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let H, = 1+ % + -4+ % be the n-th partial sum of the
harmonic series. A classical result of Wolstenholme states that,
if p > 3 is prime, the numerator of Hy,_; is divisible by p2.
Here we consider, for a given prime p, the set J}, of n for which
p divides the numerator of Hy,. This set J,, had been previously
determined for p = 2,3,5,7. One of our results is that J11
contains exactly 638 integers, the largest of which is a number
of 31 decimal digits. We determine J,, for all p < 550 with
three exceptions: 83, 127 and 397.

The computation is based on a new p-adically convergent for-
mula for the quantity Hp, — H,/p. We describe a proba-
bilistic model for the sets J,, based on branching processes.
The model predicts that | J,| = O(p?(log log p)?™¢), and that
there are infinitely many p with |J,| > p?(loglogp)?. This
strengthens an earlier conjecture of Eswarathasan and Levine
that |Jp| is finite for all p. Another prediction of the model
is that there will be infinitely many pairs (n, p) for which p?
divides the numerator of H,,, but only finitely many for which
p?* divides H,,.

It has been conjectured that there are infinitely many p for
which |J,| = 3. We give a probabilistic argument that suggests
that such primes have a density 1/e in the set of all primes,
and experimentally confirm this by a determination of all such
p < 10°.

1. INTRODUCTION

The sequence of partial sums H, = 1+3+---+% of
the harmonic series has some interesting and well
known arithmetic properties. For example, it is
known that H,, is an integer only for n = 1, a re-
sult that Sandor [1993] attributes to J. Kiirschék.
Another well known result is Wolstenholme’s the-
orem [Hardy and Wright 1960, p. 89] saying that
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the numerator of H,_; is divisible by p* if p > 3
is prime. There is a relationship between values of
certain H,, and Fermat’s quotient q, = (a?~'—1)/p
mod p. For example, a result of Eisenstein from
1850 [Dickson 1952, p. 41] states that H, 1) =
—2g, mod p; this is easily seen from the binomial
expansion of (1 4+ 1)?. A more difficult result due
to Glaisher [1901, p. 50] is that Hp,3 = —3¢s
mod p if p > 3. These results are connected to
the first case of Fermat’s Last Theorem via the
theorems of Wieferich and Mirimanoff [Ribenboim
1979, p. 151].

If p is a prime, let J, be the set of n > 1 for which
p divides the numerator of H,. Eswarathasan and
Levine [1991] showed that, if p > 3, the set J,
contains p — 1, p?> — p, and p? — 1, and that, for
certain primes, such as p = 5,13,17,23 and 67,
there are no other elements in J,. They called the
primes with this property “harmonic primes,” and
conjectured that the set of such primes is infinite.
We will show in Section 3 that the criterion for a
prime to be harmonic given in that paper suggests
that the set of such primes has density 1/e in the
set of all primes. There we give the results of a
computation of all the harmonic primes p < 10°
and the observed density in various intervals, which
agrees quite well with this conjecture.

Eswarathasan and Levine provide a systematic
method for generating J,, based on the congru-
ence H,, — H,/p = 0 mod p?. If J, is finite,
their method will give a proof that it is finite, given
sufficient computation. They list J3 = {2,7,22},
Js = {4,20,24} (so that 5 is harmonic), and J;
(a set of 13 elements), but leave open the case of
J11. The determination of Ji; is given as a research
problem in [Graham et al. 1989, p. 304], where
some of these results are presented as a series of
exercises. As part of the computations described in
Section 5, we show that J;; has 638 elements, the
largest being 1011849771855214912968404217247.
This may explain why previous studies stopped at
p = 7. However, Ji; is by no means the largest set
we encountered in our computation. For example,
|J100| = 1273, |Js21| = 1763, |Jia7| > 2713, |Jgs| >
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5870, and |Js97| > 7718. We have determined J,
for all primes p < 550 for which maxJ, < p'%°.
This omits only the three primes 83, 127 and 397.
The computation uses the p-adic routines in PARI
[Batut et al. 1993] and is based on a p-adically con-
vergent series for Hy, — H,,/p (Theorem 5.2).

In Section 6 we provide a nonrigorous proba-
bilistic explanation for these striking observations,
based on the theory of branching processes. To
each prime p we associate a process that predicts
the number of elements in the set

Gm = Jp N [pm—l,pm - 1]

from the number in G,,_;. This process turns out
to be critical, that is, E(|Gn|) = |Gn-1] for all
m > 3. By a basic result of the theory, such pro-
cesses become extinct in a finite time with proba-
bility one, but the expected time to extinction is
infinite. This agrees with the conjecture already
made in [Eswarathasan and Levine 1991] that J,
is finite for all p.

As described in Section 7, this branching process
model allows us to predict the maximum size of the
sets |J,|. It predicts that |J,| = O(p*(loglog p)**<)
and that there are infinitely many p with |J,| >
p*(loglog p)®. This in turn gives a plausible pre-
diction about the possibilities for v,(H,), the ex-
ponent of the largest power of p dividing H,,. On
simple probabilistic grounds, one would expect the
number of occurrences of v,(H,) = k, for a fixed
p, to be about |J,|/p*~. We already know from
Wolstenholme’s theorem that v,(H,) = 2 occurs
infinitely often, but our model predicts that there
should be primes for which the number of occur-
rences of v,(H,) = 2 is arbitrarily large. The
model predicts also that there are primes p for
which the number of n with v,(H,) = 3 is arbi-
trarily large but of order between (loglogp)? and
(loglogp)®*t©. On the other hand, v,(H,) > 4
should occur for only a finite number of pairs (p, n).
Probably v,(H,) > 4 never occurs.

As expected, our computation found many ex-
amples of v,(H,) = 2. We found only five ex-



Boyd: A p-adic Study of the Partial Sums of the Harmonic Series 289

amples of v,(H,) = 3: four for p = 11, namely
n = 848, 9338, 105683 and 3546471722268916272;
and one for p = 83. These results are not surpris-
ing, since |J1;]/11% = 638/121 = 5.27. .., while the
number of enumerated elements of Jgs is 5870 =
.85... x 832, On the other hand, the number of
enumerated elements of J3g97 is only 7718, which is
less than .04x397%. These findings are entirely con-
sistent with our model since (loglog550)% < 4. No
examples of v,(H,) > 4 were found, which agrees
with the conjecture that none exist.

In order to better appreciate the interaction be-
tween experiment, model building and conjecture
in this study, we now depart from conventional
practice and describe the genesis of the results in
this paper. I was reminded of Wolstenholme’s the-
orem while helping a student with readings in num-
ber theory, and it seemed natural to ask whether
there were any other general results of a similar na-
ture. This led to the central question of this paper:
given a prime p, to study the set J, of n for which
H, is divisible by p. Initially we expected that
there would be little difference between the vari-
ous primes. An attempt to compute J, for some
small primes showed the necessity of using p-adic
methods, because the numerator and denominator
of H,, grow exponentially with n (see the beginning
of Section 5).

Computations for p < 60 revealed the recursive
structure of the sets J, as described in Section 3.
The peculiar behaviour for p = 11 was soon ap-
parent, and initially it seemed possible that Ji;
might be infinite. Up to this point, the computa-
tions had been based on the naive p-adic method
of Section 5.1, so it was only possible to compute
Ji1 N [1, 11°]. The structure of this set suggested
some sort of pseudorandom behaviour for which
branching processes apparently provided a suitable
model. This model, described in Section 6.1, led
to the conjecture that J, is finite for all p. A cru-
cial test for this conjecture would be to prove that
|J11| < 0.

At this time, we also noticed the heuristic argu-
ment, presented in Section 4, suggesting that the

set of primes for which J, = {p—1, p*> —p, p* — 1}
should have density 1/e. (Our working name for
such primes was “dull primes”). The test for this
conjecture by the computation of the dull primes
less than 10° seems to be fairly convincing evidence
of its correctness.

In November 1993, these results were presented
in a lecture at the opening of the Centre for Exper-
imental and Constructive Mathematics at Simon
Fraser University. After the lecture, Peter Bor-
wein made a remark about the possible relevance
of Bernoulli polynomials. This led to a study of the
classical [Glaisher 1901] and to Theorem 5.2, which
provided means for continuing the p-adic computa-
tion of H,, to much larger values of n, as described
in Section 5.2. The idea of finding the coefficients
in this expansion by solving a linear system, hence
avoiding any computation of Bernoulli numbers, is
natural from the point of view of numerical anal-
ysis. With this new method, we computed J, for
all p < 100 except p = 83, verifying, in particular,
that |Ji1] < oo. This was presented in Decem-
ber 1993 in a short lecture at the Western Number
Theory Meeting in Asilomar.

In January 1994, we came across [Sdndor 1993]
and discovered that the conjecture that J, is al-
ways finite had been anticipated by Eswarathasan
and Levine [1991]. Remarkably, their conjecture
was apparently based only on a computation of J,
for p =3, 5 and 7. They had discovered the basic
recursive structure of the sets J,, defined the set of
harmonic primes (our “dull primes”), and conjec-
tured that the set of such primes is infinite, as is
implied by our conjecture that they have density
1/e. Regarding p = 11, they say: “it even seems
quite difficult to show that Jy; is finite”. (The
reference to [Graham et al. 1989] in their paper
might give the impression that their investigations
were inspired by some of the problems in that book,
but Knuth informs me that it was the other way
around.)

Up to that point, we had thought in terms of
different branching process being defined for each

prime p, as described in Section 6.1. However,
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the apparent similarity of these processes for large
p suggested the universal branching process de-
scribed in Section 6.2, which is independent of p.
The success of the prediction of the finiteness of
J, from the branching processes model suggested
the stronger conjecture that the sets J, can be ap-
proximated by random samples from this universal
branching process. As a test for this conjecture and
to judge the effectiveness of our new computational
approach, we decided to extend the computations
to include the first 100 odd primes. A summary
of the data is given in Table 2 of Section 5. Once
it was realized that the deterministic initial condi-
tions described in Section 6.3 should be included,
the fit of the model to this data proved to be quite
good, as is evident in Table 3. This suggests that
the model is essentially correct, and we conjecture
that the distribution of |J,| as p varies over the
primes will be exactly as described by this process,
once the refinement mentioned in the last sentence
of Section 6.3 is incorporated. The conjectured
asymptotic bounds on |J,| already mentioned do
not need this refinement since they depend only
on the assumption that c;r=%/2 < P(|J,| > r) <
cor~1/2 for some constants ¢; > 0 and ¢,.

Of course, the computational results of Section 6
also provide a proof of Eswarathasan and Levine’s
conjecture in 97 out of 100 cases. In itself, this
could not be regarded as very strong evidence for
their conjecture since 100 primes is a rather small
sample of the set of all primes. Indeed, without the
guidance of the probabilistic model, the behaviour
of the numbers |G,,| for p = 82 and 397 would tend
to suggest that |J,| = oo for these primes. How-
ever, the evidence does seem to favour our proba-
bilistic model and hence to suggest that our quan-
titative version of their conjecture is correct.

2. SOME PRELIMINARY MATERIAL

For our computations and proofs, we will need
some background on the p-adic numbers. This can
all be found in the classic book [Mahler 1981].
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If p is a prime and if z # 0 is a rational num-
ber, we may write z = pFa/b, where a and b are
relatively prime integers not divisible by p. We de-
fine the p-adic order (or additive valuation) of z
to be v,(z) = k, and the p-adic norm (or multi-
plicative valuation) of z by |z|, = p~*. We define
v,(0) = —oo and |0|, = 0. Then |- |, is a norm on
the rationals.

The set of p-adic numbers Q, is the completion of
the rationals in the metric d,(z,y) = |z — y|,. The
additive and multiplicative valuations extend to Q,
by continuity. Each z € Q, has a unique p-adic
expansion T = ZZOZUP(E) arp®, with 0 < a;, < p,
where the series converges in the p-adic norm. We
will use the standard notation O(p®) for any x for
which v,(x) > s.

An element z € Q, with v,(z) > 0 is called
a p-adic integer. Every ordinary integer is a p-
adic integer, as is every rational with denominator
prime to p.

The ultrametric inequality states that v, (z+y) >
min(v,(z),v,(y)), with equality if v,(z) # v,(y).
An easy consequence of this is that v,(H,x) = —k,
so liminf, .. v,(H,) = —oo. As we will see in
Proposition 3.3, the conjecture that J, is finite
is equivalent to lim, . v,(H,) = —oo, that is,
lim, o |H,|, = 00, analogous to the well-known
lim,,_, ., H, = oo.

We will also need some facts about the Bernoulli
numbers B,, and Bernoulli polynomials B,(z). Fol-
lowing Euler [1738], the Bernoulli polynomials are
defined by the exponential generating function

i B, (z)t"  te™
— n! et —1’

and the Bernoulli numbers by B, = B,(0). From
this it is obvious that B,(z) is a polynomial of
degree n whose coeflicients are given explicitly by

B,(z) = Zn: <Z) B, szt

k=0

It follows immediately from the generating func-
tion that B,(z + 1) — B,(z) = nz™ ' if n > 1, so
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we obtain the classical formula of Jakob Bernoulli
[1713, pp. 95-98]:

m—1
knfl — Bn(m) B Bn
k=1 n
"1
= - (n) B,,_m* 2.1)
n\k
k=1

It is an elementary fact that B, = 0 for n odd,
except for n = 1. A deeper result is the theorem
of Clausen and von Staudt, which implies that the
denominator of B,, is square-free and is divisible
by p if and only if p — 1 divides 2n [Mahler 1981,
p. 291]. Hence |B,|, < p for all p and |B,|, <1 if
p — 1 does not divide 2n.

If A = (a;;) is a matrix with p-adic entries, we
define |A|, = max]|a;;|, and v,(A) = minwv,(a;;).
Clearly |AB|, < |Al|,|B|p- Given variables z1,...,
Z,, the Vandermonde matrix V(zq,...,z,) is de-
fined as the n x n matrix whose (i, 7)-th entry is
xf ~! for 1 < 1,7 < n. We shall need the following
estimate:

Lemma 2.1. The matriz V =V (0%,1%2,22,...,n?) is
invertible, and |V 71|, < p*/*=1) for any prime p.

Proof. Consider any V = V(zy,...,z,) where the
x; are distinct. Let ¢ be a column vector with
components cg,...,¢, 1. Then the entries of Ve
are P(xz;), where P(z) =co+c1x+ -+ cp 1™ L
Thus, if b has components b4, . ..,b,, we have V¢ =
b if and only if P(z) is the Lagrange interpolating
polynomial defined by P(z;) = b;. This polynomial
is given explicitly by

_ Z b

i=1

Hk;éi(mk — )
P(x) p————————.
Hk#i(mk — ;)
Thus, the denominator of the (7, j)-th entry of V1
is a factor of [[, ;(zx — ).
Specializing to z; = 2, for 0 < i < n, we find
that the denominator of an entry of the i-th row

of V7! is a factor of ‘Hk#(k — i)(k + 4)|, which

divides (n —14)! (n+1)!. As is well known, v,(n!) =
> healn/p*] < n/(p — 1), and hence
n—1t mn+i 2n
—i) ! —
vp((n z).(n+z).)<p_1+p_1 PR

Thus each entry of V! is of the form a/b with
v(b) < 2n/(p — 1) and v,(a) > 0, so [V, <
2/ -, 0

3. RECURSIVE GENERATION OF THE SETS Jp

The next result, from [Eswarathasan and Levine
1991], is the basis for the recursive construction of
the sets J,. Notice that we define H, = 0.

Lemma 3.1. Ifp > 3 is prime, n > 1, and 0 < k <
p—1, then

1
H,, = ;Hn +O0(p?) 3.1
and
Hanrk = Hpn + Hk + O(p) (3.2)

If p = 3, the first of these congruences holds with
O(p?) replaced by O(p) and the second holds as
stated.

Proof. The difference H,, — H,/p is the sum of
1/m over all m < pn that are relatively prime to
p. It can be written as a sum of n sums of the
form Y7 1/(kp + j), each of which is O(p?) by
the same argument as for Wolstenholme’s theorem.
Equation (3.2) is obvious. O

Proposition 3.2. If p is an odd prime, n > 1 and
0 <k <p-—1, then v,(Hpntr) > 0 if and only if
vp(H,) >0 and H,, = —Hy + O(p).

Proof. Observe that v,(Hy) =0for 1 <k <p-—1.
Thus, if £ # 0 and v,(Hp,4x) > 0, equation (3.2)
implies that H,, = —Hy + O(p) and so v,(Hp,) >
0. Then (3.1) implies v,(H,) > 0. The case k =0
is obvious. O

Remark. This proposition has an amusing interpre-
tation in terms of the expansion of n in base p. It
says that, ifn = ag a1 ..., = ag+a1p+- - -+, p™
with 0 < a; < p — 1, the condition v,(H,) > 0
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implies that v,(H,/) > 0 for each of the numbers
n' = ag, g1, ..., Qg ... Q1.

As in [Eswarathasan and Levine 1991], Proposi-
tion 3.2 gives a method for generating the sets J,.
For fixed p, let

Gm={p™*<n<p™:pdivides H,}. (3.3)

So G; contains p — 1 and possibly some other n.
Obviously J, = |,,~; Gm- We define G, = {0}
with Hy = 0, and J? = J,U{0} = U, - Gm. Given
G, we can generate G, as follows: let n € G,
with H,, = ap + O(p?®). Then (3.1) and (3.2) give
Hyin =a+ H,+O(p) for 0 < k < p—1. Thus
pn+k will be in G,,41 if and only if a4+ H, = O(p);
this can be tested by running through a table of the
values of —H} mod p. Clearly, J, is finite if and
ounly if G,, is empty for some m. We denote by
M, the smallest m for which G,, is empty (and
M, = oo if J,, is infinite).

The elements of J) = J, U {0} can be arranged
in a tree. The elements of the m-th generation
G, are the nodes at height m. If m > 1, there is
an edge labelled k € [0, p — 1] from n € G,, with
H, = ap + O(p?) to pn + k € G,,;; if and only
if H, = —a. If m = 0 there are edges from the
root node Gy to Gy for each 1 < k < p — 1 with
H;, = 0. If we think of this as a family tree, M, is
the extinction time of the family.

The set of residues R = {Hy, mod p, ..., H, 4
mod p} clearly plays an important part in the
structure of the tree just described. One obvious
property of R is that it is symmetric with respect
to 1(p—1), that is, H,_;_, = H; mod p. This fol-
lows from Wolstenhome’s theorem. Our heuristic
probabilistic arguments will be based on the as-
sumption that this is essentially the only general
property possessed by R.

Proposition 3.3. For any prime p > 3, the set J, is
finite if and only if v,(H,) — —00 as n — 0.

Proof. 1f v,(H,) — —oo then v,(H,) < 0 for suffi-
ciently large n. For such n we have p { H,, hence
Jp is finite. On the other hand, if J, is finite, G, is
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empty for sufficiently large m. Let M, denote the
smallest such m, so v,(H,) < 0 for p™™* <n < p™.
Then, by induction, using Proposition 3.2, we see
that v,(H,) < —I for all n with p™ =1 < n < pm+t,
Thus lim,, o v,(H,) = —00. O

Remark. Denoting |z|., the usual absolute value of
a rational z, we have [[ _ |z[, = 1 for any ra-
tional x (this is called the product formula). Thus
[1, |Hxalp =1 for each n, and hence

Jun T]VHaly =1
p

It is well known that |H, |, — oo, and it is easy
to see that |H,|, = 2F for 28 < n < 2k If
Jp is finite for each p > 3, Proposition 3.3 im-
plies that lim,,_, |H,|, = oo for each p < oo, so
[1,limy, . |Hy|, = 0o. There is no inconsistency
here, just a lack of uniform convergence.

4. HARMONIC PRIMES

For p > 3 prime, we define the Wolstenholme quo-
tient w, to be the integer with 0 < w, < p—1 such
that H,_; = wyp® + O(p®).

Proposition 4.1. H,2_, = w,p + O(p?) and Hyp:_; =
wpp + O(p?) for any prime p > 3, so J, always
contains p—1, p*—p and p*—1. The set J, consists
of exactly these three integers if and only if there
are no solutions to H, = 0 mod p and H), = —w,
modp for 1<k <p-—2.

In this case we say that p is harmonic.

Proof. This follows directly from Lemma 3.1. See
[Eswarathasan and Levine 1991] or [Graham et al.
1989, pp. 531-532] for details. O

As observed earlier, the set of residues R = {Hj
mod p : 0 < k < p— 1} is symmetric, so the
values of Hy,...,H 1y mod p determine the
other H;, mod p for k < p. According to Proposi-
tion 4.1, p is harmonic provided the set of residues
H,,...,H4p_1)/2 mod p misses the values 0 and
—w,. If we make the heuristic assumption that
these residues are independent random integers in
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{0, ..., p— 1}, the probability that none of Hy, for
1<k<3(p—1), equals 0 or —w, is

(p — 2)(1’*1)/2
» .

This tends to 1/e = .368... as p — oo, suggesting
that the density of harmonic primes is 1/e. Table
1 contains a survey of the harmonic primes p <
10° that tends to confirm this conjecture, although
the number of harmonic primes in a given interval
is perhaps somewhat higher than expected. The
computation was done p-adically, as we explain in
Section 5.

range all harmonic | ratio
[5,100] 23 8 .348
[5,1000] 166 60 .361
[5,10000] 1227 447 .364
[5,100000] 9590 3622 .378
(10000, 20000] 1033 374 .362
(20000, 30000] 983 390 397
(30000, 40000] 958 356 372
(40000, 50000] 930 351 377
(50000, 60000] 924 345 373
(60000, 70000] 878 354 .403
(70000, 80000] 902 342 379
(80000, 90000] 876 340 .388
(90000, 100000] 879 323 .367

TABLE 1. For each range of values of p, we give
the number of primes in this range, the number
of harmonic primes in this range, and the ratio of
these two counts.

The argument in the previous paragraph implic-
itly assumes that w, # 0. An article by Gardiner
[1988] considers various equivalent formulations of
the condition w, = 0, one of the more interesting
being that it is equivalent to p dividing the nu-
merator of the Bernoulli number B, 3. There are
only two known primes that satisfy this condition,
namely p = 16843, noticed by Wells Johnson in his
computation of irregular primes, and p = 2124679,
found independently by Richard McIntosh [Guy
1993] and by Buhler et al. [1993]. Therefore it
seems safe to ignore this possibility in our heuristic

argument. The argument is also not overly sensi-
tive to the fact that H; = 1 can hardly be consid-
ered to be random.

5. COMPUTATION OF THE SERIES

Since we wish to consider the factorization of the
rational numbers H,, an obvious way to proceed
would be to compute the H, exactly using ratio-
nal arithmetic and to compute v,(H,) by trial di-
vision. This cannot succeed for even moderately
large n, for the following reason: if we write H,, =
a,/b, in lowest terms, both a, and b, grow ex-
ponentially with n. To see this, note that b, <
lem(1,2,...,n) ~ e3+°@n hy the prime number
theorem [Hardy and Wright 1960, p. 362]. In the
other direction, let £ > 2 and let p be a prime sat-
isfying n/k < p < n. Then the sum of the terms
1/m of H,, with p|m is exactly p~*Hy_;. Thus p|b,
unless p is one of the finitely many primes dividing
Hy_;. So b, > [[ p, where the product is over all p
with n/k < p < n that do not divide Hy_;. Again
by the prime number theorem, we have

[Ip ~ exp((@ = k" + o(1))m),

~ e(l—i—o(l))n‘
1+o(1))n.

and since k is arbitrary, b, Since
a, /b, ~ logn, we also have a, = el

Thus, even for n as small as 10*, we would need
over 4000 digits to represent each of a,, and b,, ex-
actly. Since we will find it necessary to deal with
n as large as 397'%° this is clearly not a feasible

approach.

5.1. First p-adic Method

Since we are concerned with the question of di-
visibility of H,, by p, it is natural to represent H,
p-adically. For a given precision s we can represent
H,, by the truncated expansion

s—1

> apt+ 0, (5.1)

k=v,(Hpy)

H, =

where 0 < a; < p are the p-adic digits of H,,.
The successive terms H, can be computed from
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H, = H,_; + 1/n, and the truncated expansion
of H, can be computed accurately by adding the
truncated expansions of H,_; and 1/n. This is
not an exact representation of H,, but, in con-
trast to the decimal expansion, carries propagate
to higher-order digits so round-off error does not
accumulate. Provided s > v,(H,), the value of
vp(H,,) can be determined accurately. The compu-
tational number theory system PARI has an effi-
cient implementation of arithmetic using truncated
p-adic expansions, which we used throughout our
computations.

This naive or direct p-adic method was used to
compute the complete set J, for all p < 60 except
for p = 11. The computation of H, mod 11 for
n < 11° ran for several days on a Sun Sparcstation
10. However, for p = 11, we must consider n as
large as 113°, so this approach cannot settle even
the case p = 11.

5.2. Second p-adic Method

In order to deal with H,, for n larger than about
10'°, we need the following refinement of the con-
gruence (3.1).

Theorem 5.2. Let p be an odd prime. Then there is
a sequence ¢, € Q, such that, for alln > 1,

1 o0
H,,—--H, = chpzkn%, (5.2)
p k=1

where the series converges in the p-adic norm. The
¢, are p-adic integers unless (p — 1)|2k or plk. In
general, v,(cx) = —1 + v,(1/k) if (p — 1)|2k, and
vp(cx) = vp(1/k) otherwise.

Proof. By Bernoulli’s formula (2.1),

- -1
kr—l = Z (7" k )BTkmk

k=1 k=1

m—1

for any r,m > 1. If we take r = p(p**') = p*(p—1),
Euler’s formula gives k" = 1 mod p**! if (k,p) =1
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and k" = O(p") if p|k. Setting m = pn in the sum
above we get

pn—1 pn—1

H,, — %Hn = > k'=)EF+00p)
k=1

k=1
(k,p)=1

= ; % <Z> B,_x(pn)* + O(p°)

1
(_1)k71EBT_kpknk + O(ps)7

k=1
(5.3)
where we have used the identity

()4 oo

J

Except for £k = r — 1, the terms with k£ odd in this
sum vanish. Let cx(s) = —B,_a/2k, for k > 1.
Then, by the theorem of Clausen and von Staudt,
ck(s) is a p-adic integer unless (p — 1)|2k or p|k.
Clearly v,(ck) = —1 + v,(1/k) if (p — 1)|2k and
vp(cr) = v,(1/k) otherwise. Thus, retaining only
terms in the final sum in (5.3) that are of order less
than O(p*), we have, for n > 1,

H,,— =H, =) ca(s)p*n* +0(p°), (4

N
k=1
where N = 2(s + 1) for | ~ log s/ logp.

We wish to let s — oo in (5.4). For convenience,
let ¢o(s) = 0. Then, from (5.4), we have

N
D (e(s + 1) = cx(s))p™n = O(p").

k=0

We can solve these N+1 equations with 0 < n < N
for the coefficients (ci(s+ 1) — cx(s))p**. The ma-
trix of this system of equations is the Vandermonde
V = V(0%12%,...,N?). By Lemma 2.1 we have
v,(V™1) > —2N/(p — 1), so we obtain

(cr(s +1) — cr(s))p™ = O(p* 2N/ @),
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Hence, for each k, the p-adic limit lim, ., cx(s) =
¢, exists, and

Crp — ck(s) — O(p72k+(>\+o(1))s)

with A =1—1/(p — 1) > 0. Replacing cx(s) by
cx in (5.4) changes the error from O(p®) to O(p*?).
Letting s — oo yields (5.2). The final statements
about ¢, follow from the corresponding results for
ck(s). O

Remark 1. For n = 1 and p > 3, we have H, —
H,/p=H,_; = w,p* + O(p®), by the definition of
the Wolstenholme quotient, so ¢; = w, mod p. For
p = 3 we have v3(c;) = —1 since (3 — 1)|2.

Remark 2. The proof of the theorem shows that

Bo(pe)—2k

2k
However, this is not an efficient formula for calcu-
lating c;. Instead, as in the proof, one should com-
pute b, = H,, — H, /p to precision s > 2Np/(p—1)
and then solve the linear system

¢, = lim
E

N

ZCkPanzk — bn + O(ps)

k=1
for c1p?,...,cnp?Y. Using Lemma 2.1 as in the
proof of the theorem we see that c;p** is obtained
to precision s — 2N /(p — 1) > 2N.
For example, if p = 3 one obtains
1 =23""+1+3"+0(3%,
ca=3"+2+3+34+23"+0(3%,
c3=23"2423"14+2+23+3"+0(3%),
ca=23"14+2+3+3*+23+0(3%
For p = 5 we have
c1 =3+35°+25°+ 5+ 0(5°%),
c; =451+ 4+5+35%+45+25* + O(5%),
cs =3+45+ 5%+ 35+ O(5°%),
s =257+ 2+25+5%+25+ 0(5°),

all easily derived without the computation of any
Bernoulli numbers.

Remark 3. For a given N, the sum Zszl crp*Fn?k

represents H,, — H,/p with precision
s = min(uvp(cy) + 2k),

which is typically 2N 4+ 2 and certainly no smaller
than 2N + 2 — [log, (N + 1)], which only occurs if
N + 1 is a power of p. In our computations, the
largest value of N used was N = 50, for which
s > 101 for all primes p > 100.

Now the method of computation is easily described.
Given the prime p, one chooses a value of N, de-
termines the precision s from Remark 3 and com-
putes the coefficients ¢}, = cxp** to precision s as
explained in Remark 2 above. In the process, one
will have computed H,, for 1 <n < p—1 to pre-
cision at least s and hence will know G;. Once
one has computed G,, and H, for each n € G,,
to a precision r < s, one computes G,,;; as fol-
lows: For n € G,,, compute Hp, from equation
(5.2) to precision r — 1. Then compute successively
Hypnir = Hppyi—1+1/(pn+ k) fork=1,...,p—1,
thus determining G,,,11, and H,, foreachn € G,, 1,
to precision r — 1. Notice that here, in contrast to
the method of Section 5.1, the precision decreases
by 1 in passing from m to m + 1, so a given initial
precision s will only allow one to compute G,, up
to m = s. If it turns out that G, is not empty, one
must begin the computation again with a larger
value of N. In practice we used the values N = 10,
20, 30, 40 and 50 in succession. Since one may
reduce the precision as m increases, the speed of
computation actually increases with increasing m
in spite of the compensating increase in the size of
n.

It should be clear that the computation is in
general very much faster than the direct method
of Section 5.1 since the number of terms H,, with
p™ < m < p™*t! that are computed to determine
Gmy1 is p|Gy,| rather than p™(p — 1). For exam-
ple, the largest value of |G,,| appearing in Table 2
is |Gge| = 228 for p = 397, so in computing |Ggr|
we needed 397 x 228 = 90516 terms H,,, as com-
pared with 397%6x 396 = 1.24x1022¢ terms required
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p | Mp | |Jpl values of |G| for 1 < m < M,
3] 4 301,1,1
7|7 13| 1,2,4,2,3,1
11 30 638 | 3,8,10,11,18, 38, 24, 26, 27, 26, 35, 39, 33, 40, 40, 40, 32, 39,47, 34,20, 10,12,6,4,4,4,5,3
19| 7 19 | 1,2,4,3,6,3
29 5 18 | 3,8,5,2
31| 7 26 | 1,2,4,6,8,5
37 4 15 | 3,4,8
43| 5 27 | 3,8,8,8
47| 5 11| 1,2,4,4
53| 6 17 | 3,4,4,4,2
59| 6 17 | 1,2,4,6,4
61| 4 13 | 3,6,4
71| 8 45 | 1,2,8,8,10,9,7
83 | x| 1,2,4,6,8,6,4,6,6,6,6,8,6,8,12,10,10,12, 10, 11,10, 18, 20, 24, 31, 30, 25, 21, 26, 25, 26, 26, 27, 28, 38,43, 51, 54, 72
62,59, 66, 65, 66, 58, 56, 48, 54, 68, 77, 60, 51, 60, 49, 65, 72, 79, 70, 66, 71, 74, 77, 79, 72, 75, 80, 91, 86, 87, 77, 81, 89, 92
80, 68, 72, 64, 60, 64, 78,90, 117,101, 94, 108,118, 114,100, 102, 96, 108, 113, 108, 125, 147, 155,141, 163,171,173, . ...
89 | 4 711,24
97 | 11 74 | 3,6,6,14,6,6,10,8,12,3
101 | 10 44 | 1,2,8,7,4,6,6,6,4
103 | 14 63 | 1,2,4,6,4,8,10,8,4,4,6,4,2
109 | 47 | 1273 | 7,18,22,16, 14, 20, 38, 57, 48, 58, 58, 48, 39, 34, 39, 46, 32, 38, 37, 42, 40, 24, 36, 50, 44, 36, 35, 42, 40, 32, 22, 20, 18,17
12,12,18,16,12,6,4,8,8,6,2,2
127 |« x| 1,2,4,6,4,4,8,10,12,14, 18, 25, 18, 16, 18, 30, 35, 38, 36, 26, 34, 36, 30, 53, 46, 36, 24, 26, 25, 30, 34, 26, 34, 26, 26, 18,
28, 34, 35, 46, 40, 40, 42, 40, 32, 25, 26,21, 19, 22, 20, 16, 10, 10, 14, 19, 16, 16, 16, 19, 26, 37, 26, 20, 22, 20, 22, 24, 24, 18
31,42, 26,28, 22, 24, 30, 26, 30, 26, 40, 34, 41, 36, 40, 33, 34, 50, 46, 47, 34, 32, 40, 44, 34, 40, 36, 31, 34, 28, . .
131 | 4 711,2,4
137 | 8 38 | 3,6,6,4,10,4,5
151 | 4 711,2,4
163 | 20 74 | 1,2,4,5,2,4,4,6,6,6,6,4,2,4,4,4,4,4,2
167 | 49 | 526 | 1,2,4,2,1,2,8,8,18,14,12,10,10,8, 10,14,12, 8,6,8, 14,8, 8, 10,12, 16, 22, 19, 14, 20, 23, 23, 26, 14, 10, 8, 10,6, 7, 10,
6,4, 4,10, 18,20, 16, 10
173 | 33 | 288 | 3,6,6,7,10,10,14, 14, 15,16, 14, 10, 10, 12, 6, 10, 12, 16, 16, 14, 14, 8, 4,4, 8,7, 10,4, 2,2, 2, 2
181 | 6 19 | 1,2,8,4,4
197 11 41 | 1,2,4,4,4,4,6,6,6,4
199 | 5 11 | 3,4,2,2
211 | 12 59 | 1,2,4,2,2,8,6,8,12,8,6
27| 6 31 | 5,10,8,4,4
229 | 17 65 | 1,2,4,4,4,2,2,4,4,4,4,2,4,6,10,8
233 | 21 | 176 | 1,2,4,8,6,15,12,14,10,16,12,16,8,8,6,8,12,12,4, 2
257 5 20 | 3,8,7,2
260 | 20 | 106 | 3,6,6,6,4,4,4,6,12,11,6,4,6,6,6,6,4,2,4
271 | 18 55 | 3,4,2,2,2,2,6,2,4,4,4,6,2,4,2,4,2
283 | 14 89 | 1,2,8,4,2,4,4,8,12,10,12, 14, 8
313 | 11 79 | 3,6,4,12,14,8,14,12, 4,2
347 | 10 47 | 3,6,6,4,6,4,10,4,4
353 6 21 | 3,6,2,6,4
350 | 35 | 253 | 1,2,4,8,4,2,2,2,8,10,8,8,8,6,10,14, 10,12, 14, 8,10, 12, 12,6, 6, 8, 14,18, 12,6, 2, 2, 2, 2
367 8 29 | 1,2,4,6,6,4,6
373 | 4 711,24
379 13 79 | 3,8,4,4,14,14,6,8,6,4,6,2
383 | 11 41 | 1,2,12,4,4,2,2,4,6,4
380 | 8 19 | 1,2,4,6,2,2,2
397 |« x | 3,6,2,4,4,8,14,4,6,12,14,17, 16, 14, 24, 30, 40, 38, 38, 33, 40, 44, 40, 42, 50, 52, 42, 44, 44, 58, 52, 50, 28, 24, 26, 34,

30, 26, 24, 34, 40, 29, 30, 42, 30, 44, 38, 48, 60, 86, 86, 66, 68, 80, 63, 60, 56, 68, 78, 60, 56, 46, 50, 70, 68, 72, 82, 74, 105,
90,94, 94,130,111, 78,85, 82,93, 116, 135, 151, 184, 180, 208, 180, 228, 223,197, 156, 131, 144, 126, 152, 184, 158, 162,
140,120, 118,126, . ..

TABLE 2. Nonharmonic odd primes p < 550 (continued on next page).
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10,12, 10,14, 14, 16, 16, 22, 16, 14,6, 2, 6, 2
421 | 5 23 | 3,10,6,4

439 | 11 105 | 3,4,10,16,18,20, 16, 10,4,4

463 | 4 711,24

523 | 4 711,2,4

p | Mp | |Jp values of |G| for 1 <m < M),
401 5 13 | 3,6,2,2
409 | 4 9|3,4,2

419 | 52 | 703 | 1,2,4,4,8,10,10,12,18,22,30,22, 38, 25,29, 20, 24, 22, 16, 10, 18, 12, 12,18, 12, 10, 12, 12, 10, 8, 14, 14, 12, 6, 10, 16, 20,

433 | 30 | 205 |3,6,10,14,8,8,6,4,9,8,6,6,2,2,2,7,6,2,4,6,12,14,14,14,8,6,8,6,4
457 | 36 | 323 1,2,4,4,8,16,10,18,34, 28,18, 10,4, 10,18, 14, 14, 20,10, 8, 8,8,4,6,8,4,2,2,2,2,4,4,6,8,4

521 | 61 | 1763 | 3,4,8,8,16, 18,16, 30, 32, 28, 22, 38, 58, 61, 60, 68, 72, 72, 62, 72, 60, 50, 53, 54, 70, 46, 32, 32, 40, 26, 26, 28, 30, 26, 18,
26,24, 20,20, 24, 34, 34, 28, 34, 20, 14, 6, 4, 8, 10, 12, 14, 16, 8,12, 18, 16, 10, 10, 2

TABLE 2.

Nonharmonic odd primes p < 550 (continued). For each p we list the total size of the set J, and the

size of its generations Gy, as defined in (3.3). The smallest value of m for which |G,,| = 0 is M. An asterisk
indicates that M, > 100. For these primes, the sum of the sizes of the G,, up to m = 100 is a lower bound for
|Jp|, equal to 5870 for p = 83, to 2713 for p = 127, and to 7718 for p = 397.

p

MP ‘JP

|G|

5,13,17,23,41,67,73,79,107, 113,139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277,
281,293,307, 311,317, 331, 337, 349, 431, 443, 449, 461, 467, 479, 487, 491, 499, 503, 541, 547

2 3 1,2

TABLE 3.

by the direct method. The individual steps in the
more elaborate method based on Theorem 5.2 are
slightly more time-consuming than for the method
of Section 5.1 since the required precision is higher,
but the considerable difference in the number of
steps more than compensates for this.

We applied this method to the first 100 odd
primes. Computations were done using PARI 1.38
on a Sun Sparcstation 10 with 48 Mbytes of main
memory, with precision 2s < 100. The results are
summarized in Tables 2 and 3.

6. A PROBABILISTIC MODEL

6.1. Branching Processes

We have seen in Section 3 that the set J = J,U{0}
has the structure of a tree. We say that n € G,, is
a node at height m, and that n has type a if H,, =
ap+ O(p?). Each node of type a at height m gives
birth to j children at height m + 1, where j is the
number of 0 < k < p—1 for which Hy = —a mod p.
The type of the child pn+k is not determined by a,
but rather by the higher-order digits in the p-adic
expansions of H,, and Hy. If we wish to model the

Harmonic primes p < 550.

generation of the tree J, by a random process, it
would seem reasonable to regard the type of n € J,
as being essentially random, at least for large n.
So we can think of each member of G,, as giving
birth to a random number of children in G,, ;.
The probability distribution is determined by the
distribution of H), mod p: If there are n; values of a
for which H; = —a has j solutions, the probability
that n € G,, has j children should be given by
p;j = 1;/p-

An example should make this clear. Let p = 11.
Then the sequence —H; mod p for 0 < k£ < 10 is
0,10,4,0,8,10,8,0,4,10,0. Thus, an n of type 0
has 4 children, one of type 10 has 3 children, one
of type 4 or 8 has 2 children, and one of any of
the remaining types has no children. The corre-
sponding probabilities are thus py = %, Py = 12—1,
Py =Py = ﬁ, and p; = 0 for all other j. It is worth
observing that the empirical values of 11py, 11ps,
11ps and 11p, are 7.052, 2.034, .896 and 1.017,
since the 638 = 11 x 58 nodes of J;; are distributed
as follows:

012 3 45 6 7 8 910
59 56 59 63 61 63 61 63 57 44 52

type a
count
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Notice in this example that the expected number
of children of a given parent is } . jp; = 1. This
is easily seen to be true for all p: For each a =
0,1,..., p—1,let S, denote the set of 0 < k < p—1
for which Hy = —a. Then each £k =0,1,...,p—1
appears in exactly one S, so ) _|S.| = p. Clearly
Zj Jn; = Za |Sa| s0 Z]J(nj/p) =1

Therefore, for each p, we have defined a sim-
ple branching process or Galton—Watson process.
Such processes were originally considered by Gal-
ton and Watson in modeling the extinction of fam-
ilies, but they also apply to, among other things,
bacterial growth and nuclear chain reactions. The
standard reference is [Harris 1963].

A Galton—Watson process can be completely de-
scribed by the probability generating function

f(S‘) = ijsja

which in our case is a polynomial. Define the it-
erates of f by fo(s) = s and fuyi(s) = f(fm(s)),
and let f,,(s) = >, Pm,;8’. The basic and delight-
ful result of Watson is that P(|X,,| = J) = pmj,
where X,, denotes the m-th generation. Thus,
the probability of extinction by the m-th gener-
ation is P, o = fm(0), and can be found by sim-
ply iterating the function f(s) starting at s = 0.
Also, E(|X,,]) = f/,(1) = f'(1)™ from the chain
rule. The size of E(|X;]|) = f'(1) thus governs
the dynamics of the process, the supercritical case
E(]X1|) > 1 corresponding to exponential growth
in the population (of persons, bacteria or neutrons)
and the subcritical case E(|X1]) < 1 corresponding
to exponential decay.

We have E(|Xi|) = f'(1) = > ;jp; = 1, as
shown above, so E(]X,,|) = 1 for all n and hence
we have a critical process. The generating function
f(s) has a single fixed point in 0 < s < 1 at the
point s = 1 and the curves t = f(s) and ¢t = s are
tangent there. Thus it is clear geometrically (from
the standard “cobweb” diagram) that f,,(0) — 1
as m — oo; in other words, the process will become
extinct with probability 1.
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In fact, it was shown by Kolmogorov in 1938
[Harris 1963, p. 21|, that, if we let V, = f"(1) be
the variance of | X4,

2
Vem
as m — oo. This shows that P(|X,,| > 0) — 0. If
we let M, be the extinction time, i.e., the minimal
value of m so that |X,,| = 0 (or oo if this never

occurs), the distribution function of M, is given
by

P(|Xm| > 0) = 1= fm(0)

P(M, < m) = P(|X| = 0)

2
= fi(0) ~1—
Ful0) 1=
Thus M, < co with probability 1 = lim f,,(0), but
the expected time to extinction,

E(M,) = EP(|Xm| > 0),

is infinite because the harmonic series diverges.

The process { X, } we have just defined describes
the progeny of a single individual: the initial con-
dition is |Xo| = 1 with probability one. We will
modify this slightly below to incorporate more ap-
propriate initial conditions.

We can regard this process as producing a ran-
dom tree that is finite with probability one. Our
particular tree Jg is completely deterministic, but
it is a possible outcome of the process just de-
scribed. It seems more reasonable to suppose that
it falls into the set of probability one consisting
of the finite trees produced by {X,,}, rather than
into the set of probability zero consisting of the
infinite trees so produced. This tends to support
the conjecture that J, should be finite. Since the
expected value of M, is infinite, we should expect
as we vary p that we will encounter trees for which
M, is arbitrarily large. The data of Table 2 seem
to support this conjecture.

Note that a different branching process has been
associated with each p, so (6.1) might lead us to
expect that primes with a larger variance V,, should
tend to have smaller M,. It is true that p = 83,
with M, > 100, has the comparatively small Vg3 =

(6.1)
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1.229.... The largest value of V, for p < 1000
is attained by the harmonic prime 179, for which
Virg = 2.335... and Mi,9 = 3. However, there are
many harmonic primes with small variance, and
both 109 and 521 have variance greater than 2
(which is the “typical” value, as we will see below),
so it does not seem possible to detect a relation-
ship between V,, and M, from the data of Tables 2
and 3.

Another factor of plausible significance for the
size of M, is |G;|. Indeed, p = 109 with |G;| =7
does turn out to be rather special, having Mjgy =
47 and |Jyp9| = 1273. However, p = 227 with
|G1| = 5 has only Myy; = 6 and |Ja27| = 31, while
p = 83 and 127 with M,, > 100 both have |G| = 1,
so it does not seem that this has a significant effect
on the size of M,,.

6.2. A Universal Distribution

Examining the probability distributions for p <
1000, one observes that they do not differ much
from one another. An argument like that used to
guess the density of harmonic primes suggests that
for large p the probabilities p; are well approxi-
mated by the following distribution:

0 for j odd,

= 2-7/2
P; e 12 for j even 6.2)
(4/2)!

(that is, a Poisson distribution supported on the
even integers). The parity distinction is due to the
symmetry about 7(p — 1) of the set of residues

{Hpmod p, ..., H,_; mod p}.

For these probabilities p;, the generating function
is f(s) = exp(3(s* —1)). This distribution has
mean 1 and variance 2. See Table 4 for a compar-
ison with observed values.

For the limiting process, whatever the initial con-
ditions, all |X,,| will be even for sufficiently large
m, but this will not be the case for the processes de-
fined for the individual primes as in the first para-
graph of this section. For these, if j is the (odd)

J 0 2 3 4 5 6 7 8
Dj .607 303 0 .076 0 .013 0 .002

1

0
p= 83 |.530 0 .434 012 .0240 O O O
p=499 | 625 0 .273 .002 .078 0 .020 0 .002
p =677 | .606 .001 .319 O

.081 0 .007 0 O

TABLE4. Universal probabilities predicted by (6.2)
and corresponding observed values for p = 83, 499
and 677.

number of 0 < k < p—1 with H, = H(,_1)/2 mod p,
then p; = 1/p. For all other odd ¢, p; = 0. Thus
the probability that |X,,| is odd will be positive
but small. Inspection of Table 2 verifies that most
of the entries there are even numbers.

It would be of interest to establish this limiting
distribution rigorously from the analytic theory of
prime numbers.

6.3. Initial Conditions

The branching processes described above assume
as initial conditions a single node at height 0. Then
E(|X]) = 1 for all m. However, we know that
|G1| > 1 and |G,| > 2, since the nodes p—1, p* —p
and p? — 1 always appear in the tree J,. Therefore
E(]X1]) = E(|X2|) = 1 seem inappropriate. If we
regard the four nodes 0, p— 1, p> —p and p? — 1 as
the only nonrandom nodes in the tree, then JI? is
the union of four random trees, each generated by
a branching process starting at the four nodes. For
simplicity, assume that the generating function for
each of these processes is f(s) = exp(3(s*> — 1)).
Then the generating function for nodes at height
m is gm(s) = fr%z—z(s)fmfl(s)fm(s)v for m > 2,
where f,, is the m-th iterate of f. For m = 1,
g1(s) = sf(s). If Y, denotes the set of nodes at
height m in the resulting tree, we have E(|Y;]) = 2,
E(]Yz|) = 3 and E(]Y,,,|) = 4 for m > 3. Note that,
as we have described it, the process {Y;,} does not
depend on p.

Let M denote the extinction time of this process.
Then, as above, P(M = m) = ¢n(0) — gm-1(0). It
is instructive to compare the observed distribution
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range of M), 3 4 5 6 T 8

10 11-15 16-20 21-25 26-30 31-40 41-50 > 50

predicted count of p’s
observed count of p’'s | 42 11 7 5 3 4

35.0 12.9 83 59 45 3.5 3.8 23 74 4.0 2.5 1.7 2.2 14 5.7
2 9 4 1 3 2 2 5

TABLE 5. Distribution of extinction times for the first 100 odd primes. For each range of values of M, the
last row gives the number of p with 3 < p < 550 such that M, lies in that range, and the middle row gives the

value predicted from (6.3).

of the 100 values of M, found in Tables 2 and 3
with the predicted distribution of M, which is

100(gm (0) = gm-1(0))- (6.3)

This comparison is performed in Table 5.
Note that this model has

93(0) = .350... < f1(0)* =1/e = .368...,

so that M = 3 occurs with probability < 1/e. On
the other hand, the model of Section 4 predicts
that the probability that p is harmonic is 1/e. Cer-
tainly harmonic primes have M, = 3, so our new
model predicts a slightly smaller percentage of har-
monic primes than the earlier model. The reason
for this is that we have ignored the fact that the
types of the four nonrandom nodes are known to be
0, 0, wy,, and w,. Incorporating this will produce
a more complicated but probably more accurate
model.

7. PREDICTIONS FROM THE PROBABILISTIC MODEL

The model of the preceding section allows us to
make precise predictions about the possible size of
Jp, the extinction time M, and the distribution of
(n,p) for which v,(H,) = k. In this section, we
assume that the J, are independent samples from
the trees produced by the branching process {Y,,}
described in Sections 6.2 and 6.3. As noted there,
this cannot be exactly true since that process pro-
duces trees with an even number of nodes at any
level m > 1, while this is not true for each individ-
ual J,. However, we expect that the approxima-
tion will be sufficiently good to produce accurate
predictions about quantities such as |J,| and M,
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The size of the random set J, is ) |Y,.|. An
asymptotic result of Otter [Harris 1963, p. 32] gives

P(|J,| > 7) ~ br~'/2 (7.1)
where b = 4712, Our results concerning |J,| will
be based on this estimate and an application of
the Borel-Cantelli lemmas [Lamperti 1966, pp. 26—
27]. Since it would suffice for this to have bounds
cir Y2 < P(|J,] > r) < earY/2, our predictions do
not depend in a serious way on the distributions of
the J, being identical.

From (7.1), if € > 0, we get

1
P(|Jp| > p*(loglog p)***) = O ————7
(19l > p"loglos ) <p(10glogp)1“)’

and since
D L.
— p(loglogp)t+e = 7
the first Borel-Cantelli lemma implies that, with

probability one, only finitely many inequalities

|| > p*(loglog p)***

can hold, and hence that

|Jp| = Oc(p*(loglog p)***) (7.2)

with probability one. As we decided earlier to ig-
nore sets of probability zero, we thus conjecture
that this equation holds for all p.

In the other direction, we have

b

P(|J loglogp)?) ~ —— .
(|Jp] > (ploglogp)®) ploglogp
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Since the sum of this series diverges and we are as-
suming the J, are independent, the second Borel-
Cantelli lemma implies that, with probability one,

|| > p*(loglog p)? (7.3)

for infinitely many primes p.

Now we make some heuristic deductions about
the possibilities for v,(H,). Note that v,(H,) >k
is equivalent to the vanishing of the digits ao, ...,
ar—1 in the p-adic expansion of H,. In the set J,,
ap is always 0, so v,(H,) = k should occur for
about |J,|/p* ! of the numbers in J,. If p is one
of the primes for which (7.3) holds, we have

[{n : v,(H,) = 2}| > p(loglog p)?,

so we should expect the number of occurrences of
vp(H,) = 2 to be large, as was indeed observed in
our computations.

If £ = 3 and p is one of the primes for which
(7.3) holds, we have

{n : vp(Hn) = 3}| > (loglog p)*,

so we should expect there to be primes for which
the number of occurrences of v,(H,) = 3 is arbi-
trarily large. Note, however, that the maximum
rate of growth from (7.2) is (loglogp)®*c. As de-
scribed in Section 1, our computation revealed only
5 pairs (n,p) with v,(H,) = 3 for the primes p <
550, which is consistent with these predictions.
Next, for k > 5, the estimate (7.2) shows that

3
p) () 2 5} < Y LEOEE <o,
p
so there are only a finite number of such pairs. It
seems reasonable to conjecture that there are none.
The remaining case, k = 4, is slightly more del-
icate. We use Kolmogorov’s three series theorem
[Lamperti 1996, p. 34] to show that 3 |.J,|/p® con-
verges with probability one. Writing T, = |J,|/p?,
one must check, for some ¢ > 0, that the following
three series converge: Y. P(T, > c), > E(T{),

and ) varT . Here Ty = T, if T, < ¢ and 0
otherwise. Since (7.1) implies that

b

P(TP > C) ~ c1/2p3/27

the convergence of the three series is clear for every
¢ > 0 from the convergence of 3 1 /p*/%. Thus,
with probability one, there are only a finite number
of (n,p) with v,(H,) = 4. Again we conjecture
that there are none.

One can treat the extinction time M, in a similar
way. Since here P(M, > r) ~ 4/r, the analogues
to (7.2) and (7.3) are that M, = O(p(loglog p)'*<)
for all p and that there should be infinitely many
p with M, > ploglog p. This also follows from the
observation that

E(|Ym| | [Ym| # 0) = E(|Yn])/P(|Yn| = 0) ~m

and that |J,| = 07 |V, ], s0 |J,| ~ 102,

In conclusion, the model described in Section 6
leads to precise predictions about the size of the J,
and the possible values for v,(H,). The agreement
of the model with the computations summarized
in Tables 2 and 3 seems good enough to give some
confidence in these predictions. The goal now is to
find a rigorous proof of some of these results.
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