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Motivated by problems from computer graphics and robotics—
namely, ray tracing and assembly planning—we investigate the
combinatorial structure of arrangements of segments on a line
and of arcs on a circle. We show that there are, respectively,
1x3x5X%---X(2n—1) and (2n)!/n! such arrangements; that the
probability for the i-th endpoint of a random arrangement to
be an initial endpoint is (2n—i)/(2n—1) or %, respectively; and
that the average number of segments or arcs the i-th endpoint is
contained in are (i—1)(2n—i)/(2n—1) or (n—1)/2, respectively.
The constructions used to prove these results provide sampling
schemes for generating random inputs that can be used to test
programs manipulating arrangements.

We also point out how arrangements are classically related to
Catalan numbers and the ballot problem.

1. INTRODUCTION AND MOTIVATION

Counsider a set of n intervals in the real line, and
assume that all 2n endpoints are distinct. We
will be interested in the combinatorial properties
of such arrangements, that is, the properties that
depend solely on the order in which the endpoints
occur, rather than their precise position. Specifi-
cally, we will count the number of possible arrange-
ments and determine two statistics (averaged over
all possible arrangements) for the i-th endpoint in
the sequence: the average number of intervals that
this point belongs to, and the probability that it is
an initial, rather than terminal, endpoint. We also
consider the analogous problem for arcs in a circle.

The overview of the paper is the following. Sec-
tion 1 briefly discusses the applications that led to
this investigation. Sections 2 and 3 deal with the
linear and circular cases, respectively. Section 4
lists some interesting open problems.
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Assembly Sequencing and Arrangements

Assembly sequencing is a domain of robotics whose
purpose is, given a collection of mechanical parts
that fit together in a certain way and a class of
motions that these parts can be subjected to, to
compute a way, if one exists, to get the single parts
from the whole assembly. For example, in the sim-
ple assembly in Figure 1, if we restrict ourselves to
translations in the plane, it is clear that P, and P,
can only be taken apart by a horizontal motion,
whereas P; and P, can be taken apart by motions
within an interval of directions.

P, Py

P P,

FIGURE 1. A simple assembly.

Analyzing assembly sequences can be of great
use in many ways: for example, to check that the
product can be disassembled, to ensure that the
parts that may be serviced often are easily acces-
sible, or to facilitate recycling by clustering parts
made of the same material. Of major practical
interest, assembly sequencing is also a difficult al-
gorithmic problem since it is intractable in its gen-
eral form; see [Natarajan 1988], for example. Re-
stricted, yet interesting, versions of the problem
have been shown to have polynomial-time algo-
rithms.

For example, consider the case of planar polyg-
onal assemblies where the only class of motions al-
lowed is infinite translations and where each split
results in two subassemblies [Wilson and Latombe
1994; Latombe et al. 1996]. The space of motions is

described by the unit circle S*, since a translation
corresponds to a unit vector in the plane. Given
two parts, the set of directions along which one
can be translated without colliding with the other
is described by an arc on S', determined by a cone
on the Minkowski difference [Latombe 1991]; see
Figure 2.

%Pj oF

FIGURE 2. The arc of directions of movement of P;
that lead to collision with P; is given by the cone
on the Minkowski difference set P; © F;.

The blocking relations for all the pairs of parts
are thus described by n(n—1) arcs in S*. Together,
they constitute an arrangement of arcs that di-
vides S' into endpoints and intervals, as shown
on Figure 3. This arrangement is called the non-
directional blocking graph, or NDBG, since it gives
the blocking relations for any pair of parts and any
direction. To each endpoint of the arrangement
corresponds a directed graph, called the directional
blocking graph, having a vertex for each part and
an edge between vertices ¢ and j if part ¢ collides
with part 7 when translated along this direction. A
topological sorting of the strongly connected com-
ponents of this directed graph gives the remov-
able subassemblies along this direction. Starting
with the full assembly, the disassembly algorithm
consists in recursively removing translatable sub-
assemblies with the previous scheme.
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b

FIGURE 3. Arrangement of arcs on S*.

Performing a worst-case analysis of this algo-
rithm is pretty easy. Indeed, the NDBG has O(n?)
vertices and each DBG has size O(n?), which gives
a space requirement of O(n*). The time complex-
ity of the recursive disassembly is O(n°) since there
are at most n levels of recursion, and each level
requires examining O(n?) DBGs for which the re-
duced graph (graph of the strongly connected com-
ponents) and a topological sorting have to be com-
puted.

The average-case analysis is much more challeng-
ing. Firstly, a precise understanding of the combi-
natorics of arc arrangements is required. Secondly,
some random graph structure is needed for the di-
rectional blocking graphs. The latter question is
difficult since the number of edges of a DBG de-
pends on the geometric information encoded in the
relative position of the pairs of parts, which re-
quires some definition of random assemblies. This
goes beyond the scope of this paper. By contrast,
the first problem is better defined and raises pre-
cise questions such as the generation of a random
arrangement (see also [Zimmermann 1994]), the
probability of a given endpoint to be an initial or
terminal endpoint, the average number of arcs a
given endpoint of an arrangement is contained in,
and so on. These questions will be addressed in
Section 3.

FIGURE 5. Clusters found in the scene. Bottom: detail.
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Ray Tracing and Clustering

Ray tracing is a technique from computer graphics
that consists in computing views of scenes defined
by geometric primitives. Very often these primi-
tives are polygons defined by their geometry and
color, a given object of the scene being defined by a
set of such polygons. As an example, consider Fig-
ure 4, where the kitchen model consists of about
25,000 polygons, and objects such as the bowl on
the table or the teapot are made of about 1000
polygons. To sketch the ray-tracing algorithm (see
[Foley et al. 1990] for details), let a ray be de-
fined by a point and a direction in three dimen-
sions. Rays are used to simulate the light received
by the observer’s eye, so that the key operation
of the whole algorithm counsists in finding, for a
given ray, the closest object hit in order to plot the
corresponding color on the screen of the computer
where the algorithm is run.

Reducing the number of ray-polygon intersection
tests has ever been a challenging issue. The main
paradigm consists in partitioning the volume con-
taining the scene into small boxes, in order to test
for intersection only those polygons stored in the
boxes of the partition crossed by the ray of inter-
est. An example of such partitioning, the uniform
grid, is based on a regular grid aligned with the
three coordinate axes. (See [Cazals et al. 1995] for
a discussion of grid-like data structures.)

by b b3 e €3 by e €4

FIGURE 6. Arrangement of line segments.

The problem with this approach is that when-
ever too many polygons fall into the same box the
spatial partitioning does not result in data parti-
tioning, so the number of ray-polygon intersection
tests is not reduced significantly. To remedy this
problem, it was observed in [Cazals et al. 1995]
that using uniform grids for densely populated ar-
eas of the scene called clusters could partially solve
the problem. Examples of clusters are the neigh-
borhoods of the bowl, teapot, or door knobs, and
are depicted on Figure 5. More precisely, a cluster
is defined as a subset of objects whose projection
along the three axis x,y and z is almost-connected.
And, since the projection of a polygon on a line
is a line segment, the clustering algorithm analy-
sis turns out to be closely related to the combina-
torics of arrangement line segments, as in Figure 6.
Thus, the results presented in Section 2 of this pa-
per were recently used in [Cazals and Sbert 1997] in
conjunction with integral geometry techniques to
define statistics aiming at characterizing standard
scenes types such as natural models, architectural
scenes, etc.

2. THE LINEAR CASE

Notations and Previous Work

Consider an set of n segments on the line. Let the
2n endpoints, which are assumed distinct, be in-
dexed in order by (1..2n) ={1,2,3,...,2n} C Z,
an orientation having been fixed in advance. From
the combinatorial point of view, the arrangement
of segments is specified completely by an involution
a of (1..2n) without fixed points. More precisely, a
segment joining endpoints ¢ and j is denoted [4, j],
if ¢ < 7; the endpoint-pairing involution maps ¢ to
j and j to %, and we call + and j the initial and ter-
minal endpoints of the pair. For instance, the three
possible arrangements of two segments are shown

in Figure 7: they are {[1,2], [3,4]}, {[L,3], [2,4]},
1 2 3 4 1 2 3 4 1 2 3 4

FIGURE 7. The possible arrangements of two segments.
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and {[1,4], [2,3]}. The arrangement {[1, 2], [3,4]}
is also thought of as the pairing 1 <+ 2, 3 <+ 4.

Let S,, be the set of all arrangements of n seg-
ments, and let s, = |S,,|, where the bars denote
cardinality; thus s, = 3 (compare Figure 7). In
general, we have

Sp=1x3x .-+ x(2n—1),

as can easily be seen: the pairing can take 1 to
any of the 2n — 1 remaining indices; it can take the
lowest of the remaining 2n — 2 indices into any of
the remaining 2n — 3; and so on.

For a particular arrangement a € S, and for
i€ (1..2n), we define a[i] to be B or E according
to whether endpoint ¢ begins or ends the respective
segment, that is, according to whether a(i) > i or
a(i) < i. For fixed ¢, the statistics we are interested
in are the probability that a[i] = B (or ali] = E),
as a ranges over all of S,,, and the overlap number
of 7, that is, the average number of arcs or line
segments in whose interior endpoint ¢ is contained.
Formally, we define

B™ =|{a €S, : ali] = B},
e™ = |{a €5, : ali] = E}|,
"= Z {(be) ea:b<i<e}|

a€S,

The corresponding vectors as i ranges over (1..2n)
are denoted &™), 5(”), and 7. Thus for n = 2
we have f® = [3,2,1,0], &2 = [0,1,2,3], 7® =
[0,2,2,0] (Figure 7).

The numbers s,, have appeared in the literature
in several forms, in particular in [Touchard 1950;
Riordan 1975], which deal with the stamp-folding
problems. The value of s, is given by Touchard.
Riordan mentions that the number of pairings of
2n points on a circle is also s,, since such pair-
ings, too, can be seen as involutions of (1 .. 2n).
(More geometrically, one can open up the circle
at an arbitrary point; then a pair of points on S*
corresponds to a segment in the resulting interval,
and vice versa.) Finally, a look at the very nice
book [Sloane and Plouffe 1995, M3002] shows that

the sequence s,, has long been known in connection
with the expression of Wallis integrals.

Riordan [1975] also points out the interesting
relation between the number of pairings on a circle
and the Catalan numbers: pairings where chords
are not allowed to intersect give rise to the Cata-
lan numbers C,, = (2:) /(n+1), while pairings that
allow crossings between the chords lead to s,. Ri-
ordan cites a correspondence between the Catalan
numbers and the ballot problem, also known as the
subdiagonal random walks problem [Comtet 1974;
Yaglom and Yaglom 1964; Knuth 1973].

Initial and Terminal Endpoints

Theorem 2.1. For any i = (1 ..2n) we have

2n — 1
() _
L s R

=2n—1i)s, 1 =5,—(1—1)s, 1.

Therefore the probability that the i-th endpoint is
initial is (2n—i)/(2n—1), and the probability that
it is final is (i—1)/(2n—1).

Proof. We use the recursion
BT = (i—1)BY + 50+ 2n1-0)8"7, @.1)

for i = (1..2n+1), with initial condition g5t} =
0. This recursion can be verified as follows. Given
an element of S,,1, let i € (1..2n+1) be the initial
point of the segment whose terminal endpoint is
2n+2. If we remove the pair [i, 2n+2] and renum-
ber, we get a well-defined element of S,. Con-
versely, a choice of ¢ € S, and 7 € (1..2n+1)
yields a unique element a’ € S,,,, by the addition
of a segment that starts between position ¢ — 1 and
i of @ and ends at the far right. (Incidentally, this
is another way to derive the value of s,, since it
shows that |S,41] = (2n+1)|S,|.) Because of the
renumbering, we have
a'[j] = {“U] ity <i, |
alj—1] ifi < j < 2n+ 2i;
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moreover ¢'[i] = B and o'[2n + 2] = E. Analyzing
the contribution to each ﬂ](.”H) from each value of
1, we can write:

n+1 n+1 n+1 ntl n+l
[ﬁf +)ﬁ§ +)g§ “...ﬂénil)ﬂéniz)]

=0 s, A" M Bl 0 ] (i=1)
+1 B s, BT LB 0 ] (i=2)
YL AW B B s, 0] G=2n+)

Summation by columns gives the desired recur-
rence relation (2.1). (Note that in this relation
the undefined quantities 8™} when i = 0 and 8"
when ¢+ = 2n + 1 are multiplied by zero, so the
equation still makes sense.)

We now prove the closed-form expression for ﬁi(n).
We certainly have ﬁfn) = 1; assume by induction
that ™ = s,_1(2n — ) for i € (1..2n). We get,
for any i € (2..2n+1):

B = (i—1) 8,1 (2n—i+1) + s,
+(2n—i+1)s,_1(2n—1)
= Sp + Sp_1(2n—1)(2n—i+1).

But s, = s, 1(2n—1), which completes the proof
for i € (1..2n+1). The case i = 2n + 2 is trivial.

The probability that endpoint ¢ is initial in an
n-point arrangement is of course BZ-(”)/ Sn, and the
probability that it is terminal is the complement.
This proves the theorem. O

The Overlap Number

Theorem 2.2. For any i = (1..2n) we have 7" =

(t—1)(2n—14)s,_1. Thus, the average overlap num-
ber of the i-th endpoint in an n-segment arrange-
ment is (i—1)(2n—i)/(2n—1).

It is possible to prove this using recursion, much
like Theorem 2.1; but here a nicer direct proof:

Proof. Endpoint 7 is covered by segments of the form
[7,k] for j € (1..i—1) and k € (i+1..n), and there
are (i — 1)(2n — ¢) such segments. Each of them
appears exactly s,,_; times in the s,, arrangements,

since once we have fixed segment [j, k] we are left
with an arrangement of n — 1 segments. g

3. THE CIRCULAR CASE

We now turn to arrangements of arcs in the circle,

and answer the same questions that were posed

in Section 2 for linear segments. Because all end-

points are equivalent on S*, the situation is easier.
We start with the number of arrangements:

Theorem 3.1. The number r,, of arrangements of n
arcs on a circle is equal to (2n)!/n!.

Proof. An arrangement of n arcs is specified by a
pairing of the 2n points, together with n indepen-
dent binary choice, one for each of pair of end-
points (either arc determined by the pair may ap-
pear in the arrangement; see Figure 8). Therefore
Tp=2"5,=2"(2n—1) x 2n—3) x---x3x 1) =
(2n)!/nl. O

FIGURE 8. Two arcs are determined with equal
probability by a choice of two endpoints.

The classification of the arrangements into pairings
also yields the probability that a given endpoint
is initial. Because, for a given pair of endpoints,
each of the two choices of a segment with those
endpoints occurs in half the arrangements that in-
clude this pair of endpoints, the probability that a
fixed endpoint is initial is %

The same reasoning shows that the average over-
lap number of any endpoint in an arrangement of
n arcs is (n — 1)/2: if endpoint 4 is chosen and
we consider the relation of ¢ with any pair (r,s)
with r,s # ¢, we see that ¢ lies in the interior of
the arc with endpoints (r,s) for exactly half the
arrangements that include this pair.
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4. CONCLUSIONS

The analysis in Section 2 is of interest for computer
graphics algorithms dealing with objects’ projec-
tions along lines. The results in Section 3 may be
the first step toward an average case analysis of
the NDBG-based algorithm for computing assem-
bly sequences in the simple case of polygons in the
plane moved with infinite translations. Although
this particular assembly sequencing problem might
appear quite restrictive, it is actually one of the few
for which it is reasonable to come up with an imple-
mentation for, so that any precise analysis would
be of interest.

We remark that, from the study of the combina-
torial structure of arrangements presented in this
paper, it is easy to randomly generate such ar-
rangements in order to test and validate geometric
software. An algorithm to do this might go as fol-
lows.

Assume we have an array t of integers, of length
2n, and two functions: swap(t,i,j), which swaps
the contents of slots ¢ and j in ¢, and random(k),
which returns an integer in the range 1.. k. The
algorithm returns the endpoint b; and e;, for i €
(1..k), of the arrangement being generated.

for i € (1. .2n) do
t[i] + i;
for i € (1. .n) do
p < t[random(2n+2—21)];
swap(t, 2n+2—2i, p);
q < t[random(2n+1—21)];
swap(t, 2n+1—2i, q);
b; < inf(p, q);
e; = sup(p, q);

Many interesting issues remain open, in particu-
lar the calculation of higher moments for the statis-
tics presented here. It would be interesting to find
two-dimensional analogs for the results presented
here; the work done so far in this direction deals
with arrangements of lines in the plane, but not
line segments [Edelsbrunner 1986].
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