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We present the first implementation of sieving techniques in the
context of function fields. More precisely, we compute in class
groups of quadratic congruence function fields by combining
the algorithm of Hafner and McCurley with sieving ideas known
from factoring. We apply our methods to the computation of
generators and relations of the Jacobian variety of hyperelliptic
curves over finite fields.

The algorithms introduced here were implemented in C++ with
the help of LEDA and LiDIA. We provide examples of running
times and comparisons with earlier algorithms.

1. INTRODUCTION

Jacobian varieties of hyperelliptic curves over finite
fields can (under certain conditions) be interpreted
as class groups of imaginary quadratic congruence
function fields; the algorithm of Hafner and Mc-
Curley [1989] known to compute the class group
of imaginary quadratic number fields and having
subexponential running time in the size of the dis-
criminant can be applied. This idea is realized (with
a slight modification) in [Adleman et al. 1994] by
Adleman, DeMarrais and Huang who claim this al-
gorithm to be of subexponential running time in the
genus, based on heuristic evidence. An uncondi-
tional proof for this statement can probably be ruled
out by adapting [Miiller et al. 1999] to the case of
imaginary quadratic congruence function fields. In
that paper, Miuller, Stein and Thiel prove that the
computation of the regulator and of a fundamental
unit in a real quadratic congruence function field is

subexponential in the genus of the curve.
Experiments in [Paulus 1996b] showed that the al-
gorithm of [Adleman et al. 1994], though thought to
be subexponential, is even slower than the in princi-
ple exponential algorithms as baby-step-giant-step
and Pollard rho. The second author proposed to
apply the sieving principles from factoring and com-
bine them with the above method. Even using trial
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division instead of the real sieve for computing fac-
torizations of several polynomials he got a consid-
erable speedup (see [Paulus 1996b]). Based on this
work, the first author implemented a sieving pro-
cedure to compute these factorizations analogous to
the sieving principle used in factoring methods. This
again gave drastic speedups. To our knowledge, this
is the first implementation of sieving principles in
the context of function fields. The objectives of this
paper are to present the methods used and to de-
scribe the implications from practical experiments.

This work has cryptographic significance in the
following sense: Koblitz [1989] proposed the discrete
logarithm on the Jacobian variety of a hyperelliptic
curve over a finite field as a new cryptographic one-
way function. The major advantage in comparison
with discrete logarithms on elliptic curves, that is,
hyperelliptic curves of genus 1, consists in a consid-
erably smaller underlying finite field, where all basic
computations are done, for approximately the same
size of the group where the discrete logarithm is de-
fined. To examine the practical security of these
cryptosystems it is necessary to compute such dis-
crete logarithms with up-to-date methods.

The paper is organized as follows: first we explain
how to do arithmetic in the Jacobian of a hyperel-
liptic curve. Then we recall the algorithm of Hafner
and McCurley to compute imaginary quadratic class
groups, together with the principal sieving idea be-
fore we show how we implemented the sieving for
congruence function fields. All algorithms will be
described in a general matter in words and addition-
ally precisely formulated in pseudo code. Finally, we
give practical results concerning timings and stor-
age requirements when using different parameters
for the sieving procedure and give generators and
relations for some class groups.

We formulate theoretical statements in the con-
text of hyperelliptic curves over any field. Theoreti-
cally, there is no reason which restricts the algorithm
to the finite field case, but the practical realization
of some components may be difficult to achieve (for
example, computing prime divisors). Furthermore,
some modifications should be made taking into ac-
count the probable infinity of the Jacobian variety.
We restrict our presentation of the algorithm to the
case of a finite field.

2. ARITHMETIC IN THE JACOBIAN OF A
HYPERELLIPTIC CURVE

Let k be a field and € a hyperelliptic curve defined
over k. Assume for simplicity that chark # 2. De-
note the function field of € over k by k(C), the prime
divisors of k(C) by »_,, the divisors of degree 0 by
Div,(€) and the principal divisors by P.(C). The
factor group

rige)= DR o

is called the divisor class group of € over k and is
equal to the group of k-rational points of the Ja-
cobian of the curve. See [Mumford 1974] for the
definitions.

Let S C >, be a nonempty set of prime divisors.
Let

Os :=={f € k(C) : v, (f) >0 for all p € S}

be the intersection of all valuation rings O, for p €
S. We have the following exact sequence:

1 — Ker — Pic)(C) — Cl(Og) — 1.

Ker is generated by the degree 0 divisors with sup-
port in ), \S modulo principal divisors. If S =
>« \{po} with degpo = 1, then to every ideal a =
Hp cg b can be assigned the preimage

> app— (Zap degn)po

peS peS

and thus Pic)(C€) is isomorphic to the (ideal) class
group of Og.

The existence of such a prime divisor p, with
degpo induces the existence of an equation of the
curve of the form Y? = A(X) with A(X) monic,
squarefree and of degree 2¢g + 1. We will always as-
sume the existence of such a prime divisor in the
sequel. The discriminant of Og is then generated by
A = A(X). Consequently, we will do arithmetic in
the Jacobian of the curve described by Y? = A by
computing in the class group of k[X][VA].

We show now how to do arithmetic in this class
group. Another formulation of this arithmetic has
been proposed by Cantor [1987] and goes back to
Artin [1924]. In the special case g = 1, we recover
the classical representation of points on an elliptic
curve together with the geometric chord-tangent ad-
dition of points.



We will explain the arithmetic using binary quad-
ratic forms since this notion will be used in the se-
quel. There exists a one-to-one correspondence be-
tween classes of ideals (modulo principal ideals) in
k[X][V/A] and classes of primitive binary quadratic
forms (a,b,c) with coefficients in k[X] of discrimi-
nant b? —4ac = A such that ged(a, b, c) = 1 (shortly
called forms in the sequel) (modulo the action of
GL3(k[X])). There exists a reduction theory for
forms, that is, an algorithm which computes for a
given form a unique equivalent form with a monic,
dega < g and deg(b) < deg(a). Such a form is called
reduced.

A class is represented by the first two coefficients
(a,b) of the unique reduced form (a, b, ¢) of discrim-
inant A in this class. Given (a,b), a representation
of the inverse class is (a,—b). A class is the iden-
tity element if the first coefficient a = 1. Two classes
(ay,by) and (ay, by) are multiplied in two steps: first,
a form (as, bs, c3) representing the product class of
the two forms is computed (this is called composi-
tion of forms) and second, the unique reduced form
(a4, by, cq) equivalent to (ag, bz, c3) is computed (this
is called Gaussian reduction). Then the product
class is represented by (as, b3).

Several algorithms for composition and reduction
can be found in [Artin 1924; Cantor 1987; Koblitz
1989; Paulus and Riick 1999]. Optimized versions
for both algorithms including a rigorous complexity
analysis can be found in [Paulus and Stein 1998]
using the reduction variant of Tanner.

3. THE ALGORITHM

The principal idea to do fast computations in the
Jacobian variety consists in computing generating
elements of a special kind — called generators —and
relations between them. We will explain a variant
of the algorithm which computes a minimal set of
generators for the Jacobian together with relations
in Hermite normal form. We first explain the gen-
eral method, then we show how to compute relations
and finally we discuss the number of needed gener-
ators. As discussed in the introduction, we restrict
ourselves to the case of a finite field k = F, with
char k # 2.

At the end of this section, we will shortly explain
the necessary modifications for computing discrete
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logarithms on the Jacobian of a hyperelliptic curve
using this algorithm.

3.1. The Algorithm of Hafner and McCurley

As shown in [Paulus 1996a], the algorithm is generic
in the sense that it is applicable for computations of
class groups of quadratic orders over principal ideal
domains. We will therefore call irreducible poly-
nomials of F,[X] also primes; the order of A, de-
noted by Oa, for a A € F,[X] is the F,[X]-module
generated by (1, \/Z) over F,[X]. The class group
of O is denoted by Cl(Oa) and is our represen-
tation for the Jacobian of the curve Y2 = A. A
form f, = (p,by,c,) of discriminant A with b2 = A
mod p and degb, < degp for a prime p € F,[X] is
called prime form for p (and corresponds to a prime
divisor of the curve). Note that there exists either
exactly one prime from for p (if p| A) or exactly two
prime forms for p, namely (p,b,, c,) and (p, =b,, c,).

The method of Hafner and McCurley is based on
the following observation:

Proposition 1. Let A € F [X] be a non-square, P a
set of n primes, for which A is a quadratic residue.
Suppose that the prime forms f, for the primes p €
P generate C1(Oa). Then the map

(xp)peﬂ’ = [Hpe?f;p]

15 a surjective homomorphism and we have
2 fer = Cl0a) and  det(ker) = [CI(04)].

The set of primes P is called the factor base. The
vectors (z,) € kerQ are called relations; such re-
lations are collected during the computation. The
sublattice A spanned by the relations already com-
puted is called relation lattice and is represented
by the relation matriz, whose columns are the com-
puted relations.

Agsume that the prime forms for the primes of the
factor base generate the whole class group of O and
that we know an upper bound L for the class num-
ber of the form L/2 < |Cl(Oa)| < L. The method of
Hafner and McCurley proceeds in three steps: First,
determine prime forms corresponding to the primes
in the factor base, that is, compute a set of gen-
erators. For a given prime p, this amounts to the
decision whether A is a quadratic residue mod p
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and to the computation of a quadratic root of A
mod p. Both tasks can be achieved by computing in
the multiplicative group (F,[X]/(p))*, using a gen-
eralization of the RESSOL algorithm of Shanks (see
[Buchmann and Paulus 1995]). Second compute re-
lations until the relation matrix is regular and finally
compute relations until det(A) < L. The computa-
tion of a relation is the object of the next subsection.

A bound L of the shape described above is in most
cases given by the theorem of Hasse-Weil. It induces
the following

Proposition 2. Let C be a hyperelliptic curve of genus
g over a finite field F,. Then the number of points
| Jac(C)| of the Jacobian variety of C fulfills

(Vg +1)%/2 < [Jac(€)| < (Vg + 1)*

exactly when

2 2
q > (721/(29) 1 + 1> .
The proof is immediate. Such a bound is, for exam-
ple, fulfilled for g = 2 if ¢ > 134, for g = 4 if ¢ > 301
and for ¢ ~ 10 if g < 10%°.
We formulate the basic algorithm as follows:

Algorithm 3 (Hafner-McCurley-type class group).

Input: A € F,[X] not a square; the factor base P C
F,[X] such that the prime ideals lying over the
primes of P generate the class group; ey, € N
upper bound for the exponents (e,); L € N such
that L/2 < |Cl(A)| < L

Output: (71, ...,7x) such that (yi,...,7) = CI(A);
the relation matrix A in Hermite normal form;

CL(A)]

1. Compute for each p € P a prime form f,
2. Compute relations until the relation matrix A is
regular
3. A < Hermite(A)
4. Compute the determinant of A
5. while det A > L do
a. repeat
i. Compute a relation s
i. B <«Hermite(A,s)
until det B < det A
b. A« B
6. C < nontrivial rows and columns of A;
P' < those p € P corresponding to the rows of C
7. output (P, C, det A)

By “taking nontrivial rows and columns” we mean
rejecting those columns whose diagonal element is
one and removing the corresponding rows by chang-
ing the other columns appropriately.

There are several choices for computing a Hermite
normal form and it is not clear which algorithm is
best in practice. We do not emphasize on that point.
We used in our final implementation a non-modular
implementation of Havas [Havas and Majewski 1997]
and a modular version due to Domich, Kannan and
Trotter [Domich et al. 1987], taking account of the
additional information we have about the maximal
value of the determinant.

3.2. Computing Relations

We first recall the original idea of Seysen [1987] used
in the method of Hafner and McCurley for getting a
relation. The following proposition is an immediate
generalization of in [Seysen 1987, Theorem 3.1] to
the function field situation.

Proposition 4. Let (a,b,c) be a form of discriminant
A e F,[X] and let
a=c¢ Hpvp
p

be a prime decomposition of a where ¢ € F [X]*.
Then we have

(a,b,0) ~ [T £,

p

where f, = (p,b,,c,) are prime forms and ¢, = £1
such that b = ¢,b, mod 2pF [ X].

This induces the following method to compute rela-
tions: compute a random form by choosing random
exponents e, € Z:

(a,b,0) = [ ;-

The reduction of this form yields a form (a',b', ).
If a’ factors over the factor base, say

ro__ 9p
o =]r"

we get a relation (e, — £,9,)pcp, where g, = £1 is
defined by b' = €,b, mod 2p.

Note that the algorithm of Adleman and Huang
differs from the algorithm of Hafner and McCurley
in that point. They do not compute a random form
starting from the factor base elements; instead, they



generate a random element A+BvVA € F [X][VA]
and try and factor it over the prime forms corre-
sponding to the primes in the factor base.

Both ways of getting a relation have been proven
not to compute enough relations in the congruence
function field case. We use a more general idea such
that we obtain many forms equivalent to (a,b,c).
This is done as follows: any form that is equiva-
lent to (a,b,c) is of the shape (az? + bxy + cy?, *, *)
for some relatively prime z,y € F,[X] (see [Paulus
1996a]). For several relatively prime pairs (z,y) we
try and factor az? + bxy + cy?, the sieve elements,
over the factor base. Assume that we can do this ef-
fectively. If this is successful, we compute u, v such
that wx + vy = 1, that is, we compute in fact the
transformation matrix

Ao <:c —v)
Yy ou
with g = Af and recover from there the second co-
efficient of the form which is needed for the deter-
mination of the ¢,. The set of pairs (z,y) is called
sieve array and is denoted by B.

In fact, we do not require (x,y) to be relatively
prime. If d = ged(z,y), then (z/d,y/d) are rela-
tively prime and d* divides ax? + bxy + cy?, such
that we get a relation by taking the decomposition
of (ax?+bxy+cy?)/d?. In practice, this does not oc-
cur, since the pair (z/d,y/d) will be treated before
(x,y) and the number of y will be very small.

We formulate our technique to compute a relation
as follows:

Algorithm 5 (Relation computation).

Input: P factor base; B C F,[X]xF,[X] finite sieving
array; emax € N upper bound for exponents
Output: relations (n,),cp or “No relation found”

1. Determine random integers e, € [0, yax — 1] for
each p € P and compute (a,b,c) ~ [] fp"
2. for all (z,y) € B with ged(z,y) =1
a. n < deg(ax? 4+ bxy + cy?)
b. for allp € P
i. v, < vp(n)
i n<n—uv,
iii. if n = 0 then
compute u,v € F,[X] such that zu —yv=1
b’ 2azv + b(xu + yv) + 2cyu
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for all v, #0
if o' # b, mod 2pIF,[X] then v, + —v,
c. output ((v, — €,)pep)
3. output “No relation found”

Here v,(n) denotes the valuation of p at n. The
algorithm does not describe in which way v,(n) is
computed. In a first implementation we used trial
division and got remarkable improvements over the
traditional Hafner-McCurley algorithm. A much
cleverer method analogous to the sieving procedures
known from factoring is explained in the next sec-
tion.

3.3. The Factor Base

We discuss the size of the factor base. The use of
a factor base which provably generates the whole
class group is a major problem in practice: using
techniques of Bach [1990], it is proved in [Miiller
et al. 1999] that all primes having degree at most

2log(4g — 1)
{ log ¢ W

generate the whole class group. This bound yields
even a polynomial bound in g for the size of the
factor base. But this number is at least 1; this means
that one should always include all primes of degree
1 which split in OA in the factor base. Since there
are about ¢/2 primes of degree 1 which split, this is
unacceptable in practice for large fields. Instead of
this, we proceed as follows:

Pick at random a certain number of primes having
degree respecting the bound given above and split-
ting in the quadratic extension. Compute the gen-
erated group — ignoring the known bound L for the
order of the class group — with a prescribed preci-
sion. That is, if generating a random form by choos-
ing exponents at random does not give a new non-
trivial relation [ times successively, then the prob-
ability for the group being generated by the prime
forms for the primes in the factor base is greater
than 1 — 1/2'. If the result fits the L-bound, then
the output is the whole class group with probability
greater than 1 —1/2".

Much research and many experiments and have to
be done to evaluate which method is best used for
choosing the members of the factor base. We will
propose one method which produced the best prac-
tical results in our experiments in the last section.



344 Experimental Mathematics, Vol. 8 (1999), No. 4

3.4. Discrete Logarithms

Let g be an element of the class group and a = ¢*.
The discrete logarithm problem consists in comput-
ing log,(a) = x given a and g.

The modifications of the algorithm of Hafner and
McCurley to compute a discrete logarithm are as
follows: The generator for the discrete logarithm
g is added to the factor base. Instead of Hermite
reducing the relation matrix, one solves the system
such that we have log,[f,] for all classes [f,] of prime
forms f, lying over the factor base. (The solution
of the system can be realized, for example, with
a modular variant of Hermite reduction). Finally,
an additional relation involving a to the power 1 is
computed and the discrete logarithm extracted as a
linear combination of the log, p. See [Lenstra and
Lenstra 1990], for example.

4. SIEVING

The factorization of the sieve elements az? + bry +
cy? is not done sequentially as presented in the pre-
vious algorithm, but it is done “in parallel”: First,
we store the degree of all these polynomials. Now for
every prime p in the factor base we find out which
elements az? + bry + cy? are divisible by p. We use
sieving ideas for this step. If a sieve element is divis-
ible by p, we subtract the degree of p of the degree
of this sieve element. If this degree is zero, we have
a complete factorization of az? + bxy + cy? over the
factor base.

We discuss how to adapt the sieving techniques
from factoring to our situation. We recall the princi-
pal sieving idea and explain differences to the sieving
over Z. We present the sieving procedure in detail
and demonstrate our implementation solutions.

4.1. The Idea

Assume that we have a polynomial g € Z[X], a finite
set of prime numbers P and an interval [a,b] C Z.
Assume that we want to know those z € [a,b] for
which ¢(z) splits completely over P together with
their factorization. Let us call such a z interesting.
The naive method consists in testing for each p if
p divides g(z) for every z. The sieving idea is the
following: for every prime p € P compute the roots
of g(X) mod p. Then p divides g(z) exactly when
z =1+ s p, where r is a root of g(X) mod p and

s € Z. By this way, one can mark all interesting z
by “jumping” through the interval with steps of size
p for all primes p € P. One stores the logarithm of
g(z) for each z at the beginning and subtracts log p
every time when a jump hits z. If this number be-
comes (approximately) 0, then we have completely
factored g(z) over P.

This method ignores those z for which g(z) has
a square as a factor. Using Hensel lifting one could
extend this method to higher exponents and deter-
mine all v,(g(z)). But experience shows that ex-
ponents greater than 1 occur rarely in a complete
factorization over the factor base so that the addi-
tional amount of work is not worth it. One discards
those numbers which have a square as a factor.

In our situation, the polynomial g € Z[X] is re-
placed by a primitive binary quadratic form

g(z,y) = ax® + bxy + cy*

with coefficients a, b, ¢ € F,[X] taking as arguments
two elements =,y € F,[X]. The prime elements are
now irreducible polynomials of F,[X] and the log-
arithm of a number is replaced by the degree of a
polynomial. The sieving procedure differs in two
points from the classical situation:

e We are sieving in two directions, since f takes
two arguments. Thus the interval is replaced by
a sieving array. The set of solutions mod p has to
be computed for two variables as has to be done
the “jumping” through the sieving array.

e Jumping through the sieving array is not as im-
mediate as in the classical case, since the steps
between two consecutive interesting polynomials
vary in size.

As in the classical case, complete factorizations with
exponents greater than 1 occur very rarely, so we do
not use Hensel lifting and discard numbers which
have a square as a factor.

4.2. The Sieving Procedure

We first explain how to represent polynomials for
indexing array entries. Every element o € [, can
be uniquely represented by a natural number v(«)
such that 0 < v(a) < ¢. E.g. if € is a generating
element of IF, over IF,, where g, is the characteristic
of F,, then v(a) = I/(Z?;; z;&%) = v(z;)q, where
v(x;) is the unique integer in the range {0, ...,g—1}



naturally representing x;. So there is a one-to-one
map v : F,[X] — N sending a = Y ;" ;X" to
S ovla)g'. If we write D(z,y) for an array entry
in the sequel, we really compute with D(v(z),v(y)).
This representation induces a restriction on the
form of the sieving array. Since array indices have
to be a series of consecutive numbers, there is an
implicit ordering of the elements of F,[X] and the
sieving array has to be, for example, of the form

B={zeF,[X]:0<v(x) <z bound}x
{y € F,[X]:0 <v(y) <y-bound}.

The idea of the sieving procedure has been pre-
sented above. We now formulate this central part of
our algorithm in pseudo-code. We will explain the
remaining details which differ from sieving in Z in
the following subsection.

Algorithm 6 (Sieving in congruence function fields).

Input: P factor base; B sieving array as described;
and g(z,y) = ax? + bry + cy® a primitive binary
quadratic form.

Output: all (z,),ep with z, € {0,1} such that

[[,epp™ = g(x,y) for (z,y) €B

1. Compute a two-dimensional integer matrix

(D(.CL‘, y)) (z,y)€B

containing the degrees of g(z,y) for all (z,y) € B
2. Initialize a three-dimensional integer matrix

(R($, y’p))(z,y)eﬁ,peﬂ’
which codes whether p divides g(z, y) with zeroes
3. forallpe®
a. Compute a complete set of solutions
S C{(z,y) :z,yeF,[X], degz,degy <degp}
of g(z,y) = 0 mod p.
b. for all (z,y) € 8
i. R(z,y,p)<«1
i. D(z,y) < D(x,y) —degp
ii. if D(z,y) = 0 output (R(x,y,Dp))pe
iv. for all r, s € F,[X] with (z+rp,y+sp) € B
(Jumping through the sieving array)
R(x +7rp,y + sp,p) « 1;
D(z+rp,y+sp) < D(z+rp,y+sp)—degp;
if D(z +rp,y+sp) =0
output (R(z +rp,y + 5p,p))per

Remark: In step 3a, it may occur that degp is
greater than x_bound or y_bound. One obviously
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computes only a set of solutions for the existing sieve
elements.

4.3. Implementation Details

In the rest of this section we explain how to initialize
the matrix D, which are the solutions of g(z,y) =0
mod p and how the jumping through the array is
realized in practice.

4.3.1. Initializing In step 1 of Theorem 6, we have to
compute for every (z,y) € B the degree of g(x,y) =
azr?+bxy+cy?. The naive method would be to really
compute g(x,y) and to deduce the degree. This is
very slow. Most of the time we can do better. Set

deg, = deg(a) + 2deg(z),
deg;, = deg(b) + deg(z) + deg(y),
deg, = deg(c) + 2deg(y),

and denote by m the maximum among these three
numbers. The degree is computed as follows:

1. if only one of them equals m, then degg(z,y) =
m.

2. (at least two values equal m). Compute the sum
of the leading coefficients of those terms having
degree m. If it is different from 0, then deg(z, y)=
m.

3. (degg(x,y) # m). Compute g(x,y) explicitely.

Note that if  and y do not change their degree, the
values of deg,, deg, and deg, are unchanged. This
can be taken into account when filling the degree
matrix successively.

4.3.2. Solutions “mod p” Let g(z,y) = az® + bxy + cy?
be a primitive binary quadratic form with coeffi-
cients a,b,c € F,[X], p(z) € F,[X] an irreducible
polynomial and (p, b,, ¢,) a prime form correspond-
ing to p. The set of polynomials with degree less
than degp form a complete set of representatives of
F,[X]/(p). A complete set of solutions of g(z,y) =0
mod p is given by §, where § is as follows:

o if a 0 mod p and b = 0 mod p, then § =
{(2,0) : degz < degp}

e if a = 0 mod p and b Z 0 mod p, then § =
{(:U,O) s degzr < degp} U {(—y%,y) s degy <
degp},

e if @ # 0 mod p and b, = 0 mod p, then § =
{(~y55:y) : degy < degp},

< i
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e if a # 0 mod p and b, #Z 0 mod p, then § =
{(—y%{f",y) sdegy < degp}.

4.3.3. Jumping The objective of this section is to show
how one can compute all v(z + rp) for

0 < degr < log,(z-bound) — degp + 1

most effectively, since this part of the algorithm is
very time consuming in the congruence function field
case. We explain the procedure for the first compo-
nent (x), the same method is applied to the second
component (y).

The polynomials = + rp are computed by subse-
quent additions of p, p?, p*, up to x. The poly-
nomials involved here are treated as vectors of in-
tegers; that is, the i-th coefficient of a is denoted
by a[i] and interpreted as a number in the range
0,...,q — 1. Addition of p' to z is done by “shift-
ing” the coefficients of p by i before adding them to
the corresponding coefficients of . The complete

jumping algorithm is now straightforward and looks
like this:

Algorithm 7 (Fast index computation).

Input: p € F,[X] irreducible polynomial; (z,y) € 8
solution of g(z,y) = 0 mod p; z_bound € N
bound for the sieving array

Output: All 0 < v(z +rp) < z_bound such that g(z +
rp,y) = 0 mod p

1. act_poly <— x;r <0
2. while degr <log, z_-bound — degp + 1
a. if r[0] # ¢ then
i. for je€l0..deg(p)] do
act_poly[j] < act_poly[j] + p[j] mod ¢
ii. output v(act_poly)
iii. 7[0] < r[0] + 1
else
i. ¢+ max{j:r[k]=qforall 0 <k <j}
i. for j € [0..deg(p)] do act_poly[j + i] +
act_poly[j + i] + p[j] mod ¢

iii. output v(act_poly)
iv. for j € [1..7] do r[j] <0
v. Tli+ 1] ri+1]+1

Further optimization can be obtained by taking care
how to modify v(act_poly) from the previous value
instead of recomputing it from scratch every time.

5. PRACTICAL RESULTS AND DISCUSSION

We computed the divisor class group of the curve
Y? = X%t 4+ 2X + 1 over F,, where X?**! +
2X + 1 was squarefree in all examples. The best
results —input parameters, timings and storage re-
quirements — for the fastest computation are pre-
sented in Table 1.

We now discuss the input values. The possible
size of the sieving array is bounded by the maxi-
mum memory limit. Furthermore, experiences with
larger sieving arrays gave not much more relations
compared with the additional time needed. It would
have been necessary to increase the size of the factor
base to get better results. The size of the factor base
will be discussed in the sequel. Another observation
is that it seems to be optimal to choose a small value
for one dimension of the factor base and and a large
value for the other dimension. This covers experi-
ence from sieving in the factoring context, although
people from factoring suggest to choose the value for
one dimension being 1. This had not proven to be
optimal in our context.

The factor base is computed from the first two
values A and B as follows: take A successive poly-
nomials of degree at most B and compute for all
irredicuble polynomials in this set a prime form if it
exists. The resulting number of factor base elements
is then given by the third value. The examples have
not been large enough to observe a dependency of
the number of computed relations from B, although
the computation of a single relation is faster as B
grows. It may be possible to think of a large prime
variant analogous to the factoring variant.

The possible size of the factor base is governed
by the Hermite reduction. Twice the average en-
try of the matrix being Hermite reduced is given by
the last input value, namely the upper bound for
the exponents of the factor base elements used in
the relation computation. The determinant of the
matrix should finally, that is, assuming that enough
relations have been computed, be of size approxi-
mately ¢9. With growing size of the factor base and
growing determinant, the Hermite reduction begins
to dominate the computation both in time and in
space. Since Hermite reduction is difficult to paral-
lelize over several machines, this is the real bottle-
neck of the computation.
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p g x Y B kB F M T T, Ty, Sy Sh

11 1 2 10 5 1 4 ) 1” 1” — 1 1284
11 2 ) 10 10 1 8 ) 3" 3" — 2 1292
11 3 5 50 20 2 15 5 7" 7" - 17 1368
11 4 20 100 40 2 29 5 17" 15" - 243 1708
11 5 20 80 50 2 29 5 53" 50" - 194 1656
11 6 20 100 50 2 33 ) 11" 59" — 274 1788
11 7 20 100 50 2 38 ) 2'46" 2'44" — 313 1932
11 8 20 2000 400 3 232 10 17’42 11'33" 48" 36578 47868
11 9 20 2000 400 3 231 10 18'56"  14'50" 37" 36421 47164
11 10 20 2000 400 3 242 10 34'53"  32'19" 129" 38140 57620
11 11 20 2000 400 3 232 10 1h11’ 56'37"  13'34" 36578 88888
11 12 20 2000 400 3 254 10 3h41’ 1h40’ 1h59’ 40015 214928
101 1 20 40 20 1 10 5 9" 9" - 37 1348
101 2 30 500 35 1 19 10 33" 32" — 1234 2644
101 3 10 5000 60 1 32 10 2'30" 2'28" — 6679 8660
101 4 ) 5000 100 1 43 10 316" 321" 1” 4433 6604
101 5 5 5000 150 1 51 10 20'6" 201" 2" 5214 7796
101 6 10 5000 150 2 129 10 5h1’ 4h53" 8’5" 25625 50404
1009 1 10 1000 100 1 52 10 1'42" 1'37" 1” 2117 4072
1009 2 10 10000 300 1 153 10 9’3" 826" 18" 60625 66636
1009 3 10 10000 400 1 205 10 1h40"  46'37" 53'13" 80937 177648
10007 1 20 4000 100 2 55 10 1h5’ 1h4’ 2" 17843 22040

TABLE 1. Input parameters, timings and storage requirements. The table is indexed by g and p. The columns x and
y indicate the size of the sieve array in both dimensions; Fy, Fy, F3 are three values concerning the construction
of the factor base and M is the maximum random exponent for a factor base element used for the relation
computation. 7T is the total time needed, 7, the time needed for computing the relations and 7} that needed for
the Hermite reduction. S, and S;, are the memory sizes needed by the relation computation and the Hermite

reduction, both in kilobytes.

To achieve further improvements, it is necessary
to tailor the relations for an efficient Hermite re-
duction. The major modification should be to use
sparse relations, that is, relations where only a few
factor base elements are used to produce a random
form together with a much larger factor base. The
resulting matrix would counsist of a dense and a
sparse part, where the dense part looks like the ma-
trices we produce now and the dense part consists
only of some 1 as entries. A drawback is that the
computation of a matrix with full rank is much more
complicated. This method is more convenient for
computing discrete logarithms.

We show in Table 2 the timings of the Hafner—
McCurley method used with different sieving strate-
gies.

Finally, in Table 3 we give some examples for the
class groups we computed. The class groups are
presented in the following format: we give the type

of the group and generators for the corresponding
cyclic subgroups.

The computations were done using the computer
algebra and packages LiDIA [LiDIA n.d.] and LEDA
[LEDA n.d.]. Most of the programs implemented
here are available on request via ftp as an add-on
package for LiDIA.
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