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OPERATIONS AND QUANTUM DOUBLES IN COMPLEX ORIENTED
COHOMOLOGY THEORY
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Abstract

We survey recent developments introducing quantum algebraic
methods into the study of cohomology operations in complex oriented
cohomology theory. In particular, we discuss geometrical and homotopy
theoretical aspects of the quantum double of the Landweber-Novikov
algebra, as represented by a subalgebra of operations in double complex
cobordism. We work in the context of Boardman'’s eightfold way, which
offers an important framework for clarifying the relationship between
quantum doubles and the standard machinery of Hopf algebroids of
homology cooperations. These considerations give rise to novel struc-
tures in double cohomology theory, and we explore the twist operation
and extensions of the quantum antipode by way of example.

1. Introduction

In his pioneering work [8], Drinfeld introduced the quantum double construction D(H) for
a Hopf algebra H, as an aid to the solution of the Yang-Baxter equations. His work aroused
interest in many areas of mathematics, and applications to algebraic topology were begun
by Novikov, who proved in [17] that whenever H acts appropriately on a ring R, then the
smash product R # H (in the sense of [24]) may be represented as a ring of operators on R.
Novikov therefore referred to R#H as the operator double, and observed that his construction
applied to the adjoint action of H on its dual H* whenever H is cocommutative, thereby
exhibiting D(H) as the operator double H* # H. Authors in other fields have recorded similar
phenomena, and the subject of doubling constructions is currently very active.

Novikov was motivated by the algebra of cohomology operations in complex cobordism
theory, which he constructed as an operator double by choosing H to be the Landweber-
Novikov algebra S*, and R the complex cobordism ring £2Y. This viewpoint was suggested
by the description of S* as an algebra of differential operators on a certain algebraic group,
due to Buchstaber and Shokurov [4]. Since the Landweber-Novikov algebra is cocommutative,
its quantum double is also an operator double, and Buchstaber used this property in [5]
to prove the remarkable fact that D(S*) may be faithfully represented in A}, the ring of
operations in double complex cobordism theory. In this sense, the algebraic and geometric
doubling procedures coincide. The structures associated with D(S*) are very different from
those traditionally studied by topologists, and one of our aims is to explore their implications
for other complex oriented cohomology theories.

By way of historical comment, we recall that complex cobordism originally gained promi-
nence during the late 1960s in the context of stable homotopy theory, but was superseded
in the 1970s by Brown-Peterson cohomology because of the computational advantages gained
by working with a single prime at a time. Ravenel’s book [20] gives an exhaustive account
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of these events. Work such as [13] has recently led to a resurgence of interest; this has been
fuelled by mathematical physics, which was also the driving force behind Drinfeld’s original
study of quantum groups.

So far as we are aware, double cobordism theories first appeared in [21], and in the associated
work [22] where the double SU-cobordism ring was computed. Since neither source describes
the foundations, we begin with a brief but rigorous treatment of the geometric and homotopy
theoretic details, establishing double complex cobordism as the natural setting for the dual
and the quantum double of the Landweber-Novikov algebra. We couch a major part of our
exposition in terms of Boardman’s eightfold way [2], which we believe is still the best available
framework for keeping track of all the actions and coactions that we need. We locate the
subalgebra D(S*) of A}, in this context, and illustrate the novelty of the resulting structures
by studying endomorphisms which extend its antipode. Much of the algebra may be interpreted
more geometrically in terms of double complex structures on manifolds of flags, as described
in [6].

We use the following notation and conventions without further comment.

We often confuse a complex vector bundle p with its classifying map into the appropriate
Grassmannian, and write £(m) for the universal m-plane bundle over BU(m). We let C™
denote the trivial m-plane bundle over any base; if p has dimension m and lies over a finite
CW complex, we write p* for the complementary (p —m)-plane bundle in some suitably high
dimensional CP.

Our Hopf algebras are intrinsically geometrical and naturally graded by dimension, as are
ground rings such as £2U. Sometimes our algebras are not of finite type, and must therefore
be topologized when forming duals and tensor products; this has little practical effect, but is
explained with admirable care by Boardman [3], for example. Duals are invariably taken in
the graded sense and we adapt our notation accordingly. Thus we write A, for the algebra of
complex cobordism operations, and AY for its continuous dual Homgu (A, 2Y), forcing us to
write S* for the graded Landweber-Novikov algebra, and S, for its dual Homyz(S*,Z); neither
of these notations is entirely standard.

We follow Sweedler’s convention of writing coproducts as §(x) = 3 1 ®z» in any coalgbera.

We refer readers to [1], [23], and [25] for comprehensive coverage of basic information
in algebraic topology. So far as Hopf algebras and their actions on rings are concerned, we
recommend the books [12], [14], and [16] for background material and a detailed survey of
the state of the art.

The authors are indebted to several colleagues for enjoyable and stimulating discussions
which have contributed to this article, and in particular to Andrew Baker, Michael Boardman,
Francis Clarke, Haynes Miller, Sergei Novikov, and Neil Strickland. Jack Morava deserves
special thanks for encouraging us to prepare the material in its current form.

2. Double complex cobordism

In this section we outline the theory of double complex cobordism, considering both the
manifold and homotopy theoretic viewpoints. We follow the lead of [5] by writing unreduced
bordism functors as (2.( ) when emphasizing their geometric origins; if these are of secondary
importance, we revert to the notation Tx( ), where T is the appropriate Thom spectrum.

The theory is based on manifolds M whose stable normal bundle is endowed with a fixed
splitting v = vy D v, into a left and right component. We may invoke standard procedures [23]
to construct the associated bordism and cobordism functors, and to describe them homotopy
theoretically in terms of an appropriate Thom spectrum. Nevertheless we explain some of the
details.

Given positive integers m and n, we write U (m, n) for the product of unitary groups U (m) X
U(n), so that the classifying space BU(m,n) is canonically identified with BU(m) x BU (n).
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Thus BU(m,n) carries the complex (m + n)-plane bundle &(m,n), defined as £(m) x &(n)
and classified by the Whitney sum map BU(m,n) — BU(m + n). The standard inclusions of
U(m) in O(2m) and of U(m,n) in U(m+1,n+ 1) induce a doubly indexed version of a (B, f)
structure, but care is required to ensure that the maps are sufficiently compatible over m and
n. There are product maps

BU(m,n) x BU(p,q) — BU(m +p,n +q) (2.1)

induced by Whitney sum, whose compatibility is more subtle, but serves to confirm that the
corresponding (B, f) cobordism theory is multiplicative; it is double complex cobordism theory,
referred to in [21] as U x U theory.

We therefore define a double U-structure on M to consist of an equivalence class (M; vy, v;.)
of lifts of v to BU(m,n), for some values of m and n which are suitably large. The lifts
provide the isomorphism v = vy @ v,., where vy and v, are classified by the left and right
projections onto the respective factors BU(m) and BU(n). If we wish to record a particular
choice of m and n, we refer to the resulting U(m, n)-structure. Given such a structure on M,
it is convenient to write x(M) for the U(n,m)-structure (M;v,,v;), induced by the switch
map BU(m,n) — BU(n,m); we emphasise that M and x(M) are generally inequivalent. If
M has a U(m,n)-structure and N has a U(p, ¢)-structure, then the product U(m + p,n + q)
structure is defined by (M x N;vM x v, vM x v]N).

A typical example is given by complex projective space CP™, which admits the double
U-structure (—k&, (k —n — 1)¢) for each integer k.

The compatibility required of the maps (2.1) is best expressed in the language of May’s
coordinate-free functors (as described, for example, in [9]), which relies on an initial choice of
infinite dimensional inner product space Z.., known as a universe. We assume here that Z.,
is complex. This language was originally developed to prove that the multiplicative structure
of complex cobordism is highly homotopy coherent [15]; its usage establishes that the same is
true for double complex cobordism, so long as we consistently embed our double U-manifolds
in finite dimensional subspaces V @ W of the universe Zo, & Z,,. We define the classifying
space B(V,W) by appropriately topologizing the set of all subspaces of V' @ W which are
similarly split. If V' and W are spanned respectively by m and n element subsets of some
predetermined orthonormal basis for Z., ® Z,,, we refer to them as coordinatized, and write
the classifying space as BU(m,n) to conform with our earlier notation. We then interpret
(2.1) as a coordinatized version of Whitney sum, on the understanding that the subspaces of
dimension m and p are orthogonal in Z,, as are those of dimension n and ¢. The Grassmannian
geometry of the universe guarantees the required compatibility.

In our work below we may safely confine such considerations to occasional remarks, al-
though they are especially pertinent when we define the corresponding Thom spectrum and
its multiplicative properties.

The double complex cobordism ring 2PV consists of cobordism classes of double U-manifolds,
with the product induced as above. The double complex bordism functor 2PV () is an unre-
duced homology theory, defined on spaces X by bordism classes of singular double U-manifolds
in X; it admits a canonical involution (also denoted by x), induced by switching the factors
of the normal bundle. Thus 2PY(X) is always a module over 2PV which is the coefficient
ring of the theory, and the product structure ensures that 2°Y(X) is both a left and a right
Y -module.

Double complex cobordism 2%,,,( ) is the dual cohomology functor, which we define geomet-
rically as in [19]. For any double U-manifold X, a cobordism class in £2},;,(X) is represented
by an equivalence class of compositions

MY%EoE 55X

where 7 is the projection of a complex vector bundle split into left and right components, and
i is an embedding of a double U-manifold M whose normal bundle is split compatibly.
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If we ignore the given splitting of each normal bundle and simultaneously identify Z., ® Z,
isometrically with Z.,, we obtain a forgetful homomorphism 7: 2PV (X) — QU(X) for any
space X. Conversely, if we interpret a given U(m)-structure as either a U (m,0)-structure
or a U(0,m)-structure, we obtain left and right inclusions ¢, and ¢,.: QV(X) — 02PY(X),
which are interchanged by y. All three transformations have cobordism counterparts, which
are multiplicative. Since w oty and 7o, give the identity, we deduce that « is an epimorphism
and that ¢y and ¢, are monomorphisms, in both bordism and cobordism.

We now turn to the homotopy theoretic viewpoint. In order to allow spectra which consist
of a doubly indexed direct systems, as well as to ensure the existence of products which are
highly homotopy coherent, it is most elegant to return to the coordinate-free setting. We
define the Thom space M (V, W) by the standard construction on B(V,W), and again allow
the Grassmannian geometry of the universe to provide the necessary compatibility for both the
structure and the product maps. As in (2.1) we give explicit formulae only for coordinatized
subspaces.

We write MU(m,n) for the Thom complex of £(m,n), which is canonically identified with
MU (m) A MU (n). Then the coordinatized structure maps take the form

§2(p+a) A MU(m,n) — MU(m + p,n + q), (2.2)

given by Thom complexifying the classifying maps of (C? xC?) @ £(m, n). We take this direct
system as our definition of the DU spectrum, noting that the Thom complexifications of the
maps (2.1) provide a product map ppy, which is highly coherent, and equipped with a unit
by (2.2) in the case m =n = 0. It is a left and right module spectrum over MU by virtue of
the systems of maps

MU(p) A MU(m,n) - MU(m +p,n) and
MU (m,n) AN MU (q) = MU (m,n + q),

which are also highly coherent by appeal to the coordinate-free setting.

This setting enables us to define smash products of spectra [9], and therefore to write DU
as MU A MU. The involution x is then induced by interchanging factors, and we may represent
the bimodule structure by maps MU ADU — DU and DUA MU — DU, induced by applying
the MU product uy on the left and right copies of MU A MU respectively.

As usual, we define the reduced bordism and cobordism functors by

DU(X) =10 1,0 T2(n4-m) 45 (MU (m,n) A X)
and  DU*(X) = lim o {S*"™ % A X, MU (m, n)}

respectively, for all integers k > 0, where the brackets { } denote based homotopy classes of
maps. The graded group DU*(X) becomes a commutative graded ring by virtue of the product
structure on DU, and the coefficient ring DU, (or DU ~*) is the homotopy ring 7. (DU). The
unreduced bordism and cobordism functors arise as DU, (Xy) and DU*(Xy), by appending
a disjoint basepoint. In this context, we write 1 for the element which corresponds to the
appropriate generator of DUy. Given a second homology theory E,( ), we define the homology
groups E(DU) and the cohomology groups E*(DU) by g 1, (g m)+k (MU (m, n)) and
@nm,nEu’”m)*k(MU(m, n)) respectively, for all integers k > 0.

The Whitney sum map BU(m,n) — BU(m + n) induces a forgetful map 7: DU — MU,
which coincides with the product uy; the inclusions of BU(m) and BU(n) in BU(m + n)
induce inclusions ¢y and ¢.: MU — DU of the left and right factors respectively. All three
are maps of ring spectra which extend to the coordinate-free setting, and define multiplicative
transformations between the appropriate functors. Clearly ¢y and ¢, are interchanged by x, and
yield the identity map after composition with 7. Given an element 6 of MU*(X) or MU, (X),
we shall often write 1,(8) and ¢.(f) as 6; and 6, respectively.

Following the descriptions above, we may define the canonical isomorphismiy: MU .(MU) —
DU, by identifying both sides with m.(MUA MU). We shall explain below how MU ,.(MU)

(2.3)
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is also the Hopf algebroid of cooperations in MU-homology theory; suffice it to say here
that its associated homological algebra has been extensively studied in connection with the
Adams-Novikov spectral sequence and the stable homotopy groups of spheres. For detailed
calculations, however, it has proven more efficient to concentrate on a single prime p at a
time, and work with the p-local summand BP,(BP) given by Brown-Peterson homology [20].

There is a natural isomorphism between the manifold and the homotopy theoretic ver-
sions of any bordism functor, stemming from the Pontryagin-Thom construction. Given a
map f: M* — X, where M* embedded in S¥t2(m*7) with a U(m,n)-structure, the con-
struction is accomplished by collapsing the complement of a normal neighbourhood to co and
composing with the Thom complexification of v x f; the result is a map from Sk+2(m+n)
to MU(m,n) A X4, and so defines the isomorphism 2PV (X,) — (DU A X;). Verifying
the the necessary algebraic properties requires considerable effort, and depends upon Thom’s
transversality theorems. The isomorphism maps the geometric versions of the transformations
X, T, t¢, and ¢, to their homotopy theoretic counterparts, and may be naturally extended to
the coordinate-free setting.

3. Orientation classes

In this section we characterize DU as the universal example of a spectrum equipped with
two complex orientations, and consider the consequences for the double complex bordism and
cobordism groups of some well-known spaces in complex geometry. We establish our notation
by recalling certain basic definitions and results, which may be found, for example, in [1].

We assume throughout that E is a commutative ring spectrum, with Ey isomorphic to Z.
Then E is complex oriented if the cohomology group E?(CP™) contains an orientation class
z¥ whose restriction to E?(CP') is a generator when the latter group is identified with Ej.
Under these circumstances, we may deduce that E*(CP) consists of formal power series
over E, in the variable ¥, whose powers define dual basis elements 3F in FEay(CP>). If
we continue to write 3F for their image under the inclusion of BU(1) in BU(m) (for any
value of m, including o), then E,(BU (m)) is the free E.-module generated by commutative
monomials of length at most m in the elements ﬂ,f . For 1 < k < m, the duals of the powers of
BE define the Chern classes cf in E**(BU(m)), which generate E*(BU (m)) as a power series
algebra over E,; clearly cf agrees with z¥ over CP>°. When we pass to the direct limit over
m, we obtain

E.BU)ZE,JBF : k>0 and  E*(BU,) = E.[[cf : k> 0]], (3.1)

where the Pontryagin product in homology is induced by Whitney sum. We write monomial
basis elements [,(87)« as (8¥)“ for any sequence w of nonnegative, eventually zero integers,

and their duals as . Thus ¢ is usually not a monomial, and cfj; and ¢’ coincide.

For m > 1 the Thom complex MU (m) of £(m) is the cofiber of the inclusion of BU (m — 1)
in BU(m), allowing E,(MU(m)) and E*(MU(m)) to be computed from the corresponding
short exact sequences of E,-modules. We may best express the consequences in terms of Thom
isomorphisms, for which we first identify the pullback of ¢Z in E*™(MU (m)) as the Thom class
tF(m) of £(m), observing that its restriction over the base point is a generator of E2™(S>™)
when the latter is identified with Ejy. Indeed, this property reduces to the defining property for
z¥ when m is 1, thereby identifying 2% as the Thom class of £(1). The Thom isomorphisms

Gu: Eppom (MU (m)) = Ex(BU(m)4)

and ¢*: E¥(BU(m)y) — EFT2™ (MU (m)), (32)

for £(m) are determined by the relative cap and cup products with ¢ (m), and define elements
bF in Eypym) (MU (m)) as ¢71(Bx), and elements sZ in E2F+™) (MU (m)) as ¢*(cF); each of
these families extends to a set of generators over F, in the appropriate sense.
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When m is 1 the projection CP*° — MU (1) onto the cofiber is a homotopy equivalence, and
the induced homomorphism identifies 37 with b7 ; in E-homology. The Thom isomorphisms
satisfy ¢.(bF) = BE and ¢*((z¥)*~1) = (zF)* respectively, for all k > 1.

We stabilize (3.2) by allowing m to become infinite, so that (3.1) yields

E.(MU)=E,bY :k>0] and  E*(MU)=E,[[sF :k>0], (3.3)

where bE lies in Fo (MU) and s¥ in E?¢(MU), for all k > 0. The multiplicative structure
in homology is induced by uy, but exists in cohomology only as an algebraic consequence of
¢*, and not as a cup product. We continue to write monomial basis elements in the bkE as
(bF)%, and their duals as sZ, for any sequence w. Again, sfk) and sP coincide. We write t¥
in E°(MU) for the stable Thom class, which corresponds to the element 1 under (3.3), and is
represented by a multiplicative map of ring spectra.

We have therefore described a procedure for constructing ¢¥ from our initial choice of z¥;
in fact this provides a bijection between complex orientation classes in £ and multiplicative
maps MU — E.

Any complex m-plane bundle p over a space X has a Thom class t¥(p) in E*™(M(p)),
obtained by pulling back the universal example ¢¥(m) along the classifying map. We use this
Thom class as in (3.2) to define isomorphisms

¢« Eprom(M(p)) = Ep(Xy)  and 6" BF(X) — B2 (M(p)).

If p is virtual then M (p) is stable, and the Thom isomorphisms assume a similar format to the
universal examples (3.1) and (3.3) if we arrange for the bottom cell to have dimension zero.

We remark that MU is complex oriented by letting the homotopy equivalence CP* —
MU (1) represent zMU: the corresponding Thom class tU is represented by the identity map
on MU. In fact MU is the universal example, since any Thom class ¢¥ induces the ring map
MU*(CP*>®) — E*(CP*) uniquely specified by MY s 2P and tF on coefficients. In view
of these properties, we shall dispense with sub- and superscripts U wherever possible in the
universal case. So far as the geometric description of cobordism is concerned, a Thom class
t(p) in 23™(M(p)) is represented by the inclusion of the zero section M C M(p), whenever p
lies over a U-manifold M.

We combine the Thom isomorphism MU,(MU) = MU.(BU ) with the canonical isomor-
phism ¢ to obtain an isomorphism h: DU, = MU,(BU;) of left MU,-modules; it has an
important geometrical interpretation.

Proposition 3.4. Suppose that an element of 2PV is represented by a manifold M* with
double U-structure vy @ v,; then its image under h is represented by the singular U-manifold
v.: M* — BU.

Proof. By definition, the image we seek is represented by the composition

Sk+2mn) s M(v) — MU(m) A MU (n)
2% MU(m) A MU (n) A BU (n)+ 225 MU(m +n) A BU(n)4,
where the first map is obtained by applying the Pontryagin-Thom construction to an appro-
priate embedding M* c S*¥+2(m+7) and the second classifies the double U-structure on M*.
We may identify the final three maps as the Thom complexification of the composition

M* 2% BU(m) x BU(n) =% BU(m)xBU (n) x BU(n)
XL BU(m +n) x BU(n),
which simplifies to v & v,., as sought. O

Corollary 3.5. Suppose that an element of 2V (BU ) is represented by a singular U-manifold
f: M* — BU(q) for suitably large q; then its inverse image under h is represented by the
double U-structure (v & f+) @ f on M.
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Our proof of Proposition 3.4 shows that h is multiplicative, so long as we invest MU, (BU ;)
with the Pontryagin product which arises from the Whitney sum map on BU. Moreover, h
conjugates the involution x so as to act on MU,(BU4), where it interchanges the map f of
Corollary 3.5 with v @ f+.

The multiplicative maps ¢, and ¢,.: MU — DU both define complex orientations for the
spectrum DU, with corresponding Thom classes ¢, and ¢, and orientation classes z, and z,
in D?(CP>). We obtain

DU*(CPY) = DU.[[ze]] = DU.|[[.]],
and there are mutually inverse formal power series
Ty = ngm'ﬁ'l and oz = ngm'ﬁ'l, (3.6)
k>0 k>0

written g(z,) and g(z,) respectively. The elements g and g lie in DUy for all k, and are
interchanged by the involution y; in particular, go = go = 1. They generate an important
subalgebra G, of DU,, whose structure we now adress.

Proposition 3.7. Under the isomorphism h, we have that

h(gr) = Br
in MUy, (BU ), for all k > 0.

Proof. We may express g, as the Kronecker product (z,, Sx+1,¢) in DUsy,, which is represented
by the composition

S22ty iy (p) A CP 0% MU (p) A MU(1),

for suitably large p. This stabilizes to by in MUs,(MU), and hence to (B in MUs,(BU ), as
required. [l

Corollary 3.8. The subalgebra G, is polynomial over Z.

Proof. This result follows from the multiplicativity of A and the independence of monomials
in the By over Z. O

We refer to any spectrum D with two complex orientations which restrict to the same
element of Dy as doubly complex oriented, writing

P =gP@y)  and oz =3"(z)) (3.9)

for the two orientation classes in D*(CP>°). These power series define elements g/ and gJ’
in D,, which generate a subalgebra GP. Our main examples are doubles of complex oriented
spectra E, given by E A E and denoted by D(E); in such cases, we may extend the left and
right notation to all groups D(E).(X) and D(E)*(X).

Following the example of E, we construct left and right sets of D,-generators for D,(CP*),
D.(BU(m)), D.(MU(m)), and for their cohomological counterparts. Thus there are left and
right Chern classes ¢}, and cf, in D**(BU (m)) for k < m, and left and right Thom classes
tP(m) and tP(m) in D>™ (MU (m)); the latter give rise to left and right Thom isomorphisms
associated to an arbitrary complex bundle p. The elements g,? again provide the link, as the
following example shows.

Lemma 3.10. The left and right Thom classes are related by
tr =10+ (97)sD,
w

in DO(MU).



Homology, Homotopy and Applications, vol. 1, No. 8, 1999 176

Proof. We dualize (3.9) and pass to D.(BU), then dualize back again to D*(BU) and apply
the Thom isomorphism. O

When DU is equipped with the orientation classes x, and x, it becomes the universal
example of a doubly complex oriented spectrum, since the exterior product tft? is rep-
resented by a multiplicative spectrum map t”: DU — D whose induced transformation
DU?(CP*) — D*(CP*>) maps z; and z, to P and =2 respectively. It therefore often suffices
to consider the case DU (as we might in Lemma 3.10, for example). We shall continue to omit
the superscript DU whenever possible in the universal case. We note from the definitions that

the homomorphism of coefficient rings DU, — D, induced by t” satisfies
gk — gF and gr — gr (3.11)

for all £ > 0.

Whenever a complex vector bundle has a prescribed splitting p = p, ® p,, then tP(p) acts
as a canonical Thom class t2 (p,)t?(p,), and so defines a Thom isomorphism which respects
the splitting. In the universal case, t(p) is represented geometrically by the inclusion of the
zero section M C M (p; & pr) whenever p lies over a double U-manifold M.

As an example, it is instructive to consider the case when D is MU, doubly oriented by
setting P = 2P = z. The associated Thom class is the forgetful transformation 7: DU —
MU, since 7(x¢) = m(x,) = z; we therefore deduce from (3.11) that both 7(gx) and 7(gx) are
zero, for all k > 0.

We also consider the D,-modules D,(BU(m,n)) and D.(MU(m,n)), together with their
cohomological counterparts, which may all be described by applying the Kiinneth formula. For
example D*(BU (m,n)) is a power series algebra, generated by any one of the four possible
sets of Chern classes

{Pyo11@cp,.}, {col1@cp},

(3.12)
{cfr®l,l®cka}, or {cfr®l,l®c£r},

where 1 < 7 < m and 1 < k < n. The first of these are the most natural, and we shall
choose them whenever possible. The stable versions, in which we take limits over one or
both of m and n, are obtained by the obvious relaxation on the range of j and k. We write
(BP)Y @ (BP)« for the dual basis monomials in D, (BU(m,n)), and (bP)¥ @ (bP) for their
images in D.(MU(m,n)) under the Thom isomorphism induced by tP(m,n); we then let
sﬁl ® sB, denote the corresponding basis elements in D*(MU (m,n)). As before, it often
suffices to consider the universal example DU.

We may translate much of the above into the language of formal group laws [10], observing
that DU, is universal amongst rings equipped with two formal group laws linked by a strict
isomorphism whose coefficients are the elements gy.

4. The eightfold way

In this section we consider the operations and cooperations associated with our spectrum
E | specializing to MU as required. We study algebraic and homotopy theoretic aspects in the
framework of Boardman’s eightfold way [2], relating the actions and coactions involving E. (E)
to the theory of the double spectrum D(E), with a view to placing the quantum double in the
traditional framework. All comments concerning the singly oriented E apply equally well to
D unless otherwise stated.

For any integer n, the cohomology group E"(E) consists of homotopy classes of spectrum
maps s: E — S™ A E, and therefore encodes E-theory cohomology operations of degree n.
Thus E*(FE) is a noncommutative, graded E,-algebra with respect to composition of maps,
and realizes the algebra A}, of stable E-cohomology operations. It is important to observe
that E*(E) is actually a bimodule over the coefficients E,, which act naturally on the left (as
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used implicitly above), but also on the right. The same remarks apply to E.(E), on which
the product map pg induces a commutative E,-algebra structure; the two module structures
are then defined respectively by the left and right inclusions 7, and 7, of the coefficients in
E.(E) 2 m.(EAE). We refer to E.(E) as the algebra A of stable E-homology cooperations,
for reasons described below.

In fact E.(X) is free and of finite type for all spaces and spectra X that we consider.
This reduces the topologizing of E*(X) to the accommodation of formal power series in cer-
tain computations, and ensures that pgz induces a cocommutative coproduct 67: E*(E) —
E*(E)®p, E*(F); the tensor product must be completed whenever E*(E) fails to be of finite
type [3].

We consider the E,-algebra map t?: E,(MU) — E,(E) induced by the Thom class t¥, and
define monomials (p¥)“ as t£(b¥)“. When E is singly oriented we restrict attention to cases
where E,(E) is a free E,-module and ¥ is an epimorphism, so that E,(E) is a quotient of the
polynomial algebra E,[pf : k > 0]. It follows that E*(E) is given as a subalgebra of the dual by
Hompg, (E.(E), E.), and that we may interpret a generic operation s as such a homomorphism.
The composition product dualizes to a noncocommutative coproduct dg: E.(E) - E.(E)®g,
E.(E) (where ®p, is taken over the right action on the left factor), with counit given by
projection onto the coefficients. Together with the left and right units 7, and 7., and the
antipode x g induced by interchanging the factors in E, (E), this coproduct turns E,(E) into
a cogroupoid object in the category of E,-algebras. Such an object generalizes the notion of
Hopf algebra, and is known as a Hopf algebroid; for a detailed discussion, see [20].

Given our assumptions on F, the monomials (p¥)“ generate E, (E) over E, although they
may be dependent; nevertheless, they appear naturally in several formulae below. To describe
a basis over E,, we consider each example on its merits and choose an appropriate set of
homogeneous polynomials e®, noting that the new set of indices @ may well be smaller. Each
(p?)“ may then be expressed as a linear combination of the e®, whose coefficients generally
lie in E, rather than Z. Maintaining our earlier conventions, we let e, denote the topological
basis for E*(E) dual to the e®.

For any space or spectrum X, we first consider the standard action
E*(E) ®p, E*(X) — E*(X), (4.1)

(where ® g, is taken over the right action on E*(E)). It is the map of left E,-modules which
arises from considering the elements of E*(E) as selfmaps of E, and we write it functionally;
when X is FE it reduces to the composition product in E*(E), and when X is a point (or
the sphere spectrum), to the action of E*(E) on the coefficient ring E,. The Cartan formula
asserts that the product map in E*(X) is a homomorphism of left E*(E)-modules with respect
to the standard action, and was restated by Milnor in the form

s(yz) = Z s1(y)s2(2) where 6F(s) = Z 51 ® s2 (4.2)

for all y and z in E*(X). Following Novikov [17], we refer to any such module with property
(4.2) as a Milnor module.

Given our freeness assumptions we may dualize and conjugate (4.1) to obtain seven alterna-
tive structures, whose unification is the aim of Boardman’s eightfold way. We consider four of
these (together with a fifth and sixth which are different), selecting from [2] without comment
and ignoring issues of sign because our spaces and spectra have no cells in odd dimensions.

The second structure is the E,-dual of (4.1), the Adams coaction
Y: E.(X) — E.(E) ®p, E.(X) (4.3)

(where ®pg, is taken over the right action on E,(FE)), which reduces to the coproduct g when
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X is E. For each operation s and each y in E*(X), the duality is specified by

(s(y),a) =Y _(s,e(y,a™)), (4.4)

[e3

where a lies in E,(X) and a® is defined by ¢(a) =3 e* ® a®.

If we assume that X is a spectrum (or stable complex), we may interpret m.(X A E) as
X.(E), and consider the isomorphism c¢: E,(X) = X, (F) of conjugation. Our third structure
is the right coaction

Y X (E) — X.(E)®p, E.(E) (4.5)

of right E.-modules (where ® g, is taken over the right action of the scalars on X, (E)); it is
evaluated by ¢(ca) = 3 ca® ® xg(e*), conjugating (4.3). When X is E, then ¢ reduces to
xe and ¢ becomes dg, as before.

Fourthly, (4.1) dualizes partially over E, to give the Milnor coaction

p: B*(X) — E*(X)®p, E.(E) (4.6)

of E.-modules. As Milnor famously observed, the Cartan formulae ensure that p is an algebra
map, making E*(X) a Hopf comodule over E,(E). For each operation s and each z in E*(X),
the partial duality satisfies

s(y) = (5,6 Wa, (4.7)

where y, is defined by p(y) = >, ya ®e®; thus y, = e4(y). In view of the completion required
of the tensor product in (4.6), we describe p more accurately as a formal coaction.
A fifth possibility is provided by the left action

E*(E) &5, E.(X) — E.(X)
(where ® g, is taken over the right action of the scalars on X, (E)), which is defined by analogy

with (4.1) in terms of spectrum maps. It is evaluated by partially dualizing the Adams coaction,
giving

Sl(a) = Z(S)XE(ea»aa) (48)

[e%

with notation as above. Given y and a as before, the left action satisfies

(y,50(a)) = (s, c(y.a)), (4.9)

where y,: Ei(X) — E,(E) is the induced homomorphism.
For our sixth and seventh structures we again assume that X is stable, so the selfmaps of
FE induce a left action

E*(E)®p, X.(E) — X.(E) (4.10)
(where ® g, is taken over the right action of the scalars on both factors), and a right action
X*(E)®g, E*(E) — X*(E) (4.11)

(where ® g, is taken over the right action on X*(E)). Neither of these is discussed explicitly
by Boardman, although (4.10) appears regularly in the literature, and coincides with (4.1)
when X is the sphere spectrum; it is evaluated by partially dualizing (4.5), to obtain

sp(d) = d(s,e”), (4.12)

where d lies in X, (F) with ¢(d) = ), d* ® e*. The actions (4.10) and (4.11) are related by
(w, sp(d)) = ((w)s, d), (4.13)
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where w lies in X*(E); this should be compared with (4.9), and justifies the interpretation of
(4.10) as a right action (on the left!).
When X is E, (4.9) may be rewritten as

(y,50(a)) = (s, xm(yr(a))), (4.14)
whilst (4.13) reduces to the right action of E*(E) on its dual E,(E). Given any d in E,(E),
we may evaluate the coproduct dg(d) as

Z ea,r(d) ®e* = Z XE(e®) ® eq o(d). (4.15)

We now translate aspects of the eightfold way into the language of doubles, using the E-
theory canonical isomorphism ig: E,(E) — D(E),. The definition of the (p¥)“ ensures that
the homomorphism zZ: E,  »(CP*®) — E,(FE) maps ﬁ,i_l to p¥. Dualization yields

s(@®) =Y (s, PN
k>0
which combines with (4.7) to confirm that p acts by
p(@?) = (@) wpy (4.16)
k20
in E*(CP®)®p, E.(E).
Lemma 4.17. Given any of our spaces or spectra X, the Milnor coaction (4.6) extends to
D(E)*(X) by means of the commutative diagram

p ~

E*(X)

Lr Qe

D(E)*(X) —— D(E)*(X)&p(m).D(E).

Proof. Commutativity follows from the fact that the Milnor coaction factors through the map
E*(X) —» Hompg, (E*(X), E*(E)), defined by taking induced homorphisms. O

(E) (E)

Corollary 4.18. The canonical isomorphism identifies pZ with gr? and xg(pF) with g{?

in D(E)., for all n > 0.
Proof. Comparing Lemma 4.17 with (4.16), these equations follow immediately from (3.9). O

The formulation of p in Lemma 4.17 is almost explicit in [11], and has obvious mutants for
each of the actions and coactions which involves E.(E).

Formula (4.16) is used by Boardman to define the elements pZ, and extends to a repre-
sentation of the entire algebra A}, on the bottom cell of the infinite smash product spectrum
Aoo CP%°. Tt also leads to a description of the structure maps for AZ in terms of the pZ.

Proposition 4.19. The coproduct and antipode of the Hopf algebroid E.(E) are given by
o) = ")k opf  and  xe(f) = "),V
k>0
respectively.
Proof. Since p is a coaction, we have that p® 1(p(z¥)) = 1@ 6%(p(zF)) as maps E*(CP>®) —
E*(CP*®)®g, E.(E) ®p, E.(E), and the formula for 6¥ ensues. Since yg applies to (3.9) by

interchanging the factors of D(E), we may use Corollary 4.18 to give ig(xr(pF)) = gZ, and
the result follows by Lagrange inversion. |
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These formulae are of limited use in cases where the (p¥)“ are not independent, since they
contain a great deal of inbuilt redundancy. Readers will recognize the spectrum BP as a
pertinent example.

There is no such problem with the universal example MU, for which the e“ are simply the
original basis monomials b* in AY. The dual operations are written s, as described in §3, and
are known as the Landweber-Novikov operations. We consider the integral spans S* and S, of
the s, and b” respectively, so that A} = 2V ® S* and AV = 0V ® S, as 2Y-modules, where
S, is the polynomial algebra Z[by, : k > 0]. The 2V-duality between Aj; and AV therefore
restricts to an integral duality between S* and S,, for which no topological considerations are
necessary because S* has finite type.

The coproduct and antipode of AY are given as 6(by) = Y 450(b)5 ) © by and x(bn) =

(b);(m_l) by Corollary 4.19, and therefore restrict to Sx. Since the left unit and the counit
also make sense over Z, we deduce that S, is a Hopf subalgebra of the Hopf algebroid. Duality
ensures that S* is also a Hopf algebra, with respect to composition of operations and the
Cartan formula

6(511)) = Z Sw1 ® Swz; (420)
wi1twe=w

which is dual to the product of monomials. Of course S* is the Landweber-Novikov alge-
bra. Alternatively, and following the original constructions, we may use the action of S* on
125 (Aoo CP>) to prove directly that S* is a Hopf algebra. Many of our actions and coactions
restrict to S* and S, and will be important below. We emphasize that A;; has no 2U-linear
antipode, and that the antipode in S* is induced from the antipode in S, by Z-duality.

Having identified A4}, additively as 2Y ® S* and noted that both factors are subalgebras,
the remaining multiplicative structure is determined by the commutation rule for products sz,
where s and z lie in S* and 02U respectively. Recalling (4.1), (4.2), and (4.12) we obtain

ST = 281,r($)82, (4.21)

and write the resulting algebra as 2V # S*, where the right action of S* on 2V is under-
stood. This is an important case of the smash product [24], and an analogous algebra may be
constructed from any Milnor module over a Hopf algebra; it is Novikov’s operator double [17].

Choosing E and X to be MU in (4.13) and (4.14) provides the left and right action of A};
on its dual. If s and y lie in A}, and u in AV, we have

(y,se(u)) = (s, x(yr(w)))  and  (y,s.(u)) = (ys,u). (4.22)
Alternatively, by appealing to (4.8) and (4.12) we may write
Spu = Z(s, x(u1))us and Spu = Z(s, U2) U1 - (4.23)

By restriction we obtain identical formulae for the left and right actions of S* on AV and on
Ss. In the latter case, Z-duality allows us to rewrite the left action as

(y,se(u)) = (x(s)y,u),

thereby (at last) according it equivalent status to the right action.
The adjoint actions of S* on AU and S, are similarly defined by

(,ad(s)(w)) = 3 (x(s1)ysz,u)  and
ad(s)(w) = 3" (x(s1), wr){s2, ushus,

which give rise to the adjoint Milnor module structure on AV and S,. By way of example, we

(4.24)
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combine Corollary 4.19 with (4.15) to produce

Se(k),e(bn) =(k —n — )by, Se(),r(bn) = (B)EF]

4.25
and ad(se(r))(bn) = (k —n — )by + (b)f:i ( )

for all 0 < k < n.
An alternative interpretation of S, lies at the heart of our next section, and follows directly
from Proposition 4.18 in the case E = MU.

Proposition 4.26. The subalgebra G, of NPV is identified with the dual of the Landweber-
Novikov algebra S, in AV under the canonical isomorphism.

In more general cases we insist that the integral span of the e forms a subring S of AF,
which is invariant under xz and maps to Z under the counit. Therefore A is isomorphic
to B, ® SE as left E,-algebras. The integral span of the e, is the dual subcolagebra S% of
A%, which admits the involution dual to x g, and features in the dual isomorphism between
A} and E, ® Sy, as left E,-coalgebras. We may interpret this decomposition as a weak form
of smash product E, # S}, since S}, acts on the coefficient ring E, according to (4.1) and
satisfies the Milnor condition (4.2); the only products not so defined are those internal to SZ.
A typical example to bear in mind is BP, where SEP is the polynomial algebra over L)
on the 2(p’ — 1)-dimensional Adams generators ¢;, and Sgp is the dual coalgebra spanned
over Z,) by the Quillen operations ro [18]. The subalgebra GE¥ of D(BP), is certainly not
identified with SPF under the canonical isomorphism igp.

5. Double cohomology operations

In this section we consider the algebra of cohomology operations AB( B)’ studying various
subalgebras isomorphic to A% and locating an additive subgroup which becomes the quantum
double D(S*) in the universal example DU. We conclude by investigating extensions of the
partial endomorphism on A}, provided by the antipode in D(S*). Throughout the section
we understand that D denotes an arbitrary double spectrum D(E), in which E satisfies the
conditions imposed in Section 4.

Since the Kiinneth formula identifies E.(D) with E.(E) ® g, E«(E), the elements (p¥)® in
E.(E) give rise to elements (p¥)* and (pf)® in D.(E), and therefore to four possible choices
of generators for D, (D). These arise from the four sets of generators for D,(MU) given in
(3.12), by applying the map induced in D-homology by the Thom class t”t”. We deduce that
AD is a quotient of the polynomial algebra D.[p, @ 1,1@p, : j,k > 0], and that the algebra
A%, of D-theory operations is the appropriate dual D*(D). These act and coact according to
the eightfold way.

Since D is EAE, an element s of A}, yields operations sA1 and 1As in A},, which commute
by construction; in terms of (3.12) these correspond to sy ® 1 and 1 ® s, respectively, and are
therefore consistent with our preferred choice of D,-basis elements e, ® 1 and 1 ® eq ;.
We denote the subalgebras consisting of all s, ® 1 and 1 ® s, by AL, ® 1 and 1 ® Af |
respectively, and refer to them as the left and right copies of A},. They act on the coefficient
groups D, in accordance with (4.1), and feature in the D,-coalgebra decomposition of A}, as
D, ® S, ® Sg,.; since both actions are Milnor, we may interpret this decomposiiton as a
weak form of smash product D. # (S , ® S, ), by analogy with our previous description of
A%,. These actions have an important alternative description in terms of (4.13) and (4.14),
which follows immediately from the definitions.

Proposition 5.1. The canonical isomorphism identifies the left and right actions of A}, on
AE with the actions of A and Ay . on D, respectively.
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By restriction we obtain Milnor actions of the subcoalgebras S, , and Sg, . on D, but the

image of SE under iy is not generally preserved. The coproduct 6 : Sk — Sk ®SE . describes
a diagonal copy Sy, ; of Si in A}, which is a subcoalgebra by virtue of cocommutativity.

The D.-duality between A% and AP confirms that the latter is isomorphic to D, ® sEt g
ST as D,-algebras, and restricts to the integral duality between Spe®SE, and sPteshr.

In the universal case, S; ® S; is actually a Hopf subalgebra of Af) U, whilst the dual Hopf
algebra S, ® S, is a sub-Hopf algebra of the Hopf algebroid A’,;)U, and is isomorphic to
Zbj @by, : j,k > 0]. In consequence, A%, is the genuine operator double 2PV # (Sy ® S¥),
and the actions of S} and S} on 2PV are already familiar, as shown by the following extension
of Proposition 5.1.

Proposition 5.2. The subalgebra G, of 2PV is closed with respect to the actions of S} and
Sy ; in particular, the action of the diagonal subalgebra S} is identified with the adjoint action
of S* on S, under the canonical isomorphism.

Proof. Combining Proposition 4.26 with the fact that S* is multiplicatively closed, we iden-
tify the left and right actions of S* on S, (as in (4.22)) with the restrictions to G of the
respective actions of S} and S on Qf’ U. The result then follows from the dual fact that S, is
comultiplicatively closed. [l

Corollary 5.3. The quantum double D(S*) is isomorphic to a subalgebra of A}, [5]: as such,
the universal R matriz is given by > (Sw, 6 ® Swyr) ® g in ALy ® Apy; the square of the
antipode acts as conjugation by the element Y b # (Sw, ¢ ® Swy,r); the ring 27,,(X) is a
crossed S™-bimodule for any space X ; and solutions Vx to the Yang-Bazter equations are given
by endomorphisms of the form Vx (x®@y) = > b*Y® (Sw,,0 @ Sws,r) (@) of 25(X) @ 25, (X)

Proof. Since S* is cocommutative we may construct D(S*) as the operator double S, # S*,
with respect to the adjoint action [16], [17]. By Proposition 5.2, the latter is isomorphic to
the subalgebra G, # S% of 2PV # (S} ® S), which we have already identified as A}y;. The
remaining facts then follow directly from the definitions; for terminology, we refer to [12]. O

Both Hopf algebras S; ® Sy and D(S*) are subalgebras of A},;;, and also of the operator
double G* # (S; ® S}); thls is not itself a Hopf algebra, however, because the action of S; ® S}
on G, is not a coalgebra map [12]. Nevertheless, it has a considerable amount of algebraic
structure which extends that of D(S*), and gives rise to left 2U-linear structure maps on
Apy.- We briefly consider this situation with respect to antipodes.

Suppose we are given Hopf algebras H and T with bijective antipodes xg and xr respec-
tively, and a Milnor action of T"on H. Then the algebra H #7T has an additive basis of elements
h # t, and we may define a unique linear automorphism 6 on H # T by

O(h#t) = x7(t) - xu(h); (5.4)

if T'is cocommutative and the Milnor coaction is also a coalgebra map, then H # T is a Hopf
algebra, and 6 is its antipode [12]. This analysis applies to D(S*) by taking H = S, and
T = S* with respect to the adjoint action, and shows that the antipode is given by

Xp(s+)(b#s) = Z(X(SB), b3)(s2,b1)x(b2) # x(51)- (5.5)

Theorem 5.6. We may extend xp(s-) to a left QU -automorphism of Al ; in particular,
there is an extension 6 satisfying

(g #s)=0(s)-0(g) and 6(s-g) = 6(s2)(0(s1)(9)) # O(s3)
and an extension 0' satisfying

0'(g#s) =) 00 (s1)(9) #6'(s2) and 0'(s-g) =6'(g) #0'(s),
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where g # s is a generator of G* # (S; ® S)).

Proof. We first translate (5.5) into A},;; by Corollary 5.3, and let 6 be given by (5.4) in the
case H = G, and T = S} ® S}; the formula for (s - g) then follows by direct calculation. To
obtain #’, we assume that it is antimultiplicative on products s - g and deduce the formula for
6'(g# s) by direct calculation. Since the terms g # s generate A%, as a left 2Y-module, these
observations suffice. O

The point about 8 and 6’ is that neither is antimultiplicative on all products.

We conclude with two interrelated remarks concerning the detailed structure of Aj;; first
we express the alternative choices (3.12) for 2PV-bases in terms of the preferred basis, and
then we consider the description of the involutory operation y defined by switching the factors
of MUA MU.

Proposition 5.7. In A}, we may express s, ® 1 and 1 ® s, ¢ as

Zgws%g 08,0®1 and Z g% @5y 08,
Y Y

respectively, in terms of the preferred 2PV -basis.

Proof. Applying Lemma 3.10 in DU°(MU), we obtain
() = 55 ( D2 9" su.e)tr

¥

in D°(MU), and the first equation follows from the Kiinneth formula. For the second equation,
we apply x. O

Proposition 5.8. The involution x is given by

Z gwgwsw,l X Sw,r
Yw

0
as an element of A} .

Proof. The Thom class ¢ in A%, corresponds to ¢y ® ¢, in DU°(MU) ® DU°(MU) under the
Kinneth formula. Since x switches ¢, and ¢, and is determined by its action on t, it suffices to
write ¢, ® t; in terms of t; ® t,.. By Lemma 3.10 we obtain (Zw g¢s¢,g)tg ® (Ew g“’swﬂ«)tr,
as required. O

In the context of (3.6), x gives rise to the elements g, which extend 2V to 2PY; it also
represents the permutation group G, in A}, .

Propositions 5.2, 5.7, and 5.8 and Theorem 5.6 have direct analogues for those spectra
E and D(E) for which ig(SF) coincides with the subalgebra G¥ of D(E).. More generally,
the best we can do is to identify the sub-left E.-module SF ® Sk.q as some sort of weak
double for S}, and consider the associated antipode as an antiautomorphism. In these cases
the relationship between t? and t{? is governed by that between the bases e, and eq,,.

6. Further developments

The quantum algebraic viewpoint highlights novel aspects of A% and AZ, and we conclude
with a few examples which we shall develop elsewhere [7]. We restrict attention to universal
cases, and refer to [16] for terminology.

We may interpret the dual of the Landweber-Novikov algebra in many ways. For ex-
ample, the projection t¥: QU(MU) — H,.(MU) restricts to an isomorphism on S,, with
tH(b*) = (b")~. This isomorphism is often implicit in the literature, and invests H,(MU)
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with a coproduct and antipode which are purely algebraic; its dual identifies H*(MU) with
the Landweber-Novikov algebra itself. The Hurewicz homomorphism 2V — H,(MU) there-
fore realizes Aj; as a subalgebra of the Heisenberg double S, # S* (often written #(S*)) where
S* acts on its dual by the right action (4.23).

The appearance of D(S*) as an algebra of double cobordism operations is actually part of
a decomposition theorem, which describes A},;; as an appropriate smash product of A}, and
D(S*). More generally, for any N > 2 we may introduce N -fold cobordism theory 2NV (), rep-
resented by the N-fold smash product spectrum MU’Y; its algebra of cohomology operations
ANy has many different subalgebras isomorphic to D(S*), which contribute to a decomposi-
tion theorem expressing A% as an iterated smash product of Af; and N —1 copies of D(S*).
When N is sufficiently large, A%y contains a remarkable array of subalgebras and Hopf sub-
algebras, such as the dual of D(5*) and the quantum and Heisenberg doubles of tensor powers
of §*.

The Hopf algebroids ANV decompose dually, as smash coproducts.
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