
F (x, y) ∈ R[[x, y]] which satisfies identities corresponding to associativity and unit
and inverses. Levine and Morel [12] explain how to deduce from their axioms the
existence of a formal group law F (x, y) with coefficients in the ring A = A(1), such
that e(γ1 ⊗ γ2) = F (e(γ1), e(γ2)) for all line bundles γ1, γ2 on X in S.
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In their monograph [14], Levine and Morel present the following examples (and
others) which satisfy their axioms:

1. The functor which sends a quasi-projective scheme X defined over the field k
to the Chow ring CH ∗(X) is an oriented cohomology theory.

2. Let ` be a prime number distinct from the characteristic of k; the functor which
sends X to the sum of etale groups ⊕nH2n

et (X,Ql(n)) is an oriented cohomology
theory.

3. Let K0(X) be the Grothendieck group of vector bundles on the scheme X; the
functor which sends X to the ring of Laurent series K0(X)[β, β−1] is an oriented
cohomology theory.

4. Let k be a number field and σ : k → C be a complex embedding. For each
quasi-projective scheme X, we denote by Xσ(C) the quasi-projective variety of
complex points defined by σ. Let MU be the complex cobordism spectrum, the
functor X → MU (Xσ(C)) is an oriented cohomology theory.

When the oriented cohomology theory A is very closely related to ordinary coho-
mology, the formal group law may be the additive formal group law defined by
F (x, y) = x+ y, but in general F is more complicated. For instance, Example 3 has
the formal group law F (x, y) = x+ y − βxy.

6. Some axioms for extended power operations

Let p : T → B be an n-sheet geometric covering in S. Consider an arbitrary LM
cohomology theory (A, a) on S. Each codimension d projective morphism f : Y →
X in S ′ represents a cohomology class cl(f) ∈ Aad(X). Then the extended power
functor p gives p(f) : p(Y )→ p(X), which represents a cohomology class cl(p(f)) ∈
Anad(p(X)) (an argument similar to those in Section 5 shows that p(f) is a projective
morphism of codimension nd). This suggests that the extended power functor p may
give an “external” cohomology operation from Aad(X) to Anad(p(X)), and we can use
geometric calculations in S to guess at properties that such a cohomology operation
would have.

Unfortunately, we do not know that every class in A(X) is represented by an
f ∈ S ′, and we have not shown that cl(f) = cl(f ′) implies cl(p(f)) = cl(p(f ′)).

It seems reasonable at this stage to introduce additional axioms that an LM theory
should satisfy, if it is to be equipped with extended power operations underlying a
notion of Steenrod operations. That is the purpose of this section. Then in the next
section we define Steenrod operations in such a cohomology theory, and develop their
basic properties. We limit ourselves to the case of Z/2 Steenrod operations in this
article.

Let (A, a) be an LM cohomology theory in S, the category of quasi-projective
schemes over a field k. We assume for the rest of this paper that the following Extended
Power axioms (EP1, EP2, EP3, EP4, and EP5) are satisfied.

EP 1. For every cover p : T → B with n sheets, there exists a multiplicative map
pext : Ad(X)→ And(p(X)) (not assumed to be additive in general) which:

a) is natural with respect to X : p(f)∗ ◦ pext = pext ◦ f∗,
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b) agrees with nth-power map when p is a trivial geometric covering with n sheets,
c) is natural with respect to p, and
d) commutes with Euler classes: pext(e(ν)) = e(p(ν)).

Let us make this precise.
• For a), any f : X → Y in S gives p(f) : p(X)→ p(Y ) in S, and we require that
p(f)∗ ◦ pext = pext ◦ f∗.

• For b), we require that pext(a) = an for p : n→ 1 and a ∈ A(X).
For any F : B′ → B and any n-sheeted geometric covering p : T → B in S, the
pullback of p along F is a geometric covering q : T ′ → B′ with n sheets in S,
and we have a natural transformation F (X) : q(X)→ p(X) for each X.

• For c) we require that

if

T ′ - T

B′

q

? F - B

p

?

is a pullback, then

Ad(X)
qext- And(q(X))

And(p(X))

F (X)∗

?

p ext
-

commutes.

• For d), let ν : V → X be a rank v vector bundle in S, with Euler class e(ν) ∈
Aan(X). If p : T → B is a geometric covering with n sheets then we have the
rank nv vector bundle p(ν) : p(V )→ p(X). We require that pext(e(ν)) = e(p(ν)).

For any n sheeted geometric covering p : T → B in S we have a diagonal map
∆: p(1)×X → p(X) in S (from the Σn equivariant map E(p)×X → E(p)×Xn).
This gives a diagonal pullback ∆∗ : A(p(X))→ A(p(1)×X), natural in X. Assuming
EP1, we may define p∆ = ∆∗ ◦ pext. Since our goal is Z/2 Steenrod operations, we
make the following assumption.

EP 2. We assume that the map p∆ : Ad(X)→ A2d(p(1)×X) is an additive homo-
morphism whenever p is a geometric covering with two sheets.

From Assumption EP1, the trivial geometric covering p : 2→ 1 gives the extended
power operation

p∆ : A(X)→ A(X2)→ A(1×X) = A(X) a 7→ a2.

So in particular, EP2 implies that squaring is additive on A(X). This implies that
A(X) is always a ring of characteristic 2. In fact, we want to make a much stronger
assumption.

Let (A, a) be an LM cohomology theory on S. Let FA(x, y) be the formal group law
determined by A (see the discussion after axiom LM4). We say that a formal group
law F (x, y) in A[[x, y]] has order two if F (x, x) = 0 in A[[x]]. We say that such a
formal group law F (x, y) in A[[x, y]] is compatible with (A, a) if there exists F̃ (x, y), a
formal group law of order two in A[[x, y]], with F (xa, ya) = (F̃ (x, y))a (this condition
is vacuous if a = 1). We make the following assumption.

EP 3. We assume that the formal group law FA(x, y) determined by A has order
two, and also that FA is compatible with (A, a).
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The condition F (xa, ya) = (F̃ (x, y))a says that the power series h(x) = xa in A[[x]]
is a morphism of formal group laws h : F̃ → F ; see Quillen [20] and Section 8 here.

For any finite group G, let k[G] denote the reduced regular representation of G, the
kernel of the augmentation ring homomorphism ε : kG→ k (with ε(g) = 1 for each
g ∈ G). For n > 0, let n k[G] denote the direct sum of n copies of this representation,
and the corresponding affine space with its G action. Consider the open subscheme
(n k[G]− S) where G acts freely, and let BnG = (n k[G]− S)/G, the base of the
corresponding principal G bundle.

For any injective group homomorphism φ : H → G of finite groups, we have an
H-equivariant linear map φ : k[H]→ k[G]; since φ carries the free part n k[H] into
the free part of n k[G] (as we see by decomposing k[G] along the cosets of H in G),
φ induces a morphism Bnφ : BnH → BnG of affine k-schemes.

We use the following assumption in our proof of the Adem relations.

EP 4. We assume that if φ : G→ G is an inner automorphism, then Bnφ : BnG→
BnG gives the identity map on A(BnG)→ A(BnG).

A double covering p : T → B in S determines a line bundle γ(p) on B; the total
space of γ(p) can be described as (E(p)×A1)/(Z/2), where E(p) is the principal
Z/2 bundle for p, and Z/2 acts antipodally on A1. A characteristic class for double
coverings assigns a class t(p) ∈ A1(B) to each geometric double covering p : T → B
in S, so that the assignment is natural in p and satisfies e(γ(p)) = t(p)a. Note that if
a = 1, then t(p) = e(γ(p)) determines such a characteristic class for double coverings.
In general, the existence of a characteristic class for double coverings is linked to the
behavior of the cohomology functor A on a classifying space for principle Z/2 bundles.

For the rest of the paper we assume that our field k is not of characteristic 2.
Then every finite dimensional vector space V provides a faithful representation of the
group Z/2 acting as the antipode map v 7→ −v; this gives us the geometric covering
pV : (V − 0)→ (V − 0)/(Z/2) in S. Let pn be the geometric covering from the vector
space kn, and let BnZ/2 denote the base pn(1) of this covering. This agrees with
our above notation BnG since, as Z/2 representations, k with its antipode action is
isomorphic to k[Z/2].

We make the following assumption.

EP 5. We assume the existence of a characteristic class for double coverings, such
that A(BnZ/2) = A[t]/tan, and A(BnZ/2×X) = A(X)[t]/tan naturally in X, where
t = t(pn) ∈ A1(BnZ/2). We also assume that p∆

n : A1(B)→ A2(BnZ/2×B) satisfies
p∆
n (u) = uF̃A(u, t) whenever u = t(p) is the characteristic class of a geometric double

covering p : T → B.

If we assume that our cohomology theory satisfies the long exact sequence (excision
axiom) from Panin and Smirnov [19], then we can derive a Gysin sequence for vector
bundles, and use this to compute A(BnZ/2×X) = A(X)[t]/tan, at least for a = 1
and a = 2. The proof uses the fact that BnZ/2 is isomorphic to the complement of
the zero section of a line bundle γ ⊗ γ over the projective space Pn−1.

Here are some natural examples where the extended power assumptions are satis-
fied. Suppose that the field k = R is the real numbers. For any X in SR, the set X(R)
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of real-valued points in X is a smooth manifold. Let N(X) = N ∗(X(R)), the unori-
ented cobordism ring of the smooth manifold X(R). Let H(X) = H∗(X(R); Z/2), the
mod 2 cohomology ring of the smooth manifold X(R). Then (N, 1) and (H, 1) are
LM cohomology theories which satisfy EP1, EP2, EP3, EP4, and EP5. Note that Fn
is the additive formal group law, FH(x, y) = x+ y; and FN is the usual formal group
law for unoriented cobordism, which is the universal formal group law of order 2 (see
Quillen [20]).

Suppose instead that the field k = C is the complex numbers. For any X in SC,
the set X(C) of complex-valued points in X is a smooth even dimensional mani-
fold. Let NC(X) = N ∗(X(C)) and let HC(X) = H∗(X(C); Z/2). Then (NC, 2) and
(HC, 2) are LM cohomology theories which satisfy EP1, EP2, EP3, EP4, and EP5.
For (NC, 2), we note that the formal group law FNC(x, y) is determined by the tensor
product of complex line bundles rather than the tensor product of real line bundles.
In fact, FNC(x2, y2) = (FN (x, y))2.

7. Some properties of extended power operations

Recall that k is a field of characteristic different from 2, and that S is the category
of quasi-projective schemes over k. We assume for the rest of the paper that (A, a) is
an LM cohomology theory with extended power operations satisfying the assumptions
from the previous section.

Our first goal is to define a “total operation” for A. Consider the geometric double
coverings pn : TnZ/2→ BnZ/2 determined by the free action of Z/2 on kn − 0 (as
discussed in connection with Assumption EP4). Note that pn is the pull-back of pn+1

along the map in : BnZ/2→ Bn+1Z/2 induced by the inclusion of kn into kn+1 by
the first n coordinates. This gives natural transformations such that the following
diagram commutes:

pn(X)
in

- pn+1(X)

pn(1)×X

∆
6

in × idX- pn+1(1)×X.

∆
6

By Assumption EP1, we have i∗n ◦ pextn+1 = pextn . Composing with ∆∗ gives i∗n ◦ p∆
n+1 =

p∆
n . By Assumption EP5, we identify i∗n : A(pn+1(1)×X)→ A(pn(1)×X) with the

truncation A(X)[t]/ta(n+1) → A(X)[t]/tan. But we have an isomorphism

lim
n→∞

A(BnZ/2×X)→ A(X)[[t]].

It follows that the limit of the operations p∆
n defines a total operation

Pt : A(X)→ A(X)[[t]].

Assumption EP2 implies that this is a ring homomorphism, and we have the following.

Proposition 7.1. The functor A on S is equipped with a natural ring homomorphism
Pt : A(X)→ A(X)[[t]].
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We will refer to Pt as the total double covering operation for A.

Proposition 7.2. If t is the characteristic class of a geometric double covering in
S, then Pu(t) = tF̃A(t, u). If e is the Euler class of a line bundle in S then Pu(e) =
eFA(e, ua).

Proof. The first statement comes by taking the limit of the formula p∆
n (t) = tF̃ (t, u)

from Assumption EP5. For the second statement, let ν : V → X be a rank v vector
bundle in S, and let e(ν) ∈ An(X) denote the Euler class of ν. If p : T → B is a
geometric covering with n sheets then we can define the vector bundle p(ν) : p(V )→
p(X); it has rank nv. Consider ∆∗p(ν), the pullback of p(ν) along the diagonal map
∆: p(1)×X → p(X). We have p∆(e(ν)) = e(∆∗(p(ν))). This follows from EP1. We
get a rank n vector bundle ρ on p(1) by applying p to the one-dimensional k vector
space (viewed as a trivial vector bundle on 1). We have ∆∗p(ν) = ρ⊗ ν. Indeed
these bundles have the same rank, and there exists a canonical morphism of bundles
ρ⊗ ν → ∆∗p(V ). We obtain that e(∆∗p(ν)) = e(ρ⊗ ν). Suppose now that ν is a line
bundle and that p has two sheets; then we can decompose ρ = k ⊕ γ for a line bundle
γ on p(1). We deduce that e(ρ⊗ ν) = e(ν ⊕ (γ ⊗ ν)) = e(ν)e(γ ⊗ ν). Since e(γ) = ta

in Aa(p(1)), this implies the result.

Next we define the total operation for any finite group G.
Totaro [22] observes that any faithful representation of G in a finite dimensional

vector space V over k determines an geometric covering in S, and then V gives a
sequence of faithful representations nV and a sequence of coverings. In connection
with our discussion of EP4, we defined pnG : TnG→ BnG to be the geometric covering
determined by the reduced regular representation k[G] of G. The number of sheets of
pnG is the cardinality of G. We use geometric coverings pnG to define a total operation

PnG : A(X)→ lim
n→∞

A(BnG×X)

as limit of the extended power operations p∆
nG : A(X)→ A(BnG×X).

When the order of G is prime to the characteristic of k, then Morel and Voevod-
sky [17] describe a classifying object BetG for principal G bundles in algebraic geom-
etry. We may view the base spaces BnG of our geometric coverings pnG as affine
k-scheme approximations to BetG (even when the order of G is not prime to the
characteristic).

Recall that if φ : H → G is an injective homomorphism of finite groups, then we
obtain a map Bnφ : BnH → BnG (see the discussion of EP4), and a map

Bφ∗ : lim
n→∞

A(BnG×X)→ lim
n→∞

A(BnH ×X)

such that PH = Bφ∗ ◦ PG.

When G is a subgroup of Σr, we say that a geometric covering T → B with r
sheets admits a reduction of structure group to G if and only if p can be expressed in
the form T = (E × r)/G for some principal G bundle E → B.

We need to analyze the following example. Let K be the subgroup of Σ4 generated
by the permutations τ1 = (12)(34) and τ2 = (14)(23) (the “Klein four subgroup” of
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Σ4). The group K is isomorphic to Z/2× Z/2. The definition of the classifying space
shows that BnK = BnZ/2×BnZ/2. This implies (by Assumption EP5) that

A(BnK ×X) = A(BnZ/2×BnZ/2×X) = A(BnZ/2×X)[u]/(uan) =
A(X)[u, v]/(uan, van).

We deduce that the total operation PK is of the form

PK = Pu,v : A(X)→ A(X)[[u, v]].

Proposition 7.3. The map Pu,v is symmetric; that is Pu,v = Pv,u.

Proof. Consider the permutation τ = (1234) of Σ4. For τ1 = (12)(34) and τ2 =
(14)(23) as above we have τ ◦ τ1 ◦ τ−1 = τ2. The embeddings ji : Z/2→ Σ4, i = 1, 2
induced by τ1 and τ2 give an embedding j : K → Σ4. Since τ is an inner automor-
phism of Σ4, Assumption EP4 says that the automorphism induced by τ on BnΣ4 is
the identity. We analyze the two maps Bj1, Bj2 : BnK → BnΣ4 as above. They are
related by τ . This shows that τ induces on BnK an automorphism which exchanges
u and v in A(X)[u, v]/(uan, van). Since PK = Bj∗ ◦ PΣ4 , we deduce that Pu,v is sym-
metric.

We have defined Pu,v : A(X)→ A(X)[[u, v]]. But this can also be interpreted as an
iteration of total double covering operations, as follows (recall the definition of F̃A in
connection with EP5).

Proposition 7.4. Pu,v = Pu ◦ Pv if we put Pu(v) = vF̃A(v, u).

Proof. Let K = Z/2× Z/2, as above. A K-covering is a principal K-bundle
p : E → E/K = B, determined by a pair of fixed point free involutions τ1, τ2 : E → E
such that τ2 ◦ τ1 = τ1 ◦ τ2. These determine a pair of double coverings pi : Ei → B,
i = 1, 2 where Ei = E/τi. Let p1 ⊗ p2 be the K-covering E1 × E2 → B ×B. The
bundle p is isomorphic to the pullback of p1 ⊗ p2 along the diagonal map B → B ×B,
and p1 ⊗ p2 is isomorphic to the pullback of p1 ◦ p2 along the generalized diagonal
map p1(1)× p2(1)→ p1(p2(1)). For any K-covering p, let u and v in A(p(1)) be
the characteristic classes of the two double coverings p1 and p2 associated to p.
The pullback arrow φ : p→ p1 ⊗ p2 determines a ring homomorphism
φ∗ : A(p2(1)× p1(1)×X)→ A(p(1)×X). We have p = φ∗ ◦ p∆

2 ◦ p∆
1 . But

p∆
1 : A(X)→ A(p1(1)×X) comes from Pu : A(X)→ A(X)[[u]], and p∆

2 : A(p1(1)×
X)→ A(p2(1)× p1(1)×X) comes from Pv : A(p1(1)×X)→ A(p1(1)×X)[[v]],
while p : A(X)→ A(X)[[u, v]] comes from Pu,v : A(X)→ A(X)[[u, v]].

8. D-rings and mod 2 Steenrod operations

The following is taken from Bisson, Joyal [2], where the motivation was the study
of unoriented cobordism and bordism operations in topology.

Let R be a commutative ring and let F (x, y) ∈ R[[x, y]] be a formal group law of
order two (note that this implies that R is a Z/2 algebra). According to Lubin [17],
there exists a unique formal group law Ft defined over R[[t]] such that ht(x) = xF (x, t)
is a morphism ht : F → Ft. See Bisson, Joyal [2] for more discussion of this notion.
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Definition 8.1. A D-ring R is a commutative Z/2 ring endowed with a formal group
law F of order two, and with a total operation Du : R→ R[[u]] which satisfies the
following conditions:

D1: D0(a) = a2 for every a ∈ R;

D2: Du(F ) = Fu;

D3: Du ◦Dv is symmetric in u and v, where Du is extended to R[[v]] by setting
Du(v) = vF (u, v).

If R∗ is also a graded ring with di(x) ∈ R2q−i for x ∈ Rq, then we say that R is a
graded D-ring.

Theorem 8.2. If A is an LM cohomology theory which satisfies the extended power
assumptions EP1, EP2, EP3, EP4 and EP5, then Pu : A(X)→ A(X)[[u]], together
with the formal group law F = F̃A, defines on A(X) the structure of a graded D-ring,
for every X in S.

Proof. The fact that P0(u) = u2 is a direct consequence of Assumption EP1. The
formal group law F = F̃A has order 2 by Assumption EP3. Finally, we show that
Pu(F ) = Fu. Let γ1, γ2 be line bundles. Let hu(x) = xF (x, u). We have shown in the
preceding section that Pu(ei) = hu(ei), i = 1, 2. Let e be the Euler class of the tensor
product of bundles γ1 ⊗ γ2; we have F (e1, e2) = e. Write F (x, y) =

∑
i,j aijx

iyj ; the
naturality of Pu implies that∑

i,j

Pu(aij)hu(e1)ihu(e2)j = hu(F (e1, e2)).

Since Fu is the formal group law defined by hu(F (e1, e2)) = Fu(hu(e1), hu(e2)), we
deduce that Pu takes the coefficients of F to the coefficients of Fu.

When the formal group law is additive the notion of D-ring becomes the notion of
Q-ring, as defined in Bisson, Joyal [4]. We have the following:

Proposition 8.3. If A is an LM cohomology theory which satisfies the extended
power assumptions EP1, EP2, EP3, EP4 and EP5, and FA(x, y) = x+ y, then Pu
defines on A(X) the structure of a graded Q-ring for every X in S.

The Q-ring structure Qu : R→ R[[u]] on the graded ring R = A(X) is equiva-
lent to a sequence of individual additive operations qi : Rn → R2n−i determined by
Qu(a) =

∑
n∈N qi(a)ui, when these operations satisfy the Q-ring versions of the Car-

tan formula and the Adem relations; see Bisson, Joyal [2], [3]. These individual oper-
ations capture exactly the structure of R as an unstable algebra over the Steenrod
operations Sqj(xn) = qn−j(xn) for xn ∈ Rn.

This is the sense in which our extended power axioms ensure the existence of
Steenrod operations in an LM cohomology theory in algebraic geometry.

This paper was typeset using Paul Taylor’s TEX macros for diagrams.
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