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We classify all cocompact torsion-free derived arithmetic Fuch-
sian groups of genus two by commensurability class. In par-
ticular, we show that there exist no such groups arising from
quaternion algebras over number fields of degree greater than 5.
We also prove some results on the existence and form of max-
imal orders for a class of quaternion algebras related to these
groups. Using these results in conjunction with a computer
program, one can determine an explicit set of generators for
each derived arithmetic Fuchsian group containing a torsion-
free subgroup of genus two. We show this for a number of
examples.

1. INTRODUCTION

It is a well-known result that there are finitely many con-
jugacy classes of arithmetic Fuchsian groups with a given
signature [Maclachlan and Rosenberger 83, Takeuchi
83]. Extensive work has been done classifying the set
of PGL2(R)-conjugacy classes of various two-generator
arithmetic Fuchsian groups: triangle groups [Takeuchi
77], groups of signature (1; e) [Takeuchi 83], and groups
of signature (0; 2, 2, 2, q) [Maclachlan and Rosenberger
92, Ackermann et al. 03]. In this paper we make progress
in classifying arithmetic Fuchsian groups of signature
(2;−), i.e., genus-two surface groups. This is a signif-
icantly more difficult problem than the two-generator
case, since these groups have much larger coarea.

An arithmetic Fuchsian group is described by the (pro-
jectivized) group of units Γ1

O in a maximal order O of a
quaternion algebra over a totally real number field. A
derived arithmetic Fuchsian group is a subgroup of such
a Γ1

O. Our first main result is the classification by com-
mensurability class of derived arithmetic Fuchsian groups
of genus two, and this is summarized in Theorem 4.10.
There is a finite list of signatures of groups that contain
a subgroup of signature (2;−).

Following [Maclachlan and Rosenberger 92], we clas-
sify all commensurability classes of derived arithmetic
Fuchsian groups of the form Γ1

O with one of these signa-
tures by invariant quaternion algebra. Furthermore, we
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determine all PGL2(R)-conjugacy classes of the groups
Γ1

O. Sections 3 and 4 of this paper are devoted to this
result and its proof.

Section 5 contains our second main result, a tech-
nique for finding all PGL2(R)-conjugacy classes of de-
rived arithmetic Fuchsian groups of signature (2;−). In
general, the number of conjugacy classes of a subgroup
of Γ1

O is not necessarily equal to the number of PGL2(R)-
conjugacy classes of the group Γ1

O. However, if Γ1
O has

signature (1; 2, 2), (0; 2, 2, 2, 2, 2, 2), or (2;−), then the
index of the genus-two subgroup Γ is 4, 2, or 1, respec-
tively. In these cases, we can use a fundamental region
along with our results from Theorem 4.10 to determine
an explicit set of generators for Γ1

O (using a computer
program). This ultimately pins down the PGL2(R)-
conjugacy class of the genus-two subgroup Γ, since this
is determined by the traces of certain products of the
group generators. Although our methods are essentially
computational, we also prove some general results on the
structure of maximal orders for a class of quaternion alge-
bras associated with arithmetic Fuchsian groups. In the
last section, we use our results to explicitly determine a
set of generators for a few examples of derived arithmetic
Fuchsian groups of signature (2;−).

2. PRELIMINARIES

In order to state and prove our main results, it is neces-
sary to give a brief overview of the theory of arithmetic
Fuchsian groups. This includes a small section of num-
ber theory consisting of definitions and results that will
figure prominently in our proofs.

2.1 Fuchsian Groups

In this section we collect some standard results concern-
ing Fuchsian groups. A Fuchsian group is a discrete sub-
group of PSL2(R) that acts properly discontinuously on
the hyperbolic plane H2. Fuchsian groups of the first
kind have a presentation of the form〈

a1, b1, . . . , ag, bg, c1, . . . , cr, p1 . . . , ps

∣∣∣
g∏

i=1

[ai, bi]
r∏

j=1

cj

s∏
k=1

pk, cm1
1 , . . . , cmr

r

〉
,

where the ci represent the r conjugacy classes of maximal
cyclic subgroups of order mi for i = 1, . . . , r. A Fuchsian
group Γ with the above presentation has signature

(g; m1, . . . , mr; s). (2–1)

Note that Γ is cocompact if and only if s = 0. Since we
will be concerned only with cocompact groups, we will
abbreviate the signature to (g; m1, . . . , mr). A finitely
generated Fuchsian group Γ of the first kind has finite
coarea, i.e., H2/Γ has finite hyperbolic area, and its area
can be computed using the Riemann–Hurwitz formula

μ(Γ) := area(H2/Γ) = 2π
(
2g − 2 +

r∑
i=1

mi − 1
mi

+ s
)
.

(2–2)
Furthermore, if Γ1 ⊂ Γ are Fuchsian groups and |Γ :
Γ1| = M , then μ(Γ1) = M · μ(Γ).

Also, recall that two Fuchsian groups Γ1 and Γ2 are
commensurable if they share a finite-index subgroup, i.e.,
|Γ1 : Γ1∩Γ2| < ∞ and |Γ2 : Γ1∩Γ2| < ∞. The commen-
surability class of a group Γ is the collection of groups
with which Γ is commensurable.

2.2 Arithmetic Fuchsian and Derived Arithmetic
Fuchsian Groups

An arithmetic Fuchsian group has finite coarea and there-
fore is necessarily of the first kind. Arithmetic Fuchsian
groups are defined via quaternion algebras over totally
real number fields. If k is a number field and A a quater-
nion algebra over k, i.e., a four-dimensional central sim-
ple algebra over k, then any quaternion algebra has an
associated Hilbert symbol

A =
(

a, b

k

)
,

where i2 = a, j2 = b, ij = −ji for some a, b ∈ k∗.
The algebra A is ramified at a real infinite place σ of

k if A ⊗σ(k) R ∼= H, where H denotes the Hamiltonian
quaternions, and unramified at σ if A ⊗σ(k) R ∼= M2(R).

Similarly, if v is a finite place of k and kv the comple-
tion of k corresponding to v, then A is ramified at v if
A⊗k kv is a division algebra. Otherwise, A is unramified
at v and A ⊗k kv

∼= M2(kv).
The ramification set of A will be denoted by Ram(A).

Furthermore, Ram(A) = Ram∞(A) ∪ Ramf (A), where
Ramf (A) (respectively Ram∞(A)) denotes the set of fi-
nite (infinite) places at which A is ramified. We will
denote the product of the primes at which A is ramified
by Δ(A).

We will use the following standard results on quater-
nion algebras (see [Maclachlan and Reid 03]):

(i) Let A be a quaternion algebra over a number field
k. The number of places at which A is ramified is of
even cardinality.
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(ii) Given a number field k, a collection S1 =
{σ1, . . . , σr} of real infinite places of k, and a collec-
tion S2 = {P1, . . . , Ps} of finite places of k such that
r+s is even, there exists a quaternion algebra defined
over k with Ram∞(A) = S1 and Ramf (A) = S2.

(iii) Let A and A′ be quaternion algebras over a number
field k. Then A ∼= A′ if and only if Ram(A) =
Ram(A′).

An order O of A is a complete Rk-lattice that is also
a ring with unity, where Rk is the ring of integers in the
number field k. Furthermore, an order O is maximal if it
is maximal with respect to inclusion.

Let k be a totally real field with |k : Q| = n, and A a
quaternion algebra over k that is ramified at all but one
real place. Then

A ⊗k R ∼= M2(R) ⊕ Hn−1.

If ρ is the unique k-embedding of A into M2(R) and
O is a maximal order in A, then the image under ρ of
the group O1 of elements of norm 1 in O is contained
in SL2(R) and the group Pρ(O1) ⊂ PSL2(R) forms a
finite-coarea Fuchsian group. A subgroup Γ of PSL2(R)
is an arithmetic Fuchsian group if it is commensurable
with some such Pρ(O1). In addition, Γ is derived from
a quaternion algebra or is a derived arithmetic Fuchsian
group if Γ ⊂ Pρ(O1). We will denote Pρ(O1) by Γ1

O. The
area of H2/Γ1

O can be computed by the following formula
[Borel 81]:

area(H2/Γ1
O) =

8πd
3/2
k ζk(2)ΠP|Δ(A)(N(P) − 1)

(4π2)|k:Q| , (2–3)

where dk is the discriminant of the number field k and
ζk is the Dedekind zeta function of the field k defined for

(s) > 1 by ζk(s) =

∑
I

1
N(I)s (the sum is over all ideals

in Rk).

Notation. 2.1. Throughout the remainder of the article,
we will use dafg to denote a derived arithmetic Fuchsian
group.

If Γ is an arithmetic Fuchsian group, then the corre-
sponding quaternion algebra AΓ is uniquely determined
up to isomorphism and is called the invariant quaternion
algebra of Γ. Moreover, two arithmetic Fuchsian groups
are commensurable if and only if their invariant quater-
nion algebras are isomorphic [Takeuchi 77].

2.3 Number of Conjugacy Classes

The number of PGL2(R)-conjugacy classes of an arith-
metic Fuchsian group depends on the infinite places of
the number field k and the number of conjugacy classes of
maximal orders of the quaternion algebra A. We will be
concerned solely with PGL2(R)-conjugacy classes here,
so throughout the text, conjugacy class should be inter-
preted as PGL2(R)-conjugacy class. Most of what follows
can be found in [Vignéras 80].

For any maximal order O of A, ΓO will denote the
arithmetic Fuchsian group

ΓO = {x ∈ A∗|xOx−1 = O}.

Let O and O′ be two maximal orders in quaternion alge-
bras A/k and A′/k′, respectively. If the groups ΓO and
ΓO′ are conjugate, then k and k′ are isomorphic and

xΓ1
Ox−1 = Γ1

O′ .

A result in [Vignéras 80] states that two groups Γ1
O

and Γ1
O′ are conjugate if and only if there exists a Q-

isomorphism τ such that τ(A) = A′ and O′ = τ(aOa−1)
with a ∈ A.

The class number h = h(k) of k is the order of the class
group Ik/Pk, where Ik is the group of fractional ideals of
Rk, and Pk the group of nonzero principal ideals of Rk.
Let

k∗
∞ = {x ∈ k | σ(k) > 0 for all σ ∈ Ram∞(A)}.

The restricted class group, whose order we will denote by
h∞, is the group

Ik/Pk,∞,

where Pk,∞ is the group of principal ideals with generator
in k∗

∞. We also have that

h∞ =
h2n−1

|R∗
k : R∗

k ∩ k∗∞| , (2–4)

where R∗
k is the group of units of Rk. The number of

conjugacy classes of maximal orders in a quaternion al-
gebra A defined over k, denoted by t = t(A), is finite
and is called the type number of A. It is the order of the
quotient of the restricted class group of k by the sub-
group generated by the squares of the ideals of Rk and
the prime ideals dividing the discriminant Δ(A); so we
have

t =
∣∣∣∣ Ik

I2
kDPk,∞

∣∣∣∣ , (2–5)

where D is the subgroup of prime ideals dividing the
discriminant Δ(A). It follows that t divides h∞. In many
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cases, h∞ = 1, and we will use this to show that t = 1.
Also, in the case that Ramf (A) = ∅ and h = 1, from the
definitions above one can deduce that t = h∞.

2.4 Torsion in Arithmetic Fuchsian Groups

Throughout this section and the remainder of the text,
ζ2m will denote a primitive 2mth root of unity. Also,
km will denote the field Q(cos( π

m )), which is the unique
totally real subfield of Q(ζ2m) of index 2. Note that when
m is odd, Q(ζ2m) = Q(ζm). The existence of torsion in
an arithmetic Fuchsian group Γ1

O defined over a number
field k depends primarily on the subfields of k of the form
km and the existence of embeddings of suitable quadratic
extensions of k into the invariant quaternion algebra A.
A more detailed treatment of this topic can be found in
[Maclachlan and Reid 03, Chapter 12].

Let A1 denote the elements of norm 1 in A, and P (A1)
its projectivization. Let O be a maximal order in A and
suppose the group Γ1

O contains an element of order m.
Then P (A1) contains an element of order m and A1 con-
tains an element u of order 2m. This implies that tru ∈ k

and hence km ⊂ k. Furthermore, k(ζ2m) is a quadratic
extension of k that embeds in A.

Conversely, using the following theorem, one can show
that if k(ζ2m)/k is a quadratic extension that embeds in
A, then Γ1

O necessarily contains elements of order m.

Theorem 2.2. [Chinburg and Friedman 99] Let k be a
number field and A a quaternion division algebra over k

such that there is at least one infinite place of k at which
A is unramified. Let Ω be a commutative Rk-order whose
field of quotients L is a quadratic extension of k such
that L ⊂ A. Then every maximal order in A contains a
conjugate of Ω except possibly when both of the following
conditions hold:

(a) L and A are unramified at all finite places and ram-
ified at exactly the same set of real places of k;

(b) all prime ideals P dividing the relative discriminant
ideal dΩ|Rk

of Ω are split in L/k.

The order Ω = Rk[ζ2m] is a commutative Rk-order
whose field of quotients is L = k(ζ2m). In the case of
arithmetic Fuchsian groups, the field k is totally real and
the field k(ζ2m) is a totally imaginary extension of Q.
Therefore, all real places of k are ramified in k(ζ2m)/k;
however, the algebra A is ramified at all real places but
one. So condition (a) of Theorem 2.2 never holds. Thus,
if L ⊂ A, then every maximal order O of A will contain

elements of order 2m. Therefore, if P (A1) contains ele-
ments of order m, then so will Γ1

O for any maximal order
O of A. We have just proved the following result.

Theorem 2.3. An arithmetic Fuchsian group Γ1
O contains

an element of order m if and only if the field k(ζ2m)
embeds in A.

The following theorem gives necessary and sufficient
conditions for the embedding of the extension k(ζ2m)/k

into the quaternion algebra A.

Theorem 2.4. [Maclachlan and Reid 03] Let A be a
quaternion algebra over a number field k and let �/k be
a quadratic extension. Then � embeds in A if and only if
� ⊗k kv is a field for each v ∈ Ram(A).

We can use this theorem along with Theorem 2.2 to
give a characterization of the existence of torsion in the
groups Γ1

O. This result will be used frequently in the
proof of Theorem 4.10:

Lemma 2.5. Let k be a totally real number field such that
km ⊂ k, A is a quaternion algebra ramified at all but one
real place over k, and O is a maximal order in A. The
group Γ1

O will contain an element of order m if and only
if P does not split in k(ζ2m)/k for all P ∈ Ramf (A).

Proof: Let ζ2m be a primitive 2mth root of unity. By
Theorem 2.4, the quadratic extension k(ζ2m) of k embeds
in A if and only if k(ζ2m) ⊗k kv is a field for each v ∈
Ram(A). Since k(ζ2m) is totally imaginary, k(ζ2m)⊗k kv

is always a field for all v ∈ Ram∞(A). Moreover, for
P ∈ Ramf (A), k(ζ2m) ⊗k kP is a field if and only if P

does not split in k(ζ2m)/k. Theorem 2.3 now gives the
desired conclusion.

If k is a totally real field, the relative class number h−

for the extension k(ζ2m)/k is defined as

h− =
h(k(ζ2m))

h(k)
∈ Z,

where h(k(ζ2m)) is the class number of k(ζ2m)/Q and
h(k) is the class number of k (see [Washington 97, p. 38]).

If a maximal order O in A contains elements of finite
order, then we can calculate the number am of conju-
gacy classes of maximal cyclic subgroups of order m in
Γ1

O, provided that {1, ζ2m} is a relative integral basis for
the quadratic extension k(ζ2m)/k [Schneider 75]. If this
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assumption holds, then

am =
h−

|R∗
k(ζ2m) : R

∗(2)
k(ζ2m)|

ΠP|Δ(A)

(
1 −

(
k(ζ2m)

P

))
,

(2–6)
where

(
k(ζ2m)

P

)
is the Artin symbol (which is equal to 1,

0, or −1, according to whether P splits, ramifies, or is
inert in the extension k(ζ2m)/k) and

R
∗(2)
k(ζ2m) =

{
x ∈ R∗

k(ζ2m)|Nk(ζ2m)|k(x) ∈ R
∗(2)
k

}
.

In some cases, we can use the following lemma to sim-
plify formula (2–6).

Lemma 2.6. Let k be a totally real number field of odd
degree and suppose {1, ζ2m} is a relative integral basis
for k(ζ2m)/k . If h− is odd, then |R∗

k(ζ2m) : R
∗(2)
k(ζ2m)| = 1.

Proof: Both quantities h(k(ζ2m))/h and |R∗
k(ζ2m) :

R
∗(2)
k(ζ2m)| depend only on the number field k and hence

are independent of the quaternion algebra A. Since∣∣R∗
k(ζ2m) : R

∗(2)
k(ζ2m)

∣∣ is a finite 2-group, its order is 2n,
for some nonnegative integer n. If |k : Q| is odd, then let
A be a quaternion algebra unramified at all finite places.
Since

am =
h(k(ζ2m))

h|R∗
k(ζ2m) : R

∗(2)
k(ζ2m)|

∈ Z

and h− = h(k(ζ2m))/h is odd, we must have∣∣∣R∗
k(ζ2m) : R

∗(2)
k(ζ2m)

∣∣∣ = 1,

completing the proof of the lemma.

Since ζ3 will arise frequently in our calculations, we
will fix the notation ω = ζ3. Furthermore, the following
lemma can often be used to simplify formula (2–6).

Lemma 2.7. Suppose that k is a totally real number field
and that 2 is unramified in k/Q. Then

|R∗
k(i) : R

∗(2)
k(i) | = 1.

Likewise, if 3 is unramified in k/Q, then

|R∗
k(ω) : R

∗(2)
k(ω)| = 1.

The proof of Lemma 2.7 requires the following two
general facts (see respectively [Ribenboim 72, Chapter
10] and [Parry 75]).

Fact 2.8. Let k be a totally real number field such that
dk is not divisible by 2. Then {1, i} is a relative integral
basis for k(i)/k. Likewise, if dk is not divisible by 3, then
{1, ω} is a relative integral basis for k(ω)/k.

Fact 2.9. Let k be a totally real number field and K a
totally imaginary quadratic extension of k. Then every
unit ε of K has the form ε = ζ · η, where ζ is a root of
unity with ζ2 ∈ K and η is a real unit with η2 ∈ k.

Proof Proof of Lemma 2.7.: Let us first consider the case
k(i). Since 2 does not divide the discriminant of k, {1, i}
is a relative integral basis for the extension k(i)/k. Sup-
pose that

cos
( π

m

)
+ i sin

( π

m

)
is a root of unity in k(i). Since this is also an algebraic
integer, it can be written as a+bi, where a, b ∈ Rk. Now,
the only solutions of

cos
( π

m

)
+ i sin

( π

m

)
= a + bi

correspond to the units ±1 and ±i. By Fact 2.9, any unit
ε of k(i) is of the form ε = ζ · η, where ζ2 = ±1,±i and
η ∈ k is a real unit. Again, using the relative integral
basis, let ε = a+ bi for some a, b ∈ Rk. Any unit ε ∈ k(i)
must satisfy the equation

ε2 = ζ2η2 = (a + bi)2 = (a2 − b2) + 2abi.

There are two possible cases to consider:

Case 1: ±iη2 = (a2 − b2) + 2abi.

Case 2: ±η2 = (a2 − b2) + 2abi.

In Case 1, we must have a = ±b and iη2 = ±2a2i. Since
a is real, this implies η2 = 2a2. But since a is an al-
gebraic integer, 2a2 is not a unit. Therefore, no unit ε

corresponds to this case. In Case 2, either a = 0 or b = 0.
Hence, ±η2 = a2 or b2. Therefore, the units in k(i) are
of the form ε = ±a or ε = ±bi. Since ε is a unit, this
implies a ∈ R∗

k or b ∈ R∗
k and hence η2 ∈ R∗2

k . In either
case, we have

Nk(i)/k(ε) = Nk(i)/k(±η) = η2.

This means that every unit of k(i) has norm lying in R∗2
k ,

and so ∣∣∣R∗
k(i) : R

∗(2)
k(i)

∣∣∣ = 1.

The proof for k(ω) is similar.
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It will be necessary for us to determine which periods
can arise in the various number fields k. First, If km ⊂ k,
then |km : Q| divides |k : Q| and dkm divides dk. With
this in mind, we will require the following properties of
the cyclotomic field Q(ζ2p) = Q(ζp) and its proper sub-
field kp = Q(cos(π/p)) when p > 3 is a prime.

Proposition 2.10. Let p > 3 be a prime. Then:

(i) |kp : Q| = p−1
2 ;

(ii) dQ(ζp) = pp−2;

(iii) dkp = p
p−3
2 .

Proof: This first part follows from the fact that |Q(ζp) :
Q| = p− 1 and that kp is a proper subfield of index two.
The second and third parts can be found in [Washington
97, pp. 9, 28].

3. BOUNDS ON THE DEGREE OF THE
NUMBER FIELD K

In this section, we classify commensurability classes of
dafgs of signature (2;−) by invariant quaternion alge-
bra. First, we determine all possible signatures of Fuch-
sian groups that can contain a subgroup of signature
(2;−). Then, using arithmetic data, we show that all
arithmetic Fuchsian groups Γ1

O with one of these signa-
tures are defined over number fields of degree less than
or equal to 5.

The following theorem gives necessary and sufficient
conditions for the existence of torsion-free subgroups of
a given index in a Fuchsian group:

Theorem 3.1. [Edmonds et al. 82] Let Γ be a finitely
generated Fuchsian group with the standard presentation〈

a1, b1, . . . , ag, bg, c1, . . . , cr, p1 . . . , ps

∣∣
n∏

i=1

[ai, bi]
r∏

j=1

cj ,

s∏
k=1

pk, cm1
1 , . . . , cmr

r

〉
.

Then Γ has a torsion-free subgroup of finite index k ≥
1 if and only if k is divisible by 2ελ, where λ =
lcm(m1, . . . , mr), and ε = 0 if Γ has even type, while
ε = 1 if Γ has odd type. (Γ has odd type if s = 0, λ is
even, but λ/mi is odd for exactly an odd number of mi;
otherwise, Γ has even type.)

We will use this result to prove the following lemma:

Lemma 3.2. Let Γ be a cocompact Fuchsian group con-
taining a genus-two surface group. Then Γ has one of
the following signatures:

(0; 2, 3, 7), (0; 2, 3, 8), (0; 2, 3, 9), (0; 2, 3, 10),

(0; 2, 3, 12), (0; 2, 4, 5), (0; 2, 4, 6), (0; 2, 4, 8),

(0; 2, 4, 12), (0; 2, 5, 5), (0; 2, 5, 6), (0; 2, 5, 10),

(0; 2, 6, 6), (0; 2, 8, 8), (0; 3, 3, 4), (0; 3, 3, 5),

(0; 3, 3, 6), (0; 3, 3, 9), (0; 3, 4, 4), (0; 3, 6, 6),

(0; 4, 4, 4), (0; 5, 5, 5), (0; 2, 2, 2, 3), (0; 2, 2, 2, 4),

(0; 2, 2, 2, 6), (0; 2, 2, 3, 3), (0; 2, 2, 4, 4), (0; 3, 3, 3, 3),

(0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2), (1; 2), (1; 3), (1; 2, 2).

Proof: If Γ1 is a genus-two surface subgroup of Γ, then
Mμ(Γ) = μ(Γ1) = 4π, where M = |Γ : Γ1|. This implies
μ(Γ1

O) ≤ 4π. In particular, the genus g of Γ must be less
than or equal to 2.

Furthermore, by Theorem 3.1, depending on the sig-
nature of the group Γ, either λ or 2λ divides the index
M , where λ = lcm(m1, . . . , mr). This gives us bounds
on the possible torsion of Γ. In particular, for fixed g,
this gives us an upper bound on the number of conjugacy
classes of elliptic elements:

(1) If g = 0, then Γ has at most six conjugacy classes of
elliptic elements.

(2) If g = 1, then Γ has at most two conjugacy classes
of elliptic elements.

(3) If g = 2, then Γ has no elliptic elements and Γ = Γ1.

For example, suppose g = 0 and Γ has four conjugacy
classes of elliptic elements xi of order mi, 1 ≤ i ≤ 4. By
the Riemann–Hurwitz formula (2–2),

μ(Γ) = 2π
(
− 2 +

4∑
i=1

mi − 1
mi

)
.

Therefore, if Γ contains a torsion-free subgroup of genus
two, then

Mμ(Γ) = 2Mπ
(
− 2 +

4∑
i=1

mi − 1
mi

)
= 4π = μ(Γ1).

This translates to the existence of integers M, mi, 1 ≤
i ≤ 4, satisfying the equation

4∑
i=1

mi − 1
mi

=
2
M

+ 2. (3–1)

In addition, λ = lcm(m1, . . . , m4) divides M . Since
μ(Γ) > 0, there exists at least one xi with order mi > 2.
Also, we can deduce the following two facts:



Macasieb: Derived Arithmetic Fuchsian Groups of Genus Two 353

(i) There cannot exist more than two distinct mi corre-
sponding to the xi.

(ii) If mi > 2 for all 1 ≤ i ≤ 4, then m1 = · · · = m4 = 3.

If (i) does not hold, then m1 ≥ 2, m2 ≥ 3, m3 ≥ 4, and
M ≥ λ ≥ 6, and this gives the following contradiction:

29
12

≤
4∑

i=1

mi − 1
mi

=
2
M

+ 2 ≤ 28
12

.

Similarly, if (ii) does not hold, then M ≥ λ ≥ 4, and we
arrive at the contradiction

10
4

≤
4∑

i=1

mi − 1
mi

=
2
M

+ 2 ≤ 9
4
.

Without loss of generality, suppose x1 ≤ x2 ≤ · · · ≤ x4.
We then have the following four cases:

Case 1: m1 = m2 = m3 = 2 and m4 = m > 2. In this
case, equation (3–1) becomes

3
2

+
m − 1

m
=

2
M

+ 2 ⇐⇒ m − 1
m

=
2
M

+
1
2
.

The solution m = M = 6 gives the maximal value of
m. The only other solutions in this case occur when
(m, M) = (3, 12), (4, 8).

Case 2: m1 = m2 = 2 and m = m3 = m4 > 2. Again,
equation (3–1) becomes

1 +
2(m − 1)

m
=

2
M

+ 2 ⇐⇒ 2(m − 1)
m

=
2
M

+ 1.

The case m = N gives the maximal value for m,
and this occurs when m = M = 4. The only other
possible solution occurs when (m, M) = (3, 6).

Case 3: m1 = 2 and m = m2 = m3 = m4 > 2. Equa-
tion (3–1) translates to

1
2

+
3(m − 1)

m
=

2
M

+ 2,

and one can easily verify that there exist no integer
solutions to this equation.

Case 4: m = m1 = m2 = m3 = m4 > 2. In this situa-
tion,

4(m − 1)
m

=
2
M

+ 2,

and m = M = 3 is the only solution.

The existence of a torsion-free subgroup of index M

for a group of fixed signature is guaranteed by The-
orem 3.1. Therefore, the only Fuchsian groups with
signature (0; x1, x2, x3, x4) containing a torsion-free sub-
group of genus 2 are those with signatures (0; 2, 2, 2, 3),
(0; 2, 2, 2, 4), (0; 2, 2, 2, 6), (0; 2, 2, 3, 3), (0; 2, 2, 4, 4), and
(0; 3, 3, 3, 3). In this manner, we analyze torsion in groups
of a fixed signature to obtain the list in the lemma.

Proposition 3.3. There exist no dafgs of signature (2;−)
arising from quaternion algebras over number fields of
degree greater than 5.

Proof: If Γ1
O contains a genus-two surface group Γ of

index M = |Γ1
O : Γ|, then

μ(Γ) = 4π = Mμ(Γ1
O) (3–2)

= M
8πd

3/2
k ζk(2)ΠP|Δ(A)(N(P) − 1)

(4π2)|k:Q| .

In particular, this implies

4π ≥ 8πd
3/2
k ζk(2)ΠP|Δ(A)(N(P) − 1)

(4π2)|k:Q| . (3–3)

Note that

ζk(2)
∏

P|Δ(A)

(N(P) − 1) >
∏

P|Δ(A)

(N(P))2

(N(P) + 1)
(3–4)

≥
{

1 if |k : Q| is odd,
4
3 if |k : Q| is even.

Using ΠP|Δ(A)(N(P) − 1) ≥ 1 and ζk(2) ≥ 1 in the
above inequality gives

4π ≥ 8πd
3/2
k

(4π2)|k:Q| . (3–5)

We now use Odlyzko’s lower bounds [Odlyzko 75] on the
discriminant of a totally real number field to get an upper
bound on the degree of k:

|dk| ≥ (2.439 × 10−4)(29.099)n,

where n = |k : Q|. Using these estimates in inequality
(3–5) gives n ≤ 8.

However, the smallest discriminant of a totally real
field of degree 7 or 8 is 20,134,393 or 282,300,416, respec-
tively [Cohen et al. 95, Pohst et al. 90]. In each case,
inequality (3–3) is violated:

4π ≥ 8πd
3/2
k

(4π2)|k:Q| ≥
⎧⎨
⎩

8π(20,134,393)3/2

(4π2)7 ≈ 15.1925 > 4π,
8π(282,300,416)3/2

(4π2)8 ≈ 20.2036 > 4π.
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Hence, there cannot exist a dafg of signature (2;−) if
|k : Q| ≥ 7.

To eliminate the case |k : Q| = 6, we again exploit
the area formula (2–3) and inequality (3–4) to get the
following inequality:

μ(Γ) = 4π

≥ |Γ1
O : Γ|8πd

3/2
k ζk(2)ΠP|Δ(A)(N(P) − 1)

(4π2)6

≥ 32πd
3/2
k

3(4π2)6
.

This gives us the following upper bound on the discrim-
inant dk:

dk ≤
(

3(4π2)6

8

)2/3

< 1,263,165. (3–6)

According to the lists from [Cohen et al. 95], there are
20 number fields k of degree 6 satisfying the above in-
equality. For each field k, we investigate the behav-
ior of small primes and, if necessary, estimate ζk(2) us-
ing pari. Since n = 6, |Ramf (A)| �= ∅. Therefore,
ΠP|Δ(A)(N(P) − 1) ≥ N(P0) − 1, where P0 is the prime
of smallest norm in k.

For example, consider the totally real field k of degree
6 and discriminant dk = 722,000. A minimal polynomial
for k is f(x) = x6−x5−6x4+7x3+4x2−5x+1. By pari,
the prime of smallest norm in Rk is the unique prime P

lying over 2 with N(P) = 4. This implies that any group
Γ1

O defined over k has area at least

8πd
3/2
k ζk(2) · 3
(4π2)6

=
21π

5
> 4π.

Hence, there exist no dafgs of signature (2;−) defined
over k. In this fashion, we obtain a contradiction to the
inequality μ(Γ) ≤ 4π for each totally real field k of degree
6 with discriminant dk satisfying (3–6).

4. CLASSIFICATION BY COMMENSURABILITY CLASS

In this section, we classify dafgs of signature (2;−)
by invariant quaternion algebra. All the groups in
Lemma 3.2 except those with one of the three signa-
tures (1; 2, 2), (0; 2, 2, 2, 2, 2, 2), and (2;−) have commen-
surability classes that have already been classified; i.e.,
they are all commensurable with an arithmetic Fuch-
sian triangle group or one having signature (1; e) or
(0; 2, 2, 2, e). So it suffices to classify the commensura-
bility classes of the groups Γ1

O of these remaining three

types and to extract the relevant results from [Acker-
mann et al. 03, Maclachlan and Rosenberger 92, Takeuchi
77, Takeuchi 83].

The proof classification is exhaustive. For each fixed
degree |k : Q|, we use equation (2–3) to get upper bounds
on the discriminant of the number field k. Then we deter-
mine the existence of all quaternion algebras whose unit
groups have one of the above three signatures. Rather
than go through an analysis of each number field that can
correspond to such an arithmetic Fuchsian group, we give
an idea of the overall approach by a few illustrative ex-
amples. Our argument will be organized by the degree
of the number field.

We will make extensive use of the following lemma,
which is particularly useful in the case |k : Q| odd (since
we can have Ramf (A) = ∅ in this case):

Lemma 4.1. If A is a quaternion algebra defined over a
totally real field ramified at all but one infinite place and
unramified at all finite places, then Γ1

O contains elements
of orders 2 and 3. Furthermore, if Γ is a genus-two sur-
face group contained in Γ1

O for O a maximal order in A,
then 6 divides |Γ1

O : Γ|.

Proof: Since Ramf (A) is empty, by Lemma 2.5, there is
no obstruction to embedding L in O, where L ∼= Q(i) or
Q(ω). Therefore, any order O in A will contain elements
of orders 2 and 3. By Theorem 3.1, if Γ1

O has signature
(g; x1, . . . , xr) and Γ ⊂ Γ1

O is torsion-free, then 6 divides
λ, which in turn divides |Γ1

O : Γ|.

4.1 Quintic Number Fields

Lemma 4.2. For |k : Q| = 5, the only dafgs of signature
(2;−) arise from quaternion algebras over the totally real
fields of discriminants dk = 38,569, 36,497, and 24,217.

Proof: Suppose there exists a dafg Γ < Γ1
O of genus

two that is torsion-free and defined over a totally real
quintic number field k. Using the inequalities ζk(2) ≥ 1,∏

P|Δ(A)(N(P)−1) ≥ 1 in conjunction with (2–3), we get
that

dk ≤ 131,981.

However, if Ramf (A) = ∅, the index M = [Γ1
O : Γ] is

greater than or equal to 6 by Lemma 4.1. Substituting
back into the area formula (2–3) gives dk ≤ 39,970. For
those fields with 39,970 ≤ dk ≤ 131,981, we analyze the
behavior of small primes in k to determine the possible
ramification sets for each field k. According to [Cohen et
al. 95], there are 15 number fields with dk < 131,981. In
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a few cases, small primes do exist, but we can eliminate
these cases using torsion.

For example, let k be the number field with discrim-
inant dk = 106,069. Using the minimal polynomial
f(x) = x5 − 2x4 − 4x3 + 7x2 + 3x − 4 to generate the
k in pari, we compute that

8π · 106,0693/2ζk(2)
(4π2)5

= 4π.

Furthermore, there exists a unique prime P2 of norm 2 in
Rk. Together with the fact that |Ramf (A)| is even, this
implies that Ramf (A) = ∅. So, by (2–3), μ(Γ1

O) = 4π

for any maximal order O in A. However, by Lemma 4.1,
Γ1

O contains elements of orders 2 and 3. Hence, Γ1
O is not

torsion-free, and since μ(Γ1
O) = 4π, it is not a genus-two

surface group, nor does it contain a genus-two subgroup.
The case dk = 38,569 yields a positive result. By pari,

using the minimal polynomial f(x) = x5 − 5x3 + 4x− 1,
we compute that

μ(Γ1
O) =

8π · 38,5693/2ζk(2)
(4π2)5

=
2π

3
.

So if Γ ⊂ Γ1
O has signature (2;−), then the following

equation must be satisfied:

4π = μ(Γ) = Mμ(Γ1
O) = M

2π
∏

P|Δ(A)(N(P) − 1)

3
,

(4–1)
where M = |Γ1

O : Γ|.
Again the only solution to the above equation occurs

when M = 6 and Ramf (A) = ∅. Since dk = 38,569
is prime, k contains no proper subfields other than Q.
Thus, the only possibilities for elements of finite order in
O are 2 and 3. By Lemma 4.1, any group Γ1

O contains
elements of orders 2 and 3. So, in this case we get

μ(Γ1
O) =

2π

3
= 2π

(
2g − 2 +

a2

2
+

2a3

3

)
.

We see that the only solution to this equation is a2 =
a3 = 2. Hence, Γ1

O has signature (0; 2, 2, 3, 3) in this case,
and Theorem 3.1 guarantees the existence of a torsion-
free subgroup of index 6.

The totally real number fields of degree 5 with dis-
criminants 36,497 and 24,217 are the only other fields
that yield positive existence results.

4.2 Quartic Number Fields

For |k : Q| = 4, Ramf (A) �= ∅. Using Proposition 2.10
to analyze the cyclotomic extensions with degree dividing

8, one can easily show that 2, 3, 4, 5, 6, 8, 10, 12, 15 are
the only possible cycles for elliptic elements in this case.

Using equation (3–2) in conjunction with inequal-
ity (3–4), we obtain the following inequality when
|k : Q| = 4:

4π ≥ 32πd
3/2
k

3(4π2)4
.

Therefore,

dk ≤
(

3(4π2)4

8

)2/3

< 9397.

There are 48 number fields with discriminants satisfying
the above inequality given in [Cohen et al. 95]. Again, we
eliminate all fields except those listed in Theorem 4.10 by
estimating ζk(2) and examining the factorization of small
primes using pari.

Lemma 4.3. There exist no dafgs of signature (2;−)
defined over the totally real field k with dk = 5744.

Proof: The minimal polynomial for k is f(x) = x4−5x2−
2x + 1. Using pari, we compute that

μ(Γ1
O) =

8π · 57443/2ζk(2)
(4π2)4

=
5π

3
.

Hence, a torsion-free genus-two subgroup Γ of index M =
|Γ1

O : Γ| corresponds to a solution of the equation

5M

3

∏
P|Δ(A)

(N(P) − 1) = 4.

But since M, N(P) ∈ Z, this clearly has no solution.

We now list some positive results for the case
|k : Q| = 4.

Lemma 4.4. Let k be the totally real number field with
dk = 3981. Then the only dafg of signature (2;−)
defined over k has invariant quaternion algebra A with
Ramf (A) = P3, where P3 is the unique prime in Rk

lying over 3. Furthermore, there is only one conjugacy
class of dafgs of this signature defined over k.

Proof: The number field k is equal to Q(α), where α is
a root of the polynomial f(x) = x4 − x3 − 4x2 + 2x + 1.
Since dk = 3 · 1327, k contains no other proper subfield
other than Q; the only possible nontrivial elements of
finite order of Γ1

O are those of order 2 or 3. By pari, we
compute

μ(Γ1
O) =

8π · 39813/2ζk(2)
(4π2)4

= π.
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Therefore, if Γ1
O contains a subgroup Γ of signature (2;−)

of index M = |Γ1
O : Γ|, then

M
∏

P|Δ(A)

(N(P) − 1) = 4. (4–2)

This implies that N(P) ≤ 5 for any prime P ∈ Ramf (A).
By pari, we find that there are only two primes in Rk

with norm less than 5: P3 and P5 with N(P3) = 3 and
N(P5) = 5.

Therefore M = 1, Ramf (A) = {P5} is a possible solu-
tion to (4–2). However, P5 is inert in k(ω)/k, which, by
Lemma 2.5, implies that a3 �= 0. However, by Theorem
3.1, 3 | M = 1, which is a contradiction.

We also have M = 2 and Ramf (A) = {P3} as a pos-
sible solution to (4–2). Furthermore, 6 does not divide
dk, so by Lemma 2.8 we can calculate a2 and a3 using
(2–6). Using pari, we compute that P3 is inert in the
extension k(i)/k, that h(k(i)) = 3, and that h(k) = 1.
Also, since 2 does not divide dk, by Lemma 2.7 we have
that |R∗

k(i) : R
∗(2)
k(i) | = 1. Therefore

a2 =
h−

|R∗
k(i) : R

∗(2)
k(i) |

ΠP|Δ(A)

(
1 −

(
k(ζi)

P

))
= 3 · 2 = 6.

The prime P3 splits in k(i), so by either Lemma 2.5 or
equation (2–6), a3 = 0.

Since these are the only possible periods for this num-
ber field, Γ1

O must have signature (0; 2, 2, 2, 2, 2, 2). Fi-
nally, Γ1

O contains a torsion-free subgroup Γ of index 2
by Theorem 3.1; since μ(Γ) = 4π, Γ must have signature
(2;−).

Since the extension k/Q is not Galois and k contains
no proper subfields other than Q, the groups correspond-
ing to the various infinite places of k will each contribute
at least one conjugacy class. For each of these quaternion
algebras, we determine the type number by analyzing the
embeddings of the units. By pari, a fundamental system
of R∗

k is {−1, α, α − 1, α2 + α − 1}. The signs of these
generators at the various embeddings are shown in the
table below:

α α − 1 α2 + α − 1
α1 ≈ −1.7508 − − +
α2 ≈ −0.3184 − − −
α3 ≈ 0.7853 + − +
α4 ≈ 2.2840 + + +

For each choice of unramified real place σi, h∞ = 1.
Hence, there are four distinct conjugacy classes of groups
of signature (0; 2, 2, 2, 2, 2, 2) defined over k.

Lemma 4.5. Let k = Q(
√

2,
√

3) be the number field with
dk = 2304. The only dafg of signature (2;−) arising
from a quaternion algebra A over k has Ramf (A) = P3,
where P3 is the unique prime of norm 9 in k.

Proof: The periods 2, 3, 4, and 6 are all obvious possibil-
ities for torsion, since Q, k2, k3 are proper subfields of k.
The fact that 5 � 2304 = 28 · 32 implies that these are the
only possibilities. In this case, k = Q(α), where α is a
root of the polynomial f(x) = x4 − 4x2 + 1. Using pari,
we compute that

8π · 23043/2ζk(2)
(4π2)4

=
π

2
.

Therefore, the existence of a torsion-free genus-two sub-
group amounts to the existence of a solution to the equa-
tion

M
∏

P|Δ(A)

(N(P) − 1) = 8. (4–3)

The only primes P in Rk with (N(P) − 1) dividing
8 are the unique primes P2 and P3 of norms 2 and 9,
respectively. Since |Ramf (A)| is odd, the only solution
to (4–3) is M = 1 and Ramf (A) = {P3}. The prime P3

splits in both k(i)/k and k(ω)/k. So, by Lemma 2.5, for
any maximal order O, the group Γ1

O contains no elements
of order 2 or 3. This also implies that Γ1

O contains no
elements of order 4 or 6; therefore, Γ1

O is torsion-free
and has genus 2. Since k/Q is Galois, there is only one
conjugacy class of arithmetic Fuchsian groups Γ1

O defined
over k.

Lemma 4.6. Let k be the number field with dk = 1957.
Then the only dafgs of signature (2;−) arising from a
quaternion algebra A over k containing genus-two sub-
groups are those listed in Theorem 4.10.

The number field k with discriminant dk is equal to
Q(α), where α is a root of the polynomial f(x) = x4 −
4x2 − x + 1. Since dk = 1957 = 19 · 103, k contains no
proper subfields other than Q. Using pari, we compute
that

8π · 19573/2ζk(2)
(4π2)4

=
π

3
.

Again, we consider solutions to the equation

4π = M
π
∏

P|Δ(A)(N(P) − 1)

3
,

or equivalently,

M
∏

P|Δ(A)

(N(P) − 1) = 12, (4–4)
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by analyzing the primes in Rk. In particular, any prime
P in the ramification set of A has norm at most 13. The
rational primes 2, 5, and 13 remain prime in the extension
k/Q, so they cannot lie in Ramf (A). By pari, there
are two primes P3 = (α − 2)Rk and P′

3 lying over 3,
with norms N(P3) = 3 and N(P′

3) = 9, respectively.
There also exists a prime P7 = (2α + 1)Rk of norm 7.
Combining this with the fact that |Ramf (A)| is odd, we
get that the only possible solutions (M, Ramf (A)) to the
above equation are (6, P3) and (2, P7). The quaternion
algebras with Ramf (A) = {P3} appear in the lists of
[Maclachlan and Rosenberger 92], and the unit groups
Γ1

O have signature (0; 2, 2, 2, 3) in this case.
Let us consider the algebra with Ramf (A) = {P7}.

Since 6 � 1957 and k contains no proper subfields other
than Q, Γ1

O can have elements only of orders 2 and 3.
Moreover, we can compute the number of elements of
orders 2 and 3 using formula (2–6). Since P7 splits in
k(ω)/k, Γ1

O contains no elements of order 3. Since P7 is
inert in k(i)/k, and h(k(i)) = 1, there are two conjugacy
classes of elements of order 2. Therefore, any group Γ1

O

arising from A has signature (1; 2, 2).
In order to determine the number of conjugacy classes

of the groups Γ1
O, we again analyze the behavior of

the units R∗
k at the various embeddings αi. The set

{−1, α, α − 1, α + 2} is a fundamental system of units
for R∗

k, and the following table lists the signs of the gen-
erators:

α α − 1 α + 2
α1 ≈ −2.0615 − − −
α2 ≈ −0.3963 − − +
α3 ≈ 0.6938 + − +
α4 ≈ 1.7640 + + +

Since the extension k/Q is not Galois and k contains
no proper subfields, we again get at least one conjugacy
class corresponding to the algebra unramified at the place
αi, 1 ≤ i ≤ 4. The class number of k is 1, so h∞ =
23/|R∗

k/R∗
k ∩ k∗∞|. By the table above, we see that for

each choice of σi, h∞ = 1 for the algebra unramified at
σi. Therefore, there are exactly four conjugacy classes
of groups of signature (1; 2, 2) arising from quaternion
algebras defined over k.

4.3 Cubic Number Fields

Lemma 4.7. The only possible periods of elements of finite
order that can arise in Γ1

O defined over fields k with |k :
Q| = 3 are 2, 3, 7, and 9.

Proof: Since k contains no proper subfields other than
Q, 2 and 3 are the only possible periods than can arise
from proper subfields of k. By Proposition 2.10, 7 is
the only prime for which |kp : Q| = 3. In fact, k7 =
Q(cos(π

7 )) is the totally real cubic field with discriminant
49. For prime powers m = pk, the only field Q(ζ2m)
with |Q(ζ2m) : Q| = 6 is m = 9. This corresponds to
the totally real field of discriminant 81. There are no
composite m for which |Q(ζ2m) : Q| = 6; this finishes the
proof.

If [k : Q] = 3, it is possible that Ramf (A) = ∅. As
in the case [k : Q] = 5, this helps to simplify the process
immensely, since this implies dk ≤ 297. If Ramf (A) �=
∅, then dk ≤ 981. In the lists [Cohen et al. 95], there
are 25 number fields k with discriminants satisfying the
latter inequality (see [Macasieb 05, Appendix A]). The
cases k = Q(cos(π

9 )) and k = Q(cos(π
7 )), in which 9

and 7, respectively, are possible periods, require special
examination. We analyze the latter case in detail below.

Lemma 4.8. There exist no dafgs of signature (2;−)
arising from a quaternion algebra defined over the totally
real cubic number field of discriminant 361.

Proof: The field k has minimal polynomial f(x) = x3 −
x2 − 6x + 7. Using pari, we compute

μ(Γ1
O) =

8π · 3613/2ζk(2)
(4π2)3

= π.

By the preceding comments, Ramf (A) �= ∅. The equa-
tion

4π = μ(Γ) = Mμ(Γ1
O) = Mπ

∏
P|Δ(A)

(N(P) − 1)

has no solutions, since 2, 3, and 5 are inert in k/Q.
Therefore, there are no dafgs of signature (2;−) defined
over k.

Lemma 4.9. For k = Q(cos(π
7 )), the only possible Γ1

O con-
taining a subgroup Γ of signature (2;−) are those listed
in Theorem 4.10.

Proof: Fix f(x) = x3 − x2 − 2x + 1 as the minimal poly-
nomial for k. Again, using pari, we compute

μ(Γ1
O) =

8π · 493/2ζk(2)
(4π2)3

=
π

21
.
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[k : Q] dk Δ(A) |Γ1
O : Γ| Γ1

O c
1 1 2 · 3 6 (0; 2, 2, 3, 3) 1
1 1 2 · 5 3 (0; 3, 3, 3, 3) 1
1 1 2 · 7 2 (1; 2, 2) 1
1 1 2 · 13 1 (2;−) 1
2 5 P2 20 (0; 2, 5, 5) 1
2 5 P5 15 (0; 3, 3, 5) 1
2 5 P11 6 (0; 2, 2, 3, 3) 1
2 5 P′

11 6 (0; 2, 2, 3, 3) 1
2 5 P31 2 (1; 2, 2) 1
2 5 P′

31 2 (1; 2, 2) 1
2 5 P61 1 (2;−) 1
2 5 P′

61 1 (2;−) 1
2 8 P2 24 (0; 3, 3, 4) 1
2 8 P7 4 (0; 2, 2, 4, 4) 1
2 8 P3 3 (1; 3) 1
2 8 P5 1 (2;−) 1
2 12 P2 12 (0; 3, 3, 6) 1
2 12 P3 6 (0; 2, 2, 2, 6) 1
2 12 P13 1 (2;−) 1
2 12 P′

13 1 (2;−) 1
2 13 P3 6 (0; 2, 2, 3, 3) 1
2 13 P′

3 6 (0; 2, 2, 3, 3) 1
2 13 P2 4 (1; 2) 1
2 13 P13 1 (2;−) 1
2 17 P2 6 (0; 2, 2, 3, 3) 1
2 17 P′

2 6 (0; 2, 2, 3, 3) 1
2 21 P2 1 (1; 2, 2) 1
2 24 P3 2 (0; 2, 2, 2, 2, 2, 2) 1
2 28 P2 3 (0; 3, 3, 3, 3) 1

TABLE 1. dafg of signature (2;−).

Thus,

4π = μ(Γ) = Mμ(Γ1
O) = M

π
∏

P|Δ(A)(N(P) − 1)

21
.

(4–5)
If we take Ramf (A) = ∅, then M = 84. So μ(Γ1

O) = π
21 .

Since Ramf (A) = ∅, and k = k7, we have a2, a3, a7 �= 0
by Lemma 2.5. Therefore,

μ(Γ1
O) =

π

21
= 2π

(
2g − 2 +

a2

2
+

2a3

3
+

6a7

3

)
.

The only solution to this equation is a2 = a3 = a7 =
1, and in this case Γ1

O is a triangle group of signature
(0; 2, 3, 7) (see [Takeuchi 77]). Again the existence of a
torsion-free subgroup of Γ1

O of index 84 is guaranteed by
Theorem 3.1.

If Ramf (A) �= ∅, then
∏

P|D(A)(N(P)−1) ≥ 42. This
is because the primes of smallest norm in Rk, P2 and P7,
have norms 8 and 7, respectively, in k, and |Ramf (A)| ≥
2. This implies M ≤ 2. However, since Γ1

O will not be
torsion-free, Theorem 3.1 implies that M ≥ 2. Thus, the
only other possible solution to (4–5) occurs when M = 2.

In this case, Ramf (A) = {P2, P7} is a solution to (4–5)
when M = 2. Since 6 � dk, we can apply Lemma 4.1. By
pari, we find that h = h(k(i)) = h(k(ω)) = 1 and that
P2 ramifies and P7 is inert in k(i)/k; therefore a2 = 2.

[k : Q] dk Δ(A) |Γ1
O : Γ| Γ1

O c
3 49 ∅ 84 (0; 2, 3, 7) 1
3 49 P2P7 2 (1; 2, 2) 1
3 49 P2P13 1 (2;−) 1
3 49 P2P′

13 1 (2;−) 1
3 49 P2P′′

13 1 (2;−) 1
3 81 ∅ 36 (0; 2, 3, 9) 1
3 148 ∅ 12 (0; 2, 2, 2, 3) 3
3 148 P2P5 3 (0; 3, 3, 3, 3) 3
3 148 P2P13 1 (2;−) 3
3 169 ∅ 12 (0; 2, 2, 2, 3) 1
3 229 ∅ 6 (0; 2, 2, 3, 3) 4
3 229 P2,P′

2 2 (1; 2, 2) 3
3 257 ∅ 6 (0; 2, 2, 3, 3) 4
3 316 P2,P′

2 3 (0; 3, 3, 3, 3) 3
4 725 P11 6 (0; 2, 2, 3, 3) 2
4 725 P′

11 6 (0; 2, 2, 3, 3) 2
4 725 P2 4 (1; 2) 2
4 725 P31 2 (1; 2, 2) 2
4 725 P′

31 2 (1; 2, 2) 2
4 725 P61 1 (2;−) 2
4 725 P′

61 1 (2;−) 2
4 1125 P2 2 (1; 2, 2) 1
4 1957 P3 6 (0; 2, 2, 3, 3) 4
4 1957 P7 2 (1; 2, 2) 4
4 2000 P2 10 (0; 5, 5, 10) 1
4 2000 P5 2 (0; 3, 3, 3, 3) 2
4 2304 P3 1 (2;−) 1
4 2777 P2 6 (0; 2, 2, 3, 3) 1
4 3981 P3 2 (0; 2, 2, 2, 2, 2, 2) 4
4 4352 P2 6 (0; 3, 3, 3, 3) 1
4 4752 P2 1 (2;−) 2
5 24217 ∅ 12 (0; 2, 2, 2, 3) 5
5 36497 ∅ 6 (0; 2, 2, 3, 3) 6
5 38569 ∅ 6 (0; 2, 2, 3, 3) 6

TABLE 2. dafg of signature (2;−) (cont.).

Since the ideal P7 splits in k(ω)/k, we have a3 = 0. But

μ(Γ1
O) = 42 · π

21
= 2π

(
2g − 2 + 1 +

6e7

7

)
,

and g = 1, e7 = 0 is the only solution. Thus, Γ1
O has

signature (1; 2, 2), and again by Theorem 3.1, it has a
torsion-free subgroup of genus two and of index two.
Since k/Q is Galois, there is only one conjugacy class
of groups Γ1

O of this signature.
Similarly, Ramf (A) = {P2, P13} and M = 1 is a solu-

tion to (4–5), where P13 is any of the three prime ideals
of norm 13 in Rk. Since each prime P13 splits in each
of the extensions k(i)/k and k(ω)/k, the group Γ1

O is
torsion-free and therefore has signature (2;−). Lastly,
note that each of the three distinct primes of norm 13
in Rk corresponds to a distinct commensurability class
of dafg of signature (2;−) and each contributes exactly
one conjugacy class, since k/Q is Galois.

Johansson [Johansson 98] has determined the signa-
tures of all dafgs of genus less than 3 arising from quater-
nion algebras over the rationals and quadratic number
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fields, so it suffices to consider those number fields of de-
gree |k : Q| > 2. Combining Lemma 3.2 and our results
with the relevant results in [Johansson 98, Maclachlan
and Rosenberger 92, Takeuchi 77, Takeuchi 83] we ob-
tain the following theorem.

Theorem 4.10. Table 1 and its continuation Table 2 give a
complete list of all groups Γ1

O containing a derived arith-
metic Fuchsian group Γ of signature (2;−) arising from
quaternion algebras over totally real number fields. The
number c denotes the number of conjugacy classes of the
group Γ1

O in each case.

Remark 4.11. Using a theorem from [Greenberg 63] on
maximal Fuchsian groups in conjunction with the results
in [Ackermann et al. 03, Maclachlan and Rosenberger 92,
Takeuchi 77, Takeuchi 83] gives all the conjugacy classes
of the groups Γ1

O listed in Tables 1 and 2 except for those
with signatures (1; 2, 2), (0; 2, 2, 2, 2, 2, 2), and (2;−).

5. MAXIMAL ORDERS AND FUNDAMENTAL
DOMAINS

The group SU(1, 1) is the group of orientation-preserving
isometries of the unit disk U = {z ∈ C | |z| ≤ 1}. By em-
bedding a cocompact arithmetic Fuchsian group Γ into
SU(1, 1), one can determine a fundamental domain for
its image Γ′ using a theorem of Ford. The elements of Γ′

that give the side pairings of the fundamental domain are
generators for Γ′. This technique is described for the ra-
tional numbers and quadratic number fields in [Vignéras
80] and [Katok 92] and more generally in [Johansson 00].
In order to find a fundamental domain for Γ using this
technique, the maximal order must be written explicitly
as an R-module, where R = Rk is the ring of integers of
the number field k. We first state and prove some results
on the existence and form of maximal orders in certain
cases in which the Hilbert symbol for a quaternion al-
gebra A is “nice.” The invariant quaternion algebras of
arithmetic Fuchsian groups with small genus will often
fall into this class.

5.1 Maximal Orders

Recall that any quaternion algebra A has an associated
Hilbert symbol (

a, b

k

)
,

where i2 = a, j2 = b, ij = −ji = k for some a, b ∈ k∗.
The basis {1, i, j, ij} is referred to as the standard basis
of A. The discriminant Δ(A) of a quaternion algebra A

is defined to be the product of the prime ideals at which
A is ramified. For any R-order O in A, the discriminant
d(O) is defined to be the R-ideal generated by the set
{det(tr(xixj)), 1 ≤ i, j ≤ 4}, where xi ∈ O. We will
use the following facts about orders (cf. [Maclachlan and
Reid 03]):

(i) Any order is contained in a maximal order.

(ii) An order O is maximal if and only if d(O) = Δ(A)2.

(iii) If O has the free R-basis {e1, e2, e3, e4}, then
the discriminant d(O) of O is the principal ideal
det(tr(eiej))R.

Proposition 5.1. Suppose that k has class number 1 and
that ab is square-free, where a, b ∈ R. Let A =

(
a,b
k

)
be

a quaternion algebra over a number field k. Suppose, in
addition, that Δ(A) divides abR. Let πiR = Pi for each
Pi �∈ Ramf (A) and

r =

⎧⎪⎨
⎪⎩

1 if Δ(A) = abR,∏
Pi|abR

Pi�Δ(A)

πi if Δ(A) �= abR.

If O = O′[β], where O′ = R[1, i, j, ij], is a maximal order
of A for some β ∈ A, then

β ∈ 1
2r

O′.

Proof: By assumption, all ideals of R are principal. Since
d(O′) = 16a2b2R, the order O′ is not maximal and O′ ⊂ O

for some maximal order O. In particular, d(O) = Δ(A)2.
Since ab is square-free, abR = r1Δ(A), up to multipli-
cation by a unit. Moreover, R is a principal ideal do-
main, so both O′ and O have free bases, say {ei}4

i=1 and
{fj}4

j=1, respectively. Since O′ ⊂ O, we can write each ei

as
∑4

j=1 aijfj, where aij ∈ R. We therefore have

16a2b2 = d(O′) = det(tr(eiej)) = (detM)2det(tr(fifj))

= (detM)2d(O),

where M = (aij). Thus, up to multiplication by a unit,
detM = 4r. This implies O ⊂ 1

4r O′, i.e.,

β =
1
4r

(x0 + x1i + x2j + x3ij),

where xi ∈ R, 0 ≤ i ≤ 3. But since β is an integer,
its trace must be integral: tr(β) = x0

2r ∈ R. From this
it follows that x0 ∈ 2R. Similarly, taking the products
iβ, jβ, and ijβ and using the hypothesis that O′[β] is
an order, it follows that x1, x2, x3 ∈ 2R. Therefore, β ∈
1
2rO′, as claimed.
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Lemma 5.2. Let A =
(a,b

k

)
be a quaternion algebra over

a number field k and ring of integers R with a, b ∈ R

satisfying

(i) (a, b) = 1,

and either of the following conditions:

(ii) ∃ ã, b̃ ∈ R such that ã2 ≡ a mod 4R and b̃2 ≡ b mod
4R,

(ii)′ b = −1 and ∃ ã ∈ R such that ã2 ≡ a mod 4R.

Then there exists a nonzero solution (x, y) ∈ R × R to
the equation x2 − ay2 ≡ b mod 4R.

Proof: We need to show that under the hypotheses, there
exist x, y ∈ R such that x2 − ay2 ≡ b mod 4R, or equiva-
lently, such that x2−ay2−b ∈ 4R. Suppose conditions (i)
and (ii) hold. Then x2−ay2−b ≡ 0 mod 4R is equivalent
to x2 − ã2y2 ≡ b̃2 mod 4R.

The equation

x − ãy ≡ b̃ mod 2R (5–1)

will have a solution (x, y) ∈ R × R provided

x − ãPy ≡ b̃P mod RP (5–2)

has a nonzero solution (x̃P, ỹP) for every prime P dividing
2 in R (by the Chinese remainder theorem).

Since (a, b) = 1 implies (ãP, b̃P) = 1, equation (5–2)
clearly has a nonzero solution (x̃P, ỹP) for each prime
P dividing 2. Therefore, (5–1) has a nontrivial solution
(x, y) ∈ R. Since x − ãy ≡ b̃ mod 2R if and only if
x + ãy ≡ b̃ mod 2R, it follows that (x, y) satisfies

(x − ãy)(x + ãy) ≡ x2 − ã2y2 ≡ b̃2 mod 4R.

If conditions (i) and (ii)′ hold, then the equation x2 −
ay2 − b ≡ x2 − ã2y2 − b ≡ 0 mod 4R is equivalent to

−x2 + ãy2 ≡ 1 mod 4R.

Again, by the Chinese remainder theorem, there exists
(x, y) ∈ R × R such that −x + ãy ≡ 1 mod 2R, and the
proof now follows as above.

Lemma 5.3. Let A =
(

a,b
k

)
be a quaternion algebra with

a, b ∈ R such that abR = Δ(A). Let O′ = R[1, i, j, ij], so
that O′ is an order in A. If β ∈ 1

2O′ \ O′ has the form
1
2 (x0 +x1i+x2j) and is integral, then O = R[1, i, β, iβ] is
a ring of integers. If, in addition, x2 ∈ R∗, then O ⊃ O′

is a maximal order of A.

Proof: Let e0 = 1, e1 = i, e2 = β, and e3 = iβ. Now,
O = R[1, i, β, iβ] is an order if and only if the following
conditions are satisfied:

(i) ekel is integral for 0 ≤ k, l ≤ 3;

(ii) ek + el is integral for 0 ≤ k, l ≤ 3.

The simple structure of this order makes many of these
conditions redundant. The conditions in (i) and (ii) are
conditions that the norms and traces of these elements
belong to R. Moreover, (i) and (ii) also establish that O

is closed under multiplication. The norms and traces of
these elements are listed in Tables 3 and 4. Note that
although the elements ekel and elek, k �= l, may not
be equal, their traces and norms are equal (hence, both
tables are symmetric). We have also omitted the obvious
cases, e.g., 1 and i.

Since a, b, xk ∈ R, for 0 ≤ k ≤ 2, all of the conditions
on integrality reduce to the following conditions:

(i) x2
0 − ax2

1 − bx2
2 ∈ 4R;

(ii) (x2
0 − ax2

1 − bx2
2)

2 ∈ 16R;

(iii) x2
0 + ax2

1 + bx2
2 ∈ 2R.

Condition (i) implies all the others. We will show that
(i) implies (iii). The condition x2

0−ax2
1−bx2

2 ∈ 4R implies
x2

0−ax2
1−bx2

2 ∈ 2R, since 4R ⊂ 2R. But x2
0−ax2

1−bx2
2 ≡

x2
0 − ax2

1 − bx2
2 mod 2R, so x2

0 − ax2
1 − bx2

2 ∈ 2R if and
only if x2

0 + ax2
1 + bx2

2 ∈ 2R. However, condition (i) is
equivalent to the integrality of β. This shows that the
integrality of β implies the integrality of all elements of
O = R[1, i, β, iβ]. Thus, if β is integral, then O is a ring
of integers.

We will now assume that x2 ∈ R∗. In order to
show that O is an order, we must show that R[1, i, β, iβ]
is a complete R-lattice with 1. It is clear that O is
an R-lattice. Since 1, i ∈ O, it remains to show that
j ∈ O. Since β = 1

2 (x0 + x1i + x2j) ∈ O, we have
j = x−1

2 (2β − x1 − x2i) ∈ O, and hence I is complete.
Therefore, R[1, i, β, iβ] is an order. Moreover, the dis-
criminant of the order R[1, i, β, iβ] is d(O) = a2b2x4

2R =
a2b2R = ΔA2, since x2 ∈ R∗. Hence, O = R[1, i, β, iβ] is
maximal.

Proposition 5.4. Let A =
(

a,b
k

)
be a quaternion alge-

bra over a number field k with finite ramification set
Ramf (A) and denote the standard order of A by O′ =
R[1, i, j, ij]. Suppose that a, b ∈ Rk satisfy the hypothe-
ses of Lemma 5.2 and in addition, that Δ(A) = abR.
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× 1 i β iβ

1 * * n = (x2
0 − ax2

1 − bx2
2)/4 n = −a(x2

0 − ax2
1 − bx2

2)/4

tr = x0 tr = ax1

i * * * n = a2(x2
0 − ax2

1 − bx2
2)/4

tr = ax0

β * * n = (x2
0 − ax2

1 − bx2
2)

2/16 n = a(x2
0 − ax2

1 − bx2
2)

2/16

tr = (x2
0 + ax2

1 + bx2
2)/2 tr = ax0x1

iβ ∗ ∗ ∗ n = −a(x2
0 − ax2

1 − bx2
2)

tr = 2ax1

TABLE 3. Norms and traces of sums of the R-basis of O in Lemma 5.3.

+ 1 i β iβ

1 * * n = (4 + 4x0 − x2
0 − ax2

1 − bx2
2)/4 n = (4 + 4ax1 − a(x2

0 − ax2
1 − bx2

2))/4

tr = 2 + x0 tr = 2 + ax1

i * * n = (−4a + 4ax1 + x2
0 − ax2

1 − bx2
2)/4 n = −a(4 + 4x0 + x2

0 − ax2
1 − bx2

2)/4

tr = x0 tr = ax1

β * * n = (x2
0 − ax2

1 − bx2
2) n = (a − 1)(x2

0 − ax2
1 − bx2

2)/4

tr = 2x0 tr = x0 + ax1

iβ ∗ ∗ ∗ n = −a(x2
0 − ax2

1 − bx2
2)

tr = 2ax1

TABLE 4. Norms and traces of products of the R-basis of O in Lemma 5.3.

Then there exists β ∈ 1
2O′ such that O′ ⊂ O and

O = R[1, i, β, iβ] is a maximal order of A.

Proof: As noted previously, the order O′ = R[1, i, j, k]
has discriminant d(O′) = 16a2b2R and is therefore not
maximal. Since any order is contained in a maximal or-
der, O′ ⊂ O, where O is a maximal order. In particular,
d(O) = a2b2R = Δ(A)2. The ideal I = 1

2O′ ⊃ O′ is not
an order, since its elements, 1

2 for instance, are not all
integral. But the discriminant of I is equal to a2b2R.
Therefore, O′ ⊂ O. This implies that there exists some
β ∈ 1

2O′ such that β ∈ O.
Since a, b satisfy the hypothesis of Lemma 5.2, there

exist integers x0, x1 ∈ R such that x2
0 − ax2

1 − b ∈ 4R.
Therefore, if we take β = 1

2 (x0 + x1i + j) ∈ 1
2O′, then β

is integral. Furthermore, by Lemma 5.3, I = R[1, i, β, iβ]
is a maximal order.

If the Hilbert symbol of A does not satisfy the condi-
tions of the previous proposition, we can still use Propo-
sition 5.1 as a starting point, but the process of find-
ing a free basis for O becomes more ad hoc. One uses
an intermediate order O′′, where O′ ⊂ O′′ ⊂ 1

2O′ with
d(O′′) = a2b2R, and searches for integral elements in the
ideal 1

r O′′, where r ∈ R is as stated in the proof of Lemma
5.1. By testing these integral elements β as part of a free

R-basis of the orders R[1, i, β, iβ] and R[1, j, β, jβ] and
computing the discriminants of these orders, one can de-
termine a maximal order in the algebra.

5.2 Fundamental Domains and Generators

Let A be the invariant quaternion algebra corresponding
to the arithmetic Fuchsian group Γ1

O. For any maximal
order O of A, fix an embedding ρ of O1 in PSL2(R) and
denote the image by Γ1

O. Choose ρ such that i ∈ H2 is
not the fixed point of any nontrivial element in Γ1

O. The
Möbius transformation

ϕ =
(

i 1
1 i

)

maps H2 to the unit disk U. Furthermore, the action of
SL2(R) on H2 is conjugate to the action of SU(1, 1) on
U, since

SU(1, 1) = ϕSL2(R)ϕ−1.

This defines an embedding of Γ1
O into SU(1, 1).

For any g ∈ SU(1, 1) or SL2(R),

g =
(

a b
c d

)
,

with c �= 0, the isometric circle Cg of g is defined to be
the set of points on which g acts as a Euclidean isometry.
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The following theorem of Ford (cf. [Katok 92, Chapter 3])
characterizes a fundamental domain of Γ ⊂ SU(1, 1) in
terms of the isometric circles of its elements.

Theorem 5.5. Let Γ be a discrete subgroup of SU(1, 1)
such that the origin is not a fixed point of any nontrivial
element of Γ. Let Cg be the isometric circle of g. If Co

g

is the set of all points outside Cg, then

F = U ∩
⋂
g∈Γ

Co
g

is a fundamental domain of Γ.

Clearly, ϕ−1(F) is a fundamental domain for ϕ−1(Γ)ϕ.
Let rg be the radius of the isometric circle Cg, where
g ∈ Γ for a discrete subgroup Γ of SU(1, 1). Since

SU(1, 1) =
{(

a c
c̄ ā

) ∣∣∣a, c ∈ C, aā − cc̄ = 1
}

,

the radius rg is equal to 1
|c| . From the discreteness of Γ

and the additional relation aā − cc̄ = 1, it follows that

Γε = {g ∈ Γ|rg > ε}

is finite for every ε, 0 < ε < 1. If for some ε > 0,

Fε = U∩
⋂

g∈Γε

Co
g , Uε = {z ∈ C | |z| < 1−ε}, Fε ⊂ Uε,

then Fε will be a fundamental domain for Γ. This will
be the case for some sufficiently small ε > 0, since Γ has
finite coarea and no parabolic elements.

Using this consequence of Ford’s theorem one can sys-
tematically obtain the generators for arithmetic Fuchsian
groups if one can a find free R-basis for the maximal or-
der. We use this technique in conjunction with our results
on maximal orders to obtain generators for some of the
unit groups Γ1

O listed in Theorem 4.10. Our main inter-
est will be in the cases 3 ≤ |k : Q| ≤ 4, since examples
of this type are lacking in the literature. Although this
technique is described in generality in [Johansson 00], we
will include a description here for completeness.

Let rg denote the radius of the isometric circle ϕgϕ−1,
where g ∈ Γ ⊂ PSL2(R). If

g =
(

a b
c d

)
,

then

ϕgϕ−1 =
1
2

(
(a + d) + i(b − c) (b + c) + i(a − d)
(b + c) − i(a − d) (a + d) − i(b − c)

)
.

Therefore,

rg =
2

|(b + c) − i(a − d)| =
2√

(a − d)2 + (b + c)2

=
2√

a2 + b2 + c2 + d2 − 2
. (5–3)

Hence, the restriction rg > ε gives an upper bound on
the entries of g. Furthermore, using the fact that the
norm is positive definite in all other n− 1 embeddings of
σi : k ↪→ Q, one obtains upper bounds on the absolute
values of σi(a), σi(b), σi(c), σi(d) for 2 ≤ i ≤ n.

If we write O as a Z-module, then we use the bounds
on the σi to get bounds on the integral coefficients of the
elements of Γ.

Let |k : Q| = n and suppose that k has the integral
power basis {1, α, . . . , αn−1}. By properties of quater-
nion algebras over the real numbers, we may assume
that A =

(a,b

k

)
, where a > 0 and b < 0. Fix an em-

bedding ρ : A ↪→ M2(k(
√

a)). Then the standard order
R[1, i, j, ij] is the set of elements(

x + y
√

a b1(u + v
√

a)
b2(u − v

√
a) x − y

√
a

)
,

where b1, b2 ∈ R satisfy b1b2 = b. Now, by Proposition
5.1, a maximal order O of A is contained in 1

r R[1, i, j, ij],
for some r ∈ R\{0}. Therefore, O will be a subset of the
set of elements of the form

g =
1
r

(
A B
C D

)
, (5–4)

with

A =
(∑

xiα
i
)

+
(∑

yiα
i
)√

a,

B = b1

((∑
uiα

i
)

+
(∑

viα
i
)√

a
)
,

C = b2

((∑
uiα

i
)
−
(∑

viα
i
)√

a
)
,

D =
(∑

xiα
i
)
−
(∑

yiα
i
)√

a,

where r ∈ R \ {0} and the integers xi, yi, ui, vi, 0 ≤
i ≤ n − 1, are in Z. The integrality of the elements
in O translates to certain congruence relations on the
xi, yi, ui, vi ∈ Z, 0 ≤ i ≤ n − 1. The norm of g is
n(g) = 1

r2 (x2−ay2−bu2+abv2). Since norm is invariant
under each embedding σi of the number field, n(g) = 1
implies n(σi(g)) = 1, for 1 ≤ i ≤ n. Therefore, for each
g ∈ Γ1

O, we have

σ(r)2 = σ(x)2 − σ(a)σ(y)2 − σ(b)σ(u)2 + σ(a)σ(b)σ(v)2 .

Since A is a quaternion algebra ramified at all but one
finite place, we may assume that σ1(a) > 0, σ1(b) < 0,
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σi(a) < 0, and σi(b) < 0 for 2 ≤ i ≤ n. Therefore, for
each i, 2 ≤ i ≤ n,

|σi(x)| ≤ σ(r), (5–5)

|σi(y)| ≤
√

σ(r)2 − σi(x)2

−σi(a)
,

|σi(v)| ≤
√

σ(r)2 − σi(x)2 + σi(a)σi(y)2

σi(a)σi(b)
,

|σi(u)| ≤√
σ(r)2 − σi(x)2 + σi(a)σi(y)2 − σi(a)σi(b)σi(v)2

−σi(b)
.

Substituting into (5–3), we get that rg = 2√
q−2

, where

q =
1
r2

(
2x2 + 2ay2 +

4ab2

b2
1 + b2

2

v2

+
(
b2
1 + b2

2

) (
u + v

b2
1 − b2

2

b2
1 + b2

2

√
a
)2
)

.

The condition rg > ε is equivalent to q < Mε := 2+4/ε2,
and this condition implies the following set of bounds for
σ1 = Id:

|x| < r

√
Mε

2
,

|y| <

√
1
2a

(r2Mε − 2x2),

|v| <

√
b2
1 + b2

2

4ab2
(r2Mε − 2x2 − 2ay2), (5–6)

|u| <

√
1

b2
1 + b2

2

(
r2Mε − 2x2 − 2ay2 − 4ab2

b2
1 + b2

2

v2

)

+
b2
1 − b2

2

b2
1 + b2

2

√
a|v|.

By taking various linear combinations of these inequal-
ities, we obtain bounds on the integers xi, yi, ui, vi ∈ Z,
0 ≤ i ≤ n − 1.

6. EXAMPLES

In this section, we use our previous results to find gen-
erators for a few examples of the dafgs Γ1

O in Theorem
4.10 with signature (1; 2, 2), (0; 2, 2, 2, 2, 2, 2), or (2;−)
using programs written in Mathematica [Macasieb 05,
Appendix B]. (A complete list of generators for all the
groups Γ1

O with one of these signatures can be found in
[Macasieb 05, Chapter 5].) Using a standard presentation
of the group Γ1

O and Magma, we also explicitly deter-
mine generators for each subgroup Γ of signature (2;−).

Here we give examples in which the Hilbert symbol of
A satisfies the hypotheses of Proposition 5.4 and exam-
ples in which it does not. All elements of Γ1

O will be given
as a vector of integers using an integral power basis of R

with a specified denominator r; cf. (5–4). Also, we will
abuse notation and use the same vector to describe the
corresponding matrix in SL2(R).

Example 6.1. Let k = Q(cos(π
7 )) = k(α) be the totally

real cubic field of degree 3, where α is a root of the poly-
nomial f(x) = x3−x2−2x+1. The group Γ1

O with invari-
ant quaternion algebra A defined over k with Ramf (A) =
{P2, P7} is generated by the elements shown in Table 5,
where r = 2 and 〈A1, B1, X1|([A1, B1]X1)2, X2

1 〉. Here
the vectors A1, B1, and X1 are as described in (5–4)
with a = 2(2α − 3) and b = −1.

Proof: The cubic field k7 has minimal polynomial f(x) =
x3 − x2 − 2x + 1 and discriminant 49. By Proposition
4.10, there is only one conjugacy class of groups Γ1

O of
signature (1; 2, 2) defined over k. If we denote the three
roots of f(x) by α1, α2, and α3, where α1 < 0 < α2 < α3,
then the algebra (

2(2α − 3),−1
k

)
has the correct ramification set. This can easily be
checked using standard results in algebra (cf. [Maclachlan
and Reid 03, Chapter 2]).

In this case, one can check that A does not satisfy the
hypotheses of Proposition 5.4. However, since P2 = 2R

and P7 = (2α−3)R, we have abR = 2(2α−3)R = P2P7 =
Δ(A). Therefore, a maximal order O of A will nonethe-
less be of the form R[1, i, β, iβ], where β ∈ 1

2O′\O′, where
O′ = R[1, i, j, ij]. The element β = 1

2 (1 + i + j) is inte-
gral, since tr(β) = 1 ∈ R, n(β) = −α + 2 ∈ R, and
d(O′) = P2

2P
2
7 = Δ(A)2, so that O′ is maximal. We can

write 1
2R[1, i, j, ij] as the Z-module{

1
2

( 3∑
k=1

xkαk + i
3∑

k=1

ykαk + j
3∑

k=1

ukαk + ij
3∑

k=1

vkαk
)∣∣∣

xi, yi, ui, vi ∈ Z

}
.

Similarly, we write O = (mi + nii + oiβ + piiβ), where
mi, ni, oi, pi ∈ Z[1, α, α2, α3]. Clearly, O ⊂ 1

2R[1, i, j, ij].
Equating the two Z-modules yields a linear system of
equations. Since the mi, ni, oi, pi are integers, solving the
system for these variables gives congruence conditions on
the xi, yi, ui, vi. These are necessary and sufficient con-
ditions for an element g ∈ 1

2R[1, i, j, ij] to be an element
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x1 x2 x3 y1 y2 y3 u1 u2 u3 v1 v2 v3

A1 0 2 2 −1 2 2 0 2 2 1 −2 −2
B1 −3 2 3 1 −2 −2 1 −2 −3 −2 2 3
X1 0 0 0 0 0 0 2 0 0 0 0 0

TABLE 5. Generators for the group Γ1
O in Example 6.1.

of O. In this particular case, O is the set of elements
of 1

2R[1, i, j, ij] satisfying the following congruence rela-
tions:

x0 + u0 ≡ 0 mod 2, y0 + u0 + v0 ≡ 0 mod 2,

x1 + u1 ≡ 0 mod 2, y1 + u1 + v1 ≡ 0 mod 2,

x2 + u2 ≡ 0 mod 2, y2 + u2 + v2 ≡ 0 mod 2.

We implement the inequalities (5–5) and (5–6) with
the values r = 2, b1 = 2, and b2 = − 1

2 , and in this case,
ε = 0.15 is sufficient to obtain the Ford domain for Γ1

O.
The Ford domain for the group Γ1

O is shown in Fig-
ure 1. Since v1 and v2 are distinct fixed points of elements
of order two, Γ1

O has signature (1; 2, 2). The elements
listed in Table 6 are the generators for Γ1

O corresponding
to the side pairings of the Ford domain.

The elements A1 = h−1
2 , h = h1h

−1
3 , X1 = g1 are

noncommuting hyperbolic elements that satisfy the rela-
tion ([A1, B1]X1)2 = −I. Furthermore, no proper sub-
relation is trivial. Therefore, if we denote the group
〈A1, B1, X1|([A1, B1]X1)2, X2

1 〉 by Γ′, then Γ′ has signa-
ture (1; 2, 2). Since h1 = A−1

1 X1 and h4 = A−1
1 B−1

1 ,
we have 〈A1, B1, X1〉 ⊂ Γ1

O. But since Fuchsian groups
are Hopfian, Γ1

O cannot contain a proper isomorphic sub-
group. Therefore, Γ1

O = 〈A1, B1, X1|([A1, B1]X1)2, X2
1 〉

and A1, B1, X1 are generators for Γ1
O.

1

v1 v1

v2 v2

v1

v3 v3
v2 v2

w

FIGURE 1. Fundamental region for Γ1
O in Example 6.1.

In this case, one can easily check that the group Γ1
O

has four distinct subgroups Γi, 1 ≤ i ≤ 4, of signature
(2;−) of index two. Using the standard presentation〈

A1, B1, X1, Y1 | [[A1, B1]X1Y1, X
2
1 , Y 2

1 ]
〉

for Γ1
O, we use Magma to find generators for all the

subgroups of Γ1
O of index 2. Of these, there are four

subgroups that are torsion-free, which we will denote by
Γi, 1 ≤ i ≤ 4. The presentations for these subgroups are
as follows:

Γ1 =
〈
B1A

−1
1 , X1A

−1
1 , Y1A

−1
1 , A−2

1

〉
,

Γ2 =
〈
B1, X1A

−1
1 , Y1A

−1
1 , A−2

1

〉
,

Γ3 =
〈
A1, X1B

−1
1 , Y1B

−1
1 , B−2

1

〉
,

Γ4 = 〈A1, B1, X1A1X1, X1B1X1〉 .

For each Γi, we determine the trivial relation in the
group. After putting each group in the standard presen-
tation 〈ai, bi, ci, di|[ai, bi][ci, di]〉, 1 ≤ i ≤ 4, we obtain
the corresponding list of generators (see Table 7).

Example 6.2. Let k = Q(α) be the totally real quar-
tic field of discriminant 3981, where α is a root of
the polynomial f(x) = x4 − x3 − 4x2 + 2x + 1. The
group Γ1

O corresponding to the quaternion algebra A with
Ramf (A) = {P3} that is unramified at the infinite place
corresponding to the root α2, where −1 < α2 < 0, de-
fined over k has generators as shown in Table 8, where
r = 2 and〈

X1, X2, X3, X4, X5 | X2
1 , X2

2 , X2
3 , X2

4 , X2
5 ,

(X1X2X3X4X5)2
〉
.

Here a = −α(α + 1) and b = −1.

Proof: Let α1 < −1 < α2 < 0 < α3 < 1 < α4 denote
the four roots of f(x). The algebra A =

(−α(α+1),−1

k

)
is

unramified at the place σ2, since −αi(αi +1) < 0 for i =
1, 3, 4 and −α2(α2 + 2) > 0. There is a unique prime of
norm 3 in Rk: P3 = (3, α+1)R = (α+1)R. Furthermore,
one can easily verify that Ramf (A) = {P3}. This is a
“nice” Hilbert symbol, so Proposition 5.4 applies, and we
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x1 x2 x3 y1 y2 y3 u1 u2 u3 v1 v2 v3

h1 0 2 2 1 −2 −2 0 2 2 1 −2 −2
h2 0 2 2 1 −2 −2 0 −2 −2 −1 2 2
h3 −1 0 1 0 0 0 −1 0 1 1 0 −1
h4 −1 0 1 0 0 0 −1 4 5 3 −4 −5
g1 0 0 0 0 0 0 2 0 0 0 0 0

TABLE 6. Generators for Γ1
O in Example 6.1.

x1 x2 x3 y1 y2 y3 u1 u2 u3 v1 v2 v3

a1 −14 20 24 −12 18 22 −12 20 24 12 −18 −22
b1 −15 20 25 12 −18 −22 15 −20 −25 −13 18 23
c1 0 2 2 −1 2 2 0 2 2 −1 2 2
d1 30 −42 −52 −30 42 53 −32 46 58 −26 38 47

a2 −3 2 3 1 −2 −2 1 −2 −3 −2 2 3
b2 −14 20 24 −12 18 22 −12 20 24 12 −18 −22
c2 30 −42 −52 −30 42 53 −32 46 58 −26 38 47
d2 0 2 2 −1 2 2 0 2 2 −1 2 2

a3 0 2 2 −1 2 2 0 2 2 1 −2 −2
b3 −14 21 25 13 −18 −23 18 −25 −31 −15 23 28
c3 1 −2 −3 −2 2 3 3 −2 −3 −1 2 2
d3 −37 52 65 −33 47 59 −3 2 3 2 −3 −4

a4 0 2 2 −1 2 2 0 2 2 1 −2 −2
b4 −3 2 3 1 −2 −2 1 −2 −3 −2 2 3
c4 0 −2 −2 −1 2 2 0 −2 −2 1 −2 −2
d4 3 −2 −3 1 −2 −2 −1 2 3 −2 2 3

TABLE 7. Generators for Γi, 1 ≤ i ≤ 4 in Example 6.1.

x y1 y2 y3 y4 u1 u2 u3 u4 v1 v2 v3 v4

X1 0 −2 4 1 −1 2 −4 −1 1 −3 4 1 −1
X2 0 0 0 0 2 0 0 0 0 0 0 0 0
X3 0 −2 4 1 −1 −2 4 1 −1 3 −4 −1 1
X4 0 −3 4 1 −1 −17 18 7 −5 36 −39 −15 11
X5 0 0 0 0 0 20 −22 −8 6 −42 50 18 −14

TABLE 8. Generators for Γ1
O in Example 6.2.

find that O = R[1, i, β, iβ], where β = 1
2 (1 + α + α2i + j)

is a maximal order. The congruence relations in this case
are

x0 + u0 + u3 + v0 ≡ 0 mod 2,

y0 + u2 + u3 + v0 + v3 ≡ 0 mod 2,

x1 + u0 + v1 ≡ 0 mod 2,

y1 + u3 + v0 + v1 ≡ 0 mod 2,

x2 + u1 + u2 + v2 ≡ 0 mod 2,

y2 + u0 + v1 + v2 ≡ 0 mod 2,

x3 + u2 + v3 ≡ 0 mod 2,

y3 + u1 + u2 + u3 + v2 ≡ 0 mod 2.

In this case, we implement inequalities (5–5) and (5–6)
using r = 2, b1 = 2, b2 = − 1

2 , and ε = 0.15. We

obtain the fundamental region shown in Figure 2, and
the corresponding generators are listed in Table 9. The
points wi are the fixed points of the gi, 1 ≤ i ≤ 6, which
all have order two; this verifies that Γ1

O has signature
(0; 2, 2, 2, 2, 2, 2).

After putting the group in the required presentation,
we obtain the list as stated above. A group of signature
(0; 2, 2, 2, 2, 2, 2) has a unique subgroup Γ of signature
(2;−) by [Greenberg 63]. Using Magma, we find that if
Γ1

O is presented in the form

〈
X2X1, X3X1, X4X1, X5X1 |

X−1
1 X2X

−1
3 X4X1X

−1
2 X2X

−1
4

〉
,

then the subgroup Γ is generated by

〈X2X1, X3X1, X4X1, X5X1〉.
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x1 x2 x3 x4 y1 y2 y3 y4 u1 u2 u3 u4 v1 v2 v3 v4

g1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
g2 0 0 0 0 -2 4 1 −1 −2 4 1 −1 3 −4 −1 1
g3 0 0 0 0 -2 4 1 −1 2 −4 −1 1 −3 4 1 −1
g4 0 0 0 0 -3 4 1 −1 −17 18 7 −5 36 −39 −15 11
g5 0 0 0 0 -3 4 1 −1 17 −18 −7 5 −36 39 15 −11
g6 0 0 0 0 0 0 0 0 20 −22 −8 6 −42 50 18 −14
h1 2 −3 −1 1 0 0 0 0 5 −3 −2 1 −10 11 4 −3

TABLE 9. Generators for Γ1
O in Example 6.2.

Putting these generators in the standard form

〈a1, b1, c1, d1|[a1, b1][c1, d1]〉

yields the set of generators for Γ listed in Table 10.

Our last example is defined over a quartic number field
in which the Hilbert symbol of A does not satisfy the hy-
potheses of Proposition 5.4. We will show that a “nice”
symbol does not exist for A. We remark that the tech-
nique for finding a maximal order is similar to that of
the previous examples, except that in this case we can-
not take r to be a rational integer.

Example 6.3. Let k = Q(α) be the totally real quar-
tic field of discriminant 4752, where α is a root of the
polynomial f(x) = x4 − 2x3 − 3x2 + 4x + 1. The group
Γ1

O of signature (2;−) defined over k with quaternion al-
gebra A satisfying Ramf (A) = {P2} and unramified at
the infinite place corresponding to the root α1, where
−2 < α1 < −1, has the generators listed in Table 11.

Here a = 1 + α and b = (1 − α)(−1 + α + α2).

1

w1

w2

v1

v1

v2 v2

w2
w2

v2 v2

v1

w3w2

v

FIGURE 2. Fundamental region for Γ1
O in Example 6.2.

Proof: Let α1 < −1 < α2 < 0 < 1 < α3 < 2 < α4 denote
the four real roots of f(x). A fundamental system for
R∗ is 〈α, α − 1, α2 − 2〉. The signs of the generators of
R∗ and of the uniformizer π for P2 under the different
embeddings corresponding to the αi are as follows:

α −1 + α −2 + α2 π
α1 ≈ −1.4955 − − + −
α2 ≈ −0.21968 − − − −
α3 ≈ 1.2196 + + − +
α4 ≈ 2.4955 + + + +

From the table of embeddings, it is evident that there
does not exist a Hilbert symbol for A such that the only
primes dividing abR are in Ramf (A). In this case, the
algebra

(
1 + α, (1 − α)(−1 + α + α2)

Q(α)

)

is unramified at the place σ1. The element 1 + α is a
uniformizer for P3 in R (since f(x) ≡ (x+ 1)4 mod 3, P3

is the unique prime of norm 3 lying over 3). But A is
unramified at P3, since (1−α)(−1+α+α2) ≡ 1 mod P3,
which is a square mod 3. Thus, A corresponds to one of
the two conjugacy classes of Γ1

O defined over k.
In this case, we use an intermediate order to find a

maximal order O. The order O′ = R[1, i, γ, iγ], where
γ = 1

2 ((1 + α) + (1 + α2)i + j), has discriminant

d(O′) = (1 + α)2(−1 + α)2(−1 + α + α2)2R

= P2
3P

2
2R �= Δ(A)2,

and therefore is not maximal. Thus, O′ ⊂ O, for some
maximal order O. Again, by arguments analogous to
those in the proof of Proposition 5.1, one can argue that
there exists an element β ∈ O ∩ 1

α+1O′\O′. An element
in O′ written as an integral vector satisfies the following
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x1 x2 x3 x4 y1 y2 y3 y4 u1 u2 u3 u4 v1 v2 v3 v4

a1 9 −11 −4 3 67 −75 −28 31 −35 39 15 −11 39 −43 −16 12
b1 2 −4 −1 1 −10 11 4 −3 7 −7 −3 2 −11 14 5 −4
c1 −12 14 5 −4 26 −28 −11 8 −14 18 6 −5 31 −36 −13 10
d1 −2 4 1 −1 31 −36 −13 10 −14 18 6 −5 3 −4 −1 1

TABLE 10. Generators for Γ in Example 6.2.

x1 x2 x3 x4 y1 y2 y3 y4 u1 u2 u3 u4 v1 v2 v3 v4

h1 1 0 −1 0 −1 0 0 0 0 0 0 0 0 4 1 −1
h2 0 −2 −1 1 −1 3 1 −1 0 0 0 0 −1 −2 1 0
h3 0 −4 0 1 1 −1 0 0 1 3 1 −1 1 2 −1 0
h4 0 −4 0 1 1 −1 0 0 −1 −3 −1 1 1 2 −1 0
h5 1 0 −1 0 0 3 −1 0 1 1 2 −1 0 −1 −2 1
h6 1 0 −1 0 0 3 −1 0 −1 −1 −2 1 0 −1 −2 1
h7 1 2 −2 0 2 2 −1 0 0 0 0 0 −1 −1 3 −1
h8 0 −1 −3 1 −1 3 −1 0 0 0 0 0 0 −1 3 −1
h9 1 1 −2 1 0 3 −1 0 0 0 0 0 0 −5 2 0

TABLE 11. Generators for Γ1
O in Example 6.3.

congruence relations:

x0 + u0 + u3 + v0 + v1 + v2 + v3 ≡ 0 mod 2,

x1 + u0 + v0 + v1 + v2 + v3 ≡ 0 mod 2,

x2 + u1 − u2 + u3 + v0 + v3 ≡ 0 mod 2,

x3 + u2 + u3 + v0 + v1 ≡ 0 mod 2, (6–1)

y0 − u0 + u2 + v0 + v3 ≡ 0 mod 2,

y1 + u1 + u3 + v0 + v1 ≡ 0 mod 2,

y2 + u0 + v1 + v2 + v3 ≡ 0 mod 2,

y3 + u1 + v2 + v3 ≡ 0 mod 2.

Consider an element of the form

β =
1

2(α + 1)
(x + yi + uj + vij) ∈ I

=
1

α + 1
O′\O′.

Now, β is integral if and only if

tr(β) =
x

1 + α
∈ R,

det(β) =
1

4(1 + α)2

×
(
x2 + (1 + α)y2 + (−1 + α)(−1 + α + α2)u2

+ (1 + α)(−1 + α)(−1 + α + α2)v2
)

=
d(x, y, u, v)
4(1 + α)2

=
d

4(1 + α)2
.

If we write each of x, y, u, v in an integral power basis
of R, these conditions are equivalent to the existence of

solutions (r0, r1, r2, r3), (s0, s1, s2, s3) ∈ Z4 to the equa-
tions

x = (1 + α)(r0 + r1α + r2α
2 + r3α

3)

= (r0 − r3) + (r0 + r1 − 4r3)α + (r1 + r2 + 3r3)α2

+ (r2 + 3r3)α3,

d = 4(1 + α)2(s0 + s1α + s2α
2 + s3α

3) (6–2)

= 4(s0 − s2 − 4s3) + 4(2s0 + s1 − 4s2 − 17s3)α

+ 4(s0 + 2s1 + 4s2 + 8s3)α2 + 4(s1 + 4s2 + 12s3)α3,

where

d = d(x0, . . . , x4, y0, . . . , y4, u0, . . . , u4, v0, . . . , v4) ∈ R.

The expressions for x and d are simplified by the relation
α4 = 2α3 + 3α2 − 4α − 1. The existence of solutions to
these equations yields another set of congruences on the
xi, yi, ui, vi. Using these in addition to the congruence
relations (6–1), we find that

β =
1

2(α + 1)
(
(1 + α + α2 + α3) + (1 + α + 2α2)i + ij

)
is integral, tr(β) = 1 + α2 ∈ R, and det(β) = 2α3 + 1.
Furthermore,

iβ =
1

2(α + 1)
(
(1 + α + 2α2)(α + 1)

+ (1 + α + α2 + α3)i + (α + 1)j
)

=
1
2
(
(1 + α + 2α2) + (1 + α2)i + j

)
.
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× 1 i β iβ

1 ∗ ∗ n = 3 + α2 + 2α3 n = −1 − 8α + 4α2 + 6α3

tr = 3 + α2 tr = 1 − α − 2α2

i ∗ ∗ ∗ n = 1 − 5α + 7α2 + 7α3

tr = −1 − α − 2α2

β ∗ ∗ n = 4(1 + 2α3) n = −7α + 6α2 + 8α3

tr = 2(1 + α2) tr = −α − α2

iβ ∗ ∗ ∗ n = −4(1 + 7α − 6α2 − 6α3)

tr = −2(1 + α + 2α2)

TABLE 12. Norms and traces of sums of the R-basis of O in Example 6.3.

+ 1 i β iβ

1 ∗ ∗ n = 1 + 2α3 n = −1 − 7α + 6α2 + 6α3

tr = 1 + α2 tr = 1 + α2

i ∗ ∗ n = −1 − 7α + 6α2 + 6α3 n = 1 − 3α + 10α2 + 8α3

tr = −1 − α − 2α2 tr = −3 − 3α − 2α2

β ∗ ∗ n = (1 + 2α3)2 n = −37 − 170α + 70α2 + 108α3

tr = −2 − 4α + 5α2 − 2α3 tr = −3 − 5α + 3α2 − 2α3

iβ ∗ ∗ ∗ n = (−1 − 7α + 6α2 + 6α3)2

tr = 2(−1 + 5α2)

TABLE 13. Norms and traces of products of the R-basis of O in Example 6.3.

This implies j = 2iβ−(1+α+2α2)−(1+α2)i ∈ I. The
integrality of the elements of I is verified using (6–2), and
the traces and norms of the R-basis are listed in Tables
12 and 13.

Since R[1, i, β, iβ] has discriminant P2
2 = Δ(A)2, it is

a maximal order, and hence O = R[1, i, β, iβ]. Finally,
we determine the congruence relations for O written as a
Z-module:

v

1v

1v

2v
2v

2v

3v

3v

4v

4v
5v 6v 5v

5v

4v

6v
6v

3v1

FIGURE 3. Fundamental region for Γ1
O in Example 6.3.

4x0 − x1 + x2 − x3 + u0 + 2u1 − 2u2 + 2u3 − 3v0

+ 3v2 ≡ 0 mod 6,

x0 − x1 + x2 − x3 − 2u0 + 2u1 − 8u2 − 7u3 − 3v1

≡ 0 mod 6,

4y0 − y1 + y2 − y3 − u0 − 2u1 + 2u2 + u3 + v0 + 2v1 − 2v2

+ 2v3 ≡ 0 mod 6,

y0 − y1 + y2 − y3 + 2u0 − 2u1 − u2 + u3 − 2v0 + 2v1

− 2v2 − v3 ≡ 0 mod 6,

− u0 + u1 − u2 + u3 ≡ 0 mod 3,

x2 + x3 + u1 + v1 + v3 ≡ 0 mod 2,

x0 + x1 + x2 + u2 + v0 ≡ 0 mod 2,

y2 + y3 + u0 + u1 + v1 ≡ 0 mod 2,

y0 + y1 + y2 + u1 + u2 + u3 + v2 ≡ 0 mod 2.

Here we use b1 = ±b2 = ±√(α − 1)(α2 − α + 1) and
ε = 0.1 in (5–5) and (5–6). The fundamental region for
Γ1

O is shown in Figure 3, and the corresponding genera-
tors are those listed in Table 11.
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