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The proof by Euclid that there exist infinitely many prime num-
bers is well known. The proof involves generating prime num-
bers that do not belong to a given finite set of primes, and one
may ask whether all prime numbers can be obtained by this
method. Daniel Shanks gave a heuristic argument that suggests
that the answer is affirmative. Despite recent advances in com-
putational number theory, numerical examples do not seem to
make this conjecture convincing. We reformulate the problem
in polynomial rings over finite fields and prove that in some ex-
plicitly characterized cases, Shanks’s argument does not hold.
On the other hand, we have performed numerical computations
that suggest that except for the above cases, Shanks’s conjecture
is true.

1. INTRODUCTION

Proposition 20 in Book IX of Euclid’s Elements essen-
tially states that there are infinitely many prime num-
bers. Let X := { p1, . . . , pm } be an arbitrary finite set
of primes. Then the minimal (or the maximal) prime
divisor of p1 · · · pm + 1 does not belong to X . By this
method we can generate an infinite sequence consisting
of primes, beginning with 2. Although there are several
papers on such sequences (see [Narkiewicz 2000, Section
1.1] and references cited there), the authors of these pa-
pers work only over Z. However, the above method can
be straightforwardly generalized to unique factorization
domains.

Definition 1.1. Let R be a unique factorization domain.
The group R× of the units of R acts on the set P of
all irreducible elements. Let P be a complete system of
representatives of P/R×. We assume that a total order
is defined over P and fix the total order once and for all.
Let c ∈ R and l ∈ P .

Assume that c and l satisfy the following condition: for
any n ≥ 0 and p1, p2, . . . , pn, we have that lp1 · · · pn +c �∈
R× ∪ {0} (we understand that the empty product is 1).
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The minimal Euclid prime sequence Emin(l, c)R with
initial term l ∈ P and offset c ∈ R − {0} is a sequence
{ln}∞n=−1 defined by l−1 := l and

ln+1 = min {x ∈ P : x | (l−1l0 · · · ln + c)}

for n ≥ −1.
Under the given condition, this generates an infinite

sequence. Similarly, the maximal Euclid prime sequence
Emax(l, c)R with initial term l and offset c is a sequence
{ln}∞n=−1 defined by l−1 := l and

ln+1 = max {x ∈ P : x | (l−1l0 · · · ln + c)}

for n ≥ −1. (It is convenient to begin the sequence with
the (−1)th term in order to simplify notation in Section
3.) When there is no danger of confusion, the subscript
R will be omitted.

Throughout the paper, we assume that l and c satisfy
the condition of Definition 1.1. In most cases, c ∈ R×.
However, we do not exclude the case of a nonunit c. If
l � c, the above sequences have no repeated term (Propo-
sition 2.1).

If we have R = Z we take P to be the set of positive
rational primes, while if R = Fp[X ], we take P to be the
set of all monic irreducible polynomials. For example,
the first few terms of the Euclid prime sequences with
initial value 2 and an offset 1 are

Emin(2, 1)Z = { 2, 3, 7, 43, 13, 53, 5, 6221671, . . .},
Emax(2, 1)Z = { 2, 3, 7, 43, 139, 50207, 340999, . . .}.

It is easily proved that 5 �∈ Emax(2, 1)Z (see, for exam-
ple, [Narkiewicz 2000, p. 2]). On the other hand, Shanks
[Shanks 91] conjectured that Emin(2, 1)Z would coincide
with P , the set of all (positive rational) primes. We for-
mulate the Shanks conjecture for R as follows:

Emin(l, c)R = { p ∈ P : p � c }.

For example, is

Emin(3, 2)Z = {3, 5, 17, 257, 65537, 641, 7, 318811, 19, . . .}

equal to the set of all odd primes?
For some rings (e.g., C[X ]), the conjecture is trivially

false. However, we can still ask, for example, whether
Emin(X, c)Z[X] coincides with the set of monic irreducible
polynomials in Z[X ] (cf. Section 4).

The main result of this paper, Corollary 3.6, is that
in Fp[X ], the analogue of the Shanks conjecture is false

for infinitely many primes p and c ∈ Fp (which depends
on p). More precisely, let P be the set of all monic irre-
ducible polynomials in Fp[X ]. Then there are infinitely
many primes p and c ∈ Fp such that Emin(X, c)Fp[X] � P
for any order of P .

The rest of the paper is organized as follows: In Sec-
tion 2, we prove some basic properties of the Euclid prime
sequence. Section 3 is devoted to a proof of our main
result. We use the biquadratic reciprocity law and the
Čebotarev density theorem in the proof. Some related
topics are discussed in Section 4.

In Section 5, we give numerical support for the
truth of the Shanks conjecture over Fp[X ] by computing
Emin(X, c)Fp[X] for p ≤ 5 except for (p, c) = (5, 1), for
which the Shanks conjecture is proved to be false in Ex-
ample 3.4. Note that such a computation for Emin(p, c)Z

is hard, due to difficulty of integer factorization.
Wagstaff [Wagstaff 93] computed such sequences to

about fifty terms. Thanks to an efficient polynomial
factorization algorithm (together with an asymptoti-
cally fast GCD algorithm and FFT-based multiplication
over Fp[X ]), we can compute several hundred terms of
Emin(X, c)Fp[X].

2. BASIC PROPERTIES OF THE EUCLID SEQUENCES
OVER UNIQUE FACTORIZATION DOMAINS

In this section, we observe some basic properties of the
Euclid sequences.

Proposition 2.1. Assume l � c. Then Emin(l, c)R and
Emax(l, c)R have no repeated terms.

Proof: Because a proof for Emax(l, c)R is the same as
one for Emin(l, c), we give a proof only for Emin(l, c).
Let ln be the nth term of Emin(l, c)R. Assume that
there exists m > n ≥ −1 such that lm = ln. Then
lm | l−1 · · · ln · · · lm−1+c, which means that lm | c. Hence
ln | c. Let ν be the minimal integer such that ν ≥ −1
and lν | c. Then ν ≥ 0 because of the assumption l−1 � c.
Hence lν | l−1 · · · lν−1. So there exists −1 ≤ n < ν

satisfying ln = lν . Then ln | c, which contradicts the
minimality of ν.

Theorem 2.2. Let c ∈ R and l ∈ P. Assume l � c. Let
p be the mth minimal element of P. Assume p � c and
#R/〈p〉 = 2. Then p appears in one of the first (m − 1)
terms of Emin(l, c).
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Proof: Denote the nth term of Emin(l, c) by ln. Suppose
that l−1, . . . , lm−1 are distinct from p. We denote by
a ∈ R/〈p〉 the residue modulo p for each element a ∈ R.
Then we have

l−1 + c = l0 × d0,

l−1l0 + c = l1 × d1,

. . .

l−1 · · · lm−2 + c = lm−1 × dm−1,

with l0d0 = l1d1 = · · · = lm−1dm−1 = 0. In fact, from
l−1 �= 0, we know that l−1 + c = l−1 + c = 0, since c �= 0
and R/〈p〉 = {0, 1}.

Hence l0d0 = 0, i.e., p | l0d0, and the minimality
of l0 implies l0 < p. Similarly, we see that lk < p for
k = 1, . . . ,m−1. Moreover, l−1, . . . , lm−1 are distinct by
Proposition 2.1. This contradicts the assumption that p
is the mth minimal element in P .

Remark 2.3. An example (other than Z) for which Theo-
rem 2.2 is applicable can be given as follows: Let d ∈ Z be
an integer such that d ≡ 1 mod 8 and such that the class
number of Q(

√
d) is 1, i.e., d ∈ {−7, 17, 33, 41, 57, . . .}.

Let R be the ring of integers of Q(
√
d). Then 2 splits

into two prime principal ideals with norm 2. Note that
Theorem 2.2 holds for any order on P . Even for the case
of R = Z and p = 2, the assertion is nontrivial for an
order for which 2 is not the minimal element.

Let p be a rational prime. We introduce a total order
of Fp[X ].

Definition 2.4. For f(X) :=
∑m

k=0 akX
k ∈ Fp[X ], we put

I(f) :=
∑m

k=0 αkp
k ∈ Z, where αk ∈ {0, 1, . . . , p−1 } and

ak = αk mod p.
We define an order on Fp[X ] by f1 ≤ f2 if I(f1) ≤

I(f2). We use this order on Fp[X ] unless otherwise noted.

The following proposition is a straightforward ana-
logue of the fact that 5 does not appear in Emax(2, 1)Z.

Proposition 2.5. The polynomial X3 + X + 1 does not
appear in Emax(X, 1)F2[X].

Proof: The sequence begins X,X + 1, X2 + X + 1. De-
note by fn(X) the nth term of Emax(X, 1)F2[X] and as-
sume fm(X) = X3 + X + 1 with some m ≥ 2. Note
that all irreducible polynomials less than X3 + X + 1
have already appeared in Emax(X, 1)F2[X]. This implies
f−1(X) · · · fm−1(X) + 1 = (X3 +X + 1)s with s ≥ 2.

Therefore, f−1(X) · · · fm−1(X) is divisible by X3 +
X = X(X + 1)2. This contradicts the fact that
f−1(X) · · · fm−1(X) is square-free.

Although we are mainly interested in rings finitely gen-
erated over Z, the next theorem (with a somewhat tricky
proof) is of independent interest.

Theorem 2.6. Let P be the set of monic irreducible poly-
nomials in R[X ]. Choose an order on P such that a
monic irreducible quadratic polynomial is greater than a
monic polynomial of degree one and such that X − t is
greater than X − t′ if and only if t < t′. Let a ∈ R and
c > 0. Denote the nth term of Emin(X − a,−c)R[X] by ln
(so l−1(X) = X − a). Put fn(X) = l−1(X) · · · ln(X)− c
and α−1 = a. Then the following assertions hold:

(1) For all n ≥ 0, the equation fn(X) = 0 has a unique
real root αn+1 satisfying αn+1 > αn. In other words,
ln+1(X) = X − αn+1.

(2) We have

αn ≥ min(c, 1) log(n+ 2) + a (2–1)

for all n ≥ −1. In particular, limn→∞ αn =∞.

Proof: (1) It is easy to see that f ′
n(X) > 0 for X > αn.

Hence the assertion follows from fn(αn) = −c < 0 and
limX→∞ fn(X) =∞.

(2) First, we show that

αn ≥ βn where βn :=
1

n+ 1

n−1∑
i=−1

αi + c
1

n+1 (2–2)

for n ≥ 0. By (1), this is obvious in the case βn ≤ αn−1.
Otherwise, βn > αi for −1 ≤ i ≤ n − 1 (again by (1)).
Then

fn−1(βn) =
n−1∏
i=−1

(βn − αi)− c

≤
(
βn − 1

n+ 1

n−1∑
i=−1

αi

)n+1

− c

= 0.

(Recall that a geometric mean is less than or equal to an
arithmetic mean.) This implies that βn ≤ αn.

We now prove (2–1) by induction on n. For simplicity,
put b := min(c, 1). For n = −1, this is trivial. Assume
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that (2–1) holds for all n less than m. By (2–2), we
obtain

αm ≥ 1
m+ 1

m−1∑
i=−1

αi + c
1

m+1

≥ 1
m+ 1

m−1∑
i=−1

(b log(i+ 2) + a) + c
1

m+1

= b log(m+ 2) + a+
b

m+ 1
log
(

(m+ 1)!
(m+ 2)m+1

)

+ c
1

m+1 .

Note that log
(

(m+1)!
(m+2)m+1

)
≥ −(m + 1) for all m ≥ 0.

This is obvious for m = 0. For m ≥ 1, this follows from

(m+ 1)!
(m+ 2)m+1

=
m!

(m+ 1)m
· 1(

1 + 1
m+1

)m+1

≥ m!
(m+ 1)m

· 1
e
,

that is,

log
(

(m+ 1)!
(m+ 2)m+1

)
≥ log

(
m!

(m+ 1)m

)
− 1.

Therefore

αm ≥ b log(m+ 2) + a− b+ c
1

m+1 ≥ b log(m+ 2) + a,

since c ≥ b ≥ bm+1.
Thus (2–1) holds for n = m.

Remark 2.7. Numerical computations suggest that
logαn = log logn + o(log logn), where the little-o con-
stant may depend on c. But this conjecture is open.

3. EUCLID SEQUENCES OVER POLYNOMIAL RINGS

In this section, we consider a polynomial analogue of the
Shanks conjecture. In order to describe our result, the
following terminology is useful.

Definition 3.1. Let R be a unique factorization domain
and let P , l, and c be as in Definition 1.1. Denote the
mth term of Emin(l, c) by lm. The sequence Emin(l, c)R is
called totally irreducible if

∏n
m=−1 lm + c ∈ P for all n ∈

N. (In this case, Emin(l, c)R coincides with Emax(l, c)R,
and they are independent of the order of R. However,
total irreducibility depends on the choice of P .)

In the rest of the paper, we put gc(X) := X(X+c) for
c ∈ R. We define g0

c (X) := X and gn+1
c (X) := gc(gn

c (X))

for n ≥ 0. If R = Fp[X ], recall that P is the set of all
monic irreducible polynomials in Fp[X ]. What we shall
actually do in this section is construct a rational prime
p and c ∈ Fp such that Emin(X, c)Fp[X] is totally irre-
ducible. The next lemma implies that the Shanks conjec-
ture for Emin(X, c)Fp[X] is false if it is totally irreducible.

Lemma 3.2. Let lm be the mth term of Emin(l, c)R. As-
sume that

∏n
m=−1 lm + c ∈ P for all −1 ≤ n ≤ N . Then

ln = gn
c (l) + c for all 0 ≤ n ≤ N + 1. Assume, moreover,

that Emin(l, c)R is totally irreducible. Then ln = gn
c (l)+c

for all n ≥ 0.

Proof: The case N = 0 is trivial. Assume that the asser-
tion holds for n ≤ N . Then

lN+1 = l−1 · · · lN−1lN + c

= (lN − c)lN + c

= gN
c (l)(gN

c (l) + c) + c

= gN+1
c (l) + c

which completes the proof.

Theorem 3.3. Let q be an odd prime power and c ∈ F×
q .

Take an integer m (in practice, the minimal such num-
ber) satisfying gm

c (−c2/4) = gν
c (−c2/4) for some ν ∈ N

satisfying ν < m. Assume

(
−c+

c2

4

)(q−1)/2

= −1

and (
c+ gn

c

(
−c

2

4

))(q−1)/2

= −1

for n ∈ N less than or equal to m. Then Emin(X, c)Fq[X]

is totally irreducible.

Proof: Let A−1(X) := X and

An(X) := A−1(X)A0(X) · · ·An−1(X) + c

for n ≥ 0. It is enough to show that An(X) is monic and
irreducible over Fq for all n ≥ 0. By a similar argument to
the proof of Lemma 3.2, we see that An(X) = gn

c (X)+ c

for n ≥ 0. Note that the existence of m in the assump-
tions implies that

(
−c+ gn

c

(
−c

2

4

))(q−1)/2

= −1

for all n ∈ N.
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Put γ0 := −c and let γn be one of roots of gc(X) =
γn−1 for n ≥ 1. We see that An(γn) = 0. Since degAn =
2n, it is enough to show that [Fq(γn+1) : Fq(γn)] = 2, or
equivalently, gc(X)− γn is irreducible over Fq(γn) for all
n ≥ 0.

We use induction on n. For n = 0, this is again obvi-
ous, since

gc(X)− γ0 = X2 + cX + c =
(
X +

c

2

)2

− c2

4
+ c.

For n ≥ 1, assume that gc(X) − γk is irreducible over
Fq(γk) for all 0 ≤ k < n. In particular, [Fq(γk) : Fq] = 2k

for all k ≤ n (note that the case k = n is also valid).
We compute (γn − t)(q

2n−1)/2 for any t ∈ Fq. Let σn

be the q2
n−1

th power map, which is the unique non-
trivial element of Gal(Fq(γn)/Fq(γn−1)). We note that
σn(γn) = −γn − c.

Therefore

(γn − t)(q2n−1)/2 = (γn − t)q2n−1 q2n−1−1
2 + q2n−1−1

2

= (−γn − c− t)(q2n−1−1)/2(γn − t)(q2n−1−1)/2

= (−1)(q
2n−1−1)/2 ((γn + c+ t)(γn − t))(q

2n−1−1)/2

= (−1)(q
2n−1−1)/2(γ2

n + cγn − ct− t2)(q2n−1−1)/2

= (−1)(q
2n−1−1)/2(γn−1 − gc(t))(q

2n−1−1)/2.

Note that (−1)(q
2n−1−1)/2 = −1 if and only if q ≡ 3 mod

4 and n = 1. Thus we see that

(γn − t)(q2n−1)/2 = (γn−1 − gc(t))(q
2n−1−1)/2

= (γn−2 − g2
c (t))(q

2n−2−1)/2

= · · · = (γ1 − gn−1
c (t))(q

2−1)/2

= (−1)(q−1)/2(γ0 − gn
c (t))(q−1)/2

= (gn
c (t) + c)(q−1)/2,

and in particular,

(
γn +

c2

4

)(q2n−1)/2

=
(
gn

c (−c2/4) + c
)(q−1)/2

= −1.

This implies that

gc(X)− γn =
(
X +

c

2

)2

−
(
c2

4
+ γn

)

is irreducible over Fq(γn).

Example 3.4. Take q := 5 and c := 1. Then −c2/4 = 1,
and we have g0

1(1) = 1, g1
1(1) = 2, and g2

1(1) = 1. Hence

1 + gn
1 (1) is 2 for even n and 3 for odd n. In either case,

it is a quadratic nonresidue. Therefore Emin(X, 1)F5[X]

is totally irreducible.
The same is true for the case q := 13 and c := 10. It

might be interesting to observe the case q := 83 and c :=
28. In this case, c+ gn

c (−c2/4) are quadratic nonresidues
for 1 ≤ n ≤ 8, but c + g9

c (−c2/4) is a quadratic residue.
Indeed, A9(X) is an irreducible polynomial of degree 512
over F83, but A10(X) is reducible over F83.

Before proving that there are infinitely many pairs
(p, c) for which Emin(X, c)Fp[X] is totally irreducible, we
recall some basic facts about the biquadratic reciprocity
law over Z[

√−1]. For details, see, for example, [Ireland
and Rosen 82, Chapter 9]. A nonunit a + bi, a, b ∈ Z,
is called primary if either a ≡ 1 mod 4 and 4 | b or
a ≡ 3 mod 4 and b ≡ 2 mod 4. Let π be an irreducible
element of Z[

√−1] that does not divide 2.
Then N(π) ≡ 1 mod 4, where N(π) is the norm of the

principal ideal 〈π〉. For α not divisible by π, there exists
a unique element z ∈ {±1,±i} satisfying α(N(π)−1)/4 ≡
z mod 〈π〉. We call the value z the biquadratic residue
symbol of α for π and denote it by

(
α
π

)
4
.

Note that the quadratic equation x2 = α in
Z[
√−1]/〈π〉 has a solution if and only if

(
α
π

)
4

= ±1.
The biquadratic reciprocity law is the formula(

λ

π

)
4

=
(π
λ

)
4
(−1)(N(λ)−1)(N(π)−1)/16 (3–1)

for relatively prime primary elements π and λ.

Theorem 3.5. Let π be an irreducible primary element
of Z[

√−1] that is not a rational integer. Assume that
π ≡ ±i mod 5 or π ≡ ±2 mod 5. Put p := N(π). Then
5 is a quadratic residue modulo p and

Emin

(
p,

1 +
√

5
2

)

Fp[X]

is totally irreducible. (Here
√

5 stands for an element of
Fp satisfying

(√
5
)2

= 5.)

Proof: First, we observe that π does not divide 2 under
the assumption. Let γ ∈ Q(

√
5) be one of roots of γ2 −

2γ − 4 = 0. Thus −γ2

4 = −1 − γ
2 . Hence gγ(−γ2/4) =

−γ/2 and gγ(−γ/2) = −γ2/4.
Note that N(π) is a rational prime, since π is not a

rational integer. Let P be a prime ideal of Q
(√−1,

√
5
)

lying above 〈π〉. Put k := Z[
√−1]/〈π〉 ∼= Fp. By the

assumption, p = N(π) = ±1 mod 5. This proves that 5
is a quadratic residue modulo p. Therefore, the residue
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class field of P is k, and the reduction of X2− 2X − 4 ∈
Z[X ] modulo 〈π〉 splits in k[X ]. Let c ∈ k be the residue
class of γ modulo P.

We need to show that

−c+
c2

4

(
= 1− c

2

)
,

c+ gc

(
−c

2

4

) (
=
c

2

)
,

and

c+ g2
c

(
−c

2

4

) (
= −1 +

c

2

)

are all quadratic nonresidues in k. Since π is not a ratio-
nal integer, −1 is a square in k. Moreover,

(
1− c

2

)
c
2 =

−1 is a square in k. Therefore we have only to show that
c
2 is not a square in k by Theorem 3.3.

The minimal polynomial of
√
γ/2 is

X4−X2−1 = (X2−√1− 2iX− i)(X2 +
√

1− 2iX− i),

and its roots are

±√1− 2i±√1 + 2i
2

.

We show that both 1− 2i and 1 + 2i are quadratic non-
residues modulo π.

By the biquadratic reciprocity law (3–1), we have
(−1 + 2i

π

)
4

= ±
(

π

−1 + 2i

)
4

and (−1− 2i
π

)
4

= ±
(

π

−1− 2i

)
4

.

Note that

N(−1 + 2i)− 1
4

=
N(−1− 2i)− 1

4
= 1.

Thus
(

π
−1±2i

)
4

= c is simply equivalent to π ≡ c mod

(−1± 2i).
Using the Chinese remainder theorem, we see that

the condition π ≡ ±i mod (−1 + 2i) and π ≡ ±i mod
(−1 − 2i) is equivalent to π ≡ ±i mod 5. Similarly, the
condition

π ≡ ±i mod (−1 + 2i) and π ≡ ∓i mod (−1− 2i)

is equivalent to π ≡ ∓2 mod 5. In either case, the pth-
power map changes signs of α1/2, β1/2 ∈ Fp2 , where α is
the class of 1 + 2i in k, and β is the class of 1− 2i in k.

Clearly, α1/2 ± β1/2 �= 0. Thus, c/2 is a nonsquare in
k. This completes the proof.

Corollary 3.6. There are infinitely many pairs of a
rational prime p and an element c of Fp such that
Emin(X, c)Fp[X] is totally irreducible.

Proof: By the Čebotarev density theorem, there are in-
finitely many irreducible elements π ∈ Z[

√−1] that sat-
isfy π ≡ −5 + 6

√−1 mod 20, or equivalently, π ≡√−1 mod 5 and π ≡ 3 + 2
√−1 mod 4. Hence π is a

primary element that is not a rational integer. Our as-
sertion follows from Theorem 3.5.

4. TOTAL IRREDUCIBILITY OVER INTEGER RINGS

In the previous section, we proved existence of totally ir-
reducible Euclid prime sequences over Fp[X ] for infinitely
many primes p. A natural question arises: can Emin(l, c)Z

be totally irreducible for some l and c? In this section,
we consider problems related to this question.

It is easy to observe that Emin(l, 1)Z is never totally
irreducible. For an odd l, this is trivial, and it is an
easy computation to verify that Emin(2, 1)Z is not totally
irreducible. Another example is that Emin(X, 4)Z[X] is
not totally irreducible, for the first two terms are X and
X+4, andX(X+4)+4 = (X+2)2. Therefore, Emin(l, 4)Z

is not totally irreducible for any prime l.

Theorem 4.1. Put Fk := 22k

+ 1 for k ≥ 0. Assume that
k is an integer such that Fk is a prime. Let l be a prime.
Assume that l �= Fk and that l �≡ −1 mod Fk. Then
Emin(l, 2)Z is not totally irreducible.

Proof: Clearly, Emin(2, 2)Z is not totally irreducible. In
the rest of the proof, we assume that l is an odd prime.
Suppose Emin(l, 2)Z is totally irreducible. For n ≥ 0,
denote its nth term by ln. Then we see that

ln = (l + 1)2
n

+ 1

by induction on n.
Observe that F×

Fk
is a cyclic group of order 22k

. Thus
there exists m ∈ N such that

(l + 1)2
m

= 1 and (l + 1)2
m−1 �= 1

in FFk
, i.e., (l + 1)2

m−1 ≡ −1 mod Fk. Therefore, Fk |
lm−1. However, both Fk and lm−1 are prime numbers.
Thus Fk = lm−1 and

22k

= (l + 1)2
m−1

. (4–1)

This implies l + 1 = 2s with some s ∈ N. Thus, l must
be a Mersenne prime, and s must be prime. On the



Kurokawa and Satoh: Euclid Prime Sequences over Unique Factorization Domains 151

other hand, substituting l + 1 by 2s in (4–1), we obtain
2k = s2m−1. Hence s is a power of 2. Therefore, s = 2
and l = 3.

Straightforward computation of Emin(3, 2)Z shows
that its fourth term is divisible by 641. (Recall that
Emin(3, 2) begins with the (−1)th term. Actually, the
nth term of Emin(3, 2) is Fn+1 for −1 ≤ n ≤ 3.) Thus,
Emin(3, 2)Z is not totally irreducible.

Remark 4.2. If there exist infinitely many Fermat primes,
we can conclude that Emin(l, 2)Z is never totally irre-
ducible for a prime l. However, it is open whether there
are infinitely many Fermat primes.

On the other hand, for arbitrarily large k, we can show
that there exist infinitely many c ∈ N and a prime l

such that
∏n

m=−1 ln + c is prime for all n ≤ k under
“Hypothesis H” proposed in [Schinzel and Sierpiński 58].
This hypothesis is as follows.

Hypothesis H. Let f1(X), . . . , fk(X) ∈ Z[X ] be irre-
ducible polynomials with positive leading coefficients.
Assume that for any p there exists tp ∈ Z (depending
on p) satisfying

f1(tp) · · · fk(tp) �≡ 0 mod p.

Then there are infinitely many integers n such that
f1(n), . . . , fk(n) are all prime numbers.

Recall that Emin(X, 1)F5[X] is totally irreducible (cf.
Example 3.4). Hence for any k ∈ Z, the sequence
Emin(X, 5k + 1)Z[X] is totally irreducible. There are
many other c ∈ Z for which Emin(X, c)Z[X] is totally
irreducible. For example, Emin(X, 2)Z[X] is totally irre-
ducible because its nth term is (X + 1)2

n

+ 1 for n ≥ 0,
which is irreducible by Eisenstein’s criterion.

Theorem 4.3. Let c ∈ Z be even. Assume that
Emin(X, c)Z[X] is totally irreducible and that all prime
factors of c − 1 are congruent to 1 mod 4. Suppose that
Hypothesis H is true.

Then for an arbitrary k ∈ N, there exist infinitely
many primes l such that

∏n
m=−1 lm + c is prime for all

−1 ≤ n ≤ k, where ln is the nth term of Emin(l, c)Z.

Proof: Let An(X) ∈ Z[X ] be the nth term of
Emin(X, c)Z[X]. Then An(X) is a monic irreducible poly-
nomial.

Total irreducibility implies

An+1(X) = (An(X)− c)An(X) + c,

or equivalently,

An+1(X)− 1 = (An(X)− c+ 1)(An(X)− 1) (4–2)

for n ≥ 0. Assume that p is a prime not dividing c − 1.
Then we have A−1(−c + 1) = −c + 1 �≡ 0 mod p and
A0(−c+ 1) = 1.

By (4–2), we see that

A−1(−c+ 1) · · ·Ak+1(−c+ 1) = (−c+ 1) · 1 · · · 1
= −c+ 1

�≡ 0 mod p.

On the other hand, let p be a prime dividing c−1. Since
p ≡ 1 mod 4, there exists tp ∈ N such that t2p ≡ −1 mod
p.

Note that tp �≡ 1 mod p because p �= 2. There-
fore A−1(tp − 1) �≡ 0 mod p and A0(tp) ≡ tp �≡
0 mod p. Using (4–2) and t2p ≡ −1 mod p, we obtain
An(tp) ≡ (−1)ntp for n ≥ 0 by induction on n. Thus
A−1(tp)A0(tp) · · ·Ak+1(tp) �≡ 0 mod p. Our assertion
follows from the Schinzel–Sierpiński conjecture.

5. SOME NUMERICAL COMPUTATIONS

Unlike integer factorization, factorization of polynomi-
als over finite fields is computationally feasible. With
the order defined in Definition 2.4, we computed
Emin(X, c)Fp[X] up to the 2600th term for p ≤ 5 and
c ∈ F×

p except for the case p = 5 and c = 1, in which
Emin(X, c)Fp[X] is totally irreducible (cf. Example 3.4).

These numerical computations strongly suggest that
the Shanks conjecture over Fp[X ] with initial term X is
true unless Emin(X, c)Fp[X] is totally irreducible.

In Table 1, the columns labeled ∗ show the number of
irreducible polynomials in Fp[X ] of degrees indicated by
the first column. In the columns labeled with c, an en-
trym/n implies that m irreducible polynomials appeared
and the last occurrence was the nth term. We can con-
firm that all irreducible polynomials of small degree (less
than or equal to 9 for p = 2, 5 for p = 3, 3 for p = 5)
appear.

Put dp,c(m) := deg
∏m

n=−1 ln in Emin(X, c)Fp[X]. In
Table 2, we list values of dp,c(m) for the above cases. We
observe that d3,1(m) and d3,2(m) grow at similar rates
as m increases (for m ≤ 2600). However, d5,4(m) seems
to grow faster than d5,2(m) and d5,3(m). Whether this
holds is open.
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p = 2 p = 3 p = 5

∗ c = 1 ∗ c = 1 c = 2 ∗ c = 2 c = 3 c = 4

1 2 2/0 3 3/1 3/3 5 5/4 5/9 5/7
2 1 1/1 3 3/13 3/19 10 10/72 10/56 10/70
3 2 2/6 8 8/25 8/89 40 40/630 40/469 40/458
4 3 3/13 18 18/304 18/255 150 146/2559 145/1974 148/2531
5 6 6/32 48 48/1565 48/1366 624 329/2586 311/2591 315/2599
6 9 9/329 116 115/2556 109/2519 2580 299/2600 317/2600 306/2600
7 18 18/519 312 204/2559 195/2586 11160 236/2584 241/2589 240/2588
8 30 30/783 810 184/2587 209/2561 48750 195/2596 178/2579 187/2571
9 56 56/2217 2184 200/2579 201/2582 217000 170/2597 149/2590 137/2598

10 99 87/2587 5880 186/2578 167/2595 976248 119/2577 111/2592 107/2476

TABLE 1. Numbers of irreducible polynomials appearing up to the 2600th term.

p = 2 p = 3 p = 5

m c = 1 c = 1 c = 2 c = 2 c = 3 c = 4

200 6762 5722 4834 2367 2156 22028
400 28312 13810 27943 9411 5281 30590
600 37103 37116 37192 15793 11289 37469
800 89437 44428 50156 25421 18466 41959

1000 100796 50080 77096 30727 25675 49376
1200 114843 82763 87850 36089 32026 52761
1400 141105 88415 101411 43831 36729 56438
1600 155845 98577 109257 49034 42783 62857
1800 168181 116547 119540 54461 48103 154931
2000 178069 124213 125698 58440 52914 160861
2200 216659 131377 138323 65993 61101 172040
2400 232173 144763 146836 73600 75916 182809
2600 246567 152216 156042 80044 80257 188120

TABLE 2. Degrees of products
∏m

n=−1 ln
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