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We study the possible link between the dynamics of a certain
family of circle maps and the caustics of their iterates. The maps
are defined by off-center reflections in a mirrored circle; they
can also be regarded as perturbed rotations. Some of our exper-
imental observations can be justified rigorously: for example, a
lower bound is given for the number of cusps and the mode-
locking behavior are studied. Symplectic topology is a particu-
larly useful tool in this study.

1. INTRODUCTION

We study a particular one-parameter family of circle
maps, called off-center reflections, first introduced
in [Yau 1993, problem 21] (definitions are given in
Section 2). We explore the possible link between
the dynamics of this family of circle maps and their
caustics. We observe and prove several phenomena:
for example, within a certain generic range of the
parameter r, the caustics of odd iterates have ex-
actly four cusps, whereas for even iterates the caus-
tic is a curve tangent to the circle at exactly four
points. Other partial results are given in the hope
of stimulating further investigations.

An off-center reflection has several interesting an-
alytic forms. It is a Blaschke product restricted to
the circle. It has an infinite series expression in the
parameter, highlighting its character as a pertur-
bation of a rotation on the circle. Starting with
[Arnold 1961], a standard type of perturbations has
attracted much interests in mathematics and physics
communities [Bak et al. 1988; Ding and Hemmer
1988; Zheng 1991]. This standard type is exactly a
reduction of the series of the off-center reflection.

In the family of off-center reflections, as the pa-
rameter r goes from 0 to 1, we go from the antipo-
dal map to the doubling map on the circle. This
provides a nice particular example of a deformation
leading from simple dynamics to chaos, with the un-
expected phenomenon of “half-bifurcations” along
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the way (see Figure 9 on page 298). We hope that
some notion of stability about the cusp points and
tangent points on the caustics might emerge from
further study of this family of circle maps.

Section 2 gives the definition and some analytic
properties of the map. Section 3 studies the caustics
of the map and of its iterates. Our results concern-
ing the caustics of odd iterates are more conclusive
than those for even iterates. Following a symplectic
and contact geometry interpretation developed by
Arnold [1994], we discover the generating function
for the corresponding Lagrangian embedding. As
a result, the classical four-vertex theorem is appli-
cable. The method fails for even iterates, but ex-
plicit computations still provide reasonable support
for certain predictions.

Section 4 presents our main heuristic observations,
with illustrations, and the theoretical support for
them. For example, we have the partial result that
the caustic is stable when r < % The more tedious
computations are segregated into Section 4B for de-
tailed reading.

Section 5 studies the phenomenon of mode-lock-
ing for this family of circle maps, and gives an es-
timate for the width of the resonance zone. This is
an attempt to understand the iterates of the map.
This family extends a class of examples studied by
Arnold and others, which exhibits the same behav-
ior. The mode-locking of the off-center reflections
and its “complex conjugates” are totally different.
Moreover, r = % is the first value of the parameter
where this behavior undergoes a structural change.
This is probably not simply a coincidence with the
bifurcation values of cusps.

2. OFF-CENTER REFLECTION

An off-center reflection is a map S' — S! defined
as follows: Pick a point, say (r,0) in the interior of
the unit disk D?. For any point in dD? = S!, with
angle coordinate ¢, say, emit a ray from (7,0) to ¢.
The ray will be reflected at ¢ with S* as the curve of
reflection and it will hit S* again at R,(¢) on. The
map R, : S! — S! is the off-center reflection. See
Figure 1.

We first establish analytic expressions for the map
R, : S' — S!, where 0 < r < 1. Write

R.(¢) = ¢+ 7 — 2 mod 2,

FIGURE 1. The map ¢ — R,(p) is the off-center
reflection with center (r,0).

with
a=a(p) :=Arg(cosp —r+1ising) — ¢.

Here Arg is the principal argument, taking values
in (—m,m]. Since the incidence angle « is an odd
function of ¢, it has a Fourier sine series expansion,
say a = Y ax(r) sin(kep); to compute its coefficients,
we notice that

do sin

dr (cosp —1)2 +sin’ p
also has a sine expansion, with coefficients
Oay 2 /7r sin psin(key)
or 7w ), 1-2rcosp+r?
1 [" k-1 k+1
:_/<cos( Jp  cos(k+1)p )d(p
0

T 1—2rcosp+r?  1—2r cos p+r?
1 (mrk=t grktt 1
=—|——)=r"".
m\ 1-r2 1-—1r2
Integrating we conclude that a;, = r*/k, and we can
write

> k
R.(p)=p+m—2 Z % sin(kp) mod 27.  (2-1)

k=1

This formula (without the modulo 27) is exactly
the lifting of R, to a function from R to R taking
0 to m. We will often omit the mod 27 when the
context is clear.

By playing with the argument of a complex num-
ber, we get another expression for the map R,, as
the restriction to the unit circle of the map

s 1—rz
Z =2z

zZ—T



on the unit disk punctured at (r,0). Thus the off-
center reflection is a special case of a Blaschke prod-
uct. Therefore, this function R,(¢) is harmonic
when (r,¢) are treated as the polar coordinates,
since it is the argument of the analytic function

—2(1 - 2)%

By changing a sign in the formula for R,, we have
another map R, defined by

%k
Rr:go»—>cp+7r+22%sin(k<p) mod 2.
k=1

Geometrically, R,.(¢) is the reflection of R.(¢) in

the diameter joining ¢ to ¢ + m. The map R, can
be extended to the unit disk, via

zZ—=7T
Z =

1—rz

Therefore, it defines a map in PSL(2,R), the isom-
etry group of the hyperbolic disk. The dynamics of
R, and this “conjugated” map R, are completely
different. See [Herman 1979] and Section 5B.

For sufficiently small r, R, behaves very similarly
to Ry, the antipodal map. When r < %, in fact, R,
is in the component of R in the group of orientation
preserving diffeomorphisms of S'. However, R /3 is
only a homeomorphism on S! and R, a degree 1 map
when % < r < 1. This can be easily seen from the
derivatives of R,, whose expressions will be useful
later:

1 —drcosyp+ 3r?

R =
(@) 1—2rcosp+r?’
R () = 2r(1 —r?)singp
r\P)= (1 —2rcosg +r2)?’
R(p) = 2r(1—r2)((1+r2) cos ¢ — 2r(1+ sin® <,0)) ‘

(1 —2rcosgp+1r?)3

Section 4B will give more information about the
fixed point and other special points of R,. More
dynamical properties such as periodic cycles and

whether they are attracting are discussed in [Au
1999].

3. CAUSTICS

3A. Caustic of the Off-center Reflection

Two classical examples of caustics are the locus of
focal points with respect to a point on a surface

Au and Lin: Off-Center Reflections: Caustics and Chaos 289

and the focal curve of a convex plane curve, which
gave rise to the famous Geometric Theorem (Conjec-
ture) of Jacobi and the four-vertex theorem. There
are many interesting at-least-four results related to
caustics; see [Arnold 1994; 1996; Tabachnikov 1990;
1995]. The caustic of an off-center reflection pro-
vides another one. The conjugate locus of a point
on a flat flying disc is, at degenerate situation, the
caustic of the off-center reflection. Bruce and other
[Bruce et al. 1982; Bruce and Giblin 1984; 1985;
Giblin and Kingston 1986] have analyzed the sin-
gularities of the caustics produced by a point light
source when it is reflected in a codimension 1 “mir-
ror” in R* and R®. Their emphasis though is on the
“source genericity”: whether the caustics could be
made generic by moving the source. See also [Bruce
et al. 1981].

For a circle map f : S — S!, the family of lines

joining ¢ to f(y) is
F(p,,y)
= (sin fy—sin @)(x—cos p) — (cos fp—cos ) (y—sin p)
= (sin fip—sin )z — (cos fo—cos @)y — sin (fo—p),
where f¢o = f(¢) and so on. The caustic of the map

f is defined to be the envelope of these lines. Thus,
it is given by the equations

oF
%(%x,y) =0=F(p,z,9),
that is,
sin f — sin —cos fo + cosp x
flocos fo—cosp flpsin fo —sing y

B ( (f'e jhi()]lisszo)— <p)->

Solving for x,y, we obtain a parameterization of the
caustic:

_ flocosp+cos fp

-1
() = flpsing 4+ sin fo

The tangent direction of the caustic, which is degen-
erate at the cusps, is given by the following formulas:
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f"¢(cos o — cos fop)
CCI(QO) — _flgo(]- + f’(p)(Sll’lgD + sin fSO)
(1+ frp)? ’
(3-2)
f"p(sinp —sin fo)
J () = +f'¢(1 + f'p)(cos p + cos fo)

(14 fre)? ’

The caustic (3-1) of the off-center reflection may
run to infinity since 1+ R!.(¢) may be equal to zero.
In fact, this is so if and only if » > 1. It would be
more appropriate to define the caustic as the enve-
lope of the geodesic normal field on the sphere. After
stereographic projection, it does not matter whether
the caustic is defined on the plane or the sphere, as
the local properties remain unchanged (Darboux’s
Theorem of symplectic structure). As we will see,
the local properties of the caustic of R, can be un-
derstood by direct computation.

Theorem 3.1. For all 0 < r < 1, there are ezxactly
four cusp points on the caustic of R,.. Two of them
correspond to the R.-orbit {0,7}, of period two.

Proof. The derivatives of x and y can be expressed
in terms of r and ¢, namely:

672(— cos ¢ + 1 cos(2p))(r — cos ¢) sin @
(=1 =272+ 37 cos o)

() =

6r%(—1 4 27 cos @) (r — cos @) sin” ¢

!/
’y =
() (=1 =272+ 37 cos p)
The common solutions for z’'(¢) = 0 = y'(p) are ¢ =
0,7 and two values of ¢ with cosp = r. Clearly, 0
and 7 are zeros of z’ of first order and of 3’ of second

order, thus, these are semicubical cusps. If cosp =
r, after further differentiation and evaluation at the
point, one has

67r2(2r*—1)
.’L'” — —127‘3, " — ,
() Yy (o) i
12(5r*+4r?) —673(10r*—3)
() = T y" (o) = T 12
Thus,
.’L'”y”/ _ a:”’y" — 727,_4/(1_7,_2) 7& 0,

and there are also semicubical cusps at those values
of ¢ with cosp =r. O

Figure 2 shows caustics of R, for r < % and r > %
Since the second one runs to infinity, it is drawn
with a “compressed” scale, where a circle of radius
greater than one represents the point of infinity and
the caustic has a self-intersection there.

3B. A Symplectic Reformulation

The explicit computations in the previous section
give an exact count of the number of cusp points,
but they are difficult to extend to the study of the
iterated map. In this section, we use a symplectic
approach that helps overcome this difficulty. We
follow the terminology of [Arnold 1994].

Denote the coordinates of the unit cotangent bun-
dle ST*(R?) by (pa,py,,y), where (z,y) € R* and
p3 + p) = 1. This bundle is a contact 3-manifold
with the contact 1-form p, dz + p, dy; the cotangent
manifold 7*(R?) is symplectic with the symplectic
2-form d (p, dz + p, dy).

—1.657 0.375 1

1/va 1 36woo

FIGURE 2. Sample caustics of R, (left, r = 0.375; right, r = 1//2).



The unit vector (p,,p,) in the direction from ¢ to

R, (y) is given by
p: =cos(p+m—a), p,=sin(p+1—a).

Then the formula

Da cos(p+m—a)

(w) N sin(p+m—a)
S x cos p+.S cos(p+m—a)
y sin p+S sin(p+1—a)

defines a map L : S' x R' — T*(R?), which may
be thought of as a flow (in the parameter S) of unit
speed in the direction of the reflection lines, starting
with the round circle S = 0. This is a case of what
Arnold [1994] called Legendrian collapsing.
Let p : T*(R?) — R? be the canonical projection.
The Jacobian J(po L) of po L is
cos(p+m—a) —sinp—S(1—a') sin(p+r—a)
et . ’ ’
sin(p+m—a) cosp+S(1—a’) cos(p+m—a)
)
J(po L) = cos(p+m—a)cos p + sin(p+m—a) singp
+ S(1-a)
=—cosa+ S(1-a).
So the equation for the critical curve on S' x R' is
cos
S = .
1—-ao
A translation of the definition of the caustic into
symplectic terms (or direct calculation for the spe-
cific map at hand) shows that:

Proposition 3.2. The critical curve, when mapped to
the (z,y)-plane, agrees with the caustic of R,.

A simple calculation also shows that
Do dx + py dy = sinadp + dS,

so the image of L is a Lagrange cylinder in 7*(R?).
Since « is an odd function of ¢, we have

/ sinady = 0,
Sl

so p(L) is an exact Lagrange cylinder. Define a func-
tion S(¢) on the circle by

©
S(p) = —/ sin a dyp;
0

this gives a section in the Lagrange cylinder p(L). It
is easy to see that —S(¢) is increasing for 0 < ¢ < 7
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and decreasing when m < ¢ < 2xw. Therefore, the
curve C' given by

x =cosp+ S(p)cos(p + 71— a)
y=sinp + S(¢)sin(p + 7 — )
is quite likely to be a convex plane curve. We show
that this is the case when r < %

First we note that C has a continuous normal field
(cos(p+m—a), sin(p+m—a)). It is easy to compute
—a))2.
Therefore, '* 4+ 3> = 0 is possible only when ¢ =
7. But the number of zeros of z'° + y'> should be
even (geometrically, because C is co-oriented). Thus

z” 4y’ > 0 all the time and C is a smooth simple
closed curve. The curvature of C' is

o +y? =4sin’a+ (cosa — S(1

1-ao
/x’2 +y,2’

which is nonnegative when r < %, so C' is convex in
this case. Now the family of reflection lines of R, is
identical to the family of normal lines of this convex
curve C'. Therefore, the caustic of R, has at least 4
cusp points [Arnold 1994].

The function S(¢) should be thought of as the
generating function of the circle map R,. The curve
C is related to the orthotomic of such a reflection.
We will study such generating functions for general
circle maps in a forthcoming work.

KR =

3C. Iterations of Reflections

For an integer n, we denote the n-th iterate of R,
by R* = R, o R* ' :S' - S'. Equations (3-1) and
(3-2), with f = R, give a parametrization of the
caustic of R? and its tangent.

The cusps on caustics of R are more intriging
and complicated than those of R,. There are funda-
mental differences between the caustics depending
on whether n is odd or even. To see this difference,
we may consider the trivial case » = 0. When n is
odd, Ry is the antipodal map and its caustic is a
point (and so has a cusp), whereas for n even R{
is the identity map, whose caustic, being defined by
the family of tangents, is the circle itself (and so
is smooth). It is to be expected that this contrast
remains while r is close to 0.

Theorem 3.3. For small enough r > 0, the caustic of
R2™*Y has at least 4 cusp points.
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Proof. To some extent, the symplectic method in
Section 3B may be adopted for R>™*!. It can be
proved by induction on m that

R*™ () = o + 7 — 2a,,(p)

for some odd function &,,(¢). For example,

a1(p) = al) + a(p + 7 — 2a(p))
+a(p = 2a(p) = 2a(p + 7 — 2a(p))).

Therefore, we still have an exact Lagrangian cylin-
der and a sectional curve defined by

. ¢
S(p) = / sin &, de.
0

For small r, it is a convex curve and hence there are
at least 4 cusp points on the caustic. O

Remark. The argument fails for even iterates of R,,
because the analog of & is not an odd function. Fur-
thermore, it is not clear about how small the range
of r should be. Yet, from experimental observation,
there are at least four cusps for any r > 0 and there
are exactly four for 0 < r < % For more, please see
the discussion after proposition 4.3.

4. EXPERIMENTS AND OBSERVATIONS

To get more accurate information about the caus-
tics of iterates, we have to rely on lengthy calcula-
tions. Our investigation is indeed partly theoretical
and partly experimental. We will first describe some
interesting properties with illustrations. The tech-
nical details of justification are left to the interested
reader in Section 4B.

4A. Observations

We first put forward a conjecture about the exact
picture of the caustic when R is still a diffeomor-
phism. Then we look at the bifurcation process
of the structure of the caustics when r varies. Fi-
nally, we compare the caustics for different n. We
will soon see that the 2-cycles of R, play a special
role (Propositions 4.2 and 4.4). The 2-cycles are
{0,7} and {£¢.} where ¢, € (0,7) and cos¢, =
(1 — v/1+48r2)/(4r). We will often refer to this no-
tation.

Conjecture 4.1. For 0 < r < 3, the caustic of RZ™*"
is a C* curve with exractly four cusp singularities,
with two of them occurring at ¢ = 0, 7. On the other
hand, the caustic of R*™ is a differentiable curve;
C> everywhere except at exactly the four 2-periodic
points of R,., where the caustic is tangent to the unit
circle.

The conjecture is illustrated in Figure 3.

Proposition 4.2. Any caustic curve of R*™ is tangent
to the unit circle at any point ¢ satisfying R*™(p) =
@. In particular, this includes the points 0, w, and
+o.. If r < %, these are the only four points where
the caustic meets the circle.

Proof. By substitution of such ¢ into equations (3-1
with f = R, we have z(p) = cosg and y(p) =
sin . Applying Lemma 4.5 to such ¢’s, the asser-
tion about the tangential property of the caustics of
even iterates of R, follows easily. Next,

(R7)(p) cosp — cos Ry () =0
(1) () sinp — sin R () = 0.

FIGURE 3. Caustics of iterates R}, for r = % From left to right, n = 2,3, 4.



since *+y? = 1. This leads to R!'(p) = ¢. Ifr < 1,
by Lemma 4.8, n must be even and ¢ is one of the
four 2-periodic points. O

We have already seen from symplectic topology that
caustics of odd iterates, R>™*! always have at least
four cusps for sufficiently small » > 0. Moreover,
for all R,, two of the cusps occur at ¢ = 0, 7. Now,
we may extend this result to odd iterates of R, with
isolated exceptional values of r. It turns out these
exceptional values only occur in r > %

Proposition 4.3. For 0 < r < % and for generic % <

r < 1, the caustic of R*™*! always has cusps at 0, .

Proof. For ¢, = 0,m, one has R,.(¢,) = ¢, + ™ mod
27, so we may apply Lemma 4.5 to check whether
there are cusps. We also have, R%(y,) = ¢, and
R!(p,) = 0, so we can simplify using Lemma 4.6
and obtain (R?™*1)"(¢,) = 0 and
(B7%)"(0a) = RL.(Re(a))(B) (0a) B (00)
+ Ri(0a)” (R (9a) R (R (00))
+ R, (R (¢a)” (B)" (#4))-

We temporarily define, for positive integers n,
An=—(R) + (R)” + 2(R})".

So it suffices to check that As,11(p.) # 0. We
will proceed by induction on m. First, by direct
computation,

24r? 24r?
A(0) = ——=>0 A = 0
10 =752 >0 (™) =G >
Then, it can be shown that
An+2(90a)
1-9r2\? ,
— () Ao Hm ()

X (2R (pat7)R.(9a)*+2R, (patm) R (0a)
~ R (¢a)Rr.(pat+m)+ R, (0a)* Ry (patT)?)

_ (1—97"2)3An<%>+Az(%>-<R:>'<m

1—r2

In particular,

1—9r2\°
1_T2> A1 (0)

1-3r\" /14+3r\""
+A2(o>(1_r) (m«) ,

Azni1(0) = <
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1-972)°
1— 2 ) A2m71(7T)

1—3\""" /1+3r\"
+A2(7T)(1—7‘) (1—1—7") ’

Asm1 () = <

where
48r2(1
A3(0) = %(1 — 3r + 1312 — 15r%),
- T
48r2(1
As(m) = %(1 +3r + 1372 + 157%).

It can be easily computed that A,(0) > 0 for 0 <
r < 3 and Ay(m) > 0 for all r > 0. Thus,

1—9r?
1—r2

3
) A2m—1((pa) > O

For r > %, A1 may have zeros. We can only
conclude from above that A, is a rational func-
tion in r with denominator being a power of (1—r?).
Therefore, it has only isolated zeros and cusps at 0, ™
occur for r > % generically. U

Asmi1(Pa) 2 (

We observe that at cusp points, (3-2) gives a set of
“homogeneous” equations which has zero determi-
nant. Thus, except at a couple of ’s, it is sufficient
to solve only one equation, say, z'(¢) = 0. It is
likely that this equation has exactly four solutions
for 0 < r < % However, it is still hard to solve
explicitly especially for high iterates of R,. Figure 4
shows the functions (R2)”/((R2)'(1 + (R%)')) and
(sinp 4 sin R3(¢p))/(cos p — cos R3(¢p)) for r = 0.1
and r = 0.33. Exactly four cusp solutions appear
in each of them. We do not have a proof of this
graphical fact. Perhaps it may be proved by de-
tailed curve sketching argument and comparison of
R?™~1 and R*™*! using the known properties of R?
given in Lemma 4.8.

This situation may be compared with the “Jacobi
conjecture” promoted by Arnold [1994; 1996]. As
mentioned in the beginning of Section 3A, the caus-
tic of R, agrees with the locus of conjugate points
of (r,0) on a flat flying disk. Although the loci
of higher order conjugate points are not the same
as the caustics of odd iterates of R,, the geomet-
ric nature of their common contact indicates that
two problems — whether there are exactly four cusps
on the loci of higher order conjugate points and
whether there are exactly four cusps of the caustics
of odd iterate of R,.—might be related. In both
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0.1

2

—-0.1¢

10

2T

—10

FIGURE 4. Graphs of (R%)"/((R2)'(14(R2)")) (left) and (sin ¢ +sin R3())/(cos ¢ —cos R3(¢p)) (right), for r = 0.1

(thin lines) and r = 0.33 (thick lines).

cases, since we do not have exact nice formulas for
the loci of higher order conjugate points and the
caustics of odd iterates of R,, it would be very dif-
ficult to have an exact count of cusps. Of course,
Conjecture 4.1 deals with a very special situation.
From graphical evidence, it is tempting to think that
a proof should not be out of reach.

In the proof above, we see that for n > 3, except
A;(m), we always have A,(0) = 0 = A, (7) always
at r = % There is a possible structural change on
the caustic of R occurring at r = 1 for n > 3.
We observe from experiment that, for the caustic of
odd iterates, once r > %, bifurcation of cusp may

Interestingly, from the computed pictures,
bifurcation only occurs at the cusp corresponding to
@ = 0 but not others; see Figure 5 for an example.
Would the different properties between A,(0) and
A, () be part of the reason?

On the other hand, bifurcation into cusps also oc-
curs for even iterates of R, at r = % We begin by

occur.

examining some Taylor expansions. Since R, and
its iterates are 2m-periodic odd functions, they have
particular nice expansions at ¢, = 0,7. This en-
ables us to see the local properties of the caustics
more clearly.

Let f be any even iterate of R,., then f(¢,) = ¢q.
We write § = ¢ — ¢, and g(0) = f(¢) — p, and
suppose it has an expansion

0) — Z a2k+192k+1-
k=0

One can inductively work out the coefficients of the
expansions of 1 + f'(¢) = 1+ ¢'(0), cos f(p) =
+cosg(h), etc. If Py, Q) denote polynomials with

Py(0,...,0) = 0 = Q4 (0, .,0), one has
Pk CL1 .. a2k+1)
2 )
z(p) = 9+Z 1+a12k+1 6 ’
2a,q Qk ai,y .- a2k+1) 2k+1
y()_ 1+a19 Z 1+a 2k+1 0
0.02¢
a1 | | — 095
-0.02¢

FIGURE 5. Caustic of R} for r = 0.36, n = 3. On the right, an enlargement of the region ¢ = 0.



These expansions help to understand the caustics of
R?™ at ¢, = 0, 7. It would be convenient to look at
the pictures before we go on.

In Figure 6, we see that cusps are born near ¢ = 0
and 7. From the enlargement, the caustic bifurcates
into 2m cusps when r increases across %, where R,
changes from a diffeomorphism to a degree 1 map.

In the expansion of R?™ we have

1—9r2\"
a; = 1_772 .
1

This allows us to show that r = 3 is where the
caustic of R?™ changes at ¢ = 0,7. In fact, the
caustics of R? /3 has the following Taylor expansions.
At ¢, =0,

z(p) — 2(0) = =56+ 0(¢°),
y(p) — y(0) = 186° + O(6°),
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and at ¢, =,
() — a(m) = 570" + O(6°)
y(p) —y(m) = 267 + 0(6°).

This shows that the caustic of R? undergoes a swal-
1

lowtail bifurcation at 0,7 when r = 2. We may
further work out the expansion of Rf% as the m-th
iterate of R} ;. Using a; = 0 and a3 # 0 for R2, we
have

Rij5(0) = wa + 67 U(0)

for some function U with U(0) # 0. The bifurcation
of the caustics of R?™ at ¢ = 0,7 should be of the
type (6°",6°") when r passes 1.

We have been considering the behavior of the caus-
tics of R} with parameter r and n fixed. What hap-
pens if 7 is fixed and n is allowed to vary? There
is an interesting phenomenon for r < % Although
there is a fundamental difference when 7 is odd and
even, this difference disappears as n goes to infinity.
Figure 7 shows how the caustics of RZ™*! and R2™
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FIGURE 6. Caustics of R for r = 0.36, n = 2 (top) and n = 4 (bottom). On the right, enlargements of the region

@ =0.
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change —they tend to the same quadrilateral. The
dashed vertical line from ¢, to —¢, in the picture
of even or odd caustics is determined by r but not
the number of iterates. When n is even, it is where
the caustic is tangent to the circle. When n is odd,
every caustic is tangent to this vertical line because
it is the line joining ¢, and R?™*!(p.) = —p.. The
point of tangency occurs exactly at ¢. by definition.

Proposition 4.4. For 0 < r < %, as m — oo, both

the caustics of R*™** and R*™ approach the same
quadrilateral defined by the four points 0, w, and
+¢., which are the only 2-periodic points of R,.

Proof. We first show that the caustics of R?™*! at
the four points tend to the circle as m — oco. These
four ¢’s are the solution to R?(¢) = ¢. Thus, we
have (RY"*1) (@) = Ri()™ - R.(Ro ()™

At ¢ = 0,7, the coordinates of the caustic are

_ (Y () -
S ®yG)

y(p) = 0.

Clearly,
(RZ™1Y(0) = BL(0)" R.(x)"
(13 \"T 1430\
S\ 17 1+r ’
Thus, z(0) - —1 as m — oco. The situation at 7 is
similar.

At the point ¢, with R(¢.) = —., the coordi-
nates of the caustic are

(=1 + (B})'(¢c)) sin @
L+ (Rp)(pe)

y(pe) =

m(@c) = COS P,

Since R, is odd and R?*(¢.) = ¢., it follows that
(R")'(¢.) = R.(¢.)"™. Moreover, by 4rcosp, =1 —
v 1+ 8r2, one may show that

(=14 (B?)'(¢c))
1+ (RY)'(¢e)

Again, these two cusps approach to the unit circle.
Secondly, from Lemmas 4.7 and 4.8, 0 and 7 are
the attracting fixed points of R? while +¢p,. are re-
pelling. Moreover, the attracting basins for 0 and 7
are (—@., ¢.) and (., 2™ — p.) respectively. Thus,
for any given neighborhood of 0, for sufficiently large
m, for any neighboring @1, s € (—pe, ¢e), B2 (1)
and R2™(y,) lie in that neighborhood of 0. Hence,
the intersection of the lines from ¢; to RZ™(yp;) lies
in a neighborhood of the quadrilateral. The proof
for the cases at m and of odd iterates are similar. [J

—1

as n — oQ.

4B. Technical Results

We collect here some technical results needed to jus-
tify the observations of Section 4A. They are mostly
obtained by direct computation and the reader can
skip the proofs.

The first one deals with the existence of cusps at
certain special “symmetric” positions.

Lemma 4.5. Let f denote any iterate of R,. On the
caustic of f, the conditions for the occurrence of a
semicubical cusp at ¢ are

e f'(p) =0 and f"(¢) # 0 if f(p) = ¢;
o (@) =0 and —f'(¢) + f'(p)* +2f"(p) # 0 if
flo)=p+m.

Proof. This is proved by computing the derivatives
of (3-1) and (3-2), then evaluating at the particular

FIGURE 7. Caustics of R for r = 1 and n = 1,3,5,7,9 (left) and n = 2,4,6,8 (right).
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values g or ¢,. The result follows by verifying that
x_o_yandx/////_xlﬂll#o D

Remark. Although this lemma is stated for an iterate
of R,, it is actually true for any circle map. Other
results in this section also hold in a more general
setting, but we will focus on iterates of R,.

At a point ¢ with f(p) = —¢, we always have

z'(¢) = 0. The conditions there are

()
F'(@) A+ f(@)) cosp + (e )smcp—O
F'()(2 + cos(2¢)) + 6£'()* cos

(1202 (9)' — 2" (p)sin’ £ 0.

Analogously, if f(¢) = m— ¢, we have y'(p) = 0 and
conditions

f @)1+ f'(p))sing — f'(p) cosp =0,
F'(9)(2 — cos(2¢)) + 6 f'(i0) sin®
+ (1= 2cos(2¢0)) f'(10)* — 2f"(¢p) cos® v # 0.

The next lemma is just the chain rule.

Lemma4.6. I[f n =p+q,

(B) () = (R7)'(RI(#)) (B])' ()
= R.(p)R (R (¢) -~ RL(B (),
(RY)" () = (BY)"(R]()) (RY) (¢p)?
+ (RY) (R w)) (B7)" (),
(R)™(R
+ (RY) (R} 90)) R1)" ()

(B)" () =

/
,7antipodal
7/
oo
\ —identity
\\

N

-“identity
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In determining the cusps on the caustic, some orbits
in the iteration play a special role. We thus establish
the following to handle that.

Lemma 4.7. For 0 < r < 1, R2™"! has no fized point
and RI™ () # ¢ + .

Proof. First, one can obtain algebraically the four
fixed points of R2. The attracting ones are 0, ,
while +¢,. are repelling. Using calculus we get the
corresponding attracting basins and conclude that
R2™(¢p) converges to 0 or 7 mod 27 monotonically.
By the series expression (2-1) of R,.(y), one can de-
duce the estimate

|R.(0) — | > 7 — 2|log(1 —r)].

The lemma follows by the convergence of R?™(yp).
O

Lemma 4.8. For 0 <r < %, let

1 —\/1—1-87'2)

@ = arccos ( Ar

e R"(¢) = ¢ has solutions if and only if n is even,
and they are 0, , ..

e R'(¢) = —p has solutions £, if n is odd, and
0,7 if n is even.

e R'(¢) = ¢+ 7 has solutions if and only if n is
odd; two of them are 0 and .

e R'(p) =m — ¢ has solutions 0, m when n is odd
and two solutions when n is even.

This follows from the previous lemma and induction.
Lemmas 4.7 and 4.8 are illustrated by Figure 8.

. identity
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FIGURE 8. Plots of R} for r = % and n =1,3,7 (left), r = 2,6,8 (right). The axes correspond to ¢ = 0.
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In an attempt to understand more about the iter-
ates R, we computed the asymptotic orbits of the

T

two critical points

1+ 3r?

=+ arccos (4-1)
for % < r < 1. The asymptotic orbit of ¢ is the set
{RI(¢) : N; < n < Ny} for large N;, N,. Figure 9
shows the corresponding bifurcation diagram — that
is, the plot of asymptotic orbits against the param-
eter r—for the critical point corresponding to the
+ sign in (4-1). The diagram for the other critical
points is simply the reflection in a horizontal line.

Thus, as r increases starting from %, the orbit
first undergoes bifurcation at r = 1/y/5 ~ 0.447
where the 2-cycle {0, 7} turns repelling and a 4-cycle
occurs. The period doubling continues until r <
0.62 and is followed with chaotic behavior when r
approaches 1. At r = 1, R, becomes the doubling
map.

An interesting feature of Figure 9 is that, in addi-
tion to the usual bifurcations, there are “half-bifur-
cations” or sudden turns (for example, at r ~ 0.56).
We have noticed that the half-bifurcation at (r, ¢) is
matched by one at (r, —¢) going in the same direc-
tion — either both choose the upper branch or both
choose the lower branch. This means that the half-
bifurcation at (r, ) is matched by one at (r,¢) in

the mirror image diagram (the bifurcation diagram
corresponding to the other critical point), going in
the opposite direction. Thus, if we superimpose Fig-
ure 9 with its mirror image (reflection in the horizon-
tal bisector), the result looks like a usual bifurcation
diagram.

Should we take these half-bifurcations into con-
sideration when using the Feigenbaum’s constant to
estimate the limit of period doubling?

Finally, unlike other well-known omne-parameter
families (logistic, polynomial, cosine), this family R,
does not display the most obvious period-3 window,
but a period-8 one at r ~ 0.68, though a period 3
window seems to occur at r &~ 0.86. According to
the Sarkovskii ordering [Devaney 1989, part 1], R,
has periodic orbits of any period for r in the period-
3 window. However, for r in the period-8 window,
can R, have a period with odd factors? If not, does
it only have periods that are powers of 27

5. MODE-LOCKING

5A. Background

The study of circle maps is closely related to the
study of differential equations on torus (i.e., equa-
tions with double periodic coefficients). For such a
differential equation, one may consider the Poincaré

v
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FIGURE 9. Bifurcation diagram of the critical point e
r



return map of the flow, which defines a map on a
meridian circle of the torus. The stability of the
equation is reflected by this circle map.

Arnold [1961, §12] investigated the circle map

p—@p+a+ecosp

and obtained information on its resonance zone in
the (a,€)-plane. This gave rise to the famous picture
of so-called Arnold tongues. Subsequently, numer-
ous studies by physicists and mathematicians [Bak
et al. 1988; Ding and Hemmer 1988; Feudel et al.
1995; Jensen et al. 1984; Kaneka 1984; Pina 1986;
Zheng 1991] have been published on the perturba-
tion of a rotation

oo+ Q—esing, e €[0,1).

The focus is on the phenomenon called mode-locking
and the Devil’s staircase. Arnold later [1983b] gave
a proof of his observation for circle maps of the form

¢ — @ + Q + e(trigonometric polynomial)

as well as analytic reduction of many circle maps
[Arnold 1983a, Chapter 3, §12]. The algebraic na-
ture of the method is also apparent in the problem
of particular differential equations. Arnold predicts
that a general theorem exists for these equations and
general circle maps.

In this section, we will provide further evidence
towards Arnold’s prediction by showing similar be-
havior in the off-center reflection. Our off-center
reflection is not of the form studied by Arnold, so it
may be regarded as another small step towards the
general theory.

Consider a two-parameter model of circle maps
arising from the off-center reflection map, with pa-
rameters r € [0,1) and Q € (—7, 7]:

o k
o,
Roa(p) =¢+Q—2)  —sin(ky).
k=1

(We use r instead of € to be consistent with previ-
ous sections.) Unlike the models discussed above, r
cannot be factored out. This map can be thought
of as an imperfect off-center reflection on the circle,
where the reflected angle has a constant deviation
from the incident angle. The original off-center re-
flection corresponds to 2 = 7. We may not get such
a deviation by varying the metric of the circle; it is
better understood in terms of symplectic geometry.

Au and Lin: Off-Center Reflections: Caustics and Chaos 299

For ¢, € S*, there is the rotation number

w(RT,QﬂOO) = lim Ma
n—r00 n

where the right-hand side is performed on a lifting of
R, o. It is independent of ¢, if R, q is diffeomorphic.
In such case, one simply denotes w(R,q). If R, q is
only a degree 1 map, one has a rotation interval
instead. These notions are indeed defined for any
circle map. Historically, attention has been centred
around perturbations of rotations, ¢ — ¢ + Q +
u(p). It is natural to ask for the relation between 2
and w. The physicists usually refer to €2 as internal
frequency and w as resonance frequency. When w =
w(f) is a locally constant function, the situation is
called mode-locking.

Herman [1977; 1979] studied mode-locking exten-
sively and obtained interesting results, which are ap-
plicable to R, o because it satisfies the property A,
of Herman.

Theorem 5.1. For all wy € 27Q and 0 < r < %, there
is an interval I = 7, of wg such that for every Q2 € J,.,
the diffeomorphism R, o has rotation number wy.

The interval J is called resonance interval and its
size depends on 7 (and of course wy). Its variance
in terms of r defines a picture which looks like a
tongue. We will discuss it later. Furthermore, from
Herman’s study, the off-center reflection model also
demonstrates the well-known Devil’s staircase.

Theorem 5.2. For any 0 < r < %, the function € —
w(R,q) is nondecreasing, locally constant at any ra-
tional number, and has a Cantor set of discontinu-
1ty.

We have mentioned that if we alter a sign and form
the “conjugate” family

e k
rTo.
Rra(e) =¢+Q+2)  —sin(kp),
k=1

the dynamics is completely different. Actually, R, o
can be extended to
omiQ # T
¢ 1—1rz
on the hyperbolic disk, which defines a hyperbolic
element in PSL(2,R). Mode-locking does not occur,
ie., w (Rng) = 2pr/q only if Q = p/q.
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5B. Width of the Resonance Zone

Arnold [1983b] discusses the mode-locking situation
of a rotation slightly perturbed by a trigonometric
polynomial, g(z),

frx— o+ Q4+ eg(x).

The resonance zone is the set {(Q,e) : Q € J.}.
Arnold developed a formal calculation to estimate
the width of the interval J, in terms of e, which gives
rises to a picture of the resonance zone. This formal
calculation is related to the homological equation of
analytical reduction [Arnold 1983a]. If the rotation
number is rational, the width of the resonance in-
terval J, is bounded by a power of €. The graphical
plot of the resonance zone in the £Q)-plane form the
so-called Arnold’s tongue.

By a method similar to Arnold’s, one may also
estimate the width of J, for the off-center reflections
R.o,0<r< % We will show the different behav-
iors of R = R, and R= RM at the same time.

For simplicity of computation, we first consider
the resonance zone containing 7. Writing ) = 7+a,
the second iterates of the maps are

ok
R*(z) =z + 27 + 2a — 2 Z % sin(kz)
k=1

(e Tk . T'k .
—QE?smk(x—Hr—i-a—QZ?sm(kﬁE)),

x  k
R*(z) = + 27 + 2a + ZZ %sin(kx)

k=1

+2§:ﬁsink<x+ﬂ+a+2zﬁsin(ka))>
— k k '

The equations of resonance are R*(z) = r + 27 and
R*(z) =z +27. Let v =aF 2 (r*/k)sin(kx), we
have

0=uv+ kf; (% sin(kz) — (_]:)k sin k(z + v)> :

where v = v;r + vor? + v37® 4+ ---. Note that the
solutions of v’s for R and R do not only differ by a
sign. One can see this by the subtle combinations of
the signs of the infinite series in their second iterates.
Inductively, one may show that for R, we have

2
v = Z sin kz,

while the values for R are
v = —2sinx,
vo = sin 2z,

vz = 2sinx — %sin3a¢.

This leads to a r-series for a and its maximum and
minimum provide bounds for the resonance zone,
namely,

a = 2sin(2z)r* + (2sinz — Zsin3z)r® + -

for the map R, and a = 0 for the map R. This
calculation agrees with our previous remark that
mode-locking (near w = ) does not occur for R.
Furthermore:

Theorem 5.3. The width of J, is bounded by Cr? for
Q =mx and Cr for general 2.

The computation for the resonance zone at a general
) = 2pm/q is more complicated. The equation to
formally expand is R}, ., /q(w) = z + 2pw. The
coefficients aj of

a=ar+ayr’® +asr® +---

provide the estimates of J,. It turns out that the
first term a; does not vanish, indeed,

qg—1 .
2
qa, = 2 E sin<x+ﬂ).
Jj=0

q

This may not be a sharp estimate, yet we can only
conclude that the width of J,. is of order r in general.
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