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THICK SUBCATEGORIES OF THE DERIVED CATEGORY OF A
HEREDITARY ALGEBRA

KRISTIAN BRÜNING

(communicated by Brooke Shipley)

Abstract
We classify thick subcategories of the bounded derived cat-

egory of a hereditary abelian category A in terms of subcat-
egories of A. The proof can be applied to characterize the
localizing subcategories of the full derived category of A. As
an application we prove an algebraic analog of the telescope
conjecture for the derived category of a representation finite
hereditary artin algebra.

1. Introduction

A full subcategory in a triangulated category is thick if it is closed under forma-
tion of suspensions, triangles and retracts. A classification can be used to gain other
structural information about the ambient triangulated category, as in [HS]. Thick
subcategories have been studied in stable homotopy theory, commutative algebra
and representation theory of groups: The first classification theorem was obtained
by Hopkins and Smith for the p-local finite stable homotopy category [HS]. They
showed that a thick subcategory is equivalent to the K(n)∗-acyclics of the coho-
mology theory represented by some Morava K-theory spectrum K(n). Hopkins and
Neeman showed that the thick subcategories in the derived category of a com-
mutative Noetherian ring R correspond to the specialization closed subsets of the
prime ideal spectrum of R [Hop, N]. Later on Thomason generalized this result
to schemes [T]. Benson, Carlson and Rickard classified the thick subcategories of
the stable module category of the group algebra kG of a p-group G in terms of
closed subvarieties of the maximal ideal spectrum of the group cohomology ring
H∗(G; k) [BCR].

In the main theorem of this paper we classify the thick subcategories of the
bounded derived category of a hereditary abelian category.

Theorem 1.1. For a hereditary abelian category A, the zeroth homology group
functor induces a one-to-one correspondence between the thick subcategories of the
bounded derived category Db(A) and the thick subcategories in A.
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This result includes, for instance, the bounded derived category of finitely pre-
sented right modules Db(modA), for a finite dimensional algebra over a field k,
and therefore extends the study of thick subcategories to the field of representation
theory of algebras.

We start by fixing some notations in Section 2. In the third section we define
hereditary categories and describe the structure of the derived category. Thick sub-
categories in an abelian category are then defined and studied in Section 4. The
classification result is proved in the fifth section and is illustrated by an explicit
description of the thick subcategories for two representation finite algebras. In the
sixth section we adapt the proof of our main theorem to characterize localizing
subcategories of the full derived category. Finally we use a result of Auslander and
Ringel-Tachikawa to deduce a finiteness result for the localizing subcategories which
implies that an algebraic analog of the telescope conjecture for the derived category
of a hereditary artin algebra of finite representation type is true.
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2. Preliminaries

Throughout this paper, unless otherwise stated, A denotes an abelian category
and Db(A) stands for the bounded derived category of A. If A is in addition a
Grothendieck category, then the unbounded derived category exists [Bek]. We iden-
tify A with the complexes concentrated in degree zero in the derived (or bounded
derived) category of A via the inclusion i : A → D(b)(A) and, by abuse of notation,
do not distinguish between objects in A and im(i). All modules in this paper are
right modules. If R is a ring, then a complex is called perfect if it is a complex of
finitely generated projective R-modules. Let mod(R) denote the category of finitely
presented R-modules. Recall that the full subcategory of compact objects D(R)c

is equivalent to the full subcategory of perfect complexes Dper(R) in D(Mod(R))).
Furthermore, if the global dimension of R is finite, then Dper(R) is equivalent to
Db(mod(R)).

3. The derived category of hereditary abelian categories

In this section we describe the structure of the derived category of a hereditary
abelian category which serves as the main tool to obtain the classification result in
Section 5.

Definition 3.1. An abelian category A is called hereditary if Exti
A(M, N) vanishes

for all M,N ∈ A and all i > 2.

Throughout this section, let A be a hereditary abelian category.
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Example 3.2. If A is a hereditary ring, i.e. a ring such that every right ideal is a
projective A-module, then the module category mod(A) is hereditary.

The derived category D(A) of a hereditary abelian category A is closely related
to A itself since every complex of D(A) is isomorphic to a direct sum (and direct
product) of stalk complexes:

Lemma 3.3. For every X ∈ Db(A) there are isomorphisms in Db(A)
∏

n∈Z
HnX[−n] ∼= X ∼=

⊕

m∈Z
HmX[−m]. (1)

If A is in addition a Grothendieck category and X is an object in D(A), then the
isomorphism (1) exists.

A proof of this well known lemma can be found in [K]. The homomorphisms in
D(A) therefore reduce to

Hom∗
D(A)(M, N) ∼= HomA(M, N)⊕ Ext1A(M, N)

for M, N ∈ A. So the derived category consists of shifted copies of A, and the
morphisms are given by extensions and homomorphisms in A. This structure is
visualized in Figure 1.

D(A)

A[−1] A[0] A[1]

Ext

Ext

Ext

Ext

......

Figure 1

Non-equivalent hereditary abelian categories can give rise to the same derived
category:

Theorem 3.4 ([Hap, I.5.5, 5.6]). Let k be a field. If Q and Q′ are quivers with the
same underlying graph of Dynkin type but of different orientation, then D(mod(kQ))
and D(mod(kQ′)) are equivalent as triangulated categories.

The structure of the derived category is a motivation for why the thick subcate-
gories in D(A) should be determined by data in A. If in addition A = mod(kQ) is
the module category of a path algebra of a Dynkin quiver, then we should be able
to describe the thick subcategories combinatorially.
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4. Thick subcategories of abelian categories

We define and investigate thick subcategories of an abelian category A and dis-
cuss Hovey’s classification of the thick subcategories in the category of modules over
a regular coherent commutative ring.

Throughout this section let A be an abelian category.

Definition 4.1. A full subcategory M of A is called thick if for every exact se-
quence

M1 → M2 → M3 → M4 → M5,

the object M3 is in M if the objects M1,M2,M4,M5 are in M.

Hovey calls these subcategories “wide” [Hov]. In the following two lemmas some
easy properties of thick subcategories are deduced. For the convenience of the reader,
the proof [Hov] is reproduced here.

Lemma 4.2. A full subcategory M in A is thick if and only if it is closed under
formation of extensions, kernels and cokernels.

Proof. Let M⊂ A be thick and

M1 → M2 → M3 → M4 → M5

be exact in A. If in the exact sequence above M1 = M5 = 0 and M2 and M4 are in
M, then M3 is in M since M is thick. Therefore M is closed under extensions. If
we set M1 = M2 = 0, respectively M4 = M5 = 0, it follows that M is closed under
kernels and cokernels, respectively.

Conversely let M⊂ A be closed under extensions, kernels and cokernels and let

M1 → M2 → M3 → M4 → M5

be exact with M1,M2,M4, M5 ∈M. Since M is closed under cokernels and ker-
nels, C := coker(M1 → M2) and K := ker(M4 → M5) are in M. Hence we obtain a
diagram:

M1
// M2

//

ÂÂ
??

??
? M3

//

ÂÂ
??

??
? M4

// M5

C

??ÄÄÄÄÄ

ÂÂ
??

??
? K

??ÄÄÄÄÄ

ÂÂ
??

??
?

0

??ÄÄÄÄÄ
0

??ÄÄÄÄÄ
0.

Therefore M3 is an extension of C and K and hence it is in M.

As an additional property we have:

Lemma 4.3. A thick category in A is closed under direct summands.

Proof. Let M ⊕N be in the thick category M. The kernel of the map M ⊕N →
M ⊕N which sends (m,n) to (0, n) is M .
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So a thick subcategory in A is an abelian subcategory in A that is closed under
retracts such that the inclusion functor is exact. This property motivates its name.

There are geometric examples of thick subcategories.

Example 4.4. The category of coherent modules over the structure sheaf OX of a
scheme X is thick [G, 5.3.5].

Other examples of thick subcategories arise from the category add(M) of direct
summands of direct sums of M .

Lemma 4.5. Let k be a field.

(i) Let A be an arbitrary k-algebra. If M is an indecomposable finitely presented
A-module with HomA(M, M) = k and Ext1A(M, M) = 0, then add(M) is
thick.

(ii) If A is a finite dimensional hereditary k-algebra of finite representation type
and M is an indecomposable A-module, then add(M) is thick.

Proof. Since M is indecomposable, the equation add(M) = {⊕n
i=1 M |n > 0}

holds. The functor Ext1A(−,−) is additive in both variables. Therefore add(M) is
closed under extensions because M has no non-trivial self-extensions. For positive
integers n and m let f : Mn → Mm be A-linear. Every non-trivial component of f
is of the form x · idM for some x ∈ k \ {0} because HomA(M,M) = k. Since k is a
field, every element x ∈ k \ {0} is invertible. Therefore the kernel and the cokernel
of x · idM are trivial and the kernel and the cokernel of f are in add(M). Therefore
(i) follows.

If M is an indecomposable module over a finite dimensional hereditary k-algebra
A of finite type, then by [ASS, VII 5.14], HomA(M, M) = k and Ext1A(M, M) = 0.
Hence (ii) follows from (i).

Theorem 4.6 ([Hov, Theorem 3.6]). Let R be a commutative regular coherent ring.
There is a one-to-one correspondence between the thick subcategories in Db(mod(R))
and the thick subcategories of mod(R).

If R is regular Noetherian, then a thick subcategory is also closed under subob-
jects, quotient-objects and extensions [Hov, 3.7] and is therefore a Serre subcategory.
Garkusha and Prest generalized Theorem 4.6 in the following way: If R is a commu-
tative coherent ring, then the thick subcategories in Dper(R) correspond bijectively
to the Serre subcategories in mod(R) [GP, Theorem C]. In these theorems the clas-
sifications [N, T] of the thick subcategories of Db(mod(R)) are used to determine
the thick subcategories of mod(R). We go the other way around and describe thick
subcategories of the triangulated category in terms of the abelian category.

5. Classification of thick subcategories

In this section we prove the classification result and combinatorially determine
all thick subcategories in two examples.
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Theorem 5.1. Let A be a hereditary abelian category. The assignments

f : C 7→ {H0C |C ∈ C} and g : M 7→ {C ∈ Db(A) |HnC ∈M∀n ∈ Z}
induce mutually inverse bijections between

• the class of thick subcategories in Db(A), and

• the class of thick subcategories in A.

Proof. The proof mainly uses Lemma 3.3. First note that g is well defined because
M is thick and closed under direct summands by Lemma 4.3. The map f is well
defined because of the following lemma:

Lemma 5.2. Let C ⊂ Db(A) be thick. The full subcategory f(C) ⊂ A is thick.

It remains to show that f and g are mutually inverse. The inclusion f(g(M)) ⊂
M is obvious. Any object M ∈M is in f(g(M)), since the stalk complex · · · →
0 → M → 0 → · · · is in g(M). Since a complex is determined by its homology
(Lemma 3.3), the equality g(f(C)) = C holds.

In order to prove Lemma 5.2 we need the following:

Lemma 5.3. If g : C → D is a map of complexes such that the differentials of C
and D are zero and gm = 0 for all m 6= n, then ker(g) and coker(g) are retracts of
H∗(cone(g)).

Proof. The only non-zero differential in cone(g) is cone(g)n−1 → cone(g)n:

cone(g)n−2

d

²²

Cn−1

0

²²

0

##GG
GG

GG
GG

GG
L

Dn−2

0

²²

cone(g)n−1

d

²²

Cn

0

²²

g

##HH
HH

HH
HH

HH
L

Dn−1

0

²²

cone(g)n

d

²²

Cn+1

0

²²

0

##HHHHHHHHH
L

Dn

0

²²

cone(g)n+1 Cn+2 L
Dn+1.

Thus we can compute the homology:

Hm(cone(g)) =





Cm+1 ⊕Dm m 6 n− 2 or m > n + 1
ker(g)⊕Dn−1 m = n− 1
Cn+1 ⊕ coker(g) m = n.

Proof of Lemma 5.2. We show that f(C) is closed under extensions, kernels and
cokernels. So let C1, C2 be in C and M ∈ f(C) such that there is a short exact
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sequence

0 → H0C1 → M → H0C2 → 0.

This sequence corresponds to a triangle

H0C1 → M → H0C2 → ΣH0C1

in Db(A). Each homology group of a complex C ∈ C is again contained in C since
by Lemma 3.3, HnC is a retract of C up to isomorphism and C is thick. Therefore
H0C1 and H0C2 are in C and because C is closed under suspensions, ΣH0C1 ∈ C.
Since C is closed under extensions, we conclude that M is in C. Hence M ∈ f(C)
because the zeroth homology of · · · → 0 → M → 0 → · · · is M .

So it only remains to show that f(C) is closed under kernels and cokernels. Let
C1, C2 be in C and f be a morphism in the exact sequence in A:

0 → ker(f) → H0C1
f−→ H0C2 → coker(f) → 0.

Now extend f to a map of complexes
⊕

n∈Z
HnC1[−n] →

⊕

m∈Z
HmC2[−m]

which is f in degree 0 and zero in all other degrees. We again call it f . Since
Ci
∼= ⊕

n∈ZHnCi[−n] for i = 1, 2, the map f belongs to C. The cone of f is in C.
By Lemma 5.3, ker(f) and coker(f) are retracts of H0(cone(f)) and are hence (con-
sidered as stalk complexes) in C. Therefore the kernel and cokernel of f , considered
as objects in A, are in f(C).

With this theorem we have reduced the classification of thick subcategories in
the triangulated category Db(A) to the task of understanding thick subcategories
in A. In easy examples it is possible to determine them combinatorially. Let k be
a field and A be a representation finite hereditary k-algebra. As a consequence of
Lemma 4.5, there are examples of thick subcategories of the category of finitely
presented modules mod(A). As an immediate consequence we are able to deter-
mine the thick subcategories of finite dimensional representations of an A2 and an
A3-quiver. For the two examples let k be an algebraically closed field, Q the respec-
tive quiver, A = kQ the path algebra and A = mod(kQ) the category of finitely
presented modules over A. We use the Auslander-Reiten quiver to describe the
category A combinatorially.

Example 5.4. Let Q be the quiver 1 2.oo The Auslander-Reiten quiver is the
following graph:

P2

ÂÂ
??

??
??

P1

??ÄÄÄÄÄÄ
P2/P1.

By Lemma 4.5, there are exactly four non-trivial thick subcategories: add(P1),
add(P2), add(P2/P1) and mod(kQ).
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Example 5.5. Let Q be the quiver 1 2oo 3.oo The Auslander-Reiten quiver
has the following shape:

P3

ÂÂ
??

??
??

P2

??ÄÄÄÄÄÄ

ÂÂ
??

??
??

P3/P1

ÂÂ
??

??
??

P1

??ÄÄÄÄÄÄ
P2/P1

??ÄÄÄÄÄÄ
P3/P2.

Lemma 4.5 tells us that there are six thick subcategories containing exactly one
indecomposable. Furthermore, there are two thick subcategories that contain two
indecomposable modules, four with three indecomposables and the whole module
category with six indecomposables.

The left column of Table 1 shows the thick subcategories in terms of the contained
indecomposable modules. For example, 〈P1, P3〉 is the smallest thick subcategory
containing P1 and P3. The right column displays the part of the corresponding
Auslander-Reiten quiver that is contained in the thick subcategory C. Modules in
C are labelled with fat bullets and morphisms in C with full arrows.

The thick subcategories are symmetric with respect to reflection at the axis going
through P3 and P2/P1 in the Auslander-Reiten quiver. The categories add(P3),
add(P2/P1), 〈P3, P2/P1〉, 〈P1, P3/P2〉 and mod(kQ) are invariant under the reflec-
tion. Under the reflection, add(P3) corresponds with add(P3/P1), add(P1) corre-
sponds with add(P3/P2), 〈P1, P2, P2/P1〉 corresponds with 〈P3/P1, P2/P1, P3/P2〉,
and 〈P1, P3, P3/P1〉 corresponds with 〈P2, P3, P3/P2〉.

It would be interesting to work out all thick subcategories for all representation
finite algebras.

Corollary 5.6. Let A and A′ be hereditary abelian categories. If Db(A) and Db(A′)
are triangle equivalent, then there is an isomorphism of lattices between the thick
subcategories in A and the thick subcategories in A′.
Example 5.7. Let k be a field and let Q be the Kronecker quiver. The category of
coherent sheaves Coh(P1

k) on the projective line P1
k is hereditary. Bĕılinson showed

that Db(Coh(P1
k) is triangle equivalent to Db(mod(kQ)) [Bĕı]. Therefore Corol-

lary 5.6 tells us that there is an isomorphism between the lattice of thick subcate-
gories in Coh(P1

k) and the lattice of thick subcategories in mod(kQ).

Example 5.8. By Theorem 3.4 and Corollary 5.6, the lattice of thick subcategories
in the category of finitely generated representations of a Dynkin quiver does not
depend on the orientation.

If the algebra A is not of global dimension one, then Lemma 3.3 does not remain
true. But if the global dimension of A is finite, the Happel functor Db(mod(A)) →
mod(Â) is an equivalence [Hap, II.4.9]. Here Â denotes the repetitive algebra of
A. A generalization of the classification Theorem 5.1 may possibly be achieved by
characterizing the thick subcategories of mod(Â) in terms of the thick subcategories
of mod(A).
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6. Classification of localizing subcategories

In this section we use the strategy of Theorem 5.1 to classify the localizing
subcategories of the full derived category of a hereditary Grothendieck category.
As an application, we prove that the smashing conjecture is true for D(A) for a
hereditary artin algebra A of finite representation type.

Recall that a full subcategory of a triangulated category with arbitrary direct
sums is called localizing if it is thick and closed under arbitrary direct sums. These
categories are the unbounded analogs of the thick subcategories.

Theorem 6.1. Let A be a hereditary Grothendieck category. The assignments

f : C 7→ {H0C |C ∈ C} and g : M 7→ {C ∈ D(A) |HnC ∈M∀n ∈ Z}
induce mutually inverse bijections between

• the class of localizing subcategories in D(A), and

• the class of thick subcategories in A that are closed under small coproducts.

Proof. Adding the following comments, the proof of Theorem 5.1 applies. Lem-
ma 3.3 is not limited to the bounded derived category, and hence can be used here.
The map g is well-defined, since the homology functor commutes with infinite direct
sums. And finally, if C is localizing, then f(C) is closed under direct sums for the
same reason.

Theorem 6.2 ([A, RT]). Let A be an artin algebra of finite representation type.
Then every module is a direct sum of finitely generated indecomposable modules.

Using this, we can deduce:

Corollary 6.3. Let A be a hereditary artin algebra of finite representation type.

(i) Every thick subcategory M⊂ Mod(A) that is closed under direct sums is the
smallest thick subcategory that contains M∩mod(A) and is closed under
direct sums.

(ii) Every localizing subcategory C ⊂ D(A) is determined by its intersection with
the perfect complexes C = 〈C ∩ Dper(A)〉loc.

Proof. By Theorem 6.2, (i) is true. For the assertion (ii), let C ⊂ D(A) be localizing
and C ∈ C be an object. By Lemma 3.3 it suffices to show that H0C is contained in
〈C ∩ Dper(A)〉loc. Because of Theorem 6.2, there are a set I and finitely generated
modules {Mi | i ∈ I} such that H0C ∼= ⊕

i∈I Mi. Since C is thick, it follows that
Mi ∈ C. For every Mi choose a projective resolution

0 → P 0
i → P 1

i → Mi → 0

such that P 0
i , P 1

i are finitely generated. The complex Pi : 0 → P 0
i → P 1

i → 0 is
perfect and hence inDperf(A). Since Pi → Mi is a quasi isomorphism and Mi ∈ C, we
can conclude that Pi ∈ C ∩ Dper(A). Hence H0C is a direct sum of perfect complexes
in C.
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Let T be a triangulated category with small coproducts, and let T c denote the
thick subcategory of compact objects. Recall that a localizing subcategory C ⊂ T
is called smashing if the canonical functor T → T /C to the Verdier quotient has a
right adjoint that commutes with small coproducts. The smashing conjecture asserts
that every smashing subcategory C is the smallest localizing subcategory containing
C ∩ T c [N]. The smashing conjecture for the p-local stable homotopy category is
a generalization of the telescope conjecture by Ravenel [R] (see also [B] for an
overview). Since the perfect complexes form precisely the compact objects in D(A),
Corollary 6.3(ii) shows:

Corollary 6.4. The smashing conjecture is true for the derived category of a hered-
itary artin algebra of finite representation type.

In fact, all localizing subcategories are determined by the intersection with the
compact objects.

If A is not of finite type, the smashing conjecture is possibly also true since every
module over A is a filtered colimit of finitely presented modules. Choosing a clever
indexing category may lead to a proof of the smashing conjecture for arbitrary
hereditary algebras.
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