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We present a theory that produces several examples in which the
homotopy Lie algebra of a complex hyperplane arrangement is
not finitely presented. We also present examples of hyperplane
arrangements in which the enveloping algebra of this Lie algebra
has an irrational Hilbert series. This answers two questions of
Denham and Suciu.

1. INTRODUCTION

Let A = {H} be a finite set of complex hyperplanes in
Cn, i.e., a complex hyperplane arrangement in Cn, and
let X be the complement of their union in Cn:

X = C
n \

⋃
H∈A

H.

The cohomology of X is called the Orlik–Solomon al-
gebra, and the Yoneda Ext-algebra of H∗(X) is a Hopf
algebra that is the enveloping algebra of a graded Lie al-
gebra, which is called the homotopy Lie algebra of the
arrangement A. In this paper we calculate explicitly
this Lie algebra in several cases, and in particular, we
show by explicit examples that this Lie algebra is not
necessarily finitely presented and not even finitely gen-
erated. Furthermore, we present examples of hyperplane
arrangements in which the enveloping algebra of this Lie
algebra has an irrational Hilbert series. This solves two
open problems from [Denham and Suciu 2006, Question
1.7]. We also have some results about how often these
two phenomena occur. Some historical remarks are given
in Section 8.

2. AN EXPLICIT EXAMPLE

It is useful to begin with an explicit example. Let

A = {x, y, z, x+ y, x+ z, y + z}
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be the well-known complex hyperplane arrangement that
is the smallest formal arrangement whose Orlik–Solomon
algebra is nonquadratic [Shelton and Yuzvinsky 1997,
Example 5.1]. We know that the Orlik–Solomon algebra
of A is the quotient of the exterior algebra in six vari-
ables e1, e2, e3, e4, e5, e6 by the two-sided ideal generated
by the four elements

(e2 − e6)(e3 − e6), (e1 − e3)(e3 − e5),
(e1 − e4)(e2 − e4), (e3 − e4)(e4 − e6)(e5 − e6).

Thus if we introduce new variables x1, x2, x3, x4, x5, z by
xi = ei − e6 for 1 ≤ i ≤ 5 and z = e6, our Orlik–
Solomon algebra can be written (we use that e1 − e4 =
(e1 − e6)− (e4 − e6) = x1 − x4, etc.) as a quotient of an
exterior algebra:
OSA =

E(x1, x2, x3, x4, x5, z)(
x2x3, (x1 − x3)(x3 − x5), (x1 − x4)(x2 − x4), (x3 − x4)x4x5

) ,

where z does not occur among the relations. There-
fore, the Orlik–Solomon algebra decomposes into a ten-
sor product of algebras (all algebras are considered over
a field k of characteristic zero):

OSA =

E(x1, x2, x3, x4, x5)

(x2x3, x1x3 − x1x5 + x3x5, x1x2 − x1x4 + x2x4, x3x4x5)

⊗k E(z),

where E(z) is the exterior algebra in one variable and
where we have used that x2

i = 0.
Thus the Yoneda Ext-algebra1 of the Orlik–Solomon

algebra is the tensor product of the Ext-algebra
Ext∗R(k, k) of

R = (2–1)

E(x1, x2, x3, x4, x5)

(x2x3, x1x3 − x1x5 + x3x5, x1x2 − x1x4 + x2x4, x3x4x5)

and the Ext-algebra Ext∗E(z)(k, k) = k[Z], where the last
algebra is the polynomial algebra in one variable Z, dual
to z. The last algebra is “innocent,” and it therefore fol-
lows that the Yoneda Ext-algebra of the Orlik–Solomon
algebra is finitely presented if and only if Ext∗R(k, k) is
also finitely presented, where R is given by (2–1).

But the automorphism of R given by

x1 �→ x1 + x3, x2 �→ −x2 + x3, x3 �→ x3,

x4 �→ −x2 + x3 + x4, x5 �→ x5 + x3,

transforms R into the isomorphic algebra

E(x1, x2, x3, x4, x5)
(x2x3, x1x5, (x1 + x2)x4, x3x4x5)

, (2–2)

1For an elementary introduction to the Yoneda Ext-algebra, see
[Roos 1982, pp. 112 ff.].

which we will still denote by R. But the algebra (2–2)
can now be easily analyzed: it is the “trivial extension”
of a Koszul algebra

S =
E(x1, x2, x3, x5)

(x2x3, x1x5)
(2–3)

by the following cyclic module M over S :

M =
S

(x1 + x2, x3x5)
.

Recall that the trivial extension of any ring Λ by any
two-sided Λ-module N is denoted by Λ ∝ N and consists
of the pairs (λ, n) with λ ∈ Λ and n ∈ N with pairwise
addition and multiplication

(λ, n).(λ′, n′) = (λ.λ′, λn′ + nλ′).

The Ext-algebra of R = S ∝ M can now be analyzed
(cf., for example, [Löfwall 1985, Theorem 3]): we have a
split extension of Hopf algebras

k → T (s−1 Ext∗S(M,k))→ Ext∗R(k, k)→ Ext∗S(k, k)→ k.

(2–4)
Here S is the Koszul algebra (2–3), and

Ext∗S(k, k) = k〈X1, X5〉 ⊗k k〈X2, X3〉

is the tensor product of two free algebras in the dual
variables X1, X5 and X2, X3, and therefore it has global
dimension 2. Furthermore,

s−1 Ext∗S(M,k) = Ext∗−1
S (M,k),

and T (s−1 Ext∗S(M,k)) is the free algebra on the graded
vector space (for the ∗-grading in Ext) s−1 Ext∗S(M,k)
and has global dimension 1.

The spectral sequence of extensions of Hopf algebras
(2–4) [Roos 1982],

E2
p,q = TorExt∗S(k,k)

p (k,TorT (s−1 Ext∗S(M,k))
q (k, k))

⇒ TorExt∗R(k,k)
n (k, k) (= Hn), (2–5)

shows immediately that Ext∗R(k, k) has global dimension
3. Furthermore, (2–5) degenerates into a long exact se-
quence:

0→ E2
2,1 → H3 → E2

3,0 → E2
1,1 → H2 → E2

2,0 → E2
0,1

→ H1 → E2
1,0 → 0, (2–6)

where the natural maps Hi −→ E2
i,0 are onto. Indeed,

the natural ring projection map S ∝M −→ S is split by
the natural ring inclusion S −→ S ∝ M , and this leads
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to a splitting on the Ext-algebra level. Thus we have
exact sequences

0 −→ E2
i−1,1 −→ Hi −→ E2

i,0 −→ 0.

For any graded connected algebra A over k, TorA
1 (k, k)

measures the minimal number of generators of A,
TorA

2 (k, k) measures the minimal number of relations be-
tween these generators, TorA

3 (k, k) measures the mini-
mal number of relations between these relations, etc.;
cf. [Lemaire 1974, Chapter 1]. Therefore H1 in (2–6)
measures the minimal number of generators of the Ext-
algebra Ext∗R(k, k), and thereforeH1 is finite-dimensional
if and only if the Ext-algebra Ext∗R(k, k) is finitely gen-
erated. Similarly, H2 measures the minimal number of
relations in a minimal presentation of Ext∗R(k, k), and H3

measures the minimal number of relations between these
relations. Since the E2

i,0 are all finite-dimensional we are
led to the study of

E2
i,1 = TorExt∗S(k,k)

i (k, s−1 Ext∗S(M,k)), (2–7)

for i ≥ 1, where the left Ext∗S(k, k)-module structure
of s−1 Ext∗S(M,k) is given by the Yoneda product (cf.
[Löfwall 1985, Theorem 3]). Note that underlying our
spectral sequence is the Hochschild–Serre spectral se-
quence and that we are in the skew-commutative setting,
whereas [Löfwall 1985] is in the commutative case, but
similar (easier) proofs work here in our case.

Thus to show that Ext∗R(k, k) is not finitely generated,
we have to show that H1 is infinite-dimensional, i.e., that
E2

0,1 is finite-dimensional, i.e., that s−1 Ext∗S(M,k) needs
an infinite number of generators as an Ext∗S(k, k)-module
(cf. (2–7)), i.e., we have to study the S-resolutions of
M = S/(x1 + x2, x3x5). We also need the extra grading
on R and S, so that we should indeed write R = S ∝
s−1M . Now we denote the S-ideal (x1 + x2, x3x5) by I,
so that M = S/I.

First we observe that if we apply the functor Ext∗S(., k)
to the exact sequence of graded left S-modules

0 −→ I −→ S −→ S/I −→ 0, (2–8)

we obtain the isomorphisms

Ext∗−1,t
S (I, k) ∼−→ Ext∗,t

S (S/I, k), (2–9)

for ∗ ≥ 1, of left Ext∗S(k, k)-modules, where we also have
inserted the inner grading t that comes from the fact that
(2–8) is an exact sequence of graded modules. Note that
S is a Koszul algebra, so that only the Exti,iS (k, k) are dif-
ferent from zero, and we still denote them by Exti

S(k, k).

Next we note that the two ideals I1 = (x1 + x2) and
I2 = (x3x5) in S have zero intersection. Therefore,
I = I1⊕I2, and the Ext∗S(k, k)-module to the left in (2–9)
decomposes into a direct sum of Ext∗S(k, k)-modules:

Ext∗−1,t
S ((x1 + x2), k)⊕ Ext∗−1,t

S ((x3x5), k). (2–10)

But x3x5 is in the socle of S, and therefore we have as
graded S-modules that (x3x5)

∼−→ s−2k, so that the right
summand of (2–10) is isomorphic to Ext∗−1,t

S (s−2k, k),
i.e., to Ext∗−1,t−2

S (k, k).
It remains to analyze the left summand of (2–10). But

it is easy to see that AnnS((x1 + x2)) = I, so that the
graded sequence of S-modules

0 −→ s−1I −→ s−1S
(x1+x2)−→ S, (2–11)

where we multiply on the right by x1 + x2, is exact.
Therefore we have a short exact sequence

0 −→ s−1I −→ s−1S −→ (x1 + x2) −→ 0 (2–12)

of graded left S-modules leading to the isomorphism of
left Ext∗S(k, k)-modules

Ext∗−1,t
S (s−1I, k) ∼−→ Ext∗,t

S ((x1 + x2), k) (2–13)

for ∗ ≥ 1. Using (2–9) once more, we obtain that

Ext∗−1,t
S (s−1I, k) = Ext∗−1,t−1

S (I, k)
∼−→ Ext∗,t−1

S (S/I, k), (2–14)

leading to the final isomorphism of left ExtS(k, k)-
modules (combining (2–9), (2–10), (2–13), (2–14))

Ext∗,t
S (S/I, k) ∼−→ Ext∗−1,t−1

S (S/I, k)⊕ Ext∗−1,t−2
S (k, k)

(2–15)
for ∗ ≥ 1, where the summand Ext∗−1,t−2

S (k, k) is nonzero
only if ∗ = t− 1.

This proves everything, since we see, using (2–15),
that Ext∗,t

S (S/I, k) needs a new Ext∗S(k, k)-generator for
∗ = t− 1 for each t = 2, 3, 4, . . . .

In particular, if we introduce for any graded module
N over a graded k-algebra G the double series

PN
G (x, y) =

∑
i≥0,j≥0

∣∣∣Exti,jG (N, k)
∣∣∣ xiyj (2–16)

(where as always, for a k-vector space V we denote by
|V | its dimension) and if we denote P k

G(x, y) by PG(x, y),
we then deduce from (2–15) and the fact that PS(x, y) =
1/(1− 2xy)2 that

P
S/I
S (x, y) =

1
1− xy +

xy2

(1 − xy)(1− 2xy)2
,
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so that

PS∝s−1S/I(x, y) =
PS(x, y)

1− xyPS/I
S (x, y)

,

leading to the following theorem.

Theorem 2.1. The Orlik–Solomon algebra of the complex
hyperplane arrangement A = {x, y, z, x+y, x+z, y+z} is
the tensor product of the exterior algebra in one variable
with an algebra R whose Yoneda Ext-algebra Ext∗R(k, k)
has a bigraded generating series:

PR(x, y) =
PS(x, y)

1− xyPM
S (x, y)

=
1− xy

1− 6xy + 12x2y2 − x2y3 − 8x3y3
, (2–17)

where S and M are defined above. Furthermore, the Ext-
algebra Ext∗R(k, k) has global dimension 3, and it has five
generators in degree 1 and needs one new generator in
each degree ≥ 2. In particular, the homotopy Lie algebra
of A is not finitely generated.

We will return to this result in the next section.

3. THE HOLONOMY AND HOMOTOPY LIE
ALGEBRA OF AN ARRANGEMENT

The analysis of the A arrangement in Section 2 was in-
tended to give the “simplest possible proof” that the Ext-
algebra Ext∗R(k, k) is not finitely generated. However, in
order to be able to analyze more cases, we need a more
general theory. We will here briefly describe the basics
of such a theory and apply it as an alternative to our
first case and then treat another case of arrangements in
which we can prove that the homotopy Lie algebra is also
nonfinitely presented.

Note that the graded algebra R of the previous section
has Hilbert series 1 + 5z + 7z2. Let us now start with
any algebra R that is a quotient of an exterior algebra
E(x1, x2, . . . , xn) by a homogeneous ideal J generated
by elements of degree ≥ 2. Thus R = E(x1, . . . , xn)/J .
Let m be the ideal of R generated by (x1, . . . , xn), and
consider the exact sequence

0 −→ m/m2 −→ R/m2 −→ R/m −→ 0 (3–1)

of left R-modules. Now apply the functor Ext∗R(−, k)
to the exact sequence (3–1). We get a long exact se-
quence that can be written as an exact sequence of left

Ext∗R(k, k)-modules (we use the Yoneda product):

0→ s−1Sm → s−1Ext
∗
R(R/m2, k) (3–2)

→ Ext∗R(k, k)⊗ Ext1R(k, k)→ Ext∗R(k, k)→ Sm → 0,

where Sm is defined as the image of the natural map

Ext∗R(k, k) −→ Ext∗R(R/m2, k), (3–3)

and where, for example, Sm means that we take the
elements of Sm of degrees greater than 0 and where
s−1 is the “suspension” as before. The Ext-algebra
B = Ext∗R(k, k) is bigraded, and we recall that its bi-
graded Hilbert series is denoted by

PR(x, y) =
∑
i,j≥0

∣∣∣Exti,j
R (k, k)

∣∣∣ xiyj = B(x, y),

where as always, for a k-vector space we denote by |V | its
dimension. The subalgebra A of Ext∗R(k, k) generated by
Ext1R(k, k) is also bigraded, but it is situated on the di-
agonal, so that the corresponding bigraded Hilbert series
is given by

A(x, y) = A(xy, 1) def= A(xy).

Now take the alternating sum of the two-variable
Hilbert series of (3–2). We obtain

Sm(x, y)−B(x, y) + xyB(x, y)
∣∣m/m2

∣∣ (3–4)

− xPR/m2

R (x, y) + x(Sm(x, y)− 1) = 0,

where

P
R/m2

R (x, y) =
∑

i>0,j≥i

∣∣∣Exti,j
R (R/m2, k)

∣∣∣xiyj . (3–5)

We now make three fundamental observations:

1. A is a sub Hopf algebra ofB, and therefore according
to [Milnor and Moore 1965], B is free over A. Thus
Sm = B ⊗A k has bigraded Hilbert series

Sm(x, y) = B(x, y)/A(xy). (3–6)

2. If m3 = 0, we have an isomorphism of left
Ext∗R(k, k)-modules

Ext
∗
R(R/m2, k) � Ext∗R(k, k)⊗ Ext1R(R/m2, k),

(3–7)
so that

P
R/m2

R (x, y) = B(x, y)xy2
∣∣m2/m3

∣∣ . (3–8)
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This follows from [Roos 1979, formula (16)]. There-
fore the equality (3–4) can be written

B(x, y)
A(xy)

= B(x, y) − xyB(x, y)
∣∣m/m2

∣∣
+ x2y2B(x, y)

∣∣m2/m3
∣∣ (3–9)

− x
(
B (x, y)
A(xy)

− 1
)
,

which is another way of writing the following (di-
vide by xB(x, y) and use the notation R(z) = 1 +
|m/m2|z + |m2/m3|z2 for the Hilbert series of R):

1/B(x, y) = (1 + 1/x)/A(xy)−R(−xy)/x, (3–10)

which is a formula due to Löfwall [Löfwall 1986].

3. In the case m3 = 0, the three middle terms of (3–2)
are free Ext∗R(k, k)-modules, so that s−1Sm is a third
syzygy of a minimal graded Ext∗R(k, k)-resolution of
Sm. We therefore obtain the isomorphism

TorB
i,∗(k, Sm) � TorB

i−3,∗(k, s
−1Sm)

= TorB
i−3,∗−1(k, Sm) (3–11)

for i ≥ 3. Now apply TorB
i (k, ) to the exact sequence

0 −→ Sm −→ Sm −→ k −→ 0. (3–12)

We get the long exact sequence

· · · → TorB
n+1(k, k)→ TorB

n (k, Sm)→ TorB
n (k, Sm)

ϕn→ TorB
n (k, k)→ TorB

n−1(k, Sm) · · · . (3–13)

Furthermore, since B is A-flat (which follows from
observation 1 above),

TorB
n (k, Sm) = TorB

n (k,B ⊗A k) = TorA
n (k, k),

and ϕn : TorA
n (k, k) → TorB

n (k, k) is induced by
the natural inclusion A → B, which is split by
a ring map in the other direction: divide B =
Ext∗,∗

R (k, k) by the two-sided ideal generated by
⊕j>i>0 Exti,jR (k, k). Thus the maps ϕn in (3–13) are
monomorphisms, and (3–13) splits into short exact
sequences, using (3–11):

0 −→ TorA
i,j(k, k) −→ TorB

i,j(k, k)

−→ TorA
i+2,j+1(k, k) −→ 0. (3–14)

Now we can summarize:

Theorem 3.1. Let R be a quotient of an exterior algebra
(finite number of generators in degree 1) by a homoge-
neous ideal generated by elements of degree ≥ 2. Let m

be the augmentation ideal of R. Assume that m3 = 0.
Let B = Ext∗R(k, k) be the Yoneda Ext-algebra and let A
be the subalgebra of B, generated by Ext1R(k, k). Then
the exact sequences (3–14) hold. In particular,

(a) B is finitely generated if and only if the graded vector
space TorA

3,∗(k, k) has finite dimension.

(b) B is finitely presented if and only if the graded vec-
tor spaces TorA

3,∗(k, k) and TorA
4,∗(k, k) have finite di-

mension.

(c) B is finitely presented and has a finite number of
relations between the minimal relations if and only
if the graded vector spaces TorA

3,∗(k, k), TorA
4,∗(k, k),

and TorA
5,∗(k, k) have finite dimension.

Note that A is the enveloping algebra of a graded Lie
algebra (the holonomy Lie algebra) whose ranks are equal
to the ranks of the lower central series (LCS) of the funda-
mental group of the hyperplane complement (cf. Section
7 below). Note also that in general, the Hilbert series
A(x) of A when m3 = 0 is obtained from (3–10): replace
x by x/y in that formula and put y = 0. This gives

1/PR(x/y, y)|y=0 = 1/A(x).

We can get an alternative proof of the assertion about
the generators of the Ext-algebra in Theorem 2.1 above,
using only the formula (2–17) there. The preceding recipe
gives in that case that A(x) = (1 − x)/(1 − 2x)3. Now
recall that for any graded algebraA we have the following
formula for the relation between its Hilbert series A(z)
and the Hilbert series TorA

i,∗(k, k)(z) of the graded Tor
(see, for example, [Lemaire 1974, Appendix A2]):

1
A(x)

=
∑
i≥0

(−1)i TorA
i,∗(k, k)(x). (3–15)

Since A in the case of Theorem 2.1 has global dimension
3 and five generators in degree 1, and seven relations in
degree 2, (3–15) gives that

TorA
3,∗(k, k)(x) = x3/(1− x),

so that we see once more that TorA
3,i(k, k) is one-

dimensional for all i ≥ 3, and therefore Theorem 3.1(b)
gives once more a proof of Theorem 2.1.

Remark 3.2. If m3 �= 0, but more generally

Ext
∗
R(R/mi, k) −→ Ext

∗
R(R/mi+1, k), (3–16)
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is zero for i ≥ 2, then we have the same conclusion as
in Theorem 3.1, but the proof is slightly different, since
now N = Ext

∗
R(R/m2, k) is not free as a B = Ext∗R(k, k)-

module, but it has a finite homological dimension, and
the corresponding TorB

i (k,N) � mi+2/mi+3 are finite-
dimensional.

The condition (3–16) is sometimes, but not always,
satisfied if m4 = 0, but in the last case, one can prove
that the validity of the formula (3–10) is equivalent to the
assertion that the map (3–16) is zero for i ≥ 2 (of course,
only the case i = 2 is important in this case). This
will be used below when we study graphic arrangements.
Furthermore, the important formula (3–10), which we
will now write as

1/PR(x, y) = (1 + 1/x)/R!(xy)−R(−xy)/x, (3–17)

is still valid under (3–16), but here the Hilbert series
R(z) might be a polynomial of degree greater than 2.
Note that we have written R! (instead of A); it is the
Koszul dual of R.

Remark 3.3. The formula (3–17) in Remark 3.2 is a spe-
cial case (n = 3) of a whole family of formulas (3–18)n,
n ≥ 3, valid under certain conditions:

1
PR(x, y)

=
(1 − (−x)2−n)

R!(xy)
+R(−xy)(−x)2−n. (3–18)

Indeed, the validity of (3–18)n is a consequence of the fact
that the so-called Koszul complex R!⊗k Homk(R, k) has
only nonzero homology groups in degree 0 and in degree
n − 1. If m3 = 0, this is true for n = 3, but if m4 = 0,
this is true only under extra conditions. For more details
about this, see [Löfwall 1994, Theorem B.4], [Roos 1994],
and [Roos 1996]. We will say here that R satisfies Ln if
(3–18)n holds.

For Orlik–Solomon algebras with m4 = 0, we still have
the formula (3–17), since the algebra is the tensor prod-
uct of an algebra with m3 = 0 and an “innocent” algebra
E[z]. In Section 6, in which we study the case of graphic
arrangements, we will see that for any n ≥ 3, there are
examples in which the condition Ln holds (namely, the
Orlik–Solomon algebra of the graphic arrangement cor-
responding to an (n + 1)-gon for n ≥ 3), but also that
there are also examples in which none of these condi-
tions is satisfied (however, these cases can sometimes be
handled with the method of [Roos 1996]).

4. SOME OTHER HYPERPLANE ARRANGEMENTS

Some of the cases from [Suciu 2000] can be treated in the
same way as in Section 3. Here we briefly describe the
results for the so-calledX2-arrangement, which is defined
by the polynomial

xyz(x+ y)(x− z)(y − z)(x+ y − 2z).

Now the Orlik–Solomon algebra can be written as
a quotient of the exterior algebra in seven variables
E(e1, e2, e3, e4, e5, e6, e7) by the ideal generated by five
elements:

(e5 − e7)(e6 − e7), (e3 − e7)(e4 − e7), (e2 − e6)(e3 − e6),
(e1 − e5)(e3 − e5), (e1 − e2)(e2 − e4).
Now isolate e3, i.e., introduce variables

a = e1 − e3, b = e2 − e3, c = e4 − e3, d = e5 − e3,
e = e6 − e3, f = e7 − e3.

Now the relations in the Orlik–Solomon algebra do not
contain e3, and this algebra is now a tensor algebra of
the quotient

R =
E(a, b, c, d, e, f)

(ab− ac+ bc, ad, be, cf, de− df + ef)

with the exterior algebra in one variable z = e3. There-
fore, we are led to the analysis of the Yoneda Ext-
algebra of the quotient R above, whose Hilbert series is
R(t) = 1 + 6t+ 10t2. Furthermore, let

S =
E(a, b, c, d, e, f)

(ab− ac+ bc, ad, be, cf)

and consider the ring map

S −→ S/(de− df + ef) = R. (4–1)

It is not difficult to show that (4–1) is a so-called Golod
map (cf. [Levin 1985] and the literature cited there. In
the present case, we are studying the skew-commutative
version of Golod, which has been treated with relevant
references in [Sköldberg 1999]). One finds that

S!(t) = (1− t)2/(1− 2t)4,

that
R!(t) = (1− t)4/(1− 2t)5,

and more precisely, that R! has global dimension 5 and
that

∑
i≥0

∣∣∣TorR!

3,i(k, k)
∣∣∣ zi = 5z4 +

6z5

(1 − z) , (4–2)

∑
i≥0

∣∣∣TorR!

4,i(k, k)
∣∣∣ zi = 2z6 +

(6 − z)z7

(1− z)2 , (4–3)
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and ∑
i≥0

∣∣∣TorR!

5,i(k, k)
∣∣∣ zi =

z10

(1− z)4 . (4–4)

Thus using the theory from Section 3, we see that the ho-
motopy Lie algebra of the arrangement X2 is “extremely
nonfinitely presented”: it needs an infinite number of
generators (4–2), and furthermore, the minimal number
of relations between a minimal system of generators is
infinite (4–3), and the minimal number of relations be-
tween the relations is infinite (4–4). However, among the
graphic arrangements (see Section 6 for more details)
there are more arrangements with a finitely presented
Ext-algebra than with an infinitely presented one.

We finish this section with one unsolved case: Re-
call that the non-Fano arrangement is the hyperplane
arrangement defined by

xyz(x− y)(x− z)(y − z)(x+ y − z).

In this case, the corresponding R (we have eliminated
one variable as above) has Hilbert series (1+3t)2, but the
corresponding R!(t) is rather complicated. Nevertheless,
we have managed to calculate the LCS ranks two steps
higher than in [Suciu 2000], using the program bergman

[Backelin et al. 07]; with the notation of [Suciu 2000] we
have φ8 = 3148 and φ9 = 9857, but for the last result we
needed 64 bits PSL on an AMD opteron machine with
12 GB of internal memory.

5. ARRANGEMENTS WITH IRRATIONAL
HILBERT SERIES

In [Denham and Suciu 2006] it is also asked whether the
enveloping algebra of the homotopy Lie algebra of an
arrangement can have an irrational Hilbert series.

We will here describe one case we have found in which
this is conjecturally true and a second case in which this
has been proved to be true. This development is rather
recent: we found the second case only recently, and the
first (more complicated) case is the well-known Mac Lane
arrangement, whose amazing homological properties we
also discovered recently. The proof in the second case
(the first case is probably treated in a similar but more
complicated way) is based on ideas of the present paper,
but involves many more new ideas and will be presented
in another paper in preparation [Roos 2008]. Let us just
indicate some details

First case (the Mac Lane arrangement): Recall the Mac
Lane arrangement, defined by the annihilation of the

polynomial

Q = xyz(y−x)(z−x)(z+ωy)(z+ω2x+ωy)(z−x−ω2y)

in C3, where ω = e2πi/3. It is not difficult to see
that with the notation of our Section 2, the Orlik–
Solomon algebra of the Mac Lane arrangement is R ⊗
E[z], where R is the quotient of the exterior algebra
E(x1, x2, x3, x4, x5, x6, x7) in seven variables with the
ideal generated by the eight quadratic elements

x1x2 − x1x4 + x2x4, x1x3 − x1x5 + x3x5,

x1x6 − x1x7 + x6x7, x2x3 − x2x6 + x3x6,

x4x5 − x4x7 + x5x7, x2x5, x4x6, x3x7.

This ring R has Hilbert series R(z) = 1+7 z+13 z2, and
therefore the formula (3–17) above can be applied, and
the only thing needed to be proved is that the Koszul dual
R! of R has an irrational Hilbert series. But this Koszul
dualR! = U(g) is the quotient of the free associative alge-
bra k 〈X1, X2, . . . , X7〉 in the seven dual variables by the
two-sided ideal generated by the thirteen dual relations
among the Lie commutators [Xi, Xj ] = XiXj−XjXi for
i �= j:

[X1, X2] + [X1, X4], [X1, X4] + [X2, X4],

[X1, X3] + [X1, X5], [X1, X5] + [X3, X5],

[X1, X6] + [X1, X7], [X1, X7] + [X6, X7],

[X2, X3] + [X2, X6], [X2, X6] + [X3, X6],

[X4, X5] + [X4, X7], [X4, X7] + [X5, X7],

[X2, X7], [X3, X4], [X5, X6],

so that the Lie algebra g (it is called the holonomy Lie al-
gebra) in R! = U(g) is the quotient of the free Lie algebra
in seven variables by the ideal generated by the thirteen
Lie commutators above. Now we have the formula

1
R!(z)

=
1

U(g)(z)
=

∞∏
n=1

(1 − tn)φn ,

where the φn are the lower central series (LCS) ranks.
But these ranks can be calculated by a program by Clas
Löfwall [Löfwall 2007], which is called liedim.m and runs
under Mathematica. It gives (in characteristic zero) the
ranks

7, 8, 21, 42, 87, 105, 172, 264, 476, 816, 1516,

2704, 5068, 9312, 17484, . . . ,

but for the higher ranks you need the C version of the
program unless your computer has a large amount of in-
ternal memory. Thus the Hilbert series R! can be calcu-
lated in degrees ≤ 15, and in these degrees it is described



136 Experimental Mathematics, Vol. 17 (2008), No. 2

by the part of following rather amazing formula of degree
less than or equal to 15:

1
R!(t)

=
(1− 2t)8

(1− t)9 (1 − t3)5(1 − t4)18(1− t5)39(1− t6)33

×
∞∏

n=4

(1− t2n−1)28(1− t2n)24.

We indicate a possible proof below, but we wish to em-
phasize again that the preceding formula is for the mo-
ment known to hold only (by liedim) up to t15.

Second case (this is indeed a quite different case, but
it can be seen as a “simplification-degeneration” of the
Mac Lane arrangement): In the Mac Lane arrange-
ment above, ω, a primitive third root of unity, satisfies
ω2 = −ω−1, so if you replace ω2 by −ω−1 in the defini-
tion of the Mac Lane arrangement above and then (this
is brutal!) put ω = 1, you obtain a new arrangement
mlease in C3 defined by the following polynomial with
integer coefficients:

Qeas = xyz(y− x)(z − x)(z + y)(z − 2x+ y)(z − x+ 2y).
(5–1)

The amazing thing now is that the corresponding hy-
perplane arrangement has an almost identical Orlik–
Solomon algebra Reas ⊗ E[z], but its homological prop-
erties are dramatically different: we have indeed that
Reas has all the relations of R with the exception of
the relation x3x7, which is replaced by x3x6x7, so that
R = Reas/(x3x7), and the Hilbert series is given by
Reas(t) = 1 + 7 t + 14 t2, which is close to R(t) =
1 + 7 t+ 13 t2. But now we have the following theorem.

Theorem 5.1. The Koszul dual R!
eas of the hyperplane

arrangement mlease has the following Hilbert series:

1
R!

eas(t)
=

(1 − 2 t)7

(1− t)7
∞∏

n=3

(1 − tn). (5–2)

Corollary 5.2. The Ext-algebra of the algebra Reas cor-
responding to the hyperplane arrangement mlease has a
transcendental Hilbert series.

Proof of Corollary 5.2: The condition L3 is satisfied,
since m3 = 0.

Sketch of proof of theorem 5.1: We have

R!
eas = R!/([X3, X7]).

Furthermore, R!
eas is the enveloping algebra of a Lie al-

gebra geas. Now divide out geas by the Lie element of

degree 3: [X6, [X7, X5]]. We get an exact sequence of Lie
algebras:

0 −→ ker −→ geas −→ geas/([X6, [X7, X5]]) −→ 0,
(5–3)

where ker is defined by (5–3).
We now claim that the Hilbert series of the enveloping

algebra of

quot = geas/([X6, [X7, X5]])

is
(1− z)7/(1− 2 z)7.

Indeed, the underlying Lie algebra has a basis of seven
elements X1, X2, . . . , X7 in degree 1. From now on, to
simplify we denote the elements [Xi, [Xj, [Xk, . . . ]]] by
ijk . . . . With this notation we have the following basis
of seven elements in degree 2:

42, 52, 53, 63, 64, 75, 76.

These seven elements commute pairwise, and we have
fourteen elements of degree 3. One can prove that the
Lie algebra decomposes in the sense of [Papadima and
Suciu 2006], i.e., that the Lie algebra quot in degrees ≥ 2
is a direct sum of seven parts of degree ≥ 2 of free Lie al-
gebras in two variables. One cannot use [Papadima and
Suciu 2006] directly, but if S is Reas without the rela-
tion x4x5−x4x7 +x5x7, then S comes from the so-called
X2 arrangement, which decomposes [Papadima and Su-
ciu 2006] and has S!(z) = (1 − z)3/(1 − 2z)5, and the
map S → Reas can be analyzed as in Section 4 above.

We now continue analyzing the kernel ker in (5–3).
Clearly 675 = [X6, [X7, X5]] is in this kernel, and so are
also the degree-4 elements i675 = [Xi, [X6, [X7, X5]]] for
i = 1, . . . , 7. But we get possibly nonzero elements (with
different signs) for only i = 5 and i = 6 (the last one
can be written 6775), and in the next degree we similarly
get only one element 67775, and so on. Therefore ker is
≤ 1-dimensional in each degree ≥ 3. Next we have the
formulas

−[X5, 42] = [X6, 42] = −[X4, 52] = [X6, 52] = [X2, 53]

= −[X6, 53] = [X1, 63] = −[X5, 63] = −[X2, 64]

= [X5, 64] = −[X1, 75] = [X6, 75] = −[X4, 76]

= [X5, 76] = 675 (5–4)

in geas. The other commutators lie in quot. We now wish
to prove that the dimension of ker is exactly 1 in each
degree ≥ 3. For this purpose, if we define a graded vector
space of dimension 1 in each degree ≥ 3 by

V∗ = ke3 ⊕ ke4 . . . ,
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where the Xi operate as zero, with the exception of
X5.en = en+1 and X6.en = −en+1, we get a quot-module
V , and by calculating H2(quot, V ), we find that there is
a 2-cocycle γ : quot× quot −→ V on quot with values in
V , which in lower degrees starts as in (5–4). Thus we can
define a Lie algebra gγ defined by this cocycle, which sits
in the middle of an extension of Lie algebras in which the
kernel V is abelian:

0 −→ V −→ gγ −→ quot −→ 0. (5–5)

We now wish to show that gγ in (5–5) is isomorphic to
geas in (5–3): we use the Hochschild–Serre spectral se-
quence of the extension (5–5) to show that TorU(gγ )

2,∗ (k, k)
is concentrated in degree 2.

Now geas and gγ are isomorphic (they have “the same”
generators and relations). Thus ker is one-dimensional
in each degree ≥ 3. This gives the formula (5–2), and
Theorem 5.1 follows. �

Remark 5.3. The previous reasoning with explicit cocy-
cles is analogous to, but a little more complicated than,
Löfwall’s and my version of the Anick solution of the
Serre–Kaplansky irrationality problem (cf. [Löfwall and
Roos 1980], [Roos 1981, pages 454–456], [Anick 1982])
as well as Lemaire’s Bourbaki talk about these questions
[Lemaire 1980].

Now what about the Mac Lane arrangement? The re-
sults are similar to those of the easier case just described.
In fact, the Lie algebra geas just studied has no center,
and the kernel Lie algebra ker of (5–3) is abelian. In or-
der to carry out similar reasoning for the Mac Lane (ML)
arrangement, one needs to divide the Lie algebra gml by
the following five cubic Lie algebra elements:

[X5, [X7, X3]], [X6, [X7, X3]], [X7, [X6, X3]],

[X7, [X6, X4]], [X6, [X7, X5]], (5–6)

leading again to a quotient Lie algebra quotml, whose
enveloping algebra has Hilbert series (1− z)9/(1− 2 z)8.

We still get an exact sequence of Lie algebras

0 −→ kerml −→ gml −→ quotml −→ 0. (5–7)

But now kerml is generated by the five elements (5–6)
and is still situated in degrees ≥ 3, where its dimensions
are

5, 18, 39, 33, 28, 24, 28, 24, 28, 24, 28, 24, 28, . . .
(5–8)

and there is still a 2-cocycle describing the extension
(5–7).

Now we can use the Löfwall program liedim [Löfwall
2007]. Indeed, Clas Löfwall has kindly constructed at our
request an extra command centre[n], which gives gen-
erators for the center in degree n of a graded Lie algebra
given by generators and relations in liedim. In our case,
one finds (in degrees ≤ 15) that now gml contains cen-
tral elements, all situated in kerml, and that [kerml, kerml]
is contained in the center, which is 1-dimensional in de-
gree 5, 9-dimensional in degree 6, and 4-dimensional in
degrees 2n + 1 for n ≥ 3, and zero-dimensional in even
degrees ≥ 8. If we divide out by the center, the Lie alge-
bra kerml /center is still situated in degrees ≥ 3, but its
dimensions there are now

5, 18, 38, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, . . . .
(5–9)

Furthermore, kerml /center is abelian, and quotml oper-
ates on it in a similar but more complicated way than for
geas above. But so far, all this has been proved only in
degrees ≤ 15.

Although the geas irrational case is much easier than
the gml case, it still uses a hyperplane arrangement with
eight hyperplanes, leading to an algebra R!

eas in seven
variables. One might still wonder whether it would be
possible to simplify further, i.e., to obtain a hyperplane
arrangement with seven or six hyperplanes and having
an irrational series.

However, in [Roos 2000] we have in particular de-
scribed all homological possibilities for the quotient of an
exterior algebra in ≤ 5 variables by an ideal generated by
≤ 3 quadratic forms (the ring-theoretic classification was
obtained in [Eisenbud and Koh 1994]). It is only in five
variables that we can obtain nonfinitely generated Ext-
algebras (only one case, just studied above in Section 2)
or Ext-algebras with an irrational Hilbert series (three
cases). These three cases are as follows (the numbering
of cases is from [Roos 2000]) (in all these three cases the
Hilbert series is given by R(t) = 1 + 5t+ 7t2):

Case 12: We have

R12 =
E(x, y, z, u, v)

(xy, xz + yu+ zv, uv)

with
1

R!
12(t)

= (1− 2t)2
∞∏

n=1

(1− tn).

Case 20: We have

R20 =
E(x, y, z, u, v)

(yz + xu, yu+ xv, zu+ yv)
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with

1
R!

20(t)
=

∞∏
n=1

(1− t2n−1)5(1− t2n)3.

Case 15: We have

R15 =
E(x, y, z, u, v)

(yz + xu, xv, zu+ yv)

with

1
R!

15(t)
= (1 − 2t)

∞∏
n=1

(1− t2n−1)3(1 − t2n)2.

But we cannot see how any of these algebras could
arise from some hyperplane arrangement. If we study
quotients of E(x, y, z, u, v) with four quadratic forms,
there are still three other quotients (this time with
Hilbert series R(t) = 1 + 5t + 6t2) that might have ir-
rational R!(t).

Case 21: We have

R21 =
E(x, y, z, u, v)

(yz + xu, yu+ xv, zu+ yv, uv)

with

R!
21(t) = 1 + 5t+ 19t2 + 65t3 + 211t4 + 667t5 + 2081t6

+ 6449t7 + 19919t8 + 61425t9 + 189273t10

+ 583008t11 + 1795509t12 + 5529263t13

+ 17026752t14 + 52431180t15 + 161452384t16

+ 497162060t17 + 1530914456t18

+ 4714152439t19 + 14516309322t20

+ 44700127353t21 + 137645268696t22

+ 423851580822t23 + · · · .

Case 22: We have

R22 =
E(x, y, z, u, v)

(yz + xu, yu+ xv, zu+ yv, zv)

with

R!
22(t) = 1 + 5t+ 19t2 + 65t3 + 211t4 + 666t5 + 2071t6

+ 6387t7 + 19609t8 + 60054t9 + 183672t10

+ 561340t11 + 1714894t12 + 5237883t13

+ 15996477t14 + · · · .

Case 33: We have

R33 =
E(x, y, z, u, v)

(yz + xu, xv, zu+ yv, uv)

with

R!
33(t) = 1 + 5t+ 19t2 + 65t3 + 212t4 + 675t5 + 2125t6

+ 6653t7 + (21 terms) + 483131948638003t29

+ 1505474194810058t30 + · · · ,

but the following formula gives in this last case an
indication about theta functions:

1
(1− t)2R!

33(t)

= 1− 3t− t2 + t3 + 2t4 + 3t5 + t6

+ t7 − t8 − t9 − 2t10 − t11 − 3t12 − t13 − t14
− t15 + t17 + t18 + 2t19 + t20 + t21 + 3t22 + t23

+ t25 + t26 − t29 − t30 − · · · .

Theta functions are mentioned here because the mono-
mials 2t4, −2t10, 2t19, −2t31, . . . are obtained as
(−1)n+1t

3n(n+1)
2 +1 for n = 1, 2, . . . . Similarly for other

terms, leading to the predictions that the coefficient for
t31 should be −2 and that more precisely, the series
should continue as −2t31 − t32 − t33 − t34 − 3t35 + · · · .

But using the program bergman [Backelin et al. 07],
we have for the moment been able to calculate the preced-
ing series only in degrees ≤ 30, and no precise theory is in
sight. But it is not known whether these last three cases
come from some hyperplane arrangements. In higher em-
bedding dimensions (6, 7, . . . ), there are of course more
irrational series, and as we have indicated, two of them in
embedding dimension 7 come from complex hyperplane
arrangements.

Remark 5.4. The case R!
20 (which comes from Jürgen

Wisliceny and whose series was determined up to degree
67 by Czaba Schneider [Schneider 1997, Theorem 6.1])
was completely determined in the super-Lie algebra case
in [Löfwall and Roos 1997] (where we had periodicity 4).
Here its treatment is easier (periodicity 2). Note that we
have described above what happens only in characteristic
0. In Case 20, we have different R!

20(z) in all characteris-
tics, and the same remark seems to be applicable to the
cases 21, 22, 33.

6. IRRATIONAL OR NONFINITELY PRESENTED
CASES FOR OTHER ARRANGEMENTS ?

In the sections above we have found two classes of unex-
pected complex hyperplane arrangements. An interest-
ing question is to determine how rare those hyperplane
arrangements are. The simplest arrangements are the
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so-called graphic arrangements: we have a simple graph
Γ given with n vertices and t edges. The corresponding
hyperplane arrangement AΓ in Cn is defined by

AΓ = {xi − xj},

where i < j and (i, j) is an edge of Γ.
Such a graph leads as in Section 2 to an Orlik–Solomon

algebra that can be written in the form RΓ⊗E(z), where
RΓ is a quotient of the exterior algebra in t− 1 variables
by homogeneous forms, and E(z) is the exterior algebra
in one variable z. It is therefore sufficient to analyze RΓ.

It was recently proved [Lima-Filho and Schenck 2006]
that the Hilbert series of all R!

Γ are rational of a special
form, and therefore it follows that the Hilbert series of the
Ext-algebra of the Orlik–Solomon algebra ofAΓ is always
rational, at least for those cases in which the Hilbert
series of RΓ has the cube of its maximal ideal equal to 0
(and maybe in all cases; see remarks below).

Indeed, formula (3–17) above can be applied, and it
gives an explicit rational formula. But nonfinitely pre-
sented Ext-algebras can indeed occur for some graphs.
In the book about graphs [Harary 1969], there is at the
end an explicit list of simple graphs with up to six ver-
tices. We have gone through that list completely, and
we can report part of the results as Theorem 6.1 below
(note that it is sufficient to analyze connected graphs,
since the Orlik–Solomon algebra decomposes as a tensor
product of the algebras corresponding to the connected
components of the graph). It is known that the num-
ber of simple connected graphs with n vertices increases
rapidly with n, according to the following table:

# vertices 2 3 4 5 6 7 8

# graphs 1 2 6 21 112 853 11117

We also use the numbering of the simple connected
graphs from the home page of of Brendan McKay.2

One finds that graph 4 (in the numbering above for
graphs having four vertices) defined by

(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)

is the only graphical arrangement for a graph with four
vertices (the graph of a square) in which the Orlik–
Solomon algebra is not a Koszul algebra. However, the
corresponding Orlik–Solomon algebra satisfies the con-
dition L3 (cf. the discussion after Remark 3.3), since
m4 = 0. Furthermore, in this case the Ext-algebra is
finitely presented, and Ext∗R(k, k) has a rational Hilbert
series.

2http://cs.anu.edu.au/∼bdm/data/graphs.html.

For graphs of orders 5 and 6 we have the following
theorem (we continue using the numbering of graphs of
orders 5 and 6 given by McKay).

Theorem 6.1.

(a) Among the 21 connected graphs with five vertices,
15 give rise to Orlik–Solomon algebras (OS-algebras)
that are Koszul. Among the six remaining non-
Koszul algebras, only one (corresponding to graph 19,
which is the graph of a pyramid with a square ba-
sis) gives rise to a hyperplane arrangement in which
the Ext-algebra of the OS-algebra is not finitely pre-
sented; graphs 5, 7, 15, 17, 19 give OS-algebras that
satisfy L3; and graph 14 (the graph of a pentagon)
has an OS-algebra that satisfies L4, and since all
R(z) and R!(z) are rational, the Hilbert series of the
21 Ext-algebras are rational.

(b) Among the 112 connected graphs with six vertices, 34
give rise to Orlik–Solomon algebras that are Koszul.
Among the 78 remaining non-Koszul algebras, only
seven (corresponding to graphs 71, 74, 100, 102, 107,
108, 109) have nonfinitely presented Ext-algebras of
their OS-algebras, and one (corresponding to graph
98) has a finitely presented Ext-algebra, which, how-
ever, has an infinite number of relations between the
relations. The condition L5 is satisfied in one case
(the graph of a hexagon; more generally, Ln−1 is sat-
isfied for the graph of an n-gon). The condition L4 is
satisfied for the graphs 48, 95, 98, and the condition
L3 is satisfied for the graphs 11, 13, 25, 33, 36, 39,
42, 44, 46, 51, 53, 57, 61, 63, 66, 68, 72, 73, 81, 87,
92, 99, 100, 102, 106, 107, 108, 109.

There are five graphs for which no condition Ln has
been verified: 38, 71, 74, 96, 97. But also for these graphs
the Hilbert series of the Ext-algebra can be analyzed and
proved to be rational, so all these 112 graphs give rational
series.

Sketch of proof of part of the theorem: (a) The case of
graph 19 with five vertices gives rise to the arrangement
defined by the polynomial

(x1 − x3)(x1 − x4)(x1 − x5)(x2 − x3)(x2 − x4)(x2 − x5)

× (x3 − x5)(x4 − x5),

corresponding to a pyramid, where the vertex x5 is at
the top of the pyramid, and x1, x3, x2, x4 are at the base.
We have eight factors, and the OS-algebra is in eight
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variables:

E(e1, e2, e3, e4, e5, e6, e7, e8)/(
(e1 − e7)(e3 − e7), (e2 − e8)(e3 − e8),

(e4 − e7)(e6 − e7), (e5 − e8)(e6 − e8),
(e1 − e2)(e2 − e5)(e4 − e5)

)
. (6–1)

Let us now introduce new variables xi = ei − e5 for i �=
5 and z = x5. Our algebra (6–1) becomes, as earlier,
the tensor product of the exterior algebra E(z) and the
algebra in seven variables (x5 is missing!):

R = E(x1, x2, x3, x4, x6, x7, x8)/(
(x1x3 − x1x7 + x3x7, x2x3 − x2x8 + x3x8,

x4x6 − x4x7 + x6x7, x6x8, x1x2x4)
)
.

It is now easy to see that the annihilator of x6 in R is
generated by x6 and x8 and similarly that the annihila-
tor of x8 is generated by x6 and x8. Furthermore, the
intersection of the two ideals x6 and x8 is 0.

Thus the ideal a = (x6, x8) is a direct sum, and S =
R/a has a linear resolution over R; more precisely, we
have PS

R (x, y) = 1/(1 − 2xy). Now apply a result from
[Bøgvad 1995], which says that if R → S = R/a is an
algebra map such that R/a has a linear R-resolution,
then the map R→ S is a large map in the sense of [Levin
1980]. In the proof of [Bøgvad 1995, Lemma 2.3b], there
is a slight misprint on line 9 of the proof, which should
read, “. . . η : R→ S is 1-linear, i.e., that TorR

i,j(S, k) = 0
if i �= j . . . .”

This has the consequence that the double series
PR(x, y) is equal to PS

R (x, y)PS(x, y) (i.e., the change of
rings spectral sequence degenerates; cf. [Levin 1980, The-
orem 1.1]). In our case, PS

R (x, y) = 1/(1 − 2xy), and S

now becomes the quotient of an exterior algebra in five
variables:

S =
E(x1, x2, x3, x4, x7)

(x1x3 − x1x7 + x3x7, x4x7, x2x3, x1x2x4)
.

But this algebra is essentially the algebra (2–2). In-
deed, let us first make the substitutions x1 �→ x1 + x3,
x7 �→ x7 + x3 and then interchange x2 and x3 and also
x1 and x7. We get the same algebra as in (2–2); the only
difference is that now the last variable is called x7 (and
not x5 as in Section 2). It follows that the double series
of S is given by

1
PS(x, y)

=
1− 6xy + 12x2y2 − x2y3 − 8x3y3

1− xy ,

so that
1

PR(x, y)
=

(1− 2xy)(1− 6xy + 12x2y2 − x2y3 − 8x3y3)
1− xy .

(6–2)
From (6–2) we can now read off that R(z) = 1 + 7z +
17z2 + 14z3 = (1 + 2z)(1 + 5z + 7z2) and that R!(z) =
(1 − z)/(1 − 2z)4, so that the formula L3 holds. One
then proves that gldim(R!) = 4 and that TorR!

4,i(k, k) is

1-dimensional for i ≥ 4 and TorR!

3,i(k, k) = 0 for i �=
3, so that the algebra in Section 2, which there needs
an infinite number of generators, now returns here as a
subtle part of a graphic arrangement whose Ext-algebra
is slightly better in that it is finitely generated but not
finitely presented.

Note in particular that Ext∗R(k, k) is not the tensor
product of Ext∗S(k, k) and the free algebra on two vari-
ables of degree 1. The other non-Koszul cases in Theorem
6.1(a) are simpler and treated in a similar way.

(b) For graphs with six vertices, similar procedures are
used, and the most complicated case is case 109, in which
the arrangement is defined by the polynomial

(x1 − x3)(x1 − x4)(x1 − x5)(x1 − x6)(x2 − x3)(x2 − x4)

× (x2 − x5)(x2 − x6)(x3 − x5)(x3 − x6)(x4 − x5)

× (x4 − x6),

where we still have a nonfinitely presented Ext-algebra.
But the most interesting pairs of examples (from my

point of view) are 107 and 74, which have the same
Hilbert series both for the Orlik–Solomon algebra and
for the quadratic dual R!, and the first algebra satisfies
L3 and the second does not. But they both have Ext-
algebras that are not finitely presented. In particular,
the Tors (or Exts) of the Orlik–Solomon algebras differ,
the first difference occurring for TorOS

4,6 (k, k), which has
dimension 9 for case 107 and dimension 10 for case 74.

A similar phenomenon occurs for cases 87 and 71
where TorOS

4,6 (k, k) has dimension 16 for case 87 (but here
the Ext-algebra is finitely presented), and the case 71
where TorOS

4,6 (k, k) has dimension 17 and the Ext-algebra
is not finitely presented in that case. The differences
in the TorOS(k, k) mentioned above and the R(z) can
be found by the program Macaulay 2 [Grayson and
Stillman 2008]. Furthermore, the R!(z) can be found
by [Lima-Filho and Schenck 2006]. It remains to study
the Koszul complex R!⊗kHomk(R, k), mentioned earlier,
which is not done here. �

Remark 6.2. We have also studied many of the 853
cases corresponding to graphs with seven vertices. Ev-
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erything in sight leads to rational Hilbert series for the
Ext-algebras.

Remark 6.3. When we lectured about this at Stockholm
University, Jörgen Backelin made some interesting obser-
vations:

1. For graphs with five vertices, the only case of non-
finitely presented Ext-algebras comes from the case
in which you remove two disjoint edges from the
complete graph on five vertices (case 19).

2. If you remove three disjoint edges in the complete
graph on six vertices, you get case 109, which is the
most complicated one for graphs of order 6.

3. This leads to a heuristic surmise that if you remove
[n/2] disjoint edges from the complete graph on n

vertices (n ≥ 7), then you should get a very inter-
esting situation.

Remark 6.4. Here is another example, [Lima-Filho and
Schenck 2006, Example 1.3], where G is the “one-skeleton
of the Egyptian pyramid and the one-skeleton of a tetra-
hedron sharing a single triangle.” We have 1/R!(t) = (1−
2t)4(1−3t) and R(t) = 1+11t+48t2+103t3+107t4+42t5,
leading to the formula

1
PR(x, y)

= 1− 11x2y2 + 48x3y3 − x2y3 − 104x3y3

+ 5x3y4 + 112x4y4 − 6x4y5 − 48 x5y5,

i.e., this is another one of the cases in which (3–17) is
true but m3 �= 0.

Furthermore, the global dimension of R! is 5, and
the Ext-algebra is finitely generated but not finitely pre-
sented.

Remark 6.5. The preceding results show that the behav-
ior of the graphic arrangements in the non-Koszul case
are rather unpredictable (but the irrational case is rare
and it is quite probable that it does not occur for graphic
arrangements).

Remark 6.6. One of the referees has asked me to re-
call that for graphic arrangements, the Orlik–Solomon
algebra is Koszul ⇔ the graph is cordal ⇔ the arrange-
ment is supersolvable ⇔ the Orlik–Solomon algebra has
a quadratic Gröbner basis. For more details about this,
see [Schenck and Suciu 2002, Part 6.3] and the literature
cited there.

7. QUESTIONS OF MILNOR, GRIGORCHUK,
ZELMANOV, DE LA HARPE, AND IRRATIONALITY

In Section 5, we presented two hyperplane arrangements:
the Mac Lane arrangement ML and an easier variant
mlease, in (5–1), both of which have irrational Hilbert
series for the corresponding R!. In Section 5 we also pre-
sented the three possibilities for irrational Hilbert series
for R! when R is an arbitrary quotient of an exterior al-
gebra in five variables with an ideal generated by three
quadratic forms (the only possibilities): cases R12, R20,
and R15. It is seems difficult to achieve similar examples
for hyperplane arrangements using five variables.

But mlease can be considered as a higher variant of
R12, and similarly, ML can be considered as a higher
variant of R15. Indeed, in this last case there are central
elements in odd degrees ≥ 3, so that we get the exponents
2, 2, 2, . . . in the infinite product formula for case R!

15(t)
in Section 5 when we have divided out the center. But
so far, we have not found any hyperplane arrangement
corresponding (or similar) to the irrational case R20 in
Section 5.

If such a hyperplane arrangement existed, it would
in particular lead to results about growth of groups and
groups of finite width. Let me be more precise: First
recall that if A is any finite complex hyperplane arrange-
ment in C

n and if G = G(A) is the fundamental group
of the complement of the union of the corresponding hy-
perplanes in Cn, then G is finitely presented; indeed,
the complement has the homotopy type of a finite CW-
complex [Orlik 1989, Proposition 5.1]. Let

G = G1 ⊇ G2 ⊇ G3 ⊇ · · ·
be the descending lower central series of G defined in-
ductively by G1 = G and Gk = [Gk−1, G1] (for k ≥ 2).
We have a structure of a graded Lie ring (which can have
torsion),

gr(G) =
⊕
i≥1

Gi

Gi+1
,

where the graded Lie structure is defined as follows: Let
x̄ and ȳ be elements in Gi/Gi+1 and Gj/Gj+1 respec-
tively, and let them be represented by x and y in Gi

and Gj . Then xyx−1y−1 lies in Gi+j , and its image
in Gi+j/Gi+j+1 is denoted by [x̄, ȳ]. It was proved in
[Kohno 1983] that we have an isomorphism of graded Lie
algebras

gr(G) ⊗Z Q �
⊕

ηi, (7–1)

where η is the Lie algebra of primitive elements in the
subalgebra generated by Ext1OS(A)(Q,Q) of the Yoneda
Ext-algebra of the Orlik–Solomon algebra of A.
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Now Gml and Gmlease are finitely presented groups.
Therefore, if we could find a hyperplane arrangement
(probably in high embedding dimension) corresponding
to the case R20 or similar, we would have at the same
time found a finitely presented group G such that the Lie
algebra gr(G)⊗Z Q is infinite and of finite width (i.e., the
dimensions of the ηi in (7–1) are bounded (for further ter-
minology and results we refer to the surveys [de la Harpe
2000], [Bartholdi and Grigorchuk 2000], [Grigorchuk and
Pak 2006] and the literature cited there)).

If so, one would probably be close to finitely presented
groups having intermediate growth. Note that it is not
expected that such groups exist (cf. [Grigorchuk and Pak
2006, Conjecture 11.3], where it is stated two lines earlier
that the existence of such groups is a major open problem
in the field, and [de la Harpe 2000, research problem
VI.63]). But our two groups corresponding to the Mac
Lane arrangement ML and its easier variant mlease give
at least finitely presented groups with irrational growth
series (Hilbert series) of U(gr(G) ⊗Z Q).

8. FINAL REMARKS

It is interesting to note that about 32 years ago, in writing
his thesis, Jean-Michel Lemaire [Lemaire 1974] was in-
spired by the Stallings group-theoretic example [Stallings
1963] (now used again in [Dimca et al. 2006]) to construct
a finite simply connected CW-complex X such that the
homology algebra of the loop space H∗(ΩX,Q) is not
finitely presented (not even finitely generated). In [Roos
1979], we used a general recipe that in particular could
be used to translate Lemaire’s results to local commuta-
tive ring theory to obtain a local ring (R,m) such that
the Yoneda Ext-algebra Ext∗R(k, k) was not finitely gener-
ated, thereby solving in the negative a problem by Gerson
Levin [Levin 1974].

The example in Section 2 is just a skew-commutative
variant of my example in [Roos 1979], but with a quick di-
rect proof, which, it is to be hoped, should satisfy math-
ematicians working with arrangements of hyperplanes.
The theory of Section 3 above, combined with more diffi-
cult variants of the later developments in the 1980s about
a question of Serre–Kaplansky [Lemaire 1980], are here
shown to be useful for solving the second problem of
Denham–Suciu [Denham and Suciu 2006].
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[Löfwall and Roos 1980] Clas Löfwall and Jan-Erik Roos.
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