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On the basis of experimental work involving matrix computa-
tions, we conjecture and prove that a criterion due to Bell for
primeness of the universal enveloping algebra of a Lie super-
algebra applies to the Cartan type Lie superalgebras W(n) for
n = 3 but does not apply for odd n > 5.

1. INTRODUCTION

A Lie superalgebra is a Z,-graded vector space
L = Ly + L, with a graded bilinear product map-
ping [, ]: L x L — L that satisfies certain identi-
ties. A good general reference is [Scheunert 1979].
In particular the restriction to L; of the product
map yields a symmetric bilinear map. A result of
Bell [1990] shows that if the product matriz repre-
senting this map is nonsingular the universal en-
veloping algebra U(L) is a prime ring.

The finite-dimensional simple Lie superalgebras
over an algebraically closed field of characteristic
zero have been classified by V. Kac [1977]. There
is an important structural division of such alge-
bras into those of classical type and those of Car-
tan type. It is known [Bell 1990; Kirkman and
Kuzmanovich 1996] that Bell’s criterion holds for
all but one family of the classical simple algebras.
Wilson [1996; > 1997] has attempted to determine
whether Bell’s criterion applies to the simple Lie
superalgebras of Cartan type, and has shown that
the algebras in the families of W (2n) and H(n)
also satisfy the criterion, and that S(2n + 1) does
not. The proofs in these cases, though not trivial,
were of a more straightforward character than in
the present paper.

Here we dispose of one of the remaining cases by
showing that W (n) does not satisfy Bell’s criterion
if n is odd and n > 5. While this has no obvious
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ring-theoretic ramifications, the greater complex-
ity of this case leads to an interesting interplay
between experimental and rigorous mathematics,
and suggests further work. In fact the algebras
W (2n + 1) provide the first “naturally occurring”
case where Bell’s criterion fails for a nontrivial rea-
son.

In section 2 we introduce the basic notation and
background. The first subsection can be safely
omitted at a first reading, but the others are es-
sential for the rest of the paper. Section 3 presents
our experimental results and section 4 our theo-
rems and proofs.

2. DEFINITIONS
The Algebra W(n)

A good reference for this subsection is [Scheunert
1979].

Let K be a field of characteristic zero and let
A = A(V) be the exterior (Grassmann) algebra of
the vector space V = K™. Then A is an associative
superalgebra of dimension 2" where the Z,-grading
is induced by the usual Z-grading given by degree.

Let W = W (n) = D(A), the Lie superalgebra of
superderivations of A. Then

W =W,

is naturally Z-graded and this grading is consistent
with the Z,-grading. Here the graded component
W.,. consists of all superderivations that map V into
A,;1, so the highest degree actually occurring is
n — 1 and the lowest is —1.

For homogeneous 0 € W and z,y € A, we have

I(zy) = 9(z)y £ 29(y),

where the — occurs if and only if both z and 0 are
odd. Every element of W restricts to a linear map
V — A. Conversely every element of W arises in
this way and we have the isomorphism of vector
spaces W = A ®x V*, where V* denotes the lin-
ear dual of V. We shall use this identification in
the rest of the paper. Under this isomorphism the

element a ® f is identified with the superderiva-
tion taking v € V to af(v) € A. One obtains the
multiplication formula for odd elements

a® f,b®g]=af(b)®g+bgla)® f.

Computations in A ® V*

In this subsection we interpret the preceding con-
cepts in terms of a specific basis for A @ V*. We
shall use the formulas obtained here throughout
the remainder of the paper.

The exterior algebra A(V) is the free anticom-
mutative algebra on V. In other words it is gen-
erated by V and all relations are consequences of
the basic identity vw = —wv for all v,w € V. Of
course this implies that v> = 0 for all v € V.

In this paper ordered sets will always be written
as lists (i1,...,7,). A subset of a set will not au-
tomatically inherit any ordering that its superset
may happen to have.

Fix an ordered basis (vy,...,v,) for V. For each
subset I of N = (1,...,n), choose an order i; <
1o < -+ < 4, of I and define v; = v v, - v; .
The set of all such v; (where we define vy = 1)
forms a basis for A. Here the choice of ordering
of I is completely arbitrary; changing the order of
I only changes the corresponding vy by a factor
of £1. For definiteness, unless otherwise stated we
shall assume I to be ordered in natural (increasing)
order as a subset of N.

We shall need the following easily established
formula, valid for any ordering of I.

vy = (=)=PE0g4 0,
= (1), (2.1)

if i € I. Here by d(I,4) we mean the ordered set I
with the element 7 (if it appears) deleted. This set
is considered to inherit its order from I.

Let (0,...,0,) be the dual basis to (vi,...,v,),
so that 0;(v;) = 0;;. For any choice of orderings of
the I, the set of all v; ® 0; is a basis of A @ V*.
For our later computations we shall always use use
the following choice. If ¢ ¢ I then we order I nat-
urally as a subset of N. However if 1 € I we order
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I naturally, except that we insist that ¢ be the last
element of I. Thus if I’ is the complement I \ {i}
we have v; ® 0; = vpv; @ 0;, where I’ is in natural
(increasing) order. Note that the ordering of I de-
pends on 7 here, so that in basis elements v; ® 0;
and v; ® 0; the set I may be ordered differently.

Given an ordered set I and an integer 7, let p(I, 1)
denote the position of 4 in I if it occurs and zero
otherwise. Explicitly,

, if I = (iy,...,i,) and i =1
I — S 1 1 ) Ur CR)
p(Li) {0 ifidl.

The degree of a basis element v; ® 0; is |[I| — 1,
and such an element is called odd or even accord-
ing as its degree is either odd or even. Note that
the maximum degree occurring is n — 1 and the
minimum is —1. It follows from all our definitions
and identifications that the multiplication formula
for odd elements becomes

[vr ® 0, vy ® 0j]
= (=) s (D orvags) ® 0
+(=1)" Py 1 (§)vsva ) ® O (2.2)

Here x; denotes the characteristic function of the
set J. Note that it is immediate from (2.2) and
anticommutativity that the product is zero if I NJ
has two or more elements.

[0 0 0 —Yo1 Y22 Yo3
0 0 0 Y11 Y12 —Yi3
0 0 0 0 0 0
—Y2a1  Yn 0 0 0 0
Y22 —Yi12 0 0 0 0
Yoz —yiz 0 0 0 0
—Y31 0 Y11 0 —2 23
Y32 0 —Y12 % 0 0
Y33 0 —Yi3 —23 0 0
0 Y31 —Y21 0 21 0
0 —Y32 Y22 —Z1 0 Z3
L O Yss  —Y2s 0 23 0

—Ys31 Y32 Y33 0 0 0 7
0 0 0 Y31 —Y3z2  Yss
Y1 Y12 —Yiz —Ya1 Y22 —Y23
0 2y —23 0 -2z 0
—2 0 0 21 0 23
23 0 0 0 23 0
0 0 0 0 0 21
0 0 0 0 0 2
0 0 0 Z1 Z9 0
0 0 21 0 0 0
0 0 2 0 0 0
Z1 z9 0 0 0 0 h

From now on we shall not distinguish between
W (n) and A ® V* and we shall use the description
above of the latter for all computations.

The Product Matrix

Suppose that L = Ly + L; is a finite-dimensional
Lie superalgebra and that {z,,z»,...,zx} and Y =
{y1,...,ym} are ordered bases for, respectively, L,
and Ly. The subspaces Ly and L, are called respec-
tively the even and odd parts of L. The product
matrix represents the bilinear pairing [, |, so that
with respect to these bases the 4,5 entry of the
product matrix is the product [z;, z;]. The matrix
is considered to be defined over the commutative
polynomial algebra K[Y] (in fact its entries are lin-
ear combinations of the variables yi,...,yy).

For L = W (n) we use the basis defined above.
Thus the rows and columns are indexed by the
pairs (I, 1) corresponding to the basis elements v;®
(9i.

As an example, let L = W (3). Here the basis
elements for the even part are y;; = vy ® 0;, 21 =
Vi2,3,1) @ O, 23 = V(1,32) @ 0y and z3 = vy 5.3y ® Os.
The basis elements for the odd part are z; = J; and
Tijk = V(.5 ® Oy and these are ordered as follows:

Ty < Ty < Tz < To11 < T2z < T2z < T
< Ty132 < 133 < Ta31 < Tz22 < Tass.

Thus the product matrix, which we write W (3),
is given by
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One can compute, using a computer algebra sys-
tem such as Maple, that this matrix is in fact non-
singular, so that W (3) satisfies Bell’s criterion. It
was shown in [Wilson 1996] that the even Witt al-
gebras W (2n) satisfy Bell’s criterion. Proving such
a result relies on finding a generally applicable spe-
cialization. However, though one can find many
specializations that work for W (3), it is unclear
how to generalize any of them even from n = 3 to
n =3>.

3. EXPERIMENTAL DATA

Probabilistic Methods

The first author has written Maple code, used for
all computations in this subsection, that generates
the product matrices for all Cartan type simple
Lie superalgebras. See the section on Electronic
Distribution before the bibliography.

The rather straightforward methods used in pre-
vious papers yield nothing, so we resort to experi-
ment. Maple shows easily that the 12 x 12 product
matrix of W (3) is nonsingular. We turn our atten-
tion to the product matrix W (5) of W (5). Exper-
imentally, we must first decide if we think W (5)
is likely to be singular or not; then hunt for a pos-
sible proof. A computer algebra program such as
Macsyma or Maple might attempt to determine the
singularity of W (5) by direct elementary methods.
However, W (5) is too large for this to be success-
ful; it is an 80 x 80 matrix whose entries involve
80 variables. One way to simplify the computation
is by specialization; give each variable an (integer)
value, and study the resulting numerical matrix.
It is clear that the rank of the specialized matrix
cannot exceed that of W (5) itself. Thus, if we find
a nonsingular specialized matrix, we may conclude
that W (5) is nonsingular. But it is unclear how to
choose values for the variables so that the rank of
the specialized matrix will be large; most regular-
looking choices have too much symmetry to give a
large rank.

In the absence of any cleverer ideas, a reasonable
thing to do is to choose values at random in some

way. This gives not just one specialization, but
many—a different one each time we try it.

Early on, then, we attempted to calculate the
ranks of randomly specialized versions of W (5).
The variables were given independent random val-
ues sampled from a probability distribution pu; dis-
tributions ¢ we used included:

(i) The values 0 and 1, each taken with probability
%. This has the advantage of simplifying com-
putation.

(ii) The values —1, 0, and 1, each taken with prob-
ability %

(iii) The values —80, ..., 80, taken with equal prob-
ability.

We performed 100 specializations for each distribu-
tion, and computed the rank of the resulting ma-
trices. The results were as follows:

Method Rank < 75 Rank =75
(i) 14 86
(ii) 2 98
(iii) 0 100

In no case did the rank of a specialization exceed
75. We are thus provided with no firm conclusion;
if we are to take anything from this exercise, it is a
belief that W (5) may well be singular. However,
it is not clear @ priori how much faith one should
place in these results. For a sufficiently generic ma-
trix they would appear compelling, but the struc-
ture of the matrix in question may have a large
effect on the data. It is conceivable that special-
izations exist that give the matrix full rank, but
that they are generated only with low (or zero)
probability by our random methods. In (i), for ex-
ample, each specialization will give the value 0 to
about half the variables and the value 1 to the rest.
Might not achieving full rank require the 1’s to be
in a strong majority?

Fortunately there is an argument that can lay
most of our fears to rest. We are really attempting
to determine whether the determinant of W (5), a
polynomial in our 80 variables, is the 0 polynomial.
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We can make use of the following known result (see
[Schwartz 1980], for example):

Proposition 3.1. Let () be a nonzero polynomial in n
variables. Let I be a finite subset of the coefficient
field of Q, with |I| > cdeg@. Then the number
of elements of I™ that are zeros of Q is at most
cHIm.

In our case deg(Q) < 80, and if we take I =
{—80,...,80} as in case (iii) above, the inequality
in this result is satisfied with ¢ = 2. So if W (5) is
nounsingular, each random specialization of the sort
in (iii) has probability at least 1/2 of detecting this
fact; that we failed to detect it in 100 tries means
that we have witnessed a very rare event (one with
probability smaller than 271% ~ 107%°). It thus
appears that W (5) is very probably singular.

Similar support can be given for the assertion
that the rank of W (5) is exactly 75; we omit the
details here. While this kind of probabilistic argu-
ment does not constitute proof, it is quite sound
enough for further experimental investigations to
be based on its conclusion. For more on arguments
of this type, see [Chaitin and Schwartz 1978].

The Nullspace

Additional exact rank computations were made to
supplement the lower bounds found in the previ-
ous section. We used Macsyma for all the com-
putations discussed in this section. Proving the
singularity of a 80 x 80 matrix with 80 variables is
a daunting task. Even the fact that half the matrix
entries are zero may not help very much. Exam-
ples of expanded determinants like ours can have
27 terms.

There is one special situation that could be effi-
ciently exploited, however. In all other nontrivial
cases where Bell’s criterion does not hold, this is
caused purely by the zero-pattern of the product
matrix—its expanded determinant has no nonzero
terms. Now this fact can be demonstrated by a
O(n®/?) algorithm [Hopcroft and Karp 1973] ap-
plied to a 0-1 matrix with the same zero pattern
as the matrix of interest. Hoping to exploit this

fact, we formed a general 80 x 80 matrix having
the same zero pattern as our candidate. When
the variables in this matrix were randomly special-
ized, the calculated determinants were not zero.
Thus, there was no hope that the zero pattern
alone could make our candidate singular. Hence
if indeed det W(5) = 0, this is caused by some
interesting cancellation in the expanded determi-
nant.

One must avoid having too many variables in a
symbolic computation. Intermediate computations
involving many variables may very well exhaust
computer memory even if the final answer would
be quite compact. To avoid this situation, we ran-
domly specialized the variables and performed all
arithmetic over the ring Zgg73. The prime 9973
was chosen for the convenience of having displayed
integers having at most four digits.

When we asked for not merely the rank of our
specialized matrices, but for their nullvectors, we
were fortunate to find the 80-tuples representing
the nullvectors all began with at least 55 zeros.
We therefore undertook to prove, if we could, that
the last 25 columns of the unspecialized matrix has
rank of only 20, implying a rank deficiency of at
least 5 for the entire matrix.

In the partitioning of W(5) introduced in the
next section, the last 25 columns consist of the
block W_, 3 with 5 rows involving 50 variables, the
block W 5 with 50 rows involving only 5 variables,
and additional rows of zeros, which we disregarded.

Naturally, the first block, W_, 3, was avoided as
long as possible because it involves 50 variables.
We wanted to show the remaining nonzero rows,
which form W, 3, were of rank 15, because it would
then follow that the rank of all of the rows in the
last 25 columns could not exceed 20.

Concentrating, then, on W, ;, which has only
5 variables, we further reduced the task to find-
ing a (right) nullvector using only some of its rows
because the random specialization indicated these
sufficed to obtain rank 15. The resulting nullvec-
tor was then demonstrated to nullify all of W ;.
Since the nullvector was found to depend on 10 free
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parameters, we had proved the rank of W) ; to be
15, as we had expected.

Summarizing, we showed that the rank of all of
the rows in the last 25 columns could not exceed
20. Hence, neither could the column rank exceed
20. As a result the entire matrix can not have rank
exceeding 75. But in the previous section, we saw
that the rank was at least 75.

With hindsight, we see that we erred on the side
of caution. In less than 4 seconds of computing
time on our workstation, MACSYMA finds the rank
of Wi 3 to be 15. In addition, one can find an ex-
plicit row dependence, but its form, with 55 origi-
nal variables and 5 free parameters, makes it diffi-
cult to interpret and generalize.

At this stage we have proved that W (5) does not
satisfy Bell’s criterion. It remains to see whether
the argument above will generalize to W (n), for
odd n > 5. To do this we have to exhibit the row
dependencies explicitly. This is carried out in the
next section.

4. PROOFS

In the light of the above it is easy to conjecture that
the product matrices for odd n > 5 are singular.
This is proved below, by finding an upper bound
for the rank of the submatrix W_,,_,, as suggested
by our experimental work.

A rather detailed analysis of the structure of the
product matrix is required, and the particular basis
we use plays a crucial role. Of course, this basis
was not the one first used, but was discovered in
the course of the analysis. The fact that we use
the same basis elements for the rows and columns
means that the product matrix is symmetric.

Detailed Structure of the Product Matrix

From now on assume that n > 3 is odd. Then the
highest odd degree occurring in W is n — 2 and the
highest even one n—1. Grouping the basis elements
by increasing degree we obtain a block structure to
the product matrix. We let W, ; denote the prod-
uct submatrix formed by all products of W, with

W;, let W, denote the horizontal concatenation
of all W, ,, and let W., denote the vertical con-
catenation of all W, ;. Then the product matrix
W (n) has the structure

0 W_in W_oiz ... Woipnos Wi oo

W1 Wi Win-a Win_o
Ws 1 . W34 0
Wi oo Wasa 0 ... 0 0

We will find an upper bound for the rank of each
block W, ,,_1_,.

Fix an odd r with 1 <7 <n—2. The component
W,,_1 has basis consisting of all z;, = vy ® 0 with
k € N, so every nonzero entry in W, ,_,_, is a
linear combination of the z.

Let I,J C N with [I| =r+1,|J] =n—1r. We
now obtain conditions on (I,7) and (J,7) in order
that the entry of W, ,,_1_, in the row indexed by
(1,4) and the column indexed by (J, j) be nonzero.
This entry is of course equal to [v; ®0;,v;®0;]. We
say that (I,7) and (J, j) are linked in this situation.
We shall not pursue the obvious graph-theoretical
interpretation of this term.

It follows from the multiplication formula (2.2)
that a necessary condition for linking is that INJ =
{i} or I'NJ = {j}. These two possibilities are in
fact mutually exclusive, since

(v ® 03, v; ®0;] =0 4.1)

if |I| and |J| are even and I NJ = {i}. To see this,
we compute:

[U[ ® az'a vy Q 81]
= _UIUd(J,i) & az - ,UJ,Ud(I:i) ® az
= (—0a(,)Vivaci) = Va(rivivacriy) ® 0;
— ('Ud(I,i)’Ud(JJ),Ui — ’Ud(Li)'Ud(J,i)'Ui) X 81

=0.

In summary, (I,4) and (J,j) are linked if and only
ifi #jand INJ = {i} or INJ = {j}. The
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corresponding entry in W (n) equals +z; for some
k € N, and is given exactly by

it In.J = {i},
if InJ={j}.

Ui\ v © 0;

[0 ®0;, vy Q0;] = {UJ\{]'}U[ ® 0,

The cases where ¢ € I and i ¢ I behave rather
differently, and we examine each separately in more
detail.

Case i ¢ I. Here we must have I NJ = {j}. For
each j € I there is exactly one such J and in fact
we have v; ® 0; = vn\1v; ® 0; by our basis conven-
tion. Thus the corresponding entry in the product
matrix is
UN\TVr ® az

Note that this is independent of J and j and so a
row indexed by such a pair (I,4) has precisely |I]
nonzero entries all of which are the same. Further-

more, for a fixed I the nonzero entries occur in the
same columns for all .

Case 1 € I. There are three subcases.

INnJ = {j}. We have v; ® 0; = vn\;v; ® 0; and
v ® 0; = Vq1,)v;i ® 0;, so the entry in the
product matrix is

VUN\1Va(1,i)Vi @ O;-

INnJ ={i}, j € J. Here v; ® 0; = vny\yv; ® 0; and
the corresponding entry is

UN\JVd(J,5)V;j ® 8j.
INJ ={i}, j ¢ J. Here the corresponding entry is
UN\JVJ X 8j.

Estimating Ranks

After these preliminaries we can now prove a key
lemma.

Lemma 4.1. The rank of W, ,,_1_, is at most (”+1).

r+1
Proof. Fix A C N with |A| = r. For each k €
B = N\ A, consider the submatrix Sy, of W, ,_;_,
formed by all rows indexed by pairs (A U {k},1)

as ¢ ranges over B. By the analysis above, the

columns that correspond to nonzero entries in Sy
are indexed by pairs of the four types (B, j), j € 4;
(B,k); (B,j), j € B\{k}; (B\{k}U{j},j), ] € A.

Let F be the function field K(z,,...,z,). The
rows where 7 # k span a 1-dimensional F'-subspace
since we are in the case ¢ ¢ I above. Thus us-
ing suitable row operations over F' we may assume
that such rows contain only ones and zeroes. Fur-
thermore the ones occur precisely in the columns
of the second and fourth types above.

We now compute the remaining entries of Sy,
namely those in the row with ¢+ = k. For the
columns of the first type we are in the I'NJ = {i},
j ¢ J above and the entry is vqvp ® 0;. This is
equal to €(A)z; where €(A) = £1. For the column
of the second type the entry is of course zero by
(4.1).

For the columns of the third type we are in the
case INJ = {i}, j € J above, and the entry is
VAVq(p,;)v; @ 0;. This can be rewritten using (2.1)
as (—1)IBI=PBd)y 10 ® 0;, which equals

(_1)p(B7j)UAUB ® 0;

since |[B| =n — 1 —r is even. We can write this as
€(A,j)z; where ¢(4,5) = £1.

Finally, for columns of the fourth type we are
in the case i € I, I'NJ = {j}. The correspond-
ing entry is v rvavx ® Or. This simplifies to
VAVRVaBk) @ Op by anticommutativity and then
to (=1)*PERy, 05 ® 9, by (2.1). In terms of
the notation of the previous case this is equal to
—e(A, k) z.

Thus S, may be represented as in Table 1, top.
By adding £(A, k)z;, times any of the rows with
i # k to the row with ¢ = k& we convert S, to
a matrix that may be represented as in Table 1,
bottom. In particular, note that if we keep A fixed
and perform the above procedure for each &k € B
in turn, all the rows with ¢ = k are now identical,
so form a rank-1 submatrix.

Now allow A to vary. Each row of W, ,_,_,
that is indexed by some (I,4) with ¢ € I appears
precisely once in the above construction. Thus the
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(B.j),jeA (Bk) (Bj), jeB\{k} ((B\{k})U{j},j), je4
i=k: e(A)z; 0 e(4,4)z; —e(A,k)zg
itk 0 1 0 1
(B,j), €A (B,j),jeB  ((B\{k})U{j}, i), je4A
i=k: e(A)z; e(4,4)z; 0
ik 0 1

TABLE 1. Entries of Si. The row i = k of the table represents one row of Sy, whereas the row i # k represents
n —r — 1 rows. Each column of the table may represent many columns of Sy. Top: original matrix. Bottom:

after row operations.

total contribution to the rank of W, ,,_,_, by such
rows is at most equal to the number of A, namely
(:) As noted above, for a given I then the rows
indexed by (1,i) with ¢ ¢ I are the same for all
1. Thus the total contribution to the rank by rows
with ¢ ¢ I is at most equal to the number of I,
namely (TL). Hence W, ,,_;_, has rank at most
() + (1) = () 3
We illustrate the above proof in our example n = 3.
Take A = {1}. Then the submatrix S, when rep-
resented as above yields

T231 L322 L233 T311
L122 21 0 Z3 —22
T123 0 23 0 z3

while S5 is represented as

T231 T233 L322 T211
T132 0 Z9 0 zZ9
L1133 21 0 22 —Z3

The main result follows directly:

Theorem 4.2. If n is odd, W (n) satisfies Bell’s cri-
terion only for n = 3.

Proof. The case n = 1 is trivial and the associated
1 x 1 product matrix is 0. Now assume that n > 3.
The submatrix W._,,_» (the rightmost “column” of
the product matrix) consists of two nonzero blocks
and has dimensions (n2"!) x n?. Since the rank of
W_i n—» is at most n, it follows from Lemma 4.1
that the rank of W.,_, is at most n + ("I') =

n(n + 3)/2. Thus the rank of W(n) is at most
n2"t—n*4+n(n+3)/2=n2""t—n(n—3)/2. For

n > 5 this is strictly less than n2"~!. We know the
criterion holds for n = 3. |

Note that for n = 5 the bound in the proof yields
the correct answer 75. For n = 3 the bound also
gives the right answer 12. One can show using
Lemma 4.1 that the bound is not sharp for n > 7.
We do not have a conjecture for the exact value of
the rank when n > 7.

5. COMMENTS AND FUTURE WORK

The converse of Bell’s criterion is not yet known
to be either true or false, though false seems (in-
tuitively) most likely. In light of this, it would be
of interest to know whether U(W (n)) is prime for
odd n > 5. We have made no progress on this
question.

The first two authors have recently shown that if
n is even, the Cartan type algebras S(n) and S(n)
satisfy Bell’s criterion. Details will appear J. Pure
Appl. Algebra (Proceedings of International Ring
Theory Conference, Miskolc, Hungary, July 1996).
Thus all the Cartan type Lie superalgebras have
been accounted for.

ELECTRONIC AVAILABILITY

The Maple code by Mark Wilson used for the com-
putations of Section 3 can be accessed from the
Web page http://www.math.auckland.ac.nz/
~wilson/Research/bellcrit /bellcrit.html. The same
page also contains the latest details on the verifi-
cation of Bell’s criterion.
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