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Let Hn = 1 + 12 + � � � + 1n be the n-th partial sum of the

harmonic series. A classical result of Wolstenholme states that,

if p > 3 is prime, the numerator of Hp�1 is divisible by p2.

Here we consider, for a given prime p, the set Jp of n for whichp divides the numerator ofHn. This set Jp had been previously

determined for p = 2; 3; 5; 7. One of our results is that J11
contains exactly 638 integers, the largest of which is a number

of 31 decimal digits. We determine Jp for all p < 550 with

three exceptions: 83, 127 and 397.

The computation is based on a new p-adically convergent for-

mula for the quantity Hpn � Hn=p. We describe a proba-

bilistic model for the sets Jp, based on branching processes.

The model predicts that jJpj = O(p2(log log p)2+"), and that

there are infinitely many p with jJpj � p2(log log p)2. This

strengthens an earlier conjecture of Eswarathasan and Levine

that jJpj is finite for all p. Another prediction of the model

is that there will be infinitely many pairs (n; p) for which p3
divides the numerator of Hn, but only finitely many for whichp4 divides Hn.

It has been conjectured that there are infinitely many p for

which jJpj = 3. We give a probabilistic argument that suggests

that such primes have a density 1=e in the set of all primes,

and experimentally confirm this by a determination of all suchp � 105.

1. INTRODUCTIONThe sequence of partial sumsHn = 1+ 12+� � �+ 1n ofthe harmonic series has some interesting and wellknown arithmetic properties. For example, it isknown that Hn is an integer only for n = 1, a re-sult that S�andor [1993] attributes to J. K�ursch�ak.Another well known result is Wolstenholme's the-orem [Hardy and Wright 1960, p. 89] saying that
c
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the numerator of Hp�1 is divisible by p2 if p > 3is prime. There is a relationship between values ofcertain Hn and Fermat's quotient qa = (ap�1�1)=pmod p. For example, a result of Eisenstein from1850 [Dickson 1952, p. 41] states that H(p�1)=2 ��2q2 mod p; this is easily seen from the binomialexpansion of (1 + 1)p. A more di�cult result dueto Glaisher [1901, p. 50] is that H[p=3] � � 32q3mod p if p > 3. These results are connected tothe �rst case of Fermat's Last Theorem via thetheorems of Wieferich and Mirimano� [Ribenboim1979, p. 151].If p is a prime, let Jp be the set of n � 1 for whichp divides the numerator of Hn. Eswarathasan andLevine [1991] showed that, if p > 3, the set Jpcontains p � 1, p2 � p, and p2 � 1, and that, forcertain primes, such as p = 5; 13; 17; 23 and 67,there are no other elements in Jp. They called theprimes with this property \harmonic primes," andconjectured that the set of such primes is in�nite.We will show in Section 3 that the criterion for aprime to be harmonic given in that paper suggeststhat the set of such primes has density 1=e in theset of all primes. There we give the results of acomputation of all the harmonic primes p < 105and the observed density in various intervals, whichagrees quite well with this conjecture.Eswarathasan and Levine provide a systematicmethod for generating Jp, based on the congru-ence Hpn � Hn=p � 0 mod p2. If Jp is �nite,their method will give a proof that it is �nite, givensu�cient computation. They list J3 = f2; 7; 22g,J5 = f4; 20; 24g (so that 5 is harmonic), and J7(a set of 13 elements), but leave open the case ofJ11. The determination of J11 is given as a researchproblem in [Graham et al. 1989, p. 304], wheresome of these results are presented as a series ofexercises. As part of the computations described inSection 5, we show that J11 has 638 elements, thelargest being 1011849771855214912968404217247.This may explain why previous studies stopped atp = 7. However, J11 is by no means the largest setwe encountered in our computation. For example,jJ109j = 1273, jJ521j = 1763, jJ127j > 2713, jJ83j >

5870, and jJ397j > 7718. We have determined Jpfor all primes p < 550 for which maxJp < p100.This omits only the three primes 83, 127 and 397.The computation uses the p-adic routines in PARI[Batut et al. 1993] and is based on a p-adically con-vergent series for Hpn �Hn=p (Theorem 5.2).In Section 6 we provide a nonrigorous proba-bilistic explanation for these striking observations,based on the theory of branching processes. Toeach prime p we associate a process that predictsthe number of elements in the setGm = Jp \ [pm�1; pm � 1]from the number in Gm�1. This process turns outto be critical, that is, E(jGmj) = jGm�1j for allm � 3. By a basic result of the theory, such pro-cesses become extinct in a �nite time with proba-bility one, but the expected time to extinction isin�nite. This agrees with the conjecture alreadymade in [Eswarathasan and Levine 1991] that Jpis �nite for all p.As described in Section 7, this branching processmodel allows us to predict the maximum size of thesets jJpj. It predicts that jJpj = O(p2(log log p)2+")and that there are in�nitely many p with jJpj �p2(log log p)2. This in turn gives a plausible pre-diction about the possibilities for vp(Hn), the ex-ponent of the largest power of p dividing Hn. Onsimple probabilistic grounds, one would expect thenumber of occurrences of vp(Hn) = k, for a �xedp, to be about jJpj=pk�1. We already know fromWolstenholme's theorem that vp(Hn) = 2 occursin�nitely often, but our model predicts that thereshould be primes for which the number of occur-rences of vp(Hn) = 2 is arbitrarily large. Themodel predicts also that there are primes p forwhich the number of n with vp(Hn) = 3 is arbi-trarily large but of order between (log log p)2 and(log log p)2+". On the other hand, vp(Hn) � 4should occur for only a �nite number of pairs (p; n).Probably vp(Hn) � 4 never occurs.As expected, our computation found many ex-amples of vp(Hn) = 2. We found only �ve ex-
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amples of vp(Hn) = 3: four for p = 11, namelyn = 848, 9338, 10583 and 3546471722268916272;and one for p = 83. These results are not surpris-ing, since jJ11j=112 = 638=121 = 5:27 : : : , while thenumber of enumerated elements of J83 is 5870 =:85 : : : � 832. On the other hand, the number ofenumerated elements of J397 is only 7718, which isless than :04�3972. These �ndings are entirely con-sistent with our model since (log log 550)2 < 4. Noexamples of vp(Hn) � 4 were found, which agreeswith the conjecture that none exist.In order to better appreciate the interaction be-tween experiment, model building and conjecturein this study, we now depart from conventionalpractice and describe the genesis of the results inthis paper. I was reminded of Wolstenholme's the-orem while helping a student with readings in num-ber theory, and it seemed natural to ask whetherthere were any other general results of a similar na-ture. This led to the central question of this paper:given a prime p, to study the set Jp of n for whichHn is divisible by p. Initially we expected thatthere would be little di�erence between the vari-ous primes. An attempt to compute Jp for somesmall primes showed the necessity of using p-adicmethods, because the numerator and denominatorof Hn grow exponentially with n (see the beginningof Section 5).Computations for p < 60 revealed the recursivestructure of the sets Jp as described in Section 3.The peculiar behaviour for p = 11 was soon ap-parent, and initially it seemed possible that J11might be in�nite. Up to this point, the computa-tions had been based on the na��ve p-adic methodof Section 5.1, so it was only possible to computeJ11 \ [1; 119]. The structure of this set suggestedsome sort of pseudorandom behaviour for whichbranching processes apparently provided a suitablemodel. This model, described in Section 6.1, ledto the conjecture that Jp is �nite for all p. A cru-cial test for this conjecture would be to prove thatjJ11j <1.At this time, we also noticed the heuristic argu-ment, presented in Section 4, suggesting that the

set of primes for which Jp = fp� 1; p2� p; p2� 1gshould have density 1=e. (Our working name forsuch primes was \dull primes"). The test for thisconjecture by the computation of the dull primesless than 105 seems to be fairly convincing evidenceof its correctness.In November 1993, these results were presentedin a lecture at the opening of the Centre for Exper-imental and Constructive Mathematics at SimonFraser University. After the lecture, Peter Bor-wein made a remark about the possible relevanceof Bernoulli polynomials. This led to a study of theclassical [Glaisher 1901] and to Theorem 5.2, whichprovided means for continuing the p-adic computa-tion of Hn to much larger values of n, as describedin Section 5.2. The idea of �nding the coe�cientsin this expansion by solving a linear system, henceavoiding any computation of Bernoulli numbers, isnatural from the point of view of numerical anal-ysis. With this new method, we computed Jp forall p < 100 except p = 83, verifying, in particular,that jJ11j < 1. This was presented in Decem-ber 1993 in a short lecture at the Western NumberTheory Meeting in Asilomar.In January 1994, we came across [S�andor 1993]and discovered that the conjecture that Jp is al-ways �nite had been anticipated by Eswarathasanand Levine [1991]. Remarkably, their conjecturewas apparently based only on a computation of Jpfor p = 3, 5 and 7. They had discovered the basicrecursive structure of the sets Jp, de�ned the set ofharmonic primes (our \dull primes"), and conjec-tured that the set of such primes is in�nite, as isimplied by our conjecture that they have density1=e. Regarding p = 11, they say: \it even seemsquite di�cult to show that J11 is �nite". (Thereference to [Graham et al. 1989] in their papermight give the impression that their investigationswere inspired by some of the problems in that book,but Knuth informs me that it was the other wayaround.)Up to that point, we had thought in terms ofdi�erent branching process being de�ned for eachprime p, as described in Section 6.1. However,
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the apparent similarity of these processes for largep suggested the universal branching process de-scribed in Section 6.2, which is independent of p.The success of the prediction of the �niteness ofJp from the branching processes model suggestedthe stronger conjecture that the sets Jp can be ap-proximated by random samples from this universalbranching process. As a test for this conjecture andto judge the e�ectiveness of our new computationalapproach, we decided to extend the computationsto include the �rst 100 odd primes. A summaryof the data is given in Table 2 of Section 5. Onceit was realized that the deterministic initial condi-tions described in Section 6.3 should be included,the �t of the model to this data proved to be quitegood, as is evident in Table 3. This suggests thatthe model is essentially correct, and we conjecturethat the distribution of jJpj as p varies over theprimes will be exactly as described by this process,once the re�nement mentioned in the last sentenceof Section 6.3 is incorporated. The conjecturedasymptotic bounds on jJpj already mentioned donot need this re�nement since they depend onlyon the assumption that c1r�1=2 < P (jJpj > r) <c2r�1=2 for some constants c1 > 0 and c2.Of course, the computational results of Section 6also provide a proof of Eswarathasan and Levine'sconjecture in 97 out of 100 cases. In itself, thiscould not be regarded as very strong evidence fortheir conjecture since 100 primes is a rather smallsample of the set of all primes. Indeed, without theguidance of the probabilistic model, the behaviourof the numbers jGmj for p = 82 and 397 would tendto suggest that jJpj = 1 for these primes. How-ever, the evidence does seem to favour our proba-bilistic model and hence to suggest that our quan-titative version of their conjecture is correct.
2. SOME PRELIMINARY MATERIALFor our computations and proofs, we will needsome background on the p-adic numbers. This canall be found in the classic book [Mahler 1981].

If p is a prime and if x 6= 0 is a rational num-ber, we may write x = pka=b, where a and b arerelatively prime integers not divisible by p. We de-�ne the p-adic order (or additive valuation) of xto be vp(x) = k, and the p-adic norm (or multi-plicative valuation) of x by jxjp = p�k. We de�nevp(0) = �1 and j0jp = 0. Then j � jp is a norm onthe rationals.The set of p-adic numbers Q p is the completion ofthe rationals in the metric dp(x; y) = jx� yjp. Theadditive and multiplicative valuations extend to Q pby continuity. Each x 2 Q p has a unique p-adicexpansion x = P1k=vp(x) akpk, with 0 � ak < p,where the series converges in the p-adic norm. Wewill use the standard notation O(ps) for any x forwhich vp(x) � s.An element x 2 Q p with vp(x) � 0 is calleda p-adic integer. Every ordinary integer is a p-adic integer, as is every rational with denominatorprime to p.The ultrametric inequality states that vp(x+y) �min(vp(x); vp(y)), with equality if vp(x) 6= vp(y).An easy consequence of this is that vp(Hpk) = �k,so lim infn!1 vp(Hn) = �1. As we will see inProposition 3.3, the conjecture that Jp is �niteis equivalent to limn!1 vp(Hn) = �1, that is,limn!1 jHnjp = 1, analogous to the well-knownlimn!1Hn =1.We will also need some facts about the BernoullinumbersBn and Bernoulli polynomialsBn(x). Fol-lowing Euler [1738], the Bernoulli polynomials arede�ned by the exponential generating function1Xn=0 Bn(x)tnn! = textet � 1 ;and the Bernoulli numbers by Bn = Bn(0). Fromthis it is obvious that Bn(x) is a polynomial ofdegree n whose coe�cients are given explicitly byBn(x) = nXk=0�nk�Bn�kxk:It follows immediately from the generating func-tion that Bn(x + 1) � Bn(x) = nxn�1 if n � 1, so
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we obtain the classical formula of Jakob Bernoulli[1713, pp. 95{98]:m�1Xk=1 kn�1 = Bn(m)�Bnn= nXk=1 1n�nk�Bn�kmk (2.1)

It is an elementary fact that Bn = 0 for n odd,except for n = 1. A deeper result is the theoremof Clausen and von Staudt, which implies that thedenominator of B2n is square-free and is divisibleby p if and only if p � 1 divides 2n [Mahler 1981,p. 291]. Hence jBnjp � p for all p and jBnjp � 1 ifp� 1 does not divide 2n.If A = (aij) is a matrix with p-adic entries, wede�ne jAjp = max jaijjp and vp(A) = min vp(aij).Clearly jABjp � jAjpjBjp. Given variables x1; : : : ;xn, the Vandermonde matrix V (x1; : : : ; xn) is de-�ned as the n � n matrix whose (i; j)-th entry isxj�1i , for 1 � i; j � n. We shall need the followingestimate:
Lemma 2.1. The matrix V = V (02; 12; 22; : : : ; n2) isinvertible, and jV �1jp < p2n=(p�1) for any prime p.
Proof. Consider any V = V (x1; : : : ; xn) where thexi are distinct. Let c be a column vector withcomponents c0; : : : ; cn�1. Then the entries of V care P (xi), where P (x) = c0+ c1x+ � � �+ cn�1xn�1.Thus, if b has components b1; : : : ; bn, we have V c =b if and only if P (x) is the Lagrange interpolatingpolynomial de�ned by P (xi) = bi. This polynomialis given explicitly by

P (x) = nXi=1 bi Qk 6=i(xk � x)Qk 6=i(xk � xi) :Thus, the denominator of the (i; j)-th entry of V �1is a factor of Qk 6=i(xk � xi).Specializing to xi = i2, for 0 � i � n, we �ndthat the denominator of an entry of the i-th rowof V �1 is a factor of ��Qk 6=i(k � i)(k + i)��, which

divides (n� i)! (n+ i)!. As is well known, vp(n!) =P1k=1[n=pk] < n=(p� 1), and hencevp((n� i)! (n+ i)!) < n� ip� 1 + n+ ip� 1 = 2np� 1 :Thus each entry of V �1 is of the form a=b withvp(b) < 2n=(p � 1) and vp(a) � 0, so jV �1jp �p2n=(p�1). �
3. RECURSIVE GENERATION OF THE SETS JPThe next result, from [Eswarathasan and Levine1991], is the basis for the recursive construction ofthe sets Jp. Notice that we de�ne H0 = 0.
Lemma 3.1. If p > 3 is prime, n � 1, and 0 � k �p� 1, then Hpn = 1pHn +O(p2) (3.1)and Hpn+k = Hpn +Hk +O(p): (3.2)If p = 3, the �rst of these congruences holds withO(p2) replaced by O(p) and the second holds asstated.
Proof. The di�erence Hpn � Hn=p is the sum of1=m over all m � pn that are relatively prime top. It can be written as a sum of n sums of theform Pp�1j=1 1=(kp + j), each of which is O(p2) bythe same argument as for Wolstenholme's theorem.Equation (3.2) is obvious. �
Proposition 3.2. If p is an odd prime, n � 1 and0 � k � p � 1, then vp(Hpn+k) > 0 if and only ifvp(Hn) > 0 and Hpn = �Hk +O(p).
Proof. Observe that vp(Hk) = 0 for 1 � k � p� 1.Thus, if k 6= 0 and vp(Hpn+k) > 0, equation (3.2)implies that Hpn = �Hk +O(p) and so vp(Hpn) �0. Then (3.1) implies vp(Hn) > 0. The case k = 0is obvious. �
Remark. This proposition has an amusing interpre-tation in terms of the expansion of n in base p. Itsays that, if n = a0 a1 : : : am = a0+a1p+� � �+ampmwith 0 � ai � p � 1, the condition vp(Hn) > 0
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implies that vp(Hn0) > 0 for each of the numbersn0 = a0, a0a1, : : : , a0 : : : am�1.As in [Eswarathasan and Levine 1991], Proposi-tion 3.2 gives a method for generating the sets Jp.For �xed p, letGm = fpm�1 � n < pm : p divides Hng: (3.3)So G1 contains p � 1 and possibly some other n.Obviously Jp = Sm�1Gm. We de�ne G0 = f0gwithH0 = 0, and J0p = Jp[f0g = Sm�0Gm. GivenGm, we can generate Gm+1 as follows: let n 2 Gmwith Hn = ap + O(p2). Then (3.1) and (3.2) giveHpn+k = a + Hk + O(p) for 0 � k � p � 1. Thuspn+k will be in Gm+1 if and only if a+Hk = O(p);this can be tested by running through a table of thevalues of �Hk mod p. Clearly, Jp is �nite if andonly if Gm is empty for some m. We denote byMp the smallest m for which Gm is empty (andMp =1 if Jp is in�nite).The elements of J0p = Jp [ f0g can be arrangedin a tree. The elements of the m-th generationGm are the nodes at height m. If m � 1, there isan edge labelled k 2 [0; p � 1] from n 2 Gm withHn = ap + O(p2) to pn + k 2 Gm+1 if and onlyif Hk � �a. If m = 0 there are edges from theroot node G0 to G1 for each 1 � k � p � 1 withHk � 0. If we think of this as a family tree, Mp isthe extinction time of the family.The set of residues R = fH0 mod p; : : : ; Hp�1mod pg clearly plays an important part in thestructure of the tree just described. One obviousproperty of R is that it is symmetric with respectto 12(p� 1), that is, Hp�1�k � Hk mod p. This fol-lows from Wolstenhome's theorem. Our heuristicprobabilistic arguments will be based on the as-sumption that this is essentially the only generalproperty possessed by R.
Proposition 3.3. For any prime p � 3, the set Jp is�nite if and only if vp(Hn)! �1 as n!1.
Proof. If vp(Hn) ! �1 then vp(Hn) � 0 for su�-ciently large n. For such n we have p - Hn, henceJp is �nite. On the other hand, if Jp is �nite, Gm is

empty for su�ciently large m. Let Mp denote thesmallest suchm, so vp(Hn) � 0 for pm�1 � n < pm.Then, by induction, using Proposition 3.2, we seethat vp(Hn) � �l for all n with pm+l�1 � n < pm+l.Thus limn!1 vp(Hn) = �1. �
Remark. Denoting jxj1 the usual absolute value ofa rational x, we have Qp�1 jxjp = 1 for any ra-tional x (this is called the product formula). ThusQp jHnjp = 1 for each n, and hencelimn!1Yp jHnjp = 1:
It is well known that jHnj1 ! 1, and it is easyto see that jHnj2 = 2k for 2k � n < 2k+1. IfJp is �nite for each p � 3, Proposition 3.3 im-plies that limn!1 jHnjp = 1 for each p � 1, soQp limn!1 jHnjp = 1. There is no inconsistencyhere, just a lack of uniform convergence.
4. HARMONIC PRIMESFor p > 3 prime, we de�ne the Wolstenholme quo-tient wp to be the integer with 0 � wp � p�1 suchthat Hp�1 = wpp2 +O(p3).
Proposition 4.1. Hp2�p = wpp+O(p2) and Hp2�1 =wpp + O(p2) for any prime p > 3, so Jp alwayscontains p�1, p2�p and p2�1. The set Jp consistsof exactly these three integers if and only if thereare no solutions to Hk � 0 mod p and Hk � �wpmod p for 1 � k � p� 2.In this case we say that p is harmonic.
Proof. This follows directly from Lemma 3.1. See[Eswarathasan and Levine 1991] or [Graham et al.1989, pp. 531{532] for details. �As observed earlier, the set of residues R = fHkmod p : 0 � k � p � 1g is symmetric, so thevalues of H1; : : : ;H(p�1)=2 mod p determine theother Hk mod p for k < p. According to Proposi-tion 4.1, p is harmonic provided the set of residuesH1; : : : ;H(p�1)=2 mod p misses the values 0 and�wp. If we make the heuristic assumption thatthese residues are independent random integers in
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f0; : : : ; p�1g, the probability that none of Hk, for1 � k � 12(p� 1), equals 0 or �wp is�p� 2p �(p�1)=2:This tends to 1=e = :368 : : : as p!1, suggestingthat the density of harmonic primes is 1=e. Table1 contains a survey of the harmonic primes p <105 that tends to con�rm this conjecture, althoughthe number of harmonic primes in a given intervalis perhaps somewhat higher than expected. Thecomputation was done p-adically, as we explain inSection 5.range all harmonic ratio[5; 100] 23 8 .348[5; 1000] 166 60 .361[5; 10000] 1227 447 .364[5; 100000] 9590 3622 .378(10000; 20000] 1033 374 .362(20000; 30000] 983 390 .397(30000; 40000] 958 356 .372(40000; 50000] 930 351 .377(50000; 60000] 924 345 .373(60000; 70000] 878 354 .403(70000; 80000] 902 342 .379(80000; 90000] 876 340 .388(90000; 100000] 879 323 .367
TABLE 1. For each range of values of p, we givethe number of primes in this range, the numberof harmonic primes in this range, and the ratio ofthese two counts.The argument in the previous paragraph implic-itly assumes that wp 6= 0. An article by Gardiner[1988] considers various equivalent formulations ofthe condition wp = 0, one of the more interestingbeing that it is equivalent to p dividing the nu-merator of the Bernoulli number Bp�3. There areonly two known primes that satisfy this condition,namely p = 16843, noticed by Wells Johnson in hiscomputation of irregular primes, and p = 2124679,found independently by Richard McIntosh [Guy1993] and by Buhler et al. [1993]. Therefore itseems safe to ignore this possibility in our heuristic

argument. The argument is also not overly sensi-tive to the fact that H1 = 1 can hardly be consid-ered to be random.
5. COMPUTATION OF THE SERIESSince we wish to consider the factorization of therational numbers Hn, an obvious way to proceedwould be to compute the Hn exactly using ratio-nal arithmetic and to compute vp(Hn) by trial di-vision. This cannot succeed for even moderatelylarge n, for the following reason: if we write Hn =an=bn in lowest terms, both an and bn grow ex-ponentially with n. To see this, note that bn �lcm(1; 2; : : : ; n) � e(1+o(1))n, by the prime numbertheorem [Hardy and Wright 1960, p. 362]. In theother direction, let k � 2 and let p be a prime sat-isfying n=k < p � n. Then the sum of the terms1=m of Hn with pjm is exactly p�1Hk�1. Thus pjbnunless p is one of the �nitely many primes dividingHk�1. So bn �Q p, where the product is over all pwith n=k < p � n that do not divide Hk�1. Againby the prime number theorem, we haveY p � exp((1� k�1 + o(1))n);and since k is arbitrary, bn � e(1+o(1))n. Sincean=bn � log n, we also have an = e(1+o(1))n.Thus, even for n as small as 104, we would needover 4000 digits to represent each of an and bn ex-actly. Since we will �nd it necessary to deal withn as large as 397100, this is clearly not a feasibleapproach.
5.1. First p-adic MethodSince we are concerned with the question of di-visibility of Hn by p, it is natural to represent Hnp-adically. For a given precision s we can representHn by the truncated expansion

Hn = s�1Xk=vp(Hn) akpk +O(ps); (5.1)

where 0 � ak < p are the p-adic digits of Hn.The successive terms Hn can be computed from
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Hn = Hn�1 + 1=n, and the truncated expansionof Hn can be computed accurately by adding thetruncated expansions of Hn�1 and 1=n. This isnot an exact representation of Hn, but, in con-trast to the decimal expansion, carries propagateto higher-order digits so round-o� error does notaccumulate. Provided s > vp(Hn), the value ofvp(Hn) can be determined accurately. The compu-tational number theory system PARI has an e�-cient implementation of arithmetic using truncatedp-adic expansions, which we used throughout ourcomputations.This na��ve or direct p-adic method was used tocompute the complete set Jp for all p < 60 exceptfor p = 11. The computation of Hn mod 11 forn � 119 ran for several days on a Sun Sparcstation10. However, for p = 11, we must consider n aslarge as 1130, so this approach cannot settle eventhe case p = 11.
5.2. Second p-adic MethodIn order to deal with Hn for n larger than about1010, we need the following re�nement of the con-gruence (3.1).
Theorem 5.2. Let p be an odd prime. Then there isa sequence ck 2 Q p such that , for all n � 1,

Hpn � 1pHn = 1Xk=1 ckp2kn2k; (5.2)

where the series converges in the p-adic norm. Theck are p-adic integers unless (p� 1)j2k or pjk. Ingeneral , vp(ck) = �1 + vp(1=k) if (p � 1)j2k, andvp(ck) = vp(1=k) otherwise.
Proof. By Bernoulli's formula (2.1),m�1Xk=1 kr�1 = rXk=1�r � 1k �Br�kmk
for any r;m � 1. If we take r = '(ps+1) = ps(p�1),Euler's formula gives kr � 1 mod ps+1 if (k; p) = 1,

and kr = O(pr) if pjk. Setting m = pn in the sumabove we get
Hpn � 1pHn = pn�1Xk=1(k;p)=1 k�1 =

pn�1Xk=1 kr�1 +O(ps)
= rXk=1 1r�rk�Br�k(pn)k +O(ps)
= rXk=1(�1)k�1 1kBr�kpknk +O(ps);

(5.3)where we have used the identity1r�rk� = 1kYj r � jj = 1k (�1)k�1 +O(ps):
Except for k = r� 1, the terms with k odd in thissum vanish. Let ck(s) = �Br�2k=2k, for k � 1.Then, by the theorem of Clausen and von Staudt,ck(s) is a p-adic integer unless (p � 1)j2k or pjk.Clearly vp(ck) = �1 + vp(1=k) if (p � 1)j2k andvp(ck) = vp(1=k) otherwise. Thus, retaining onlyterms in the �nal sum in (5.3) that are of order lessthan O(ps), we have, for n � 1,

Hpn � 1pHn = NXk=1 ck(s)p2kn2k +O(ps); (5.4)

where N = 12(s+ l) for l � log s= log p.We wish to let s!1 in (5.4). For convenience,let c0(s) = 0. Then, from (5.4), we haveNXk=0(ck(s+ 1)� ck(s))p2kn2k = O(ps):
We can solve theseN+1 equations with 0 � n � Nfor the coe�cients (ck(s+ 1)� ck(s))p2k. The ma-trix of this system of equations is the VandermondeV = V (02; 12; : : : ; N 2). By Lemma 2.1 we havevp(V �1) > �2N=(p� 1), so we obtain(ck(s+ 1)� ck(s))p2k = O(ps�2N=(p�1)):
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Hence, for each k, the p-adic limit lims!1 ck(s) =ck exists, andck � ck(s) = O(p�2k+(�+o(1))s)with � = 1 � 1=(p � 1) > 0. Replacing ck(s) byck in (5.4) changes the error from O(ps) to O(p�s).Letting s ! 1 yields (5.2). The �nal statementsabout ck follow from the corresponding results forck(s). �
Remark 1. For n = 1 and p > 3, we have Hp �H1=p = Hp�1 = wpp2 + O(p3), by the de�nition ofthe Wolstenholme quotient, so c1 � wp mod p. Forp = 3 we have v3(c1) = �1 since (3� 1)j2.
Remark 2. The proof of the theorem shows thatck = lims B'(ps)�2k2k :However, this is not an e�cient formula for calcu-lating ck. Instead, as in the proof, one should com-pute bn = Hpn�Hn=p to precision s > 2Np=(p�1)and then solve the linear systemNXk=1 ckp2kn2k = bn +O(ps)
for c1p2; : : : ; cNp2N . Using Lemma 2.1 as in theproof of the theorem we see that ckp2k is obtainedto precision s� 2N=(p� 1) � 2N .For example, if p = 3 one obtainsc1 = 23�1 + 1 + 34 +O(35);c2 = 3�1 + 2 + 3 + 33 + 234 +O(35);c3 = 23�2 + 23�1 + 2 + 23 + 34 +O(35);c4 = 23�1 + 2 + 3 + 32 + 233 +O(35)For p = 5 we havec1 = 3 + 352 + 253 + 54 +O(55);c2 = 45�1 + 4 + 5 + 3 52 + 453 + 254 +O(55);c3 = 3 + 45 + 52 + 354 +O(55);c4 = 25�1 + 2 + 25 + 52 + 253 +O(55);all easily derived without the computation of anyBernoulli numbers.

Remark 3. For a given N , the sum PNk=1 ckp2kn2krepresents Hpn �Hn=p with precisions = mink>N(vp(ck) + 2k);which is typically 2N + 2 and certainly no smallerthan 2N + 2 � [logp(N + 1)], which only occurs ifN + 1 is a power of p. In our computations, thelargest value of N used was N = 50, for whichs � 101 for all primes p > 100.Now the method of computation is easily described.Given the prime p, one chooses a value of N , de-termines the precision s from Remark 3 and com-putes the coe�cients c0k = ckp2k to precision s asexplained in Remark 2 above. In the process, onewill have computed Hn for 1 � n � p � 1 to pre-cision at least s and hence will know G1. Onceone has computed Gm and Hn for each n 2 Gmto a precision r � s, one computes Gm+1 as fol-lows: For n 2 Gm, compute Hpn from equation(5.2) to precision r�1. Then compute successivelyHpn+k = Hpn+k�1+1=(pn+k) for k = 1; : : : ; p�1,thus determiningGm+1, andHn for each n 2 Gm+1,to precision r� 1. Notice that here, in contrast tothe method of Section 5.1, the precision decreasesby 1 in passing from m to m+ 1, so a given initialprecision s will only allow one to compute Gm upto m = s. If it turns out that Gs is not empty, onemust begin the computation again with a largervalue of N . In practice we used the values N = 10,20, 30, 40 and 50 in succession. Since one mayreduce the precision as m increases, the speed ofcomputation actually increases with increasing min spite of the compensating increase in the size ofn. It should be clear that the computation is ingeneral very much faster than the direct methodof Section 5.1 since the number of terms Hn withpm � n < pm+1 that are computed to determineGm+1 is p jGmj rather than pm(p � 1). For exam-ple, the largest value of jGmj appearing in Table 2is jG86j = 228 for p = 397, so in computing jG87jwe needed 397 � 228 = 90516 terms Hn, as com-pared with 39786�396 = 1:24�10226 terms required
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p Mp jJpj values of jGmj for 1 � m < Mp3 4 3 1; 1; 17 7 13 1; 2; 4; 2; 3; 111 30 638 3; 8; 10; 11; 18; 38; 24; 26; 27; 26; 35; 39; 33; 40; 40; 40; 32; 39; 47; 34; 20; 10; 12; 6; 4; 4; 4; 5; 319 7 19 1; 2; 4; 3; 6; 329 5 18 3; 8; 5; 231 7 26 1; 2; 4; 6; 8; 537 4 15 3; 4; 843 5 27 3; 8; 8; 847 5 11 1; 2; 4; 453 6 17 3; 4; 4; 4; 259 6 17 1; 2; 4; 6; 461 4 13 3; 6; 471 8 45 1; 2; 8; 8; 10; 9; 783 � � 1; 2; 4; 6; 8; 6; 4; 6; 6; 6; 6; 8; 6; 8; 12; 10; 10; 12; 10; 11; 10; 18; 20; 24; 31; 30; 25; 21; 26; 25; 26; 26; 27; 28; 38; 43; 51; 54; 72;62; 59; 66; 65; 66; 58; 56; 48; 54; 68; 77; 60; 51; 60; 49; 65; 72; 79; 70; 66; 71; 74; 77; 79; 72; 75; 80; 91; 86; 87; 77; 81; 89; 92;80; 68; 72; 64; 60; 64; 78; 90; 117; 101; 94; 108; 118; 114; 100; 102; 96; 108; 113; 108; 125; 147; 155; 141; 163; 171; 173; : : :89 4 7 1; 2; 497 11 74 3; 6; 6; 14; 6; 6; 10; 8; 12; 3101 10 44 1; 2; 8; 7; 4; 6; 6; 6; 4103 14 63 1; 2; 4; 6; 4; 8; 10; 8; 4; 4; 6; 4; 2109 47 1273 7; 18; 22; 16; 14; 20; 38; 57; 48; 58; 58; 48; 39; 34; 39; 46; 32; 38; 37; 42; 40; 24; 36; 50; 44; 36; 35; 42; 40; 32; 22; 20; 18; 17;12; 12; 18; 16; 12; 6; 4; 8; 8; 6; 2; 2127 � � 1; 2; 4; 6; 4; 4; 8; 10; 12; 14; 18; 25; 18; 16; 18; 30; 35; 38; 36; 26; 34; 36; 30; 53; 46; 36; 24; 26; 25; 30; 34; 26; 34; 26; 26; 18;28; 34; 35; 46; 40; 40; 42; 40; 32; 25; 26; 21; 19; 22; 20; 16; 10; 10; 14; 19; 16; 16; 16; 19; 26; 37; 26; 20; 22; 20; 22; 24; 24; 18;31; 42; 26; 28; 22; 24; 30; 26; 30; 26; 40; 34; 41; 36; 40; 33; 34; 50; 46; 47; 34; 32; 40; 44; 34; 40; 36; 31; 34; 28; : : :131 4 7 1; 2; 4137 8 38 3; 6; 6; 4; 10; 4; 5151 4 7 1; 2; 4163 20 74 1; 2; 4; 5; 2; 4; 4; 6; 6; 6; 6; 4; 2; 4; 4; 4; 4; 4; 2167 49 526 1; 2; 4; 2; 1; 2; 8; 8; 18; 14; 12; 10; 10; 8; 10; 14; 12; 8; 6; 8; 14; 8; 8; 10; 12; 16; 22; 19; 14; 20; 23; 23; 26; 14; 10; 8; 10; 6; 7; 10;6; 4; 4; 10; 18; 20; 16; 10173 33 288 3; 6; 6; 7; 10; 10; 14; 14; 15; 16; 14; 10; 10; 12; 6; 10; 12; 16; 16; 14; 14; 8; 4; 4; 8; 7; 10; 4; 2; 2; 2; 2181 6 19 1; 2; 8; 4; 4197 11 41 1; 2; 4; 4; 4; 4; 6; 6; 6; 4199 5 11 3; 4; 2; 2211 12 59 1; 2; 4; 2; 2; 8; 6; 8; 12; 8; 6227 6 31 5; 10; 8; 4; 4229 17 65 1; 2; 4; 4; 4; 2; 2; 4; 4; 4; 4; 2; 4; 6; 10; 8233 21 176 1; 2; 4; 8; 6; 15; 12; 14; 10; 16; 12; 16; 8; 8; 6; 8; 12; 12; 4; 2257 5 20 3; 8; 7; 2269 20 106 3; 6; 6; 6; 4; 4; 4; 6; 12; 11; 6; 4; 6; 6; 6; 6; 4; 2; 4271 18 55 3; 4; 2; 2; 2; 2; 6; 2; 4; 4; 4; 6; 2; 4; 2; 4; 2283 14 89 1; 2; 8; 4; 2; 4; 4; 8; 12; 10; 12; 14; 8313 11 79 3; 6; 4; 12; 14; 8; 14; 12; 4; 2347 10 47 3; 6; 6; 4; 6; 4; 10; 4; 4353 6 21 3; 6; 2; 6; 4359 35 253 1; 2; 4; 8; 4; 2; 2; 2; 8; 10; 8; 8; 8; 6; 10; 14; 10; 12; 14; 8; 10; 12; 12; 6; 6; 8; 14; 18; 12; 6; 2; 2; 2; 2367 8 29 1; 2; 4; 6; 6; 4; 6373 4 7 1; 2; 4379 13 79 3; 8; 4; 4; 14; 14; 6; 8; 6; 4; 6; 2383 11 41 1; 2; 12; 4; 4; 2; 2; 4; 6; 4389 8 19 1; 2; 4; 6; 2; 2; 2397 � � 3; 6; 2; 4; 4; 8; 14; 4; 6; 12; 14; 17; 16; 14; 24; 30; 40; 38; 38; 33; 40; 44; 40; 42; 50; 52; 42; 44; 44; 58; 52; 50; 28; 24; 26; 34;30; 26; 24; 34; 40; 29; 30; 42; 30; 44; 38; 48; 60; 86; 86; 66; 68; 80; 63; 60; 56; 68; 78; 60; 56; 46; 50; 70; 68; 72; 82; 74; 105;90; 94; 94; 130; 111; 78; 85; 82; 93; 116; 135; 151; 184; 180; 208; 180; 228; 223; 197; 156; 131; 144; 126; 152; 184; 158; 162;140; 120; 118; 126; : : :
TABLE 2. Nonharmonic odd primes p < 550 (continued on next page).
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p Mp jJpj values of jGmj for 1 � m < Mp401 5 13 3; 6; 2; 2409 4 9 3; 4; 2419 52 703 1; 2; 4; 4; 8; 10; 10; 12; 18; 22; 30; 22; 38; 25; 29; 20; 24; 22; 16; 10; 18; 12; 12; 18; 12; 10; 12; 12; 10; 8; 14; 14; 12; 6; 10; 16; 20;10; 12; 10; 14; 14; 16; 16; 22; 16; 14; 6; 2; 6; 2421 5 23 3; 10; 6; 4433 30 205 3; 6; 10; 14; 8; 8; 6; 4; 9; 8; 6; 6; 2; 2; 2; 7; 6; 2; 4; 6; 12; 14; 14; 14; 8; 6; 8; 6; 4439 11 105 3; 4; 10; 16; 18; 20; 16; 10; 4; 4457 36 323 1; 2; 4; 4; 8; 16; 10; 18; 34; 28; 18; 10; 4; 10; 18; 14; 14; 20; 10; 8; 8; 8; 4; 6; 8; 4; 2; 2; 2; 2; 4; 4; 6; 8; 4463 4 7 1; 2; 4521 61 1763 3; 4; 8; 8; 16; 18; 16; 30; 32; 28; 22; 38; 58; 61; 60; 68; 72; 72; 62; 72; 60; 50; 53; 54; 70; 46; 32; 32; 40; 26; 26; 28; 30; 26; 18;26; 24; 20; 20; 24; 34; 34; 28; 34; 20; 14; 6; 4; 8; 10; 12; 14; 16; 8; 12; 18; 16; 10; 10; 2523 4 7 1; 2; 4
TABLE 2. Nonharmonic odd primes p < 550 (continued). For each p we list the total size of the set Jp and thesize of its generations Gm, as de�ned in (3.3). The smallest value of m for which jGmj = 0 is Mp. An asteriskindicates that Mp > 100. For these primes, the sum of the sizes of the Gm up to m = 100 is a lower bound forjJpj, equal to 5870 for p = 83, to 2713 for p = 127, and to 7718 for p = 397.p Mp jJpj jGmj5; 13; 17; 23; 41; 67; 73; 79; 107; 113; 139; 149; 157; 179; 191; 193; 223; 239; 241; 251; 263; 277;281; 293; 307; 311; 317; 331; 337; 349; 431; 443; 449; 461; 467; 479; 487; 491; 499; 503; 541; 547 2 3 1; 2

TABLE 3. Harmonic primes p < 550.by the direct method. The individual steps in themore elaborate method based on Theorem 5.2 areslightly more time-consuming than for the methodof Section 5.1 since the required precision is higher,but the considerable di�erence in the number ofsteps more than compensates for this.We applied this method to the �rst 100 oddprimes. Computations were done using PARI 1.38on a Sun Sparcstation 10 with 48 Mbytes of mainmemory, with precision 2s � 100. The results aresummarized in Tables 2 and 3.
6. A PROBABILISTIC MODEL

6.1. Branching ProcessesWe have seen in Section 3 that the set J0p = Jp[f0ghas the structure of a tree. We say that n 2 Gm isa node at height m, and that n has type a if Hn =ap+O(p2). Each node of type a at height m givesbirth to j children at height m+ 1, where j is thenumber of 0 � k � p�1 for which Hk � �a mod p.The type of the child pn+k is not determined by a,but rather by the higher-order digits in the p-adicexpansions of Hn and Hk. If we wish to model the

generation of the tree Jp by a random process, itwould seem reasonable to regard the type of n 2 Jpas being essentially random, at least for large n.So we can think of each member of Gm as givingbirth to a random number of children in Gm+1.The probability distribution is determined by thedistribution ofHk mod p: If there are nj values of afor which Hk � �a has j solutions, the probabilitythat n 2 Gm has j children should be given bypj = nj=p.An example should make this clear. Let p = 11.Then the sequence �Hk mod p for 0 � k � 10 is0; 10; 4; 0; 8; 10; 8; 0; 4; 10; 0. Thus, an n of type 0has 4 children, one of type 10 has 3 children, oneof type 4 or 8 has 2 children, and one of any ofthe remaining types has no children. The corre-sponding probabilities are thus p0 = 711 , p2 = 211 ,p3 = p4 = 111 , and pj = 0 for all other j. It is worthobserving that the empirical values of 11p0, 11p2,11p3 and 11p4 are 7:052, 2:034, :896 and 1:017,since the 638 = 11�58 nodes of J11 are distributedas follows:type a 0 1 2 3 4 5 6 7 8 9 10count 59 56 59 63 61 63 61 63 57 44 52
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Notice in this example that the expected numberof children of a given parent is Pj jpj = 1. Thisis easily seen to be true for all p: For each a =0; 1; : : : ; p�1, let Sa denote the set of 0 � k � p�1for which Hk � �a. Then each k = 0; 1; : : : ; p� 1appears in exactly one Sa, soPa jSaj = p. ClearlyPj jnj =Pa jSaj so Pj j(nj=p) = 1.Therefore, for each p, we have de�ned a sim-ple branching process or Galton{Watson process.Such processes were originally considered by Gal-ton and Watson in modeling the extinction of fam-ilies, but they also apply to, among other things,bacterial growth and nuclear chain reactions. Thestandard reference is [Harris 1963].A Galton{Watson process can be completely de-scribed by the probability generating functionf(s) =Xj pjsj;
which in our case is a polynomial. De�ne the it-erates of f by f0(s) = s and fm+1(s) = f(fm(s)),and let fm(s) =Pj pm;jsj. The basic and delight-ful result of Watson is that P (jXmj = j) = pm;j,where Xm denotes the m-th generation. Thus,the probability of extinction by the m-th gener-ation is pm;0 = fm(0), and can be found by sim-ply iterating the function f(s) starting at s = 0.Also, E(jXmj) = f 0m(1) = f 0(1)m from the chainrule. The size of E(jX1j) = f 0(1) thus governsthe dynamics of the process, the supercritical caseE(jX1j) > 1 corresponding to exponential growthin the population (of persons, bacteria or neutrons)and the subcritical case E(jX1j) < 1 correspondingto exponential decay.We have E(jX1j) = f 0(1) = Pj jpj = 1, asshown above, so E(jXmj) = 1 for all n and hencewe have a critical process. The generating functionf(s) has a single �xed point in 0 � s � 1 at thepoint s = 1 and the curves t = f(s) and t = s aretangent there. Thus it is clear geometrically (fromthe standard \cobweb" diagram) that fm(0) ! 1asm!1; in other words, the process will becomeextinct with probability 1.

In fact, it was shown by Kolmogorov in 1938[Harris 1963, p. 21], that, if we let Vp = f 00(1) bethe variance of jX1j,P (jXmj > 0) = 1� fm(0) � 2Vpmas m ! 1. This shows that P (jXmj > 0)! 0. Ifwe let Mp be the extinction time, i.e., the minimalvalue of m so that jXmj = 0 (or 1 if this neveroccurs), the distribution function of Mp is givenby P (Mp � m) = P (jXmj = 0)= fm(0) � 1� 2Vpm: (6.1)Thus Mp <1 with probability 1 = lim fm(0), butthe expected time to extinction,E(Mp) =XP (jXmj > 0);is in�nite because the harmonic series diverges.The process fXmg we have just de�ned describesthe progeny of a single individual: the initial con-dition is jX0j = 1 with probability one. We willmodify this slightly below to incorporate more ap-propriate initial conditions.We can regard this process as producing a ran-dom tree that is �nite with probability one. Ourparticular tree J0p is completely deterministic, butit is a possible outcome of the process just de-scribed. It seems more reasonable to suppose thatit falls into the set of probability one consistingof the �nite trees produced by fXmg, rather thaninto the set of probability zero consisting of thein�nite trees so produced. This tends to supportthe conjecture that Jp should be �nite. Since theexpected value of Mp is in�nite, we should expectas we vary p that we will encounter trees for whichMp is arbitrarily large. The data of Table 2 seemto support this conjecture.Note that a di�erent branching process has beenassociated with each p, so (6.1) might lead us toexpect that primes with a larger variance Vp shouldtend to have smaller Mp. It is true that p = 83,with Mp > 100, has the comparatively small V83 =
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1:229 : : : . The largest value of Vp for p < 1000is attained by the harmonic prime 179, for whichV179 = 2:335 : : : and M179 = 3. However, there aremany harmonic primes with small variance, andboth 109 and 521 have variance greater than 2(which is the \typical" value, as we will see below),so it does not seem possible to detect a relation-ship between Vp and Mp from the data of Tables 2and 3.Another factor of plausible signi�cance for thesize of Mp is jG1j. Indeed, p = 109 with jG1j = 7does turn out to be rather special, having M109 =47 and jJ109j = 1273. However, p = 227 withjG1j = 5 has only M227 = 6 and jJ227j = 31, whilep = 83 and 127 with Mp > 100 both have jG1j = 1,so it does not seem that this has a signi�cant e�ecton the size of Mp.
6.2. A Universal DistributionExamining the probability distributions for p <1000, one observes that they do not di�er muchfrom one another. An argument like that used toguess the density of harmonic primes suggests thatfor large p the probabilities pj are well approxi-mated by the following distribution:

pj = 8<: 0 for j odd,e�1=2 2�j=2(j=2)! for j even (6.2)

(that is, a Poisson distribution supported on theeven integers). The parity distinction is due to thesymmetry about 12(p� 1) of the set of residuesfH0 mod p; : : : ; Hp�1 mod pg:For these probabilities pj, the generating functionis f(s) = exp( 12(s2 � 1)). This distribution hasmean 1 and variance 2. See Table 4 for a compar-ison with observed values.For the limiting process, whatever the initial con-ditions, all jXmj will be even for su�ciently largem, but this will not be the case for the processes de-�ned for the individual primes as in the �rst para-graph of this section. For these, if j is the (odd)

j 0 1 2 3 4 5 6 7 8pj :607 0 :303 0 :076 0 :013 0 :002p = 83 :530 0 :434 :012 :024 0 0 0 0p = 499 :625 0 :273 :002 :078 0 :020 0 :002p = 677 :606 :001 :319 0 :081 0 :007 0 0
TABLE 4. Universal probabilities predicted by (6.2)and corresponding observed values for p = 83, 499and 677.

number of 0 � k � p�1 withHk � H(p�1)=2 mod p,then pj = 1=p. For all other odd i, pi = 0. Thusthe probability that jXmj is odd will be positivebut small. Inspection of Table 2 veri�es that mostof the entries there are even numbers.It would be of interest to establish this limitingdistribution rigorously from the analytic theory ofprime numbers.
6.3. Initial ConditionsThe branching processes described above assumeas initial conditions a single node at height 0. ThenE(jXmj) = 1 for all m. However, we know thatjG1j � 1 and jG2j � 2, since the nodes p�1, p2�pand p2� 1 always appear in the tree J0p . ThereforeE(jX1j) = E(jX2j) = 1 seem inappropriate. If weregard the four nodes 0, p� 1, p2� p and p2� 1 asthe only nonrandom nodes in the tree, then J0p isthe union of four random trees, each generated bya branching process starting at the four nodes. Forsimplicity, assume that the generating function foreach of these processes is f(s) = exp( 12(s2 � 1)).Then the generating function for nodes at heightm is gm(s) = f 2m�2(s)fm�1(s)fm(s), for m � 2,where fm is the m-th iterate of f . For m = 1,g1(s) = sf(s). If Ym denotes the set of nodes atheightm in the resulting tree, we have E(jY1j) = 2,E(jY2j) = 3 and E(jYmj) = 4 for m � 3. Note that,as we have described it, the process fYmg does notdepend on p.LetM denote the extinction time of this process.Then, as above, P (M = m) = gm(0)� gm�1(0). Itis instructive to compare the observed distribution
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range of Mp 3 4 5 6 7 8 9 10 11{15 16{20 21{25 26{30 31{40 41{50 > 50predicted count of p's 35:0 12:9 8:3 5:9 4:5 3:5 3:8 2:3 7:4 4:0 2:5 1:7 2:2 1:4 5:7observed count of p's 42 11 7 5 3 4 0 2 9 4 1 3 2 2 5
TABLE 5. Distribution of extinction times for the �rst 100 odd primes. For each range of values of Mp, thelast row gives the number of p with 3 � p < 550 such that Mp lies in that range, and the middle row gives thevalue predicted from (6.3).of the 100 values of Mp found in Tables 2 and 3with the predicted distribution of M , which is100(gm(0)� gm�1(0)): (6.3)This comparison is performed in Table 5.Note that this model hasg3(0) = :350 : : : < f1(0)2 = 1=e = :368 : : : ;so that M = 3 occurs with probability < 1=e. Onthe other hand, the model of Section 4 predictsthat the probability that p is harmonic is 1=e. Cer-tainly harmonic primes have Mp = 3, so our newmodel predicts a slightly smaller percentage of har-monic primes than the earlier model. The reasonfor this is that we have ignored the fact that thetypes of the four nonrandom nodes are known to be0, 0, wp, and wp. Incorporating this will producea more complicated but probably more accuratemodel.

7. PREDICTIONS FROM THE PROBABILISTIC MODELThe model of the preceding section allows us tomake precise predictions about the possible size ofJp, the extinction time Mp and the distribution of(n; p) for which vp(Hn) = k. In this section, weassume that the Jp are independent samples fromthe trees produced by the branching process fYmgdescribed in Sections 6.2 and 6.3. As noted there,this cannot be exactly true since that process pro-duces trees with an even number of nodes at anylevel m > 1, while this is not true for each individ-ual Jp. However, we expect that the approxima-tion will be su�ciently good to produce accuratepredictions about quantities such as jJpj and Mp.

The size of the random set Jp is Pm jYmj. Anasymptotic result of Otter [Harris 1963, p. 32] givesP (jJpj > r) � br�1=2; (7.1)where b = 4��1=2. Our results concerning jJpj willbe based on this estimate and an application ofthe Borel{Cantelli lemmas [Lamperti 1966, pp. 26{27]. Since it would su�ce for this to have boundsc1r�1=2 � P (jJpj > r) � c2r�1=2, our predictions donot depend in a serious way on the distributions ofthe Jp being identical.From (7.1), if " > 0, we get
P (jJpj > p2(log log p)2+2") = O� 1p(log log p)1+"�;and since Xp 1p(log log p)1+" <1;
the �rst Borel{Cantelli lemma implies that, withprobability one, only �nitely many inequalitiesjJpj > p2(log log p)2+2"
can hold, and hence thatjJpj = O"(p2(log log p)2+") (7.2)with probability one. As we decided earlier to ig-nore sets of probability zero, we thus conjecturethat this equation holds for all p.In the other direction, we have

P (jJpj > (p log log p)2) � bp log log p:
21 August 1996 at 14:34



Boyd: A p-adic Study of the Partial Sums of the Harmonic Series 301

Since the sum of this series diverges and we are as-suming the Jp are independent, the second Borel{Cantelli lemma implies that, with probability one,jJpj > p2(log log p)2 (7.3)for in�nitely many primes p.Now we make some heuristic deductions aboutthe possibilities for vp(Hn). Note that vp(Hn) � kis equivalent to the vanishing of the digits a0; : : : ;ak�1 in the p-adic expansion of Hn. In the set Jp,a0 is always 0, so vp(Hn) = k should occur forabout jJpj=pk�1 of the numbers in Jp. If p is oneof the primes for which (7.3) holds, we havejfn : vp(Hn) = 2gj � p(log log p)2;so we should expect the number of occurrences ofvp(Hn) = 2 to be large, as was indeed observed inour computations.If k = 3 and p is one of the primes for which(7.3) holds, we havejfn : vp(Hn) = 3gj � (log log p)2;so we should expect there to be primes for whichthe number of occurrences of vp(Hn) = 3 is arbi-trarily large. Note, however, that the maximumrate of growth from (7.2) is (log log p)2+". As de-scribed in Section 1, our computation revealed only5 pairs (n; p) with vp(Hn) = 3 for the primes p <550, which is consistent with these predictions.Next, for k � 5, the estimate (7.2) shows that
jf(n; p) : vp(Hn) � 5gj �Xp (log log p)3p2 <1;

so there are only a �nite number of such pairs. Itseems reasonable to conjecture that there are none.The remaining case, k = 4, is slightly more del-icate. We use Kolmogorov's three series theorem[Lamperti 1996, p. 34] to show thatPp jJpj=p3 con-verges with probability one. Writing Tp = jJpj=p3,one must check, for some c > 0, that the followingthree series converge: Pp P (Tp > c), PpE(T (c)p ),

and Pp varT (c)p . Here T cp = Tp if Tp � c and 0otherwise. Since (7.1) implies thatP (Tp > c) � bc1=2p3=2 ;the convergence of the three series is clear for everyc > 0 from the convergence of Pp 1=p3=2. Thus,with probability one, there are only a �nite numberof (n; p) with vp(Hn) = 4. Again we conjecturethat there are none.One can treat the extinction timeMp in a similarway. Since here P (Mp > r) � 4=r, the analoguesto (7.2) and (7.3) are that Mp = O(p(log log p)1+")for all p and that there should be in�nitely manyp with Mp > p log log p. This also follows from theobservation thatE(jYmj j jYmj 6= 0) = E(jYmj)=P (jYmj = 0) � mand that jJpj =PMpm=1 jYmj, so jJpj � 12M 2p .In conclusion, the model described in Section 6leads to precise predictions about the size of the Jpand the possible values for vp(Hn). The agreementof the model with the computations summarizedin Tables 2 and 3 seems good enough to give somecon�dence in these predictions. The goal now is to�nd a rigorous proof of some of these results.
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