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HPT AND COCYCLIC OPERATIONS

ROCIO GONZALEZ–DIAZ and PEDRO REAL

(communicated by James Stasheff)

Abstract
We reinterpret the classical theory of cocyclic operations in

terms of permutations and homotopy equivalences of explicit
chains. The essential tools we use are Homological Perturba-
tion Theory and Eilenberg–Zilber Theorem. The main objec-
tive of this technique is the final identification of cohomology
operations at cochain level.

1. Introduction

L. Kristensen [18] initiated the study of the relationship between cohomology
operations and simplicial cochain operations. In [17, 18], a representation result
for stable primary and secondary cohomology operations in terms of cochain maps
is given and some results for the evaluation of secondary and tertiary operations
in low dimensions are obtained. Klaus [16], using representability results and the
cohomology of Eilenberg–MacLane spaces, extended Kristensen’s results to prove
that any cohomology operation mod m (or more precisely, cocyclic operations) can
be described in terms of polynomials of coface operators at the cochain level.

In this paper, cocyclic operations are considered from the algorithmic perspective
given by Homological Perturbation Theory (HPT) [8, 15]. The fundamental data
of HPT consists of a special chain homotopy equivalence called a contraction [20].
More concretely, we design a method for obtaining explicit formulae for cocyclic op-
erations as follows. First, we consider a cycle representative of a homology generator
of a subgroup of the symmetric group Sp. Next, we apply a perturbation process
to obtain a first approximation of the formulae in terms of permutations and the
component morphisms of a given Eilenberg–Zilber contraction [6]. As an example,
we apply this technique to the particular case of Steenrod and Adem cohomology
operations [24, 25, 1, 2].

The paper is organized as follows. In Section 2 we introduce the theoretical
background from Algebraic Topology on the concepts we use here. In Section 3, we
give a procedure for computing cocyclic operations using Homology Perturbation
Theory. In Section 4, we apply our method to the particular case of Steenrod and
Adem cocyclic operations. Finally, Section 5 is devoted to conclusions and remarks.
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2. Background

We introduce the basic notation and terminology that we use throughout the
remainder of this paper. The reference for the material in this section is [20].

Let R be a commutative ring with identity 1 6= 0. A chain complex is a graded
R–module C∗ = ⊕n∈Z Cn together with an R–module endomorphism

d =
∑

n∈Z

dn : Cn → Cn−1

such that dd = d2 is zero. The map d is called the differential of C∗. The kernel of dn

is the module of n–cycles in C∗; The image of dn+1 is the module of n–boundaries
in C∗; the quotient

Hn(C∗) = Ker dn/ Im dn+1

is the nth homology module of C∗. The homology class of a cycle a is denoted by
[a]. The nth homology of C∗ with coefficients in a commutative ring G is defined by

Hn(C∗; G) = Hn(C∗ ⊗G) .

Whenever two graded objects x and y of degree p and q are interchanged we
apply the Koszul’s convention and introduce the sign (−1)pq

. The tensor product
of chain complexes C∗ and D∗ is the chain complex C∗ ⊗D∗ with differential

dC∗⊗D∗ = dC∗ ⊗ 1 + 1⊗ dD∗ .

Let C∗ be a chain complex and G an R–module. Form the abelian group

Cn = HomR(Cn, G) ,

for all n; its elements are the module homomorphisms c : Cn → G, called n–cochains
of C∗. The differential d : C∗ → C∗ induces the codifferential δ : C∗ → C∗ defined
by

δn(c) = (−1)n+1cdn+1 ,

for all c ∈ Cn and for all n. The cohomology of C∗ is the family of abelian groups

Hn(C∗, G) = Ker δn/ Im δn−1 .

An element of Im δn−1 is called an n–coboundary and an element of Ker δn an
n–cocycle.

A natural transformation on the family C∗ of all cochains complexes is an operator
T that commutes the following diagram for all C∗, D∗ ∈ C∗ and every cochain map
f : C∗ → D∗ :

C∗
f−→ D∗

↓ ↓
T (C∗)

T (f)−→ T (D∗) .

A cocyclic operation of degree i, is a natural transformation O on C∗ of the form

O : C∗ → C∗+i

that preserves cocycles.
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A differential graded module (DG–module for short) M is a chain complex such
that Mn = 0 for all n < 0. A DGA–module (M, ξ, η) (we will write it simply M
when no confusion can arise) is a DG–module M endowed with two morphisms
called the augmentation ξ : M0 → R and the coaugmentation, η : R → M0. It is
required that ξ η = 1R and ξ d = 0. A DGA–module morphism, f : M → N , is a
graded module morphism that commutes with the differentials of M and N ,

fdM = dNf , ξNf = ξM and fηM = ηN .

A DGA–algebra (A, µ) (resp. DGA–coalgebra (B,∇)) is a DGA–module endowed
with a morphism µ : A⊗A → A, called product on A, such that

µ(µ⊗ 1A) = µ(1A ⊗ µ) and µ(ηA ⊗ 1A) = 1A = µ(1A ⊗ ηA)

(resp. ∇ : B → B ⊗B, called coproduct on B, where

(∇⊗ 1B)∇ = (1B ⊗∇)∇ and (ηB ⊗ 1B)∇ = 1B = (1B ⊗ ηB)∇ ).

The free R–algebra generated by a group G is a DGA–algebra denoted by R∗[G].
It satisfies that

• It is zero in each degree except for degree zero, where,

R0[G] =

{ ∑

a∈A

λaa : λa ∈ R and A is a finite subset of G
}

.

• The product µG, the augmentation ξG and the coaugmentation ηG are given
by

µG((
∑

λaa)⊗ (
∑

λa′a
′)) =

∑
λaλa′(a + a′),

ξG(
∑

λaa) =
∑

λa and ηG(λ) = λ 0̄,

where a, a′ ∈ G and λa, λa′ , λ ∈ R.

As a graded module, the reduced bar construction B̄∗(G) of the DGA–algebra
R∗[G] is defined by

B̄0(G) = R and B̄n(G) = (Ker ξG)⊗n , n > 0 .

The element of B̄0(G) corresponding to the identity in R is denoted by [ ] and an
element a1 ⊗ · · · ⊗ an of B̄n(G) is denoted by [a1| · · · |an]. The differential of B̄∗(G)
is given by

d([a1| · · · |an]) =
n−1∑

i=1

(−1)i[a1| · · · |ai−1|µG(ai ⊗ ai+1)|ai+2| · · · |an] (n > 1) ;

and d[a1] = 0 for all [a1] ∈ B̄1(G). The augmentation and the coaugmentation on
B̄∗(G) coincide with the identity on R. Moreover, B̄∗(G) is a DGA–coalgebra with
the coproduct:

∇([a1| · · · |an]) =
n∑

i=0

[a1| · · · |ai]⊗ [ai+1| · · · |an] (n > 0).
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Let (B,∇) be a DGA–coalgebra and (A,µ) a DGA–algebra. A twisting cochain
or Brown cochain κ, is a graded module morphism κ : B∗ → A∗−1 satisfying that

dAκ + κ dB + µ(κ⊗ κ)∇ = 0, ξAκ = 0 and κ ηB = 0.

Let M be an A–DG–module (where ν : M ⊗ A → M is the (right) A–module
structure on M). Define the morphism dκ : M ⊗B → M ⊗B by

dκ(m⊗ b) = (dM⊗B + κ∩)(m⊗ b)

where κ∩ = (ν ⊗ 1B)(1M ⊗ κ⊗ 1B)(1M ⊗∇). The graded module M ⊗ B endowed
with dκ is the DG–module denoted by M⊗κ B and called the twisted tensor product
by the twisting cochain κ. An example of twisted tensor product is R∗[G]⊗θ B̄∗(G),
where the twisting cochain θ, called the universal twisting cochain, is given by

θ([a1| · · · |an]) =
{

a1 if n = 1,
0 otherwise.

We deal with an special type of homotopy equivalence. A contraction r from a
DG–module N to a DG–module M , consists in three morphisms (f, g, φ) where
f : N → M (projection) and g : M → N (inclusion) are DG–module morphisms
of degree zero and φ : N → N (homotopy operator) increases the degree by one.
Moreover, it is required that

(r1) fg = 1M ,

(r2) φd + dφ = gf − 1N ,

(r3) φg = 0 , fφ = 0 , φφ = 0.

Such a contraction will be denoted by r = (f, g, φ) : N ⇒ M or briefly N
r⇒ M .

The importance of having this structure from M to N is that the module N has
less or equal number of generators than the module M although they have the same
homology.

3. Cocyclic Operations and HPT

The goal of this section is to design an algebraic–combinatorial machinery in order
to generate cocyclic operations starting from a given Eilenberg–Zilber contraction.

First of all, we recall the concept of perturbation datum and we introduce the
main tool in Homological Perturbation Theory: Basic Perturbation Lemma [23, 3,
7, 8, 15].

Let f : M → M be a DG–module morphism. The morphism f is pointwise
nilpotent if, for all m ∈ M , a positive integer n(m) exists such that fn(m) = 0.
A perturbation of a DGA–module M is a graded module morphism ϕ : M → M
(which decreases the degree by one), such that (dM + ϕ)2 = 0 and ξMϕ = 0. A
perturbation datum of the contraction r = (f, g, φ) : M ⇒ N is a perturbation ϕ of
the DGA–module M satisfying that the composition φϕ is pointwise nilpotent.

Basic Perturbation Lemma (BPL) can be seen as a real algorithm such that the
input is a contraction and a perturbation of this contraction, and the output is a
new perturbed contraction.
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Theorem 3.1. Basic Perturbation Lemma [23].
Input:

A contraction r = (f, g, φ) : (M, dM) ⇒ (N, dN) and a perturbation
datum ϕ : M → M of r .

Output:

The contraction rϕ = (fϕ, gϕ, φϕ) : (M, dM + ϕ) ⇒ (N, dN + ϕ̃) where

fϕ =
∑

i>0

f(ϕφ)i , gϕ =
∑

i>0

(φϕ)ig ,

φϕ = −
∑

i>0

(φϕ)iφ , ϕ̃ =
∑

i>0

fϕ(φϕ)ig .

Note that all the sums are finite because of the pointwise nilpotency of φϕ.
In the following lemma, G is a group and M and N are two R∗[G]–DG–modules

(where ν and ν′ are the (right) R∗[G]–module structures on M and N , respectively).
If there exists a contraction r form M to N which satisfies a commutative condition,
then there exists a contraction from M ⊗θ B̄∗(G) to N ⊗θ B̄∗(G) such that the
inclusion morphism is not perturbed:

Lemma 3.2.

Input:

A contraction r = (f, g, φ) : M ⇒ N such that the following diagram is
commutative:

M ⊗R∗[G]
g⊗1−→ N ⊗R∗[G]

ν ↓ ↓ ν′

M
g−→ N

(1)

Output:

The contraction

(r ⊗ 1)θ∩ = ((f ⊗ 1)θ∩, g ⊗ 1, (φ⊗ 1)θ∩) : M ⊗θ B̄∗(G) ⇒ N ⊗θ B̄∗(G) .

Proof. Apply Basic Perturbation Lemma to the contraction

(r ⊗ 1) = (f ⊗ 1, g ⊗ 1, φ⊗ 1) : M ⊗ B̄∗(G) ⇒ N ⊗ B̄∗(G) .

and the perturbation datum θ∩. Then, the new contraction

(r ⊗ 1)θ∩ = ((f ⊗ 1)θ∩, (g ⊗ 1)θ∩, , (φ⊗ 1)θ∩) : M ⊗θ B̄∗(G) ⇒ N ⊗θ B̄∗(G)

is obtained. Now, it is easy to see that (g ⊗ 1)(θ∩) = (θ∩)(g ⊗ 1) due to the
commutativity property (1), so that

(g ⊗ 1)θ∩ = g ⊗ 1 +
∑

i>1

((φ⊗ 1)(θ∩))i(g ⊗ 1) = g ⊗ 1 .
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3.1. A machinery for constructing cocyclic operations
In this subsection we design a procedure for obtained explicit formulae for cocyclic

operations from the perspective of simplicial sets, which provide a combinatorial de-
scription of topological spaces. Roughly speaking, a simplicial set can be considered
as an algebraic generalization of the structure of a triangulated polyhedron although
the former features a more rigid combinatorial structure than the latter. We recall
concepts from Simplicial Topology [19] in order to fix notation.

A simplicial set K is a graded set indexed by the non–negative integers together
with face and degeneracy operators ∂i : Kq → Kq−1 and si : Kq → Kq+1, 0 6 i 6 q,
satisfying some particular commutativity properties. The elements of Kq are called
q–simplices. A simplex x is degenerate if x = siy for some simplex y and degeneracy
operator si; otherwise, x is non–degenerate. Let K and L be two simplicial sets. The
cartesian product K×L is a simplicial set whose simplices and face and degeneracy
operators are given by

(K × L)q = Kq × Lq ,

∂i(x, y) = (∂ix, ∂iy) and si(x, y) = (six, siy).

The chain complex of a simplicial set K with coefficients in R, denoted by C∗(K), is
constructed as follows: Cn(K) is the free R–module on the set Kn; the face operators
∂i yield module maps Cn(K) → Cn−1(K), which we also call ∂i; their alternating
sum

d =
∑

(−1)i∂i

is the differential of C∗(K). The normalized chain complex CN
∗ (K) is the chain

complex defined as the quotient

CN

n (K) = Cn(K)/s(Cn−1(K)) ,

where s(Cn−1(K)) denotes the free R–module on the set of all the degenerate n–
simplices of K. Since we will always work with normalized chain complexes, we
simplify notation and write C∗(K) instead of CN

∗ (K). The (co)homology of K is,
by definition, the (co)homology of the chain complex C∗(K).

Eilenberg–Zilber contractions for simplicial sets [6] provide the most classical
example of homotopy equivalence between chain complexes in Algebraic Topology.
Roughly speaking, a normalized chain complex C∗(K × L) reduces to the tensor
product of the normalized chain complexes C∗(K) and C∗(L) via these contractions.
A contraction of this kind is denoted by

rEZ = (Aw , Em , Sh ) : C∗(K × L) ⇒ C∗(K)⊗ C∗(L) .

Its morphisms have explicit formulations in terms of face and degeneracy operators.
A recursive formula for the Sh operator is given in [5]. An explicit formula for
this operator was stated by Rubio [22]. It is possible to construct a contraction
from C∗(K×p) to C∗(K)⊗p (where p is a positive integer), appropriately composing
Eilenberg–Zilber contractions. If there is no confusion, it will be denoted by

rEZ(p) = (Aw p,Em p,Sh p) : C∗(K×p) ⇒ C∗(K)⊗p .

We can now formulate our main result.
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Theorem 3.3. A Machinery for Constructing Cocyclic Operations.
Input:

A commutative ring G.
A non–negative integer p.
A subgroup G of the symmetric group Sp.
A cycle a ∈ B̄∗(G) representative of a homology class α in Hn(B̄∗(G); G).
An Eilenberg–Zilber contraction

rEZ(p) = (Aw p,Em p,Sh p) : C∗(K×p) ⇒ C∗(K)⊗p .

A non–negative integer q.
Output:

The cocyclic operation

O(rEZ(p),a,q) : Ker δq(K; G) → Ker δqp−n(K; G/mG)

(where m = m(a, q) is a non–negative integer), given by

O(rEZ(p),a,q)(c)(x) = µc⊗p(Awp ⊗ 1)(θ∩(Shp ⊗ 1))n(∆x⊗ a) ,

where c ∈ Ker δq(K; G), x ∈ Cqp−n(K), µ is the product on G/mG, and
∆ is defined by ∆(x) = (x, p times. . . , x).

Proof. We have to prove that if c ∈ Ker δq(K; G) then O(rEZ(p),a,q)(c) is a (qp−n)–
cocycle mod m.

We apply Lemma 3.2 to rEZ(p) and the group G, to obtain the new contraction

(rEZ(p) ⊗ 1)θ∩ : C∗(K×p)⊗θ B̄∗(G) ⇒ C∗(K)⊗p ⊗θ B̄∗(G) .

Now, since (Aw p ⊗ 1)θ∩ is a DG–module morphism, we have that

(Aw p ⊗ 1)θ∩(1⊗ d + d⊗ 1 + θ∩)(∆x⊗ a)
= (1⊗ d + d⊗ 1 + θ∩)(Aw p ⊗ 1)θ∩(∆ x⊗ a) .

(2)

for all x ∈ Cpq−n(K). On one hand, since d(a) = 0 then

(Aw p ⊗ 1)θ∩(1⊗ d)(∆x⊗ a) = 0 .

On the other hand, since the symmetric group Sp operates on C∗(K×p) by the usual
action, then θ∩(∆x⊗ a) = 0, so

(Aw p ⊗ 1)θ∩ θ∩(∆ x⊗ a) = 0 .

Now, (2) becomes

(Aw p ⊗ 1)θ∩(d⊗ 1)(∆ x⊗ a)
= (1⊗ d + d⊗ 1 + θ∩)(Aw p ⊗ 1)θ∩(∆ x⊗ a) .

(3)

Adding µc⊗p(1⊗ ξB̄[G]) to the both sides of (3), we have

µc⊗p(1⊗ ξB̄[G])(Aw p ⊗ 1)θ∩(d⊗ 1)(∆ x⊗ a)
= µc⊗p(1⊗ ξB̄[G])(1⊗ d + d⊗ 1 + θ∩)(Aw p ⊗ 1)θ∩(∆ x⊗ a) .

(4)

Since d[a1] = 0 for any [a1] ∈ B̄1(G) then

µc⊗p(1⊗ ξB̄[G])(1⊗ d)(Aw p ⊗ 1)θ∩(∆x⊗ a) = 0 .
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Since c is a cocycle then

µc⊗p(1⊗ ξB̄[G])(d⊗ 1)(Aw p ⊗ 1)θ∩(∆x⊗ a) = 0 .

Taking into account that the symmetric group Sp operates on C∗(K)⊗p by the usual
action, then

µc⊗p(1⊗ ξB̄[G])θ∩(Aw p ⊗ 1)θ∩(∆x⊗ a) = 0 mod m,

where m is a non–negative integer depending on the cycle a and the integer q.
Substituting these results in (4), we have that

µc⊗p(1⊗ ξB̄[G])(Aw p ⊗ 1)θ∩(d⊗ 1)(∆ x⊗ a) = 0 mod m,

Then,

µc⊗p(Aw p ⊗ 1)(θ∩(Sh p ⊗ 1))n(∆ d x⊗ a) = 0 mod m,

and finally we get

δO(rEZ(p),a,q)(c)(x) = 0 mod m .

That is, O(rEZ(p),a,q)(c) is a (pq − n)–cocycle mod m for any q–cocycle c.

We analyze the case of cocyclic operations constructed with the machinery using
different cycles (representative of the same homology class) or different Eilenberg–
Zilber contractions in [13].

4. Examples

In this section, we give two examples of the application of the technique ex-
plained before. The first one is a reinterpretation of the work of Steenrod concerning
to Steenrod squares and Steenrod powers operations [24, 25]. The second one is
concerning to the computation of Adem secondary cocyclic operations [1, 2].

4.1. Steenrod Cocyclic Operations
In this subsection, we give a new proof of Theorem 3.1 of [9] about explicit

expressions of Steenrod cocyclic operations as an example of the application of the
method explained above.

First, let us recall the definition of these particular operations. An infinite se-
quence of morphisms {Dn}n>0 which “measures” the lack of commutativity of Aw
is called a higher diagonal approximation [25]. More concretely, given a simplicial
set K, and an Eilenberg–Zilber contraction rEZ(p) = (Awp, Emp, Shp), a higher
diagonal approximation is a sequence of morphisms Dn : C∗(K) → C∗(K)⊗p of
degree n such that:

D0 = Aw p∆, dC∗(K)⊗pDn + (−1)n−1DndC∗(K) = γ′nDn−1; (5)

where γ′n : C∗(K)⊗p → C∗(K)⊗p is defined by

γ′n =
{

T − 1 if n odd,
1 + T + · · ·+ T p−1 if n even;
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and T : C∗(K)⊗p → C∗(K)⊗p is the cyclic permutation defined by

T (x1 ⊗ x2 ⊗ · · · ⊗ xp) = (−1)|x1|(|x2|+···+|xp|)x2 ⊗ · · · ⊗ xp ⊗ x1 .

Given a higher diagonal approximation {Dn}, Steenrod cocyclic operations [25]
are defined by:

Pp
n(c) = µc⊗pDn ∈ Ker δqp−n(K;Zp) ,

where p is a prime number, µ is the natural product on Zp and c ∈ Ker δq(K;Z).
The acyclic model method [4] is used for guaranteeing the existence of the mor-

phisms Dn. Nevertheless, working in a simplicial framework, another constructive
approximation to these morphisms can be made. In order to obtain this, we apply
Theorem 3.3 to the cyclic group Zp and the family of cycles



an =

∑

x̄i∈Zp

[1̄− 0̄|x̄1 − 0̄|1̄− 0̄|x̄2 − 0̄| · · · ] ∈ B̄n(Zp)





n>0

.

The Z[Zp]–module structures on C∗(K×p) and C∗(K)⊗p are, respectively:

ν(x, i) = ti(x) and ν′(y, i) = T i(y) (i ∈ Zp) ,

where x ∈ C∗(K×p), y ∈ C∗(K)⊗p, t is the cyclic permutation on C∗(K×p) given
by t(x1, x2, . . . , xp) = (x2, . . . , xp, x1), and T is that on C∗(K)⊗p.

The output of Theorem 3.3 gives the family of cocyclic operations

{O(rEZ(p),an,q) : Ker δq(K;Z) → Ker δqp−n(K;Zp)}n,q>0 ,

such that, if c ∈ Ker δq(K;Z) and x ∈ Cqp−n(K) then

O(rEZ(p),an,q)(c)(x) = µc⊗p(Awp ⊗ 1)(θ∩(Shp ⊗ 1))n(∆x⊗ an)

=
∑

x̄i∈Zp

µc⊗pAw p(· · · ν(Shpν(Shp∆x⊗ (1̄− 0̄)⊗ (x1 − 0̄)) · · · )

= µc⊗pAw pγnSh p · · · γ1Sh p∆ x ,

where, for all 1 6 j 6 n, γj : C∗(K×p) → C∗(K×p) is defined by

γj =
{

t if j odd,
t + · · ·+ tp−1 if j even.

4.2. Adem Secondary Cocyclic Operations
In [1, 2], J. Adem constructed secondary cohomology operations using relations

on iterated Steenrod squares. He proved the relation Sq2Sq2+Sq3Sq1 = 0 by means
of a cochain construction. More precisely, he established the existence of cochain
mappings

Ej : Cp(K×4;Z) → C4p−j(K;Z2)

such that mod 2

(c ^i c) ^i+2 (c ^i c) + (c ^i+1 c) ^i (c ^i+1 c) = δE3i+3(c4) , (6)
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where ^k is the cup–k product [24], c is a q–cocycle and i = q−2. He demonstrated
that if c is a q–cocycle such that Sq2(c) is a coboundary (that is, there exists a
cochain b such that c ^i c = δb), then

w = b ^i+1 b + b ^i+2 δb + E3i+3(c4) + η(c) ^i−1 η(c) + η(c) ^i δη(c)

is a mod 2 cocycle, where η(c) =
1
2
(c ^i+2 c) + c. Therefore, Adem secondary

cohomology operations are defined as

Ψq[c] = [w] + Sq2Hq+1(K;Z) ∈ Hq+3(K;Z2) .

Now, we explain our procedure to obtain explicit formulas for the operation Ψ2[c]
at cocycle level. An study of the general case Ψq[c] is done in [14].

Our aim is to obtain an explicit formula for E3. Consider the semi–direct product
G = Z×2

2 ×χ Z2 where
χ(ā, b̄, 1̄) = (b̄, ā) .

The Z2[G]–module structures on C∗(K×4) and C∗(K)⊗4 are given by:

ν(x, e1) = z(x) = (x1, x3, x2, x4) ,

ν(x, e2) = (t× t)(x) , ν(x, e3) = t(x)

and
ν′(y, e1) = z′(y) = (−1)|y2|·|y3|y1 ⊗ y3 ⊗ y2 ⊗ y4 ,

ν′(y, e2) = (T ⊗ T )(y) , ν′(y, e3) = T (y)

where x = (x1, x2, x3, x4) ∈ C∗(K×4), y = y1 ⊗ y2 ⊗ y3 ⊗ y4 ∈ C∗(K)⊗4 and

e1 = (0̄, 0̄, 1̄) , e2 = (1̄, 0̄, 0̄) , e3 = (0̄, 1̄, 0̄) .

Consider the Eilenberg–Zilber contraction

rEZ(4) = (Aw4, Em4, Sh4) : C∗(K×4) rEZ⇒ (C∗(K×2))⊗2 rEZ⊗rEZ⇒ C∗(K)⊗4 .

Let us take the following boundary in B̄3(Z×2
2 ×χ Z2):

a3 = [e3 − e0|e3 − e0|e1 − e0]
+[e3 − e0|e1 − e0|e2 − e0] + [e1 − e0|e2 − e0|e2 − e0] mod 2

where e0 = (0̄, 0̄, 0̄). It satisfies that

d(a3) = [(e3 − e0|e3 − e0] + [e2 − e0|e2 − e0] = b2 mod 2 .

Since a3 is not a cycle, we can not directly apply Theorem 3.3. But, following an
analog process, we apply Lemma 3.2 to the contraction rEZ(4) and the group G, to
obtain the new contraction

(rEZ(4) ⊗ 1)θ∩ : C∗(K×4)⊗θ B̄∗(G) ⇒ C∗(K)⊗4 ⊗θ B̄∗(G) .

Now, since (Aw 4 ⊗ 1)θ∩ is a DG–module morphism, we have that mod 2,

(Aw 4 ⊗ 1)θ∩(1⊗ d + d⊗ 1 + θ∩)(∆ x⊗ a3)
= (1⊗ d + d⊗ 1 + θ∩)(Aw 4 ⊗ 1)θ∩(∆x⊗ a3)

(7)
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Simplifying this equation and adding µc⊗4(1 ⊗ ξB̄[G]) to the both sides of (7) we
have that mod 2:

µc4(1⊗ ξB̄[G])(Aw 4 ⊗ 1)θ∩(∆ x⊗ b2)
= µc4(1⊗ ξB̄[G])(Aw 4 ⊗ 1)θ∩(∆ dx⊗ a3)

(8)

for all c ∈ Ker δ2(K;Z) and x ∈ C6(K). On one hand, simplifying the right term
of (8), we obtain the following identities mod 2:

µc4(1⊗ ξB̄[G])(Aw 4 ⊗ 1)(θ∩(Sh 4 ⊗ 1))3(∆x⊗ b2)

= µc4(Aw 4 ⊗ 1)(θ∩(Sh 4 ⊗ 1))2(∆x⊗ b2)
= µc4(Aw 4(t× t)Sh 4(t× t)Sh 4z∆(x) + Aw 4tSh 4tSh 4∆(x))
= (c ^2 c) ^0 (c ^0 c) + (c ^1 c) ^0 (c ^1 c) + (c ^0 c) ^0 (c ^2 c)
+(c ^0 c) ^2 (c ^0 c)

= (c ^2 c) ^0 (c ^0 c) + (c ^1 c) ^0 (c ^1 c) + δ((c ^0 c) ^1 (c ^2 c)) .

On the other hand, the left term is:

µcp(1⊗ ξB̄[G])(Aw 4 ⊗ 1)θ∩(∆ dx⊗ a3)

= µc4(Aw 4 ⊗ 1)(θ∩(Sh 4 ⊗ 1))3(∆d x⊗ a3)
= µc4(Aw 4(t× t)Sh 4(t× t)Sh 4zSh 4∆d(x) + Aw 4(t× t)Sh 4zSh 4tSh 4∆d(x)

+Aw 4zSh 4tSh 4tSh 4∆d(x))
= µc4((D2 ⊗Aw + D1t⊗ TD1)Aw z(Sh + Em (Sh ⊗ EmAw + 1⊗ Sh )Aw )

+(D1 ⊗ TAw + Aw t⊗D1)Aw z(Sh tSh + Em (Sh ⊗ Sh )Aw )
+(Aw ⊗Aw )Aw zSh tSh tSh )∆d(x) ,

where Di = Aw (tSh )i. Then, defining

E3 = µc4((D2 ⊗Aw + D1t⊗ TD1)Aw z(Sh + Em (Sh ⊗ EmAw + 1⊗ Sh )Aw )
+(D1 ⊗ TAw + Aw t⊗D1)Aw z(Sh tSh + Em (Sh ⊗ Sh )Aw )
+(Aw ⊗Aw )Aw zSh tSh tSh )∆

+(c ^0 c) ^1 (c ^2 c) ,

(9)

the relation (8) is simplified to:

δ(E3) = (c ^2 c) ^0 (c ^0 c) + (c ^1 c) ^0 (c ^1 c) .

So, we have obtained the explicit morphism Ej in the case j = 3, which is used to
construct the Adem secondary operation Ψ2.

5. Comments

In this paper, we give a method for obtaining explicit formulae for cocyclic oper-
ations in terms of the explicit morphisms of a given Eilenberg–Zilber contraction.
Since shuffles (a special type of permutation) of degeneracy operators are involved
in the formulae of cocyclic operations, an algorithm designed for computing the
operations from these formulae would be too slow for practical implementation. Be-
cause of this, the idea of simplification arises in a natural way. This normalization
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process is based on the fact that any composition of face and degeneracy operators
can be uniquely expressed in terms of face operators. Some work have been done in
this way by the authors (see [12]).

Cohomology operations that can be explicitly expressed at cochain level, can
be computed via an explicit contraction from the (co)chain complex of K to a
“minimal” (co)chain complex M(K) (see [10]), using the well–known reduction
algorithm for computing homology [21]. This contraction satisfies that whenever the
ground ring is a field F or the (co)homology of K is free, then M(K) is isomorphic
to the (co)homology of K. Therefore, an algorithm for computing the cohomology
operation

O(q,r,F ) : Hq(K, F ) → Hr(K; F )

can be designed as follows:

Input:

A simplicial set K finite in each degree.
A contraction (f∗, g∗, φ∗) from C∗(K; F ) to H∗(K;F ).
An explicit expression, in terms of face operators of K, of the cocyclic
operation

O(q,r,F ) : Cq(K, F ) → Cr(K;F )

such that O(α) = [O(a)] for any α ∈ Hq(K, F ) and a ∈ Cq(K,F ) such
that [a] = α.
An element α in Hq(K; F ).

Output:

The element O(q,r,F )(α) = f∗(O(q,r,F )(g∗(α))) in Hr(K, F ).

Note that the complexity of this algorithm essentially depends on the complexity
of the explicit expressions of the cohomology operation O at cocyclic level.

Using all these results, [10] is devoted to design and practical implement an
algorithm for computing the first Adem cohomology operation Ψ2. Moreover, in
[14], the computation of all Adem cohomology operations is studied in detail.

Nevertheless, a lot of work is needed to be done in order to obtain a general
scheme for computing all the cohomology operations using this approach. We need
to study the hypothesis under which Theorem 3.3 provides cocyclic operations that
are also coboundary operations (that is, that preserve coboundaries). In this way, we
will obtain a real cohomology operation at cochain level. Moreover, it is interesting
the study of conditions under which cocyclic operations are homomorphisms.
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