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Let n > 2 be an integer and consider the set T,, of n X n permu-
tation matrices 7 for which 7j; = 0 for j > i+2.

We study the convex hull P, of T,, a polytope of dimension
(;) We provide evidence for several conjectures involving P,,,
including Conjecture 1: Let v, denote the minimum volume of
a simplex with vertices in the affine lattice spanned by T,. Then
the volume of P, is v, times the product

12

of the first n — 1 Catalan numbers.

We also give a related result on the Ehrhart polynomial of P,,.

Editor’s note: After this paper was circulated, Doron Zeilberger
[1998] proved Conjecture 1, using the authors’ reduction of the
original problem to a conjectural combinatorial identity, and
sketched the proofs of two others. The problems and methodol-
ogy presented here gain even further interest thereby.

1. INTRODUCTION

Let n > 2 be an integer and consider the set T, of
n X n permutation matrices 7 for which m;; = 0 for
j > 142 and P, the convex hull of T;,.

Let V,, be the relative volume of P,. That is, the
volume of P, expressed in units of the minimum vol-
ume v,, of a simplex with vertices in the affine lattice
spanned by 7,. Our main purpose in this paper is
to provide evidence for the following conjecture.

Conjecture 1. The relative volume V,, of P, is

n—2 .
1 /2
T (%)
g 1+1\4
the product of the first n —1 Catalan numbers.

This conjecture arose from the study [Chan and
Robbins 1999] of the polytope B, of all doubly sto-
chastic matrices, which is the convex hull of the set
of all n xn permutation matrices. It is easily shown
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that P, is a face of B,, of dimension (727“) with 27!
vertices. In [Chan and Robbins 1999] we discuss
two methods for finding the volume of B, and its
faces. We assume some familiarity with these meth-
ods, which apply to the calculation of the volume of
P,. The reader may also wish to consult the refer-
ences [Billera and Sarangarajan 1996; Diaconis and
Gangolli 1995, Hibi 1992, Chapter 9; Stanley 1980],
which provide background for the work in [Chan and
Robbins 1999].

The first method discussed in that earlier paper
consists of decomposing the polytope into simplices,
each of volume v,,, and counting the simplices. By
adapting the method slightly we were able easily to
find the relative volumes of P, and its faces provided
that n < 10. This provided the first evidence for
Conjecture 1.

The second method discussed in [Chan and Rob-
bins 1999] computes the Ehrhart polynomial of the
polytope [Ehrhart 1977]. In general the Ehrhart
polynomial of a d-dimensional polytope P with inte-
ger vertices is a degree d polynomial (in ¢) denoted
e(P,t), with the property that the number of inte-
ger points in the polytope ¢- P is e(P,t) when ¢t > 0.
A basic property of the Ehrhart polynomial is that
the relative volume of the polytope is given by d!
times its leading coefficient. A common method for
computing the Ehrhart polynomial is to count the
numbers of lattice points in ¢- P for small ¢t and then
to find the polynomial by interpolation. For a typi-
cal face of B,, the Ehrhart polynomial method seems
to be more expensive than the simplicial decompo-
sition method. However for B, itself the Ehrhart
polynomial method is less expensive because it is
possible to exploit the symmetries of B,. These
symimetries do not help with the calculation of the
Ehrhart polynomial of P,. However, different sim-
plifications in the case of P, allow us to compute
the Ehrhart polynomial and thus verify Conjecture
1 for n <12, as described in Section 2 of this paper.

In Section 3 of this paper we give a proof of a
bijection between the simplices in a decomposition
of P, and a set of easily described integer arrays,
which suggest that a combinatorial proof of Conjec-
ture 1 may exist. We also discuss a generalization
of the conjecture which arises from the bijection.

In Section 4 we discuss formulas for the relative
volumes of some of the facets of P,, which we pur-

sued as an alternative path toward proving Conjec-
ture 1. The formulas were discovered by using the
simplicial decomposition method mentioned above.

2. THE EHRHART POLYNOMIAL OF P,

One approach to calculating the volume of P, is to
calculate its Ehrhart polynomial. Denote by e(P,, t)
the Ehrhart polynomial of P, evaluated at t. Then
e(P,,t) is the number of ways of filling a left-justified
array of n rows of lengths 2,3,...,n—1,n,n with
nonnegative integers in such a way that all row and
column sums are ¢. Thus e(P3,1) = 4 since the only
four suitable arrays are

1 0 1 0 0 1 0 1
0 1 0 0 0 1 1 00 0 01
0 0 1 0 1 0 0 0 1 1 00

It is known that e(P,,t) is a polynomial in ¢t whose
degree as a function of ¢ is the dimension of P, or
).
We have e(P,,0) = 1 for all n. Also it is easily
verified that e(P,,1) = 2" for all n. These are
special cases of a more general principle.

Theorem 1. For every nonnegative integer t, the se-
quence

e(Po,t),e(Pr,t),...,e(P,,t),...

satisfies a linear recursion of degree p(t) with integer
coefficients, where p(t) is the number of partitions

of t.

It is conceivable, as far as we know, that the se-
quences also satisfy recursions of lower degree. How-
ever, for all cases t = 0,...,12, where we have com-
puted the coefficients of the linear recursion, the
associated characteristic polynomial has been irre-
ducible over the integers so, in these cases, no lower
degree recursion exists.

Proof. Fix a nonnegative integer ¢. Let
T = (I17I27"' 73;1)

be a partition of ¢ of length [ > 1. That is, 0 <
gy < -+ < xyand z1+---+x; = t. For integers
n > 2 let F(w,n) denote the set of arrays of n left-
justified rows of nonnegative integers of lengths (+1,
42, ..., l+n—2, [+n—1, [4+n—1, such that the first
[ column sums are zy,...,x;, the remaining column
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sums are ¢, and all row sums are t. Let f(m,n) be the
cardinality of F'(m,n), with f(m,1) = 1. (If 7 is the
one-part partition (¢), we have f(m,n) = e(P,,t).)

Suppose that n > 2. Set x;; =t. Let yy,..., 91
be any nonnegative integers with y; < z; for ¢ =
1,...,l+1such that y; + - -+y1 =t Ly, ...,y
is the first row of one of the arrays of F/(m,n), then
the rest of the array has its first [+ 1 column sums
equal to z; = x;—y;. By deleting the z;’s which equal
0 and sorting the remaining z;’s, we obtain another
partition o of ¢, of length at most [+1, and the
number of ways of completing the array is clearly
f(o,n—1). (Since f(o,1) = 1, this also holds for
n = 2.) Now for every partition o, let M(m, o)
denote the number of (I+1)-tuples yi, ...,y for
which our process of forming the z’s by subtract-
ing from the x’s, deleting 0’s, and sorting yields the
partition o. Then we have shown that

flmmn) = ZM(W,U)f(U,n—l).

For fixed n we can regard the array of f(m,n), as
7 varies over partitions of ¢, as a column vector of
integers of length p(¢f). When n = 1 we have the
vector of all 1’s. The preceding equation shows that
the n-th vector is obtained by applying the matrix
M"=! to the all 1’s vector. Thus the sequence of
vectors satisfies a linear recursion with integer coef-
ficients given by the characteristic polynomial of the
matrix M. In particular, the component of the col-
umn vector f(m,n) corresponding to the partition
(t) is e(P,,t), which proves our theorem. O

Ezxample: It is easy to compute the matrix M for
small values of t. For example, let t = 2. If 7 = (2),
then (z,2:) = (2,2), so (y1,y2) = (0,2), (1,1) and
(2,0), which yield o = (2), (1,1) and (2) respec-
tively. If 7 = (1,1), then (z;,25,23) = (1,1,2), so
(y1,v2,93) = (0,0,2), (0,1,1), (1,0,1), and (1,1,0),
which yield o = (1, 1), (1,1), (1,1), and (2), respec-
tively. Thus we have

2 1
we(1s)

with the rows and columns of M indexed by the par-
titions (2) and (11) in that order. The characteris-
tic polynomial of M is A =5\ +5. Thus we have
e(P,,2) = 5e(P,_1,2)—5e(P,_5,2). Initial values

are e(P;,2) =1 (by definition) and e(F»,2) = 3 (by
applying M to the all ones vector).

Theorem 1 and its example contain the essential
ideas behind our method for evaluating e(P,,t) for
small values of ¢. If we wish to calculate a value of
e(P,,t) for which n is also small, we can simplify a
little more by computing and using only the subma-
trix of M corresponding to partitions of length not
exceeding n.

Denote the characteristic polynomial of the ma-
trix associated to the nonnegative integer ¢ by f;(\).
The first 6 polynomials are

fO = >\_17
fl = >\_27
fo= A —=5X+5,

fs = A3 =102 +27X—20,
fi = A" =20\ +135)\% —396\% + 518\ — 245,

fs = AT =365 +480)° —3140\*
+11059A% — 211802 4 20560\ — 7840.

As far as we have computed, all the roots of these
polynomials are positive real numbers.

We can also use Ehrhart’s reciprocity principle to
simplify the computation of the Ehrhart polynomial.
Recall that, for a d-dimensional polytope P with
integer vertices, and ¢ > 0, Ehrhart’s reciprocity
principle states that

e (P,t) = (—1)%e(P, —t)

where e*(P,t) is the the number of lattice points in
the interior of ¢- P.

An interior lattice point of ¢-P, is an array of
positive integers consisting of left-justified rows of
length 2,3,...,n,n with all row and column sums
equal to t. For such an array, if £ < n, the first k
rows have lengths 2,3, ...k, k+1 and the sum of all
their entries taken together is tk. On the other hand,
the sum of all entries in the first (k+1) columns is
(k+1)t, and this includes all entries in the first k
rows. Thus the sum of all entries in the first k41
columns of the last n —k rows must be ¢. Since all
entries are positive, it follows that ¢ > (k+1)(n—k)
and this inequality must hold for £ = 0,...,n—1.
Thus if an interior point exists for a given t, we
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must have ¢ at least equal to the maximum over
k of (k+1)(n—k). Thus for odd n = 2m+1, we
have e(P,,—t) =0 for t = 1,...,(m+1)? —1, while
for even n = 2m, we have e(P,,—t) = 0 for t =
L...,m(m+1)—1.

We have calculated the Ehrhart polynomials of P,
for n = 2,...,12. The first few are

6(}é,t)==t+-L
1 3
B(P3,t):g g(t+z)7

t+3 o,
e(Pyyt) === T (t+9),
=1

360
o(Pot)= T3 T4
7362880 110
(t+3)2(£2+12t+26) vy,
Py t)= t
(P 1) 9340531200 1:[( i)
(t+3)2 (144" 435313+ 298512+ 9568t + 10336)
6(I%,t)==

121645100408832000
15

x [Jt+4).
=1

The factor (t43)?, which appears in e(Ps, t), persists
through n = 12, but we have no proof that it persists
forever.

To check Conjecture 1, one multiplies the leading
coefficient of e(P,,t) by (Z)!, to get the predicted
relative volume. This works through n = 12.

3. EXPLICIT DECOMPOSITION INTO SIMPLICES

In this section we show that the polytope P, can be
decomposed into minimal volume simplices which
are in bijection with an easily described set of integer
arrays. Thus the relative volume of P, is simply the
number of such integer arrays. This suggests an
avenue for proving Conjecture 1, although we have
not been successful thus far. Postnikov and Stanley
[Postnikov and Stanley 1998] have found a bijection
very much like ours, and also observed that therefore
Conjecture 1 is equivalent to

n—1

n 1 21
K(a1+3a2+6a3+---+< )an—l): —< )
2 02—}-1 )

~.

where a;,...,a,_1 is a choice of simple roots and K
is the Kostant partition function for the root system
A, 1.

To describe our decomposition we first need some
notation.

The polytope P, consists of doubly stochastic ma-
trices Y = (y;;) where y;; =0 for j > i+1.

However the entries y;;, 7 <4 < n—1, determine
the remaining 2n —1 entries yy2, Y23, ..., Yn—_1,, and
Ynls - > Ynn. LThus we may view a point Y in P, as
a triangular array

Y11
Y21 Ya2
Yn-1,1 Yn-12 Yn—-1,3 Yn—1,n—1

where the nonnegative y;;’s satisfy the conditions

n—1 k—1
Zyik < Zykfld‘ <1 (M
i—k j=1

fork=2,...,n—1 and

n—1
D oya<l 2)
=1

so that the first column has sum < 1.
Let A, be the set of triangular arrays of nonneg-
ative integers

A22
a32 a33
Ap—12 (Anp-1,3 Ap—1,n-1

where the a’s are subject to the constraints

Gzt +apoz 0,
aszs+---+a,_13 < 1+ags,

Qa4+ ap_1,4 < 2+ az, +ass,

Ass 4 Fap_15 < 3+ Qa0+ aa3 + Qua, ¥

Ap—1p—1 SN—=3+Ap_22F+ 003+ +ay 2,2

Note that this condition implies that the leftmost
column in the array is all zeros.
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For example, As consists of these 10 triangular
arrays:

0 0 0

0 0 0 0 0 0

0 0 0 0 01 0 0 2

0 0 0

0 0 0 0 0

010 0 11 0 1 2

0 0 0 0

0 1 0 1 0 1 0 1
0 0 0 0 01 0 2 0 0 3

We will give a decomposition of P, into simplices
all of the same volume in such a way that the sim-
plices in the decomposition will be in one-to-one cor-
respondence with the set A,,.

We start by defining a mapping which assigns to
each element a of A, a simplex contained in P,.

Let V be the space of triangular arrays

T11
Ta1 L22
Tp-1,1 Tp-1,2 Tn—1,n—1

Let S be the unit simplex in V' consisting of all non-
negative arrays of the preceding form in which the
sum of all the entries is < 1. The simplex associated
to « will be the image of S under a certain linear
transformation of determinant 1 which is associated
to . We will denote this linear transformation by
L(a).

We can construct many such mappings from «’s
to simplices, each of which yields a suitable decom-
position of P,. A convenient way to specify a single
one of these is to assign a linear ordering to the vari-
ables x;;. It does not matter what linear ordering
we use.

To form L(«) we start with the identity matrix,
represented by the preceding triangle. Then L(«) is
formed by a series of steps, one step for each column
of a. At the beginning of each step we have a lin-
ear transformation consisting of a triangle of linear
functions of the x’s. The step itself consists in per-
forming certain operations on the triangle, leading
to another triangle of linear functions.

After each step all the linear functions in each
triangle are of a particularly simple form:

CO. each linear function is a linear combination of
the «’s all of whose coefficients are 0 or 1; i.e.
a sum of distinct #’s. Moreover no two entries
in any row involve the same variable and no two
entries in any column involve the same variable.
Also, after having used columns 2, ... , k of «, the
triangle of linear functions has certain additional
properties depending on k.

C1.In the rectangular subarray consisting of columns
1,...,k of rows k through n—1, no two of the
linear functions share any variables.

C2. Within this rectangle, if j > 2, entry ¢5 is a sum
of precisely a;;+1 variables, while entry ¢1 is just
T;1, a sum of 1 variable.

C3. The only variables that occur in columns 1,...,k
of the triangle are those that were originally in
these columns.

C4. In columns k+1,...,n—1, the linear function is
just the original variable x;;.

C5. For 2 < j < k the variables appearing in col-
umn j of the array are a proper subset of those
appearing in row j —1.

C6. In the first column of the triangular array every
variable originally in the first k£ columns appears
precisely once.

In view of (2) above, after having used columns
2,...,k of «, there are precisely

k+ak2+---+ak7k

variables in all the sums in the k-th row. Denote
this number of variables by N. We now list these
variables in the assigned order, denoting them as
Zlyeny ZN-

From our conditions above defining A,,, we have

N > api1 g1+ -+ apoi1 pt1-

Before actually modifying the triangle of linear
functions we first use column k+1 of « to parse the
2’s into “chunks”, putting the first aj41 y4+1 2’s into
the first chunk, the next aj4s 41 2’s into the next
chunk, and so forth, one chunk for each entry a; ;11
in column k+1 of a.. The inequality (3) guarantees
that there is at least one more variable available
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than is needed to form all the chunks. Notice that
some of the chunks can be empty and that at least
one of the 2’s does not appear in any chunk.

After we form each chunk, we associate to it the
first of the 2z’s (in our ordering) that has not yet
appeared in any chunk (including the chunk just
formed) and call this the “cap” of the chunk just
formed. Note that since some of the chunks are
empty, it is possible for chunks associated to several
consecutive entries a; ;1 to have the same cap.

Now we modify the triangle of linear functions in
two substeps.

First, for each i = k+1,...,n—1, we let z be the
cap of the chunk associated to a; 41, and then re-
place every occurrence of z in columns 1,. .., k of the
triangle of linear functions with z+4; y11. The order
in which we perform the substitutions in this sub-
step is immaterial since the variables z; ;41 did not
previously appear in columns 1,...,k (and hence
also are never caps).

Second, for each variable z; ;41 in column k41 of
the triangle of linear functions, we replace that vari-
able by a sum consisting of the variable itself plus
the sum of all the variables in the chunk associated
t0 @ pt1-

Conditions C0-C6 holds for the initial triangle
and it is easy to see, inductively, that the modi-
fication rules above preserve the conditions. Thus
they hold at every stage.

A somewhat deeper property of our inductive pro-
cedure is that, at each stage, the triangle of linear
functions represents a linear transformation of de-
terminant 1.

The first substep is a linear substitution of de-
terminant 1. However, the second substep is not
strictly a linear substitution since the first substep
results in occurrences z; ;4 in the columns 1,...,k,
while, in the second substep, we do not perform the
substitution in these occurrences.

However, we can obtain the second substep by a
sequence of pairs of linear substitutions of determi-
nant 1. Indeed for each w; ;41 in column k+1 we
substitute for its cap variable the cap variable mi-
nus the sum of the associated chunk variables, and
then substitute for the z; j11, @; y+1 plus the sum of
the chunk variables. The effect of the these two sub-
stitutions is to leave columns 1, ..., k unchanged but
to perform the desired substitution in column k+1.

Here is an illustration of the procedure described
above. Suppose that n = 5 and that the array « is

o O O O
O O =
=N

Take the array of variables (called z;; above) to be

HT QW=
~T QT
RN

M
N O

and order the variables alphabetically.

When the first column of « is used, all 4 chunks
have length 0 and cap A. So the effect is that all
four variables are added to A, yielding

AFGHI

moAQw
~T QT
RN

M
N O

where, for the rest of this example, we designate
addition by juxtaposition, so that AFGHI means
A+F+G+H+1.

When the second column of « is used, the vari-
ables in the second row of the triangle are B, F' and
there are three chunks, the first is B and the last two
are empty. All three have cap F'. Thus we obtain

AFGHIJKL
B FJKL
o G BJ
D H K M
E I L N O

When the third column of « is used there, are four
variables in the third row of our triangle, namely
B,C,G,J and there are two chunks, B,C and G,
with caps G and J respectively. The chunks are
adjoined to M and N and, in the first three columns
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of the triangle, G is replaced by GM and J by JN.
Thus we obtain

AFGHIJKLMN
B FJKLN
c GM BJN
D H K BCM
E I L GN O

Finally, when the last column of « is used, there
are 6 variables in the fourth row of the triangle,
B,C,D,H,K,M. We form one chunk of size 2,
namely B, C, with cap D, obtaining

AFGHIJKLMN
B FJKLN
C GM  BJN
DO H K BCM
E I L GN BCO

The unit simplex in V is the set of 15-tuples A,
..., 0O of nonnegative reals whose sum is < 1. Still,
taking note of our juxtaposition notation for addi-
tion, we see that the triangle above defines a linear
mapping from the unit simplex to Ps.

It is easy to see, inductively, that this will be the
case for any « in A,. First note the inequality (2)
will always hold because of (C6). One also easily
verifies that the conditions (1) always hold. The
second of the inequalities is a consequence of the fact
that the variables occurring in any row are always
distinct. The first inequality follows from (C5).

Thus we have associated to every « in A, a sim-
plex whose volume is 1/(%)!.

One needs also to show that the simplices L(«)
cover P, and have disjoint interiors. There is an
argument, rather similar to the preceding, in which
we start with a point of P, and build up « and L(«)
with a construction like the preceding. But we omit
the details.

Thus our conjecture would be proved if we could
show that the cardinality of A, was given by

n—2

I )

1=

We have not been able to show this.

However, this combinatorial interpretation leads
to a stronger conjecture. We can classify the ele-
ments of A,, according to the number of times that

we have equality in (3). This can hold from 1 to

n — 2 times.

Conjecture 2. If n > 2 and D, is the number of
elements of A,, for which equality holds for k of the
inequalities (3), then D, is divisible by

’ﬁ 1 (22)
piral e ol SN

and the quotient is

Vo = =5 (") ()

the Narayana number N(n—2,k).

For example, the following two elements of Aj sat-
isfy just 1 equality in (3)

0 0
0 0 0 0
0 0 0 0 01

while the following two elements of Ay satisfy three
equalities

0 0
0 0 01
0 1 2 0 0 3

The remaining 6 satisfy two equalities.

To conclude this section we define a generalization
of the set A, and a corresponding generalization of
Conjecture 1.

Let AJ denote the set of elements of A,, in which
the first j columns consist entirely of zeros. Thus
A; = A, and A2 C A" for all j > 2. Here is a
small table of values of A7.

n j=1 357=2 =3 7=4 j7=5
3 1

4 2 1

5 10 3 1

6 140 28 4 1

7 5880 840 60 5 1

Conjecture 3. The number of elements in A? is the
product

ﬁ 1 (n—l—z’—l)

P 2i+1 2i '
With the help of Mathematica we can verify this
easily for n—j <6.
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4. FACETS OF P, AND THEIR VOLUMES

Another approach toward proving Conjecture 1 is
to try to understand the relative volumes of the
facets of P,. In this section we study these facet
volumes and make a conjecture concerning these vol-
umes based on evidence obtained by the simplicial
decomposition method described in [Chan and Rob-
bins 1999].

Suppose that n > 2 is an integer and that 1 <
r,s < n and s < r+1. Consider the convex hull
P, (r,s) of those permutations in T, whose (r, s) en-
try is zero. Then P, (r,s) is always a face of P,. If
n = 2 these are all facets of P, (r,s), but for n > 3,
P,(r,s) is a facet of P, precisely when r # 1 and
s#Znand s Zr+1.

Since the set T, is invariant under the operation of
exchanging the first two columns and the operation
of exchanging the last two rows, the same symme-
tries apply to the volumes of the facets. Thus the
volume of P,(r,1) is equal to that of P,(r,2) for
all . Also the volume of P,(n,s) equals that of
P,(n—1,s). Thus, we can display the volumes of all
the facets as a triangular array consisting of the vol-
umes of P,(r,s) for2<r<m—land2<s<n-1
and s <r.

Here are the volumes of P,(r,s) forn=3,...,7.

1
1
2 1
3
7 4

10 7 3

28

70 42

112 84 42
140 112 70 28

840

2180 1340

3700 2860 1520

5040 4200 2860 1340
5880 5040 3700 2180 840

These arrays have some properties that are easily
verified. For example, there is symmetry about the
anti-diagonal. There is a slightly deeper fact. In
any 2 X 2 submatrix of the preceding array the sum
of the entries on one diagonal of the submatrix is
equal to the sum of the entries on the other.

There is a slightly stronger version that can be
stated a little more elegantly if we add an extra di-
agonal of zeroes above the main diagonal and then
complete the triangle to a skew-symmetric matrix.
For example, the square matrix associated to the
last triangle (corresponding to n =7) is

0 —840 —2180 —-3700 —5040 —5880
840 0 —1340 —-2860 —4200 —5040
2180 1340 0 —1520 —-2860 —3700
3700 2860 1520 0 —1340 -2180
5040 4200 2860 1340 0 -840
5880 5040 3700 2180 840 0

Each square matrix formed this way has the prop-
erty that, for any of its 2 x 2 submatrices, the sum
on the entries on one diagonal is the same as the
sum of the entries on the other.

This property is easily proved. It results from the
fact that the relative volume of P, can be expressed
as the sum of the relative volumes of the facets op-
posite any vertex. The rectangular relations arise
from pairs of vertices that (when regarded as per-
mutations) differ by a transposition.

One consequence of the rectangular relations is
that all the entries in each triangle depend linearly
on the main diagonal so we can describe the whole
triangle, much more succinctly, in terms of the di-
agonal. Here are the diagonals (listed as rows) for
n =3,...,10. (The last four rows need to be com-
pleted to be palindromic of length n—2.)

1
1 1
3
28 42 42 28
840 1340 1520 1340
83160 137610 167310 167310
27747720 47016970 59676120 64091020

31743391680 54669174560 71411118240 80251753120

The entries in the first two columns of this array
seem to be predictable. Suppose that a, denotes
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the entry in the first column and b,, the entry in the
second column. Then a, is defined for n > 3, and
b,, is defined for n > 4 so that

ag,a4,a5,a6...:1,1,3,28...

and

b4,b5,b6,b7... - 1,4,42,....

Conjecture 4. For n > 3,

n
=/ (2)
¢ 2
For n > 4,

= (bnﬂ _b_n> = (n+2) (b”“ - b”“) .

anJrl Ay an+2 anJrl

The evidence for the second formula is perhaps not
all that compelling since the result is known to hold
only for n = 4,...,8. However it is not hard to
check that the two formulas above, taken together
with Conjecture 1, predict integral values for b,,, for
all n. So this gives some additional evidence.
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