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FREE HOMOTOPY ALGEBRAS

MARTIN MARKL

(communicated by Tom Lada)

Abstract
An explicit description of free strongly homotopy associa-

tive and free strongly homotopy Lie algebras is given. A vari-
ant of the Poincaré-Birkhoff-Witt theorem for the universal
enveloping A(m)-algebra of a strongly homotopy Lie algebra is
formulated.

Introduction

This note was originated many years ago as my reaction to questions of several
people how free strongly homotopy algebras can be described and what can be
said about the structure of the universal enveloping A(m)-algebra of an L(m)-
algebra constructed in [3], and then circulated as a “personal communication.”
I must honestly admit that it contains no really deep result and that everything
I did was that I expanded definitions and formulated a couple of statements with
more or less obvious proofs.

A(m)-algebras and their strict homomorphisms [5, pages 147–148] form an equa-
tionally given algebraic category A(m). It follows from general theory that the for-
getful functor to the category gVect of graded vector spaces, 2 : A(m) → gVect,
has a left adjoint

m

A : gVect → A(m). Given a graded vector space X ∈ gVect, the
object

m

A(X) ∈ A(m) is the free A(m)-algebra on the graded vector space X. We
will also, for n < m, consider forgetful functors 2 : A(m) → A(n) and their left
adjoints

m:n
A : A(n) → A(m); here the case n = 1 is particularly important, because

m:1
A : dgVect → A(m) describes the free A(m)-algebra generated by a differential
graded vector space.

We believe there is no need to emphasize the important rôle of free objects
in mathematics. Each A(m)-algebra is a quotient of a free one and free A(m)-
algebras were used in our definition of the universal enveloping algebra of a strongly
homotopy Lie algebra [3, page 2154]. It could be useful to have a concrete description
of these free algebras, as explicit as, for example, the description of free associative
algebras by tensor algebras.

This brief note gives such a description in terms of planar trees. Replacing planar
trees by non-planar ones, one can equally easy represent also free strongly homotopy
Lie algebras. Surprisingly, these free algebras are simpler objects that their strict
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counterparts and admit a nice linear basis (Section 3), while free (strict) Lie alge-
bras are very complicated objects (see, for example, [9, Chapter IV]). This might be
explained by the fact that axioms of strongly homotopy algebras are certain resolu-
tions of strict axioms, thus they are more amenable. They manifest some properties
of distributive laws [6] – they are ‘directed,’ therefore one can obtain unique rep-
resentatives of elements of the corresponding operads in terms of admissible trees,
like in Proposition 1.2, with obvious implications for the structure of free algebras.

In the first section of this note we describe the operad
m

A for A(m)-algebras1

and then, in Section 2, free A(m)-algebras. In the third section we modify these
constructions to free strongly homotopy Lie algebras. In the last section we prove a
Poincaré-Birkhoff-Witt-type theorem for strongly homotopy Lie algebras and formu-
late a problem related to the structure of the category of modules. In the appendix
we then recall the language of trees used throughout the paper.

1. Operad for A(m)-algebras

In this note we assume a certain familiarity with operads, a good reference book
for this subject is [8]. For simplicity we suppose the ground ring k to be a field of
characteristic zero, though the results of this and the following section remain true
over an arbitrary ring.

Let m be a natural number or ∞. Recall (see [10] for the original definition,
but we use the sign convention of [5]) that an A(m)-algebra is a graded k-module
A together with a set {µk; 1 6 k 6 m, k < ∞} of degree k − 2-linear maps,
µk :

⊗k
A→ A, such that

n−1∑

λ=0

n−λ∑

k=1

(−1)ω · µn−k+1(a1, . . . , aλ, µk(aλ+1, . . . , aλ+k), aλ+k+1, . . . , an) = 0

for all homogeneous a1, . . . , an ∈ A, n 6 m, where the sign is given as

ω := k + λ+ kλ+ k(|a1|+ . . .+ |aλ|).
It easily follows from the above axiom that µ1 : A→ A is a degree −1 differential.

This operation will play a special rôle and we denote it by ∂ := µ1. A(m)-algebras
are algebras over a certain non-Σ operad

m

A = { m

A(n)}n>1 in the monoidal category
of graded vector spaces. This operad can be constructed as follows.

Let
m

F = { m

F(n)}n>1 be the free graded non-Σ operad Γ(ξ1, ξ2, . . . , ξm) generated
by operations ξi, l 6 i 6 m, where each ξi has arity i and degree i−2. Alternatively,
let

m

T(n) be the set of all connected directed planar trees with n input edges, all of
whose vertices have at most m input edges; we admit also ‘unary’ vertices with only
one input edge.

Let Vert(T ) denote the set of vertices of a tree T ∈ m

T(n). For v ∈ Vert(T ), let
val(v) be the number of input edges of v. We assign to each T ∈ m

T(n) a degree

1underlining indicates that it is a non-Σ operad



Homology, Homotopy and Applications, vol. 7(2), 2005 125
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n−1∑

λ=0

n−λ∑

k=1

(−1)λ(k+1)+k







,
,,

¢
¢¢

B
B
B
B

¡
¡¡

¯
¯̄

@
@@

HHHH

· · ·

· · ·· · ·
λ+ 1-th input

•

•

ξn−k+1

ξk

Figure 1: Relations of A(m)-algebras in the tree language.

deg(T ) by the formula

deg(T ) :=
∑

v∈Vert(T )

(val(v)− 2).

Then
m

F(n) can be naturally identified with the k-linear span of the set
m

T(n),
m

F(n) = Spank(
m

T(n)), (1)

see [8, Section II.1.9]. The operadic structure is, in this language, defined by grafting
the corresponding trees. This means that, for T ∈ m

T(a) and S ∈ m

T(b), the operadic
i-th circle product [8, Definition II.1.16] T ◦i S is the tree obtained by grafting the
tree S at the i-th input edge of T . Similarly, for T ∈ m

T(l) and Sj ∈
m

T(kj), 1 6 j 6 l,
the operadic composition [8, Definition II.1.4] γ(T ;S1, . . . , Sl) = T (S1, . . . , Sl) ∈
m

T(k1 + · · ·+ kl) is the tree obtained by grafting Sj at the j-th input edge of T , for
each 1 6 j 6 l.

The operad
m

A is then defined as
m

F/
m

I, where
m

I is the operadic ideal generated
by the elements

Φn :=
n−1∑

λ=0

n−λ∑

k=1

(−1)λ(k+1)+kξn−k+1 ◦λ+1 ξk ∈
m

F(n), n 6 m. (2)

In the tree language of (1), the generators ξj are represented by j-corollas (denoted
by the same symbol) ξj ∈

m

T(j); recall that the j-corolla is the unique tree having
exactly one vertex. Relations (2) then represent certain linear combinations of trees,
indicated in Figure 1. Elements of

m

A(n) are equivalence classes of linear combina-
tions of trees from

m

T(n), modulo the relations of Figure 1. Surprisingly, there exists,
for any n > 1, a very natural basis for the k-vector space

m

A(n).

Definition 1.1. We say that a tree T ∈ m

T(n) is admissible if all its unary vertices
(i.e. vertices with just one input edge) are input vertices of the tree T .

Let us denote by
m

Adm(n) ⊂ m

T(n) the subset consisting of admissible trees. Then
the following proposition holds.

Proposition 1.2. Admissible n-trees form, for n > 1 a linear basis of
m

A(n),
m

A(n) ∼= Spank(
m

Adm(n)).
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The proposition follows from the following lemma.

Lemma 1.3. There exists a unique map Ω :
m

T(n) → Spank(
m

Adm(n)) such that, for
each T ∈ m

T(n),

Ω(T ) ≡ T modulo the relations of Figure 1.

Proof. If T is admissible, we put Ω(T ) := T . If T is not admissible, it contains a
subtree of the form ξ1 ◦1 ξj , with some 1 6 j 6 m, or, pictorially,

¿
¿

¯
¯

T
T

•

•
· · ·

ξ1

ξj

We may also assume that j > 2, otherwise T ≡ 0 modulo
m

I. Using the relations of
Figure 1, we can replace the above subtree by a linear combination of trees of the
form

,
,,

¢
¢

B
B
B
B

¡
¡¡

¯
¯̄

@
@@

HHHH

· · ·

· · ·· · ·
•

•

ξs

ξt

with s > 2. This enables us to move, by local replacements, the vertex ξ1 towards
the inputs of the tree. Repeating this process sufficiently many times, we get the req-
uisite presentation Ω(T ). It is easy to see that this presentation is unique, compare
also similar arguments in the proof of [6, Theorem 2.3].

Proposition 1.2 immediately implies that

dimk(
m

A(n)) = 2n · bmn , for m 6 2, n 6 1. (3)

where bmn is the number of all planar rooted reduced (i.e. without unary vertices)
n-trees, all of whose vertices have arities 6 m. Clearly, bmn equals the number of
cells of the m-skeleton of Stasheff’s associahedron Kn, compare also Example 2.2.
Another kind of information about the size of the non-Σ-operad

m

A is given in:

Proposition 1.4. Let us consider the generating function
m

ϕ(t) :=
∑

n>1

dimk(
m

A(n))tn.

Then
1
ϕ(t) = 2t while, for m > 2, ϕ(t) =

m

ϕ(t) solves the equation

ϕ(t)− 2t = ϕ2(t)(1 + ϕ(t) + · · ·+ ϕm−2(t)). (4)
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Proof. Formula (4) is probably known, though we were not able to find a reference
in the literature. We give a proof that can be easily modified to obtain the analogous
formula (10) for L(m)-algebras.

Let dm
n := card(

m

Adm(n)). By Proposition 1.2, dm
n := dimk(

m

A(n)). Let us denote,
just in this proof, by Tn the set of all planar reduced n-trees all of whose vertices
have at most m input edges. Let rn := card(Tn). We claim that, for any n > 2,

rn =
∑

i1+i2=n

ri1ri2 +
∑

i1+i2+i3=n

ri1ri2ri3 + · · ·+
∑

i1+···+im=n

ri1 · · · rim
(5)

and

dm
n = 2nrn. (6)

The first equation follows from the decomposition

Tn = Tn,2 t Tn,3 t · · · t Tn,m,

where Tn,i ⊂ Tn is the subset of trees whose root has i input edges. The second
equation follows from the observation that each admissible tree T ∈ m

Adm(n) can
be obtained from a tree S ∈ Tn by grafting terminal unary trees at the input legs
of S; there are 2n ways to do this. If we denote ψ(t) :=

∑
n>1 rnt

n, then (5) implies

ψ(t)− t = ψ2(t)(1 + · · ·+ ψm−2(t)),

while (6) implies that ϕ(t) = ψ(2t). This finishes the proof.

Example 1.5. For m = ∞, equation (4) can be rewritten as

2ϕ2(t)− ϕ(t)(1 + 2t) + 2t = 0.

For m = 2, (4) gives ϕ(t)− 2t = ϕ2(t), therefore

ϕ(t) =
1−

√
(1− 8t)
2

.

A little exercise in Taylor expansions results in

d2
n =

22n−1(2n− 3)!!
n!

for n > 2,

where as usual

(2n− 3)!! = 1 · 3 · 5 · · · (2n− 3).

2. Free A(m)-algebras

The following theorem relies on the notation introduced in the previous section.
Recall namely that

m

Adm(n) denotes the set of admissible n-trees in the sense of
Definition 1.1,

m

A(n) ∼= Spank(
m

Adm(n)) and Ω is the map of Lemma 1.3. Recall also
that we denoted by ξj the j-corolla. If T1, . . . , Tj are trees, then ξj(T1, . . . , Tj) is the
tree obtained by grafting the tree Ti at the i-th input edge of the tree ξj , 1 6 i 6 j.
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Theorem 2.1. Let X be a graded vector space. Then the free A(m)-algebra
m

A(X)
on X can be described as

m

A(X) =
⊕

n>1

m

An(X), with
m

An(X) :=
m

A(n)⊗X⊗n.

The structure operations µ1, . . . , µm are defined as follows. Let ~vj ∈ X⊗kj and
Tj ∈

m

Adm(kj), 1 6 j 6 k. Then

µk(T1 ⊗ ~v1, . . . , Tk ⊗ ~vk) := Ω(ξk(T1, . . . , Tk))⊗ (~v1 ⊗ · · · ⊗ ~vk).

Proof. It follows from general theory [8, Section II.1.4] that the free P-algebra
FP(X) on a graded vector space X, where P is a non-Σ operad, is given by FP(X) =⊕

n>1 F
n
P (X), with Fn

P (X) := P(n) ⊗ X⊗n, with the algebra structure induced
from the operad structure of P. Our theorem is then obtained by taking P :=

m

A

and applying the results on the structure of this operad proved in the previous
section.

Observe that the free algebra
m

A(X) is bigraded. The internal grading is the
grading of the underlying vector space, while the external grading is given by the
decomposition

m

A(X) =
⊕

n>1

m

An(X).

Because all main structures considered in this note (vector spaces, A(m)-algebras,
L(m)-algebras, etc.) have an implicit internal grading, we will usually mean by
saying that an object is graded the presence of an external grading. We believe that
the actual meaning will always be clear from the context.

Example 2.2. There exists a simple way to encode elements of
m

Adm(n). Let
m

B(n)
be the set of all meaningful bracketings of strings ε1ε2 · · · εn, where εi ∈ {◦, •} and
no pair of brackets encompasses more than m terms. A moment’s reflection shows
that

m

Adm(n) ∼= m

B(n), n > 1. Thus
m

Adm(1) = {◦, •}, m > 1,
1

Adm(2) = ∅, m

Adm(2) = {(◦◦), (◦•), (•◦), (••)}, m > 2,
1

Adm(3) = ∅,
2

Adm(3) = {((◦◦)◦), ((•◦)◦), ((••)◦), . . . , (◦(◦◦)), (•(◦◦)), (•(•◦)), . . .},
m

Adm(3) =
2

Adm(3) ∪ {(◦ ◦ ◦), (• ◦ ◦), (• • ◦), . . .}, m > 3, etc.

We conclude that
m

A(X) is spanned by all meaningful bracketings of strings of
“variables” x and ∂x, deg(∂x) = deg(x) − 1, x ∈ X, with no pair of brackets
encompassing more than m terms. Thus

1
A(X) =

1
A1(X) is the free differential

complex generated by X,
1
A(X) ∼= X ⊕ ∂X. Similarly,

m

A2(X) ∼= (X ⊗X)⊕ (∂X ⊗X)⊕ (X ⊗ ∂X)⊕ (∂X ⊗ ∂X), for m > 2,
2
A3(X) ∼= ((X ⊗X)⊗X)⊕ ((∂X ⊗X)⊗X)⊕ ((X ⊗ ∂X)⊗X)

⊕ ((X ⊗X)⊗ ∂X)⊕ ((∂X ⊗ ∂X)⊗X)⊕ ((∂X ⊗X)⊗ ∂X)



Homology, Homotopy and Applications, vol. 7(2), 2005 129

⊕ ((X ⊗ ∂X)⊗ ∂X)⊕ ((∂X ⊗ ∂X)⊗ ∂X)⊕ (X ⊗ (X ⊗X))
⊕ (∂X ⊗ (X ⊗X))⊕ (X ⊗ (∂X ⊗X))⊕ (X ⊗ (X ⊗ ∂X))
⊕ (∂X ⊗ (∂X ⊗X))⊕ (∂X ⊗ (X ⊗ ∂X))⊕ (X ⊗ (∂X ⊗ ∂X))
⊕ (∂X ⊗ (∂X ⊗ ∂X)),

m

A3(X) ∼= 2
A3(X)⊕ (X⊗X⊗X)⊕ (∂X⊗X⊗X)⊕ (X⊗∂X⊗X)⊕ (X⊗X⊗∂X)

⊕ (∂X⊗∂X⊗X)⊕ (∂X⊗X⊗∂X)⊕ (X⊗∂X⊗∂X)
⊕ (∂X⊗∂X⊗∂X), for m > 3, etc.

We see that
dim(

m

An(X)) = (2 dim(X))n · bmn , n > 1, m > 2,

where bmn is as in (3).

Unital A(m)-algebras. Recall [5, page 148] that an A(m)-algebra A = (A, {µn})
is unital if there exists an element 1 = 1A ∈ A such that µ2(a, 1A) = µ2(1A, a) = a,
for all a ∈ A, and that µn(a1, . . . , ai−1, 1A, ai+1, . . . , an) = 0, for all n 6= 2 and
1 6 i 6 n. The free unital A(m)-algebra can be constructed as Spank(1) ⊕ m

A(X),
with the structure operations defined in an obvious way.

Important modifications. One may as well consider, for any n < m, the forgetful
functor 2 : A(m) → A(n). This functor has a left adjoint

m:n
A : A(n) → A(m) which

can be described as follows. Given an A(n)-algebra (V,m1,m2, . . . ,mn), consider
the free A(m)-algebra

m

A(V ) on the graded vector space V , and let µ1, . . . , µm be
the structure operations of

m

A(V ). Then
m:n
A (V,m1,m2, . . . ,mn) ∼= m

A(V )/(µi = mi, i 6 n).

A very important special case is n = 1 when we obtain a left adjoint
m:1
A : dgVect→

A(m) to the forgetful functor 2 : A(m) → dgVect to the category of differential
graded vector spaces. One can easily verify that

m:1
A (V, ∂) ∼=

⊕

n>1

(
mA(n), ∂)⊗ (V, ∂)⊗n, (7)

where (
mA, ∂) is now the non-Σ operad describing A(m)-algebras as algebras in the

monoidal category of differential vector spaces. Let us recall [7, page 1493] that
mA = Γ(ξ2, . . . , ξm) with the differential

d(ξn) :=
∑

(−1)(b+1)(i+1)+b · ξa ◦i ξb,

where the summation runs over all a, b > 2 with a + b = n + 1 and 1 6 i 6 a.
Formula (7) is in a perfect harmony with [8, Definition II.1.24] describing free
operad algebras in a general monoidal category.

Example 2.3. Clearly
m:1
A 1(V, ∂) ∼= (V, ∂), and, for m > 2,

m:1
A 2(V, ∂) ∼= (V ⊗ V )

with the induced differential. As graded vector spaces
2:1
A 3(V, ∂) ∼= ((V ⊗ V )⊗ V )⊕ (V ⊗ (V ⊗ V )),

m:1
A 3(V, ∂) ∼= 2:1

A 3(V )⊕ (V⊗V⊗V ), for m > 3,
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2:1
A 4(V, ∂) ∼= (((V⊗V )⊗V )⊗V )⊕ (V⊗(V⊗(V⊗V )))⊕ ((V⊗V )⊗(V⊗V ))

⊕ ((V⊗(V⊗V ))⊗V )⊕ (V⊗((V⊗V )⊗V )),
3:1
A 4(V, ∂) ∼= 2:1

A 4(V, ∂)⊕ ((V⊗V⊗V )⊗V )⊕ (V⊗(V⊗V⊗V ))⊕ ((V⊗V )⊗V⊗V )
⊕ (V⊗(V⊗V )⊗V )⊕ (V⊗V⊗(V⊗V )),

m:1
A 4(V, ∂) ∼= 3:1

A 4(V, ∂)⊕ (V⊗V⊗V⊗V⊗V ) for m > 4, etc.

The action of the differential in
m:1
A (V, ∂) can be easily read off from the axioms of

A(m)-algebras, for example

∂(x⊗y⊗z) = ((x⊗y)⊗z)− (x⊗(y⊗z))
−(∂x⊗y⊗z)− (−1)|a|(x⊗∂y⊗z)− (−1)|a|+|b|(x⊗y⊗∂z),

where (x⊗y⊗z) ∈ m:1
A 3(V ), m > 3. The above formula illustrates a surprising fact

that the differential in
m:1
A (V, ∂) is nontrivial even if the differential ∂ on V is zero,

because in this case still

∂(x⊗y⊗z) = ((x⊗y)⊗z)− (x⊗(y⊗z)) !

The dimension of the homogeneous components of
m:1
A (V, ∂V ) clearly equals

dim
m:1
A n(V, ∂) = (dim(V ))n · bmn , for n > 1, m > 2,

where the integers bmn are as in (3).

3. Free strongly homotopy Lie algebras

In this section we indicate how to modify previous results to strongly homotopy
Lie algebras. Recall ([4] or [3, Definition 2.1]) that an L(m)-structure on a graded
vector space L is a system {lk; 1 6 k 6 m, k < ∞} of degree k − 2 linear maps
lk : ⊗kL→ L which are antisymmetric in the sense that

lk(xσ(1), . . . , xσ(k)) = χ(σ)lk(x1, . . . , xn) (8)

for all σ ∈ Σn and x1, . . . , xn ∈ L. Here χ(σ) := sgn(σ) · ε(σ), where ε(σ) is the
Koszul sign of the permutation σ, see [3, page 2148] for details. Moreover, the
following generalized form of the Jacobi identity is supposed to be satisfied for any
n 6 m: ∑

i+j=n+1

∑
σ

χ(σ)(−1)i(j−1)lj(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0, (9)

where the summation is taken over all (i, n− i)-unshuffles with i > 1.
The operad

m

L = { m

L(n)}n>1 describing L(m)-algebras as algebras in the category
of graded vector spaces can be constructed as follows. Let

m

F = { m

F(n)}n>1 be the
free graded Σ-operad Γ(ζ1, ζ2, . . . , ζm) generated by the operations ζi, l 6 i 6 m,
where each ζi has i inputs, degree i − 2 and spans the signum representation of
the symmetric group Σi. Using trees, this operad can be described as follows. Let
m

T(n) be now the set of all directed labeled (non-planar, abstract) trees with n-input
edges, all of whose vertices have at most m input edges. We again admit also ‘unary’
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0 =
∑

i+j=n+1

∑
σ

χ(σ)(−1)i(j−1) ·
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Figure 2: Relations for strongly homotopy Lie algebras in the tree language.

vertices with only one input edge and ‘labeled’ means that the input legs are labeled
by natural numbers 1, . . . , n. Then, as before,

m

F(n) ∼= Spank(
m

T(n)).

We put
m

L :=
m

F/
m

I, where the operadic ideal
m

I is now generated by relations whose
pictorial presentation is indicated in Figure 2.

By similar arguments as in the previous sections we easily infer that there is a
natural basis of the k-vector space

m

L(n), formed by the set
m

Adm(n) of admissible
n-trees, whose definition is formally the same as in Definition 1.1, only removing
everywhere the adjective “planar.” The size of the operad

m

L is described in the
following proposition whose proof is similar to that of Proposition 1.4.

Proposition 3.1. The generating function ϑ(t) =
m

ϑ(t) :=
∑

n>1
1
n! dimk(

m

L(n))tn

satisfies the equation

ϑ(t)− 2t = ϑ2(t)
(

1
2!

+
1
3!
ϑ(t) + · · ·+ 1

m!
ϑm−2(t)

)
. (10)

Example 3.2. For m = ∞, equation (10) becomes 2ϑ(t)− 2t− 1 = exp(ϑ(t)). For
m = 2, equation (10) says that ϑ(t) = 1−√1− 4t2, therefore

dimk(
2

L(n)) = 2n · (2n− 3)!!, n > 1.

As in Lemma 1.3, we have a map Ω :
m

T(n) → Spank(
m

Adm(n)) with the property
that Ω(T ) ≡ T modulo relations of Figure 2. Free L(m)-algebras are then described
as follows.

Theorem 3.3. Let Y be a graded vector space. The free L(m)-algebra
m

L(Y ) gen-
erated by Y can defined as

m

L(Y ) =
⊕

n>1

m

Ln(Y ), where
m

Ln(Y ) :=
m

L(n)⊗Σn Y
⊗n.

The structure operations l1, . . . , lm are given by the following rule. Let ~vj ∈ Y ⊗kj

and Tj ∈
m

Adm(kj), 1 6 j 6 k. Then

lk(T1 ⊗Σk1
~v1, . . . , Tk ⊗Σk1

~vk) := Ω(ξk(T1, . . . , Tk))⊗Σk1+···+kk
(~v1 ⊗ · · · ⊗ ~vk).
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Remark 3.4. In exactly the same fashion as for A(m)-algebras one may define left
adjoints

m:n
L : L(n) → L(m) to the forgetful functor 2 : L(m) → L(n), n < m, as

m:n
L (L, λ1, λ2, . . . , λn) =

m

L(L)/(λi = li, i 6 n),

where li are the structure operations of
m

L(L).

4. Reflections on the PBW theorem

As in the case of ordinary Lie algebras, there exists the symmetrization functor
from the category A(m) of A(m)-algebras to the category L(m) of L(m)-algebras.
More precisely, we proved in [3, Theorem 3.1]:

Theorem 4.1. Any A(m)-structure {µn :
⊗n

V −→ V } on a differential graded
vector space V induces an L(m)-structure {ln :

⊗n
V −→ V } on the same differ-

ential graded vector space, with

ln(v1 ⊗ . . .⊗ vn) :=
∑

σ∈Sn

χ(σ)µn(vσ(1) ⊗ . . .⊗ vσ(n)), 2 6 n 6 m.

This correspondence defines a functor (the symmetrization) (−)L : A(m) −→ L(m).

In [3, Theorem 3.3], we also proved that:

Theorem 4.2. There exists a functor Um : L(m) −→ A(m) that is left adjoint to
the functor (−)L : A(m) −→ L(m).

The algebra Um(L) of the previous theorem is called the universal enveloping
A(m)-algebra of the L(m)-algebra L. We gave, in [3, page 2154], the following ex-
plicit construction of Um(L).

Start with the free unital A(m)-algebra
m

A(L) generated by the underlying vector
space L of the L(m)-algebra L = (L, {ln}) and let {µn} be the A(m)-structure maps
of

m

A(L). Let I denote the A(m)-ideal in
m

A(L) generated by the relations
∑

σ∈Sn

χ(σ)µn(ξσ(1), . . . , ξσ(n)) = ln(ξ1, . . . , ξn), for ξ1, . . . , ξn ∈ L, n 6 m.

Then we put Um(L) :=
m

A(L)/I. This universal enveloping A(m)-algebra is equipped
with the canonical map (in fact, an inclusion) ι : L→ Um(L).

Remark 4.3. Hinich and Schechtman introduced in [2], for any L(m)-algebra L
(they did it for m = ∞, but the general case is an obvious modification), an as-
sociative algebra (which they also called the universal enveloping algebra), having
the property that the category of modules (in a suitable sense, see for example [3,
Definition 5.1]) over an L(m)-algebra L is equivalent to the category of left modules
over the universal enveloping associative algebra of L.

It is unclear whether there exists a functor G : L(m) → A(m) such that the
category of modules over an L(m)-algebra L would be naturally equivalent to the
category of left modules, in the sense of [5, page 157], over the A(m)-algebra G(L).
Our universal enveloping A(m)-algebra functor whose definition we recalled above
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probably does not have this property. While it can be easily shown that each left
module over the A(m)-algebra Um(L) naturally defines a module over L, we doubt
that each L-module uniquely extends into a left module over Um(L). The classical
universal enveloping associative algebra of a strict Lie algebra is constructed as a
left adjoint to the symmetrization functor. By a miracle, this functor also happens
to describe the category of L-modules, but this mystic phenomenon does not take
place in the category of L(m)-algebras.

Moreover, there is no reason to believe that such a functor G exits. The category
of modules over a given L(m)-algebra L is a well-behaved abelian category, therefore
it should be the category of modules over an associative algebra, which turns out
to be the one constructed by Hinich and Schechtman. On the other hand, we do
not see why this abelian category should be at the same time the category of left
modules over some A(m)-algebra. Let us close this remark with

Problem 4.4. Let L be an L(m)-algebra. Does there exist an A(m)-algebra A with
the property that the category of modules over L is equivalent to the category of left
modules over A?

The simplest form of the P(oincaré)-B(irkhoff)-W(itt) theorem for an ordinary
Lie algebra L = (L, [−,−]) says that the associated graded algebra G∗(L) of the
universal enveloping algebra U(L) of L is isomorphic to the free commutative asso-
ciative algebra S∗(L) (the polynomial ring) on the vector space L. More precisely,
recall that

U(L) = T (L)/(x⊗y − y⊗x = [x, y], x, y ∈ L),

where T (L) is the free associative algebra (tensor algebra) on the vector space L.
The algebra U(L) is filtered, the ascending filtration being given by Up(L) := vector
space generated by linear combinations of elements which can be presented as a
product of 6 p elements in the augmentation ideal of T (L). Clearly U0(L) = k and
U1(L) = k⊕L. If G∗(L) denotes the associated graded algebra, then one proves that
the natural map L = G1(L) → G∗(L) is a monomorphism and G∗(L) is generated
by L. It is immediate to see that xy = yx, for arbitrary x, y ∈ L ⊂ G∗(L). We
formulate the following trivial observation.

Observation 4.5. Suppose that an associative algebra A admits a set of mutually
commutative generators. Then A is commutative.

From this observation we infer that G∗(L) is commutative, therefore there exists,
by the universal property, a commutative algebra map S∗(L) → G∗(L), induced by
the inclusion L ⊂ G∗(L). The PBW2 theorem says that this map is an isomorphism
of graded commutative associative algebras.

Let us try to guess which form the PBW theorem for the universal enveloping
A(m)-algebra Um(L) of an L(m)-algebra L may possibly have. The classical PBW
theorem compares the associated graded of U(L) to a commutative associative

2not to be mistaken with Praha-Berlin-Warszawa cycling race
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algebra. Commutative associative algebras occur in the symbolic exact sequence
(which may be found in [1, page 228])

Commutative associative algebras ⊂ Associative algebras π−→ Lie algebras.

Here the ‘projection’ π is given by the symmetrization of the associative product.
Commutative associative algebras are also the quadratic duals of Lie algebras (and
vice versa) [1, Theorem 2.1.11], but this coincidence is misleading. Summing up, the
classical PBW theorem says that the associated graded G∗(L) is the free algebra in
the kernel of the symmetrization map π.

One would naturally expect something similar also in the L(m)-algebra case. The
kernel of the symmetrization map (−)L of Theorem 4.1 clearly consists of A(m)-
algebras A = (A, {µn}) such that

∑

σ∈Sn

χ(σ)µn(aσ(1), . . . , aσ(n)) = 0, n > 2, a1, . . . , an ∈ A. (11)

Therefore one tends to believe that A(m)-algebras enjoying this form of symmetry
are analogs of the polynomial algebra S∗(L) from the classical PBW theorem. This
is, however, not exactly so.

To see why, let L = (L, {ln}) be an L(m)-algebra and define inductively an
ascending filtration of the universal enveloping A(m)-algebra Um(L) by Um,0(L) :=
k, Um,1(L) := Um,0∪ι(L) and Um,p(L) being the vector space generated by elements
of the form µk(x1, . . . , xk), k > 2, xi ∈ Um,pi(L) for 1 6 i 6 k and

∑k
1 pi 6 p. The

associated graded A(m)-algebra G∗m(L) is defined by

G∗m(L) =
⊕

q>0

Gq
m(L), Gq

m(L) := Um,q(L)/Um,q−1(L)

with the A(m)-structure maps induced by that of Um(L). It is easily seen that
G∗m(L) is generated by the image of the canonical inclusion ι : L ↪→ Um,1(L) →
G∗m(L). A moment’s reflection shows that the elements of L ⊂ G∗m(L) ‘mutually
commute’ in the sense that (11) is satisfied for a1, . . . , an ∈ L. Surprisingly, this
does not imply that (11) is satisfied for all elements of G∗m(L) – there is no analog
of Observation 4.5 for A(m)-algebras! One must instead consider A(m)-algebras
Sm(V, ∂) defined as

Sm(V, ∂) :=
m:1
A (V, ∂)/Im,

where Im is the ideal generated by the relations
∑

σ∈Sn

χ(σ)µn(vσ(1), . . . , vσ(n)) = 0 for 2 6 n 6 m and v1, . . . , vn ∈ V.

The algebra Sm(V, ∂) is (externally) graded, with the grading induced from the
(external) grading of the free A(m)-algebra

m:1
A (V, ∂). By a miracle, S∗m(V, ∂) has

the following very explicit description.
Choose a basis {fi}i∈I of V indexed by a linearly ordered set I. Let

m

Tn(V ) be
the set of all planar rooted reduced n-trees S whose vertices have arity 6 m. We
moreover suppose that the input legs of S are labeled by elements of the basis
{fi}i∈I and that the labels satisfy the following condition:
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Let v be an input vertex of S and let e1, . . . , ek be the input legs of v, written
in the order induced by the imbedding of S into the plane. Let fi1 , . . . , fik

be the
corresponding labels. Then it is not true that i1 > i2 > · · · > ik.

Proposition 4.6. For each n > 1, Sn
m(V ) ∼= Spank(

m

Tn(V )).

Proof. It follows from (7) that
m:1
A (V, ∂) is spanned by the set of planar directed

reduced n-trees with all vertices of arity 6 m and the input legs labeled by the
chosen basis {fi}i∈I of V . Let v be an input vertex of S, e1, . . . , ek input legs of v
written in the order induced by the plane and fi1 , . . . , fik

their labels.
Suppose i1 > i2 > · · · > ik. If i1 = ik, then clearly S ≡ 0 modulo Im. If i1 6= ik,

we may replace S modulo Im by a sum of trees that differ from S only by labels
of e1, . . . , ek which are changed to iσ(1), . . . , iσ(k), for some σ ∈ Σk such that it is
not true that iσ(1) > iσ(2) > · · · > iσ(k). Repeating this process at any input vertex
of S, we replace S modulo Im by a sum of trees from

m

Tn(V ). This replacement is
obviously unique.

Let us formulate our version of the PBW theorem for the universal enveloping
A(m)-algebra of an L(m)-algebra.

Theorem 4.7. The canonical map ι : L ↪→ Um,1(L) → G∗m(L) induces an isomor-
phism

ρ : S∗m(L) ∼= G∗m(L)

of (externally) graded A(m)-algebras.

Proof. The proof relies on the fact that {ρ(S); S ∈ m

Tn(V )} forms a basis of Gn
m(V ),

which easily follows from the above analysis. We leave the details to the reader.

Example 4.8. Let us analyze the case m = 2 when L(m)-algebras are just dif-
ferential graded anti-commutative non-associative algebras. For an L(2)-algebra
L = (L, [−,−], ∂),

2:1
A (L) is the free non-associative dg algebra generated by (L, ∂),

the universal enveloping A(2)-algebra of L is given by

U2(L) =
2:1
A /(xy − (−1)|x||y|yx = [x, y], x, y ∈ L),

and the associated graded G∗2(L) is the quotient of
2:1
A (L) by the ideal generated by

xy = (−1)|x||y|yx, for x, y ∈ L.

Remark 4.9. An ordinary strict Lie algebra L = (L, [−,−]) can be considered,
for any m > 2, as an L(m)-algebra with l2 = [−,−] and ln = 0 if n 6= 2. Its
universal enveloping A(m)-algebra Um(L) is a fully-fledged A(m)-algebra, therefore
an object completely different from the ordinary universal enveloping associative
algebra U(L). Thus our Um(L) cannot be considered as a generalization of the
classical universal enveloping algebra functor.
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Figure 3: Language of trees: a 10-tree.

Appendix: the tree language

The following definitions can be found for example in [8, Section II.1.5]. By a tree
we mean a connected graph T without loops. Let Vert(T ) denote the set of vertices
of T . A valence of a vertex v ∈ Vert(T ) is the number of edges adjacent to v. A leg
of T is an edge adjacent to a vertex of valence one, other edges of T are interior .
We in fact discard vertices of valence one at the endpoints of the legs, therefore the
legs are “half-edges” having only one vertex. This can be formalized by introducing
(generalized) graphs as certain sets with involutions, see [8, Definition II.5.37].

By a rooted or directed tree we mean a tree with a distinguished output leg called
the root . The remaining legs are called the input legs of the tree. A tree with n input
legs is called an n-tree. A rooted tree is automatically oriented , each edge pointing
towards the root. The edges pointing towards a given vertex v are called the input
edges of v, the number of these input edges is then the arity of v. Vertices of arity
one are called unary, vertices of arity two binary, vertices of arity three ternary, etc.
A tree is reduced if it has no unary vertices. A vertex v ∈ Vert(T ) is an input vertex
of T if all its input edges are input legs of T . With the above conventions accepted,
we must admit also the unique reduced 1-tree which consist of one edge which is
both its root and the input leg, and no vertices (soul without body).

Each tree can be imbedded into the plane. By a planar tree we mean a tree with
a specified (isotopy class of) imbedding. Reading off counterclockwise the input legs
of a planar tree, starting from the leftmost one, gives a linear order of input legs. In
the same manner, input edges of each vertex of a planar tree are linearly oriented.
Vice versa, specifying linear orders of input edges of each vertex of a rooted tree T
uniquely determines an isotopy class of imbedding of T into the plane.

Example 4.10. In Figure 3, f is the root, a the root vertex, l,m, n, o, p, q, r, s, t, u
the input legs and g, j, k, i the interior edges of T . Vertices b, c, d, v are the input
vertices of T . The vertex d is unary, v binary and the remaining vertices are ternary.
The tree in Figure 3 is not reduced because it contains an unary vertex.
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