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Abstract. We consider stochastically perturbed gradient flows in the limit when the amplitude
of random fluctuations is small relative to the typical energy scale in the system and the minima of the
energy are not isolated but form submanifolds of the phase space. In this case the limiting dynamics
may be described in terms of a diffusion process on these manifolds. We derive explicit equations for
this limiting dynamics and illustrate them on a few finite-dimensional examples. Finally, we formally
extrapolate the reduction technique to several infinite-dimensional examples and derive equations of
the stochastic kink motion in Allen-Cahn-type systems.
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1. Introduction

The temporal evolution of a number of physical systems can be modeled by
stochastically perturbed gradient flows on some prescribed (free) energy landscape.
When the amplitude of the random perturbations is small, their influence is in first
approximation negligible on the intrinsic time-scale of the deterministic gradient flow.
On longer time-scales, however, the situation changes and the random perturbations
have a nontrivial effect on the dynamics. A typical situation is when the energy
landscape has isolated minima. In this case, the deterministic part of the dynamics
drives the system by steepest descent to the vicinity of one of these minima, where it
remains for a very long period of time. From time to time, however, the random per-
turbations push the system significantly up in energy and away from this minimum.
If the landscape is non convex, eventually the system manages to escape the basin of
attraction of the minimum it is currently in and finds its way towards the location
of another minimum. The cycle can then repeat. The typical time of escape from
the location of one minimum to another can be estimated from the theory of large
deviations [16] and is exponentially long relative to the height of the energy barrier
between these minima measured in units of the amplitude of the random perturba-
tion. Additional information, such as the paths of maximum likelihood by which the
transitions between minima occur, is also provided by large deviation theory [16, 8].

Another interesting class of situations, which are the ones we will focus on in this
paper, arises when the energy landscape does not have isolated minima but rather
a manifold of minima. In fact, it is enough to assume that the energy function can
be decomposed as E=V +ǫU , where ǫ is a parameter measuring the amplitude of
the random perturbations and V has a manifold of minimizers. In such situations,
by rescaling time as t 7→ t/ǫ and assuming that ǫ is small the system is first quickly
attracted to the vicinity of this manifold by the deterministic part of the dynamics
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associated with steepest descent on V . Afterwards the system displays a nontrivial
dynamics in the neighborhood of the manifold which is governed by the interplay of
the action of U and that of the random perturbations. This is the dynamics that we
are interested in studying in this paper.

As we will see, in the limit of small ǫ it is possible to describe the dynamics in
terms of the variables parametrizing the manifold of the minimizers of V rather than
the entire (often much larger) phase space. This is much in the spirit of singular
perturbation theory developed for deterministic dynamical systems by Fenichel [14],
where, up to small corrections, the dynamics in the neighborhood of attracting in-
variant slow manifolds may be reduced to evolution on them (for the general theory
regarding stochastic systems see, e.g., [2] and references within). In particular an
appropriate “calculus” was developed for the differential equations describing these
dynamics. Here we consider the stochastic case and derive stochastic ordinary differ-
ential equations (SODE) governing the reduced dynamics. In particular, we extend
(the attracting sub-case of) Fenichel’s singular-perturbation “calculus” to the stochas-
tic case by building upon a general theorem by Katzenberger [18]. Further on, we also
apply these ideas in the infinite-dimensional setting of stochastic partial differential
equations (SPDE), although without a rigorous justification.

The present paper has two principal components: first we rigorously derive the
reduced equations in the finite-dimensional situation, i.e., when the phase space of
the system is finite-dimensional (i.e the evolution are described by an SODE). As a
particular example we consider a model illustrating temperature-induced change of
equilibrium in a two-dimensional system. Then we extrapolate the finite-dimensional
results to an infinite-dimensional setting, i.e., when the dynamics of the entire system
is described by a stochastic partial differential equation (SPDE). In this case we
do not provide complete proofs and limit ourselves to highlighting the key ideas and
methods using the stochastic Allen-Cahn type equations (1+1 space-time dimensions)
that describe phase separation dynamics. We demonstrate how in an appropriate limit
these SPDEs may be reduced to diffusion-annihilation processes describing the motion
of phase separation points.

The remainder of this paper is organized as follows. In section 2 we describe the
general setting for our problem and state our main result, Theorem 2.2. In section 3 we
illustrate this result via application to examples. In section 4 we formally generalize
our result to the infinite-dimensional setting and, as an application, we consider the
stochastic Allen-Cahn equation with additive noise. Finally, in section 5 we provide
the proofs of Theorem 2.2 and other results.

2. Main results in finite dimensions

We will consider n-dimensional stochastic differential equations of the form

dXt = −D∇Eǫ(Xt)dt+
√

2τ σdW t. (2.1)

Here Eǫ(x) is referred to as the energy, τ as the temperature, and the symmetric
positive-definite n×n matrix D as the diffusivity; W t is a d-dimensional Brownian
motion (Wiener process), and we assume that the n×d matrix σ is related to diffu-
sivity as D=σσT .

The superscript ǫ in Eǫ(x) indicates that the energy depends on a control parame-
ter ǫ. Specifically, we are interested in situations where the energy can be decomposed
as

Eǫ(x) = U(x) +
1

ǫ
V (x). (2.2)
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When ǫ is small, the decomposition (2.2) means that the energy has widely separated
scales and U(x) and V (x) will be referred to as the slow and fast energies, respectively.
Intuitively, one would (correctly) expect that the dynamics of equation (2.1) will relax
along the paths of steepest descent towards the minima of V (x) on the fast O(ǫ) time
scale. As explained in the introduction, one then needs to distinguish between the
following two cases.

If V (x) has a number of isolated minima, the system spends most of the time in
the vicinity of these minima and only makes occasional transitions from one minimum
to another. The transitions occur on the very long time scale O(eC/ǫ), where the
constant C is related to the energy barrier between the minima. The dynamics of the
transitions can be described by a Markov chain [16].

In contrast, when the minima of V (x) are not isolated but form surfaces (man-
ifolds) in R

n, it is natural to expect that nontrivial dynamics will take place very
close to these manifolds on the O(1) time scale (i.e., long before possible transitions
between these manifold of minima occur). One can also expect that the description
of the O(1)-dynamics can be reduced in this case to a description in terms of the
coordinates that parametrize these manifolds. In what is to follow, we will focus on
this second situation and derive the reduced equation arising in the limit as ǫ→0.

Specifically, let us consider equation (2.1) on the n-dimensional Euclidean space
R

n with the energy Eǫ(x) as in (2.2). We assume that the slow potential U(x)∈C2

and make the following main assumption about the fast potential V (x):

Assumption 2.1. V (x)∈C5 and attains its minimal value on an m-dimensional
manifold M⊂R

n which is C2 and can be (locally) parametrized by m coordinates via
a mapping ψ(z), i.e., any patch U of M can be represented as

U ={x∈R
n |x=ψ(z), z∈A⊂R

m}, (2.3)

where A is a suitable parameter domain. In addition, the Hessian of V (x) has exactly
n−m positive eigenvalues when x∈M.

Our main result is a set of equations for a “reduced” process Zt on R
m such that

ψ(Zt) approximates the original process, Xǫ
t, for small values of ǫ in the following

sense:

Theorem 2.2. Consider a family of initial conditions Xǫ
0 converging to some X0∈

M as ǫ→0 and let U be a compact neighborhood of X0 on M which is parameterized
as in (2.3). Then for all δ>0,

lim
ǫ→0

P

(

sup
0≤t≤T

|Xǫ
t −ψ(Zt)|>δ

)

=0, (2.4)

where T =inf{t≥0|ψ(Zt) 6∈U} and Zt is the process on R
m that obeys the

Stratonovich SDE

dZt = −D̂(Zt)∇F (Zt) dt+
√

2τ σ̂(Zt)◦ dW t, (2.5)

with the initial condition Z0 satisfying X0 =ψ(Z0). Here, the reduced energy F (z),
reduced diffusivity D̂(z), and σ̂(z) are related to the coefficients of equation (2.1) via
the formulas

F (z) = U
(

ψ(z)
)

+
τ

2
lnh(z), (2.6a)
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D̂−1
αβ (z) =

n
∑

i,j=1

∂ψi(z)

∂zα
D−1

ij

∂ψj(z)

∂zβ
, (2.6b)

σ̂α
r (z) =

n
∑

i,j=1

m
∑

β=1

D̂αβ(z)
∂ψi(z)

∂zβ
D−1

ij σ
j
r . (2.6c)

The function h(z) in equation (2.6a) is the product of the nonzero eigenvalues of the
matrix JTH(ψ(z))J , where H(x) is the Hessian of V (x) at x=ψ(z) and J is any
n×n matrix such that JTJ =D.

Observe that the correction to the energy in (2.6a) is proportional to the tem-
perature, τ , i.e., it is a purely stochastic effect and would not have appeared in the
deterministic setting. This correction encodes the influence of the shape of the fast
potential V (x) in the directions orthogonal to the manifold M. The purely determin-
istic reduction in the absence of noise corresponds to τ =0.

Remark 2.3. Assuming that exp{−Eǫ(x)/τ} is integrable, the process described by
equation (2.1) has the unique Gibbs-type invariant probability measure,

µ(dx) =
1

Z exp{−Eǫ(x)/τ}dx. (2.7)

By a direct computation, one can verify that equation (2.5) then preserves the measure

µ̂(dz) = exp{−F (z)/τ}detD̂−1/2(z) dz. (2.8)

Provided equation (2.5) can be extended to the entire M, the measure (2.8) is an
invariant measure for the process Zt. In fact, (2.8) is (up to a scaling factor) the
ǫ→0 limit of the invariant measure (2.7) for the original equation (2.1), meaning that
the latter converges to a measure concentrated on M, which in the z-coordinates can
be represented as (2.8). A computation demonstrating this statement and making it
precise is carried out in section 5.2.

Remark 2.4. Note that it is sufficient for the matrix D in equation (2.1) to be
positive semi-definite rather than strictly positive-definite. This is the so-called hard
constraint scenario: the dynamics prescribed by (2.1) is constrained to a hyperplane
which is a translation of the range of D by the vector of initial conditions, X0. In this
case the entire R

n is representable as a direct sum of the kernel of D and its range,
whose every translation is a hyperplane invariant under the dynamics prescribed by
equation (2.1). We can thus apply Theorem 2.2 within each such hyperplane and then
reformulate the result in terms of the full space R

n. Formulas (2.5) and (2.6) remain
the same, except that D−1 should be replaced by a symmetric matrix, G, which
inverts D in its range (see Lemma 5.1 in the end of section 5.3), and the z variables
parametrize M̃, which is the intersection of M (the manifold of the minimizers of
the fast potential V (x)) with the range of D shifted by X0. This procedure can be
carried out if all initial conditions, Xǫ

0, belong to a single hyperplane.

Remark 2.5. When the diffusivity matrix D is degenerate, as discussed in the
previous remark, the natural description of the reduced problem is frequently obtained
in terms of the coordinates on the entire manifold M rather than on its submanifold,
M̃. In this case, the reduced equation (2.5) must still obey the constraint, in other
words, the reduced diffusivity, D̂(z), in the natural z coordinates on M must remain
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degenerate to keep the constraint intact. Thus, formula (2.6b) actually produces some
matrix Ĝ(z) (rather than an undefined D̂−1(z)) which then has to be inverted on the
tangent space of M̃ at z. The symmetric inverse is, in fact, uniquely defined and may
be represented as (skipping z in the arguments)

D̂ = P
[

PT ĜP + τ QTQ
]−1

PT , (2.9)

where P (z) is an arbitrary projector on the tangent space of M̃ at z, Q(z)= I−P (z),
and τ >0. Note that (2.9) reduces to the identity D̂(z)= Ĝ−1(z) whenever P (z)= I,
e. g., when the z-variables only parametrize M̃ rather than the entire manifold M.
The derivation of formula (2.9) is presented in section 5.3. One of the reasons we
present this formula is that this version of the hard constraint scenario is typical in
the infinite-dimensional setting and an analog of (2.9) will be used when we discuss
the constrained Allen-Cahn equation (section 4.3).

Remark 2.6. Finally, note that we consider equation (2.1) to be a prototypical
example of a larger class of Itô diffusion processes of the form

dXt =[v(Xt)−D(Xt)∇E(Xt)+τ∇·D(Xt)] dt+
√

2τσ(Xt)dW t, (2.10)

where D(Xt)=σ(Xt)σ
T (Xt) and ∇·[v(x)ρ(x)]=0, with ρ(x) being the density of

the invariant measure of the form (2.7). This is the most general class of diffu-
sion processes that preserve the invariant measure ρ(x)dx. Equ. (2.1) is special in
that its dynamics obey the detailed balance condition (v(x)≡0, i.e., the probability
flux through any surface vanishes at equilibrium) and that the noise term in it has
x-independent correlation functions. Physically, this last statement means that the
auto-correlation functions of the stochastic Langevin forces in equation (2.1) are inde-
pendent of the instantaneous values of the macroscopic variables. Analysis of equation
(2.10) and its final result are quite similar to those presented here for equation (2.1),
however, the calculation is more cumbersome and is omitted.

The proof of Theorem 2.2 and propositions from the remarks above will be pre-
sented in section 5. First, however, we consider a number of finite-dimensional ex-
amples that illustrate specific features of the reduction described in Theorem 2.2, as
well as its formal extension to several infinite-dimensional examples. In these latter
examples, Theorem 2.2 serves as a guiding principle in the calculations, even though
the corresponding rigorous theory is as yet missing.

3. Examples

In this section, we present three characteristic examples of the theory developed
in the previous section. Two of them illustrate the properties of the noise-induced
correction to the energy.

3.1. Effective drift and thermally-induced change of equilibrium. Let
us consider a two-dimensional example that illustrates the importance of the term
(τ/2) lnh(z) in the reduced energy. We will see that quite nontrivial and unexpected
phenomena may occur due to this term. We use x=(x,y)∈R

2 to denote our degrees
of freedom.

Consider the following slow and fast potentials:

U(x,y) =
x2

2
, V (x,y) =

1

2

y2

1+x2
, (3.1)
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Fig. 3.1. The main plot displays the effective potential F (z) and the invariant measure for the
reduced process, ρ(x)=e−F (z)/τ /Z (stretched for the purposes of illustration). The subplot displays
the level sets of the true potential E(x,y)=U(x,y)+V (x,y)/ǫ.

and let σ and D be the 2×2 identity matrices. In this case, the dynamics is given
explicitly by the equations











dXt = −Xt dt+
1

ǫ
XtY

2
t

(

1+X2
t

)−2
dt+

√
2τ dW

(1)
t ,

dYt = −1

ǫ
Yt

(

1+X2
t

)−1
dt+

√
2τ dW

(2)
t .

(3.2)

The slow manifold M here is the x-axis, so we naturally parametrize it by the x-
coordinate, setting (x,y)=ψ(z)=(z,0). (The z-variable is nevertheless used to avoid
any confusion between the original and the reduced equations.) Computing the quan-
tities prescribed in formulas (2.6), we find D̂(z)≡1, σ̂(z)≡ (1,0), and

F (z) =
z2

2
− τ

2
ln

(

1+z2
)

. (3.3)

Thus, the reduced dynamics obey the equation

dZt = −Zt dt+
τZt

1+Z2
t

dt+
√

2τ dW
(1)
t . (3.4)

We now proceed to analyze the structure of the reduced (or effective) energy (3.3) a
bit closer. For τ ≤1, (3.3) has a unique minimum at z=0. This minimum undergoes
a saddle-node bifurcation at τ =1 and becomes a local maximum, while two minima
at z=±

√
τ−1 emerge. The gradient flow dynamics (3.4) therefore have qualitatively

different features depending on whether τ ≤1 or τ >1: in the first case, the drift
is towards the origin, while in the second case, the drift is away from the origin
and towards the minima of the effective energy. This is what may be called the
entropic neck effect. Even though the actual energy E(x)=U(x)+V (x)/ǫ has a
unique minimum at x=0, for small ǫ and large τ , the system prefers to be situated
near the minima x=±

√
τ−1 of the effective energy, F (z) (recall z≡x); see figure 3.1

for the illustration. The reason for this is that the “width” of the phase space in y-
direction (the number of compatible micro-configurations in the language of statistical
physics) is much smaller near x=0 than near x=±

√
τ−1. Thus, effectively, when

τ >1, the system is less likely to be found near x=0.
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3.2. Brownian motion on a manifold. This is a version of the (last)
example from [18]. Let M be a smooth m-dimensional submanifold of R

n (locally)
parametrized by a function ψ :Rm →R

n,

U(x) = 0, V (x) =
1

2

[

dist(x,M)
]2

(3.5)

where dist(·,·) denotes the usual Euclidean distance. Let D and σ be the n×n
identity matrices. (Note that while V (x) is not necessarily smooth in the entire R

n,
it is smooth in a sufficiently small neighborhood of M.) From formulas (2.6) we
obtain that the reduced energy F (z) = 0,

σ̂α
r (z) =

m
∑

β=1

D̂αβ(z)
∂ψr(z)

∂zβ
, D̂−1

αβ (z) =
n

∑

i=1

∂ψi(z)

∂zα

∂ψi(z)

∂zβ
. (3.6)

Therefore, the equation for the reduced process Zt can be written as

dZα
t =

√
2τ

n
∑

r=1

m
∑

β=1

D̂αβ(z)
∂ψr(z)

∂zβ
◦ dW r

t . (3.7)

A straightforward computation shows that the generator of this process is the
Laplace-Beltrami operator on M (up to the factor of τ), on which D̂−1

αβ (z) plays
the role of a metric tensor, i.e., M inherits its metric from R

n. This implies that
Zt is a Brownian motion on M (modulo the scaling factor of

√
2τ). This fact,

however, is easier to see if we write equation (3.7) for Zt in terms of the original
x-coordinates in R

n (see equation (5.18) below). This is because we can use the well-
known result that Brownian motion on a submanifold M of R

n satisfies the equation
dXt =P (Xt)◦ dW t, where P (x) is the orthogonal projector on the tangent space of
M at x [23]. For the process Xt =ψ(Zt), we have

dXt = dψ(Zt)=
√

2τ P (Zt)◦ dW t, (3.8)

where P is the matrix with entries

Pij(z)=

m
∑

α,β=1

∂ψi(z)

∂zα
D̂αβ(z)

∂ψj(z)

∂zβ
. (3.9)

Observing that P (z) is exactly the required orthogonal projector, we immediately
verify the assertion.

3.3. Soft constraint to a manifold. Now consider the following modification
of the previous example. Let the manifold M be given as the zero level set (which is
assumed to be non-degenerate) of some smooth function θ :Rn →R

n−m,

U(x) = 0, V (x) =
1

2
|θ(x)|2. (3.10)

Let D and σ, again, be the n×n identity matrices. As in the previous example, we
obtain that the reduced diffusivity and the matrix σα

r (z) are given by formulas (3.6),
however, there now exists a nontrivial effective energy contribution

F (z) =
τ

2
lnh(z), (3.11)
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where the function h(z) is the product of nonzero eigenvalues of the Hessian of V (x)
evaluated at x=ψ(z). Observe that h(z) may be computed explicitly as the sum of
rank n−m principal minors of the Hessian,

Hij(x)=

n−m
∑

p=1

[

θp(x)
∂2θp(x)

∂xi∂xj
+
∂θp(x)

∂xi

∂θp(x)

∂xj

]

x=ψ(z)

. (3.12)

In particular, if m=n−1, i.e., if θ(x) is a scalar function, h(z)=TrH(ψ(z)). Sum-
marizing all of the above we see that the reduced process Zt satisfies

dZα
t = −

m
∑

β=0

D̂αβ(Zt)
∂F (Zt)

∂zβ
dt+

√
2τ

n
∑

r=1

m
∑

β=1

D̂αβ(Zt)
∂ψr(Zt)

∂zβ
◦ dW r

t . (3.13)

Note the difference from equation (3.7): there is now a drift term due to the nontrivial
contribution from the Hessian of the fast potential.

From the computational point of view sometimes it is convenient to remain in the
original coordinates of R

n, in which case for the process Xt =ψ(Zt) we have

dXt = −P (Xt)∇F̂ (Xt) dt+
√

2τ P (Xt)◦ dW t. (3.14)

Here F̂ (x) is the same reduced energy expressed in x-coordinates, i.e., F̂ (ψ(z))=
F (z), and the gradient is taken with respect to the x-variables. Note that the pro-
jector P (x) may be computed without referring to the map ψ(z), using the the
prescribed map θ(x) alone:

Pij(x)= δij −
n−m
∑

p,q=1

∂θp(x)

∂xi

[

T−1(x)
]

pq

∂θq(x)

∂xj
, (3.15)

where the matrix T (x) is given by

Tpq(x)=
n

∑

i=1

∂θp(x)

∂xi

∂θq(x)

∂xi
. (3.16)

Finally, note that if the slow potential U(x) is nonzero, it is added to the reduced
energy F̂ (x) in (3.14) while the structure of the equation remains unaffected (similarly,
U(ψ(z)) is then added to F (z) in (3.13)).

4. Infinite-dimensional generalizations

Motivated by the finite-dimensional (SODE) results, we now heuristically apply
the same ideas to infinite-dimensional (SPDE) problems. This approach has been
adopted, e. g., in [17], where a rigorous treatment of the so-called single-kink solution
of the Allen-Cahn equation (see below) has been carried out. Additional technical
details regarding the interpretation of the SPDEs that we consider here, existence and
uniqueness of solutions, etc., may be found in [20, 12, 22, 19].

4.1. Stochastic Allen-Cahn equation. Consider the following stochastic
nonlinear heat equation:

ut(x,t) = uxx +
1

ǫ2
(

u−u3
)

+
√

2τ ξ(x,t), (4.1)
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for a real-valued function u(x,t) whose absolute value tends to 1 as x→±∞, t>0.
Here ǫ and τ are parameters, ξ(x,t) is a spatio-temporal white noise (it has to be
truncated when |x| is sufficiently large to have (4.1) well-posed). Alternatively, (4.1)
may be considered on a finite interval [0,L], e.g., with periodic boundary conditions.
This issue of boundary conditions is technical and does not affect the phenomena that
we study here, thus for the sake of clarity we first consider (4.1) on the whole line and
switch to the finite interval in the subsequent examples.

The similarity of (4.1) to our archetypal SDE (2.1) becomes apparent once we
observe that (4.1) may be represented as

ut(x,t) = − δEǫ[u]

δu(x)
+
√

2τ ξ(x,t), (4.2)

where δ/δu(x) denotes the variational (Euler-Lagrange) derivative, and Eǫ[u] is the
Ginzburg-Landau energy,

Eǫ[u] =

∫

R

[

1

2
u2

x +
1

4ǫ2
(

1−u2
)2

]

dx. (4.3)

Thus equation (4.1) has a gradient flow structure, just like the finite-dimensional
equation (2.1). Rescaling the variables by setting x̃=x/ǫ, t̃= t/ǫ, and ũ(x̃, t̃)=u(x,t),
we may rewrite the equation (4.1) as

ũt̃(x̃, t̃) =
1

ǫ

(

ũx̃x̃ + ũ− ũ3
)

+
√

2τ ξ̃(x̃, t̃), (4.4)

where ξ̃(x̃, t̃) is a different white noise. In this form (4.1) is formally analogous to a
finite-dimensional system where the whole energy is fast and is given by

Ẽǫ[ũ] =
1

ǫ
V[ũ], V[ũ] =

∫

R

[

1

2
ũ2

x̃ +
1

4

(

1− ũ2
)2

]

dx̃. (4.5)

It is not hard to see that this energy has a continuous set of minimizers, the so-called
single-kink functions given by the translates of

v(x̃) = ±tanh(x̃/
√

2). (4.6)

To verify this, we compute their energy, V[v]=2
√

2/3, and observe that in the class
of functions tending to ±1 as x̃→±∞, we have the following lower bound:

V[ũ] ≥ 1√
2

∫

R

(

1− ũ2
)

ũx̃dx̃=
1√
2

∫ +1

−1

(

1− ũ2
)

dũ=
2
√

2

3
. (4.7)

Since the energy is constant on the set of single-kink functions and the deviations
are O(1/ǫ) expensive in the energy (see section 5.4 for a precise energy bound of this
type), this set is the analog of the manifold M, and the small-ǫ dynamics reduces to
the noise-induced motion of the kink.

Parametrizing the single-kink functions by the kink location, Z̃ (we use tilde to
indicate that the kink coordinate is prescribed in the rescaled space), we now compute
the analogues of the ingredients from (2.5). Instead of the matrix D here we have the
identity operator, so we compute D̂−1(z̃) (just a number for the single kink-functions)
as in (2.6b), except the summation now transforms into integration:

D̂−1(z̃) =

∫

R

[

∂v(x̃− z̃)
∂z̃

]2

dx̃=
2
√

2

3
. (4.8)
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-1

0

1

O(1)

O(  )ε

Fig. 4.1. A typical multi-kink function, v(x̃|Z̃), given by the equation (4.12) depicted in the
original scaling x= ǫx̃. The distance between the kinks is of O(1), while the width of each transition
layer is of O(ǫ).

Similarly, we can compute the reduced “matrix” σ̂(z̃). It is, however, convenient to
immediately contract σ̂(z̃) with the noise obtaining a process ˙̂σt̃(z̃) — an equivalent
of σ̂(z)Ẇt from the finite-dimensional case:

˙̂σt̃(z̃) =
3

2
√

2

∫

R

∂v(x̃− z̃)
∂z̃

ξ̃(x̃, t̃)dx̃. (4.9)

(The integral is understood in the sense of distributions and z̃ plays the role of a
parameter.) The analogue of the function h(z) here would be the “product of nonzero
eigenvalues” of the second variation of V[ũ], a Sturm-Liouville operator for which such
a quantity is not well-defined (technically, such a quantity may be computed relative
to some fixed operator, e.g., −∂x̃x̃, which amounts to renormalization via subtracting
of an “infinite constant” which does not contribute into the gradient flow dynamics).
However the spectrum of this operator does not depend on the kink location, so
h′(z)=0, i.e., h(z) does not contribute into the dynamics.

Combining all these facts, we find that the kink dynamics obeys the following
(formally Stratonovich) stochastic differential equation:

˙̃Zt̃ =
√

2τ ˙̂σt̃(Z̃t) =
3
√
τ

2

∫

R

∂v(x̃− Z̃t̃)

∂z̃
◦ ξ̃(x̃, t̃)dx̃. (4.10)

Now observe that this equation may also be understood in the Itô sense: the
Stratonovich correction vanishes. Therefore we may replace the Gaussian process
σ̂t̃(z̃) by a simple Brownian motion with the matching covariance. Thus we obtain
that the kink motion is equivalent in law to the solution of

dZ̃t̃ =

[

3τ√
2

]1/2

dW̃t̃, or dZt =

[

3ǫτ√
2

]1/2

dWt (4.11)

in the original space-time variables, i.e., for Z= ǫZ̃. Rescaling the time yet again, we
get (up to a change of the Wiener process) dZt′ = dWt′ for t′ =3ǫτt/

√
2.

More generally, we can construct the so-called multi-kink functions

ũ(x̃) ≈ v(x̃|Z̃) =

N
∏

α=1

v(x̃− Z̃α), (4.12)

where Z̃=(Z̃1,... ,Z̃N ) is the vector of kink locations (again, the tilde indicates that
these locations are prescribed in the rescaled space), and “≈” denotes equality up to
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the terms of O(exp{−∆min}) — exponentially small relative to the minimal distance
between some two successive kinks. In the neighborhood of such N -kink functions
the energy (4.5) may be represented as

V[v(x̃|Z̃)] =
2
√

2

3
N +O

(

exp
{

−
√

2∆min

})

. (4.13)

Now observe that provided the kinks are located on the O(1) distances in the original
function u(x), the distance between the kinks in ũ(x̃) is of O(1/ǫ), and thus the
second term in (4.13) is vanishingly small and may be neglected on the time scales
polynomially slow in ǫ (see, e.g., [6, 5, 9] for details regarding the deterministic kink
motion). Further on, the first term in (4.13) is independent of the kink locations, Z̃α,
while expression (4.5) indicates that the deviations from this neighborhood are O(1/ǫ)
expensive in the energy. Thus we see that the situation is again formally identical to
the finite-dimensional case. As before, we parametrize the set of multi-kink solutions
by the kink locations Z̃ for which we compute the analogues of the ingredients from
(2.5). For the reduced matrix D̂−1

αβ (z̃) we obtain

D̂−1
αβ (z̃) =

∫

R

∂v(x̃|z̃)
∂z̃α

∂v(x̃|z̃)
∂z̃β

dx̃=
2
√

2

3
δαβ +O

(

exp
{

−
√

2∆min

})

. (4.14)

As in the single-kink situation, while ∆min =O(1/ǫ), the function h(z) is constant
in z and therefore it does not contribute to dynamics: the spectral problem for the
second variation of the energy is essentially a superposition of independent translation-
invariant problems for separate kinks. Finally we compute the stochastic processes
driving the kink dynamics:

˙̂σα
t̃ (z̃) ≈ 3

2
√

2

∫

R

∂v(x̃|z̃)
∂z̃α

ξ(x̃, t̃)dx̃. (4.15)

Again, we verify that equations of the kink motion may be understood in the Itô sense
and obtain the analogue of (4.11), immediately in the original scaling:

dZt =

[

3ǫτ√
2

]1/2

dW t. (4.16)

Setting t′ =3ǫτt/
√

2, we obtain dZt′ = dW t′ . These equations are valid until the
distance between some of the kinks becomes of O(ǫ). This process leads to the mutual
annihilation of two kinks (which is not considered here), while the remaining kinks
keep moving according to (4.16). Let us also mention that the formal asymptotic
analysis with the derivation of the stochastic kink dynamics has been carried out
in [25].

4.2. Allen-Cahn equation with drift. Now consider a slight modification
of the stochastic Allen-Cahn equation,

ut(x,t) = uxx +
1

ǫ2
(u− ǫc/

√
2)

(

1−u2
)

+
√

2τ ξ(x,t), (4.17)

where c is a parameter (the standard Allen-Cahn equation (4.1) is obtained by setting
c=0). The distinguishing feature of equation (4.17) is that the kinks are no longer
stationary, or moving exponentially slowly, but have a finite velocity c. This can be
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seen in a straightforward manner from the fact that the deterministic (τ =0) equa-
tion (4.17) admits the traveling-wave solutions u(x,t)=±tanh[(x∓ct)/ǫ

√
2]. In the

rescaled variables (same as in the previous section) we have

ũt̃(x̃, t̃) =
1

ǫ

(

ũx̃x̃ + ũ− ũ3
)

− c√
2

(

1− ũ2
)

+
√

2τ ξ̃(x̃, t̃). (4.18)

Thus the deterministic part of equation (4.18) describes a stochastically-perturbed
gradient flow generated by the modified Ginzburg-Landau energy,

Ẽǫ,c[ũ] = U [ũ] +
1

ǫ
V[ũ], U [ũ] =

c√
2

∫

(

ũ− ũ3/3
)

dx̃. (4.19)

Observe that now there exists a nontrivial slow energy contribution, U [ũ]. (We should
point out that, as stated, U [ũ] cannot be defined on the whole line: the integral is
infinite. This issue may be avoided by either considering the problem on the finite
interval or redefining U [ũ] by subtracting the energy of some fixed function with the
same limit as ũ(x̃) as x̃→±∞.) Computing U [ũ] on the multi-kink functions (assum-
ing that the first kink corresponds to the transition from −1 to +1 and removing an
irrelevant constant) we obtain

U [v(x̃|Z̃)] ≈ c2
√

2

3

N
∑

α=1

(−1)αZ̃α. (4.20)

The reduction procedure is carried out identically to the regular Allen-Cahn case,
except now there exists a nontrivial slow energy contribution due to (4.20), so instead
of (4.16) we find

dZα
t = (−1)α+1 cdt+

[

3ǫτ√
2

]1/2

dWα
t . (4.21)

Note that in the ǫ→0 limit both the ballistic and the stochastic terms survive only
if c=O(ǫ). Then, if c=3ǫτc′/

√
2, t′ =3ǫτt/

√
2 (same as for the regular Allen-Cahn

equation), we obtain dZα
t′ = (−1)α+1c′dt+ dWα

t′ .

4.3. Constrained Allen-Cahn equation. Let us now consider yet another
modification of the equation (4.1):

ut(x,t) = D
[

uxx +
1

ǫ2
(

u−u3
)

]

+
√

2τDξ(x,t), (4.22)

where u(x) is periodic over x∈ [0,L], and D is the projector (D2 =D) defined by

Du(x) = u(x)− 1

L

∫ L

0

u(x)dx. (4.23)

Equ. (4.22) is then called the constrained Allen-Cahn equation, since the presence of
the operator D has the effect that the total integral of the field u(x,t) remains constant
(constrained) during evolution. Notice that we now consider a periodic rather than
infinite spatial domain — this is needed to have D well-defined. This requires a few
minor adjustments of the arguments involving the multi-kink solutions (e.g., the kinks
must come in pairs, the hyperbolic tangent shape is no longer the exact minimizer,
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etc.) however, they are of technical nature and do not affect the results, so we omit
them in what follows.

The general motivation for the reduction procedure remains the same as before,
except, since D is degenerate, we proceed along the lines outlined in Remark 2.5,
i.e., formally employ the formulas derived for the finite-dimensional hard-constraint
scenario. Since D is a projector, it acts as the identity operator in its range, in
particular, it acts as its own inverse. Thus we may compute the matrix Ĝ(z) as

Ĝαβ(z̃) =

∫ L

0

∂v(x̃|z̃)
∂z̃α

D ∂v(x̃|z̃)
∂z̃β

dx̃≈ 2
√

2

3
δαβ − 2ǫ

L
(−1)α+β . (4.24)

Now we use formula (2.9) to invert Ĝ in the subspace tangent to the slow manifold,
i.e., the multi-kink functions with a given total integral. Since in the z̃-variables the
total integral of a multi-kink function can be expressed as

∫ L

0

v(x̃|Z̃)dx̃≈ 2
N

∑

α=1

(−1)α Z̃α − L

ǫ
, (4.25)

a projector, P , on the tangent spaces of the slow manifold may be written as

Pαβ = δαβ −
1

N
(−1)α+β . (4.26)

We can now immediately compute, using formula (2.9), the expressions

PT ĜP =
2
√

2

3
P, D̂ =

3
√

2

4
P. (4.27)

Thus, by the same arguments as for the unconstrained Allen-Cahn equation, we arrive
at the following equation describing the motion of the kinks (in the original space-time
variables):

dZt =

[

3ǫτ√
2

]1/2

P dW t, (4.28)

with P given by equation (4.26). On the slow time scale, t′ =3ǫτt/
√

2 (same as for
the regular Allen-Cahn equation) and we obtain dZt′ = P dW t′ .

Analysis of the constrained Allen-Cahn equation (4.22) is a step towards under-
standing the kink dynamics of the stochastic Cahn-Hilliard equation [3, 4]:

ut(x,t) = −∂xx

[

uxx +
1

ǫ2
(

u−u3
)

]

+
√

2τ ∂x ξ(x,t). (4.29)

Similar to the constrained Allen-Cahn dynamics, evolution induced by equation (4.29)
conserves the total integral of the field u(x) (albeit in a different, “local” fashion).
This conservation appears because the role of the diffusivity matrix is taken on by the
degenerate −∂xx operator, which means that we are in the hard constraint scenario
again. It is fairly straightforward to derive the reduced diffusivity matrix formally
applying the recipe from Remark 2.5 to Theorem 2.2: parametrizing the multi-kink
functions via ζα, defined so that the kink locations may be expressed as zα =(ζα+1 +
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ζα)/2 for α<N and zN =(ζ1 +ζN +C)/2 (with a suitably chosen constant C), we
obtain

Dαβ(ζ) ≈ δαβ

ℓα
− (−1)α+β (ℓα+ ℓβ)

Nℓαℓβ
. (4.30)

Here ℓα =(ζα+1−ζα−1)/2=zα−zα−1 are the domain lengths. This implies that with-
out the contribution from the the reduced energy the process ζt obeys

ζ̇t =
√

2τ D(ζt)

∫ L

0

∂−1
x

∂v(x|ζt)
∂ζ

◦ ξ(x,t)dx. (4.31)

Equations for the domain lengths ℓα may be recovered immediately since the right-
hand side of (4.31) only depends in ℓt and ℓα =(ζα+1−ζα−1)/2. However, one has to
understand whether the effective energy, h(z) (logarithm of the “product of nonzero
eigenvalues” of the Hessian of the energy), contributes into the kink dynamics. This
issue requires more insight into the associated spectral problem involving a fourth
order differential operator and will be considered elsewehere.

4.4. Generalization to several spatial dimensions. The formalism devel-
oped above can in principle be extended to Allen-Cahn type equations in which the
spatial variable x is two (or higher) dimensional, e.g., to the following stochastic PDE:

ut(x,t) = ∆u+
1

ǫ2
(

u−u3
)

+
√

2τ ξ(x,t). (4.32)

It is known that in the limit of small ǫ the deterministic evolution reduces to the
motion by mean curvature of the interfaces between the stable ±1 phases; see, e.g.,
[15, 24] for matched asymptotics, or [7, 10] for rigorous analysis. Indeed, a formal
derivation is possible which leads to stochastically-perturbed motion by mean cur-
vature [13]; however a rigorous justification of this derivation is lacking. The main
issues are that the reduced dynamics itself is infinite-dimensional (evolution of curves
or surfaces) and that rigorously interpreting equation (4.32) for x∈R

d, d>1 is not
straightforward.

5. Proofs and discussion

Here we provide the proof of Theorem 2.2 and other propositions from the previous
sections. In particular, in section 5.2 we discuss convergence of invariant measures
and in section 5.3 we discuss the hard constraint scenario of degenerate diffusivity.

5.1. Proof of Theorem 2.2. We now proceed to prove Theorem 2.2. We be-
gin with an immediate simplification of equation (2.1), which is obtained by observing
that its general form is equivalent to

dXt = −∇E(Xt) +
√

2τ σdW t, σσT = I. (5.1)

This is because (2.1) may be transformed into (5.1) by the coordinate change x=JTx′,
where JTJ =D, which is always possible since the matrixD is symmetric and positive-
definite.

We proceed in three steps. First we state the theorem due to Katzenberger [18],
which is the starting point of our computations. Next, we explicitly compute all the
ingredients that are necessary for its application in our setting. And finally, we derive
the formulas that appear in the statement of Theorem 2.2.
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5.1.1. Katzenberger’s Theorem. We first state an abstract result which
is the main tool used in our proof. Note that we state this result in an altered form
most suitable for the use in our study, and with more demanding assumptions (e. g.,
in various places where we require differentiability, Lipschitz continuity is sufficient).
We consider a diffusion process on R

n driven by a d-dimensional Brownian motion
W t,

dXǫ
t = b(Xǫ

t)dt−
1

ǫ
∇V (Xǫ

t)dt+
√

2τ σdW t, (5.2)

assuming that σσT = I, and V (x) and M are as described in Assumption 2.1.

Theorem 5.1. (Katzenberger) Let b(x)∈C1. Consider a family of initial conditions
Xǫ

0 converging to some X0∈M as ǫ→0, and let U be a compact neighborhood of X0

on M. Then for all δ>0,

lim
ǫ→0

P

(

sup
0≤t≤T

|Xǫ
t −Xt|>δ

)

=0, (5.3)

where T =inf{t≥0|Xt 6∈U} and Xt is a process that obeys the Itô SDE

dXt =
[

∇φ(Xt)b(Xt) + τ∆φ(Xt)
]

dt+
√

2τ ∇φ(Xt)σ dW t. (5.4)

Here φ(x) is the limiting map of the gradient flow generated by V (x), i.e., φ maps
an arbitrary point x to the t=∞ limit of the flow ϕ(·,t) satisfying the following ODE
(x plays the role of a parameter)

d

dt
ϕ(x,t) = −∇V

(

ϕ(x,t)
)

, ϕ(x,0) = x. (5.5)

Throughout the rest of this discussion, for notational brevity, we will use the
Einstein summation convention of summing over repeated indices. Moreover, we will
denote the partial derivatives with respect to xi by ∂i.

In the proof of Theorem 2.2, we will need equation (5.4) to be recast into the
Stratonovich form, which we find as follows. Using the fact that ∇φ(x) is an orthog-
onal projector (and thus symmetric and idempotent, see the following section), dif-
ferentiating the identity φ(φ(x))=φ(x) twice to obtain ∂2

jjφ
i(x)=∂kφ

l(x)∂2
klφ

i(x)+

∂jφ
i(x)∂2

kkφ
j(x), and observing that the first term on the right-hand side is exactly

the Itô correction, we find the Stratonovich SDE corresponding to (5.4) to be

dXt = ∇φ(Xt)
[

(

b(Xt) + τ∆φ(Xt)
)

dt+
√

2τ σ◦ dW t

]

. (5.6)

Our goal is to derive equations for the reduced process, Xt, in the intrinsic
coordinates on M. In order to do this, let us assume that M is parameterized
by z∈R

m via a map x=ψ(z). We now have to present a process, Zt, such that
Xt =ψ(Zt) satisfies (5.4). Note that, since changes of variables are easier to carry
out in the Stratonovich form, we will from here on use (5.6) rather than (5.4). We
will begin the proof by explicitly computing the relevant derivatives of the fast flow
map, φ(x).
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5.1.2. Derivatives of the fast flow map. The first step in the proof of
Theorem 2.2 is the computation of the gradients ∂jφ

i(x) for x∈M. Taking into
account the results of [11] on the smoothness of t=∞ maps of dynamical systems, we
find from (5.5) that

∂jφ
i(x) = lim

t→∞
∂jϕ

i(x,t), (5.7)

where

d

dt
∂jϕ

i(x,t) = −∂2
ikV (x)∂jϕ

k(x,t), ∂jϕ
i(x,0) = δij . (5.8)

Since x∈M and M is a manifold of minimizers for the potential V (x), x is a fixed
point of equation (5.5). Therefore, (5.8) is a linear system with constant coefficients
and

∂jϕ
i(x,t) =

[

exp{−H(x)t}
]

ij
, Hij(x) = ∂2

ijV (x). (5.9)

Observe that the Hessian, H(x), is symmetric and positive semi-definite; its kernel is
the tangent space of M at x, while its range is the orthogonal complement.

We now change the coordinates to a frame in which the Hessian, H(x), is diagonal,
which can always be achieved by a linear change of variables. Let us denote the
eigenvalues of H(x) by λi, i=0...n. In such a frame we have

∂jϕ
i(x,t) = diag

{

e−λi(x)t
}

. (5.10)

Taking the limit t→∞, we immediately see that ∂jφ
i(x) is the orthogonal projector

on the tangent space of M at x. This implies that if M is parameterized by a function
x=ψ(z)∈M, ∂jφ

i(x) is given by

∂jφ
i(x) = ∂αψ

i(z)G−1
αβ(z)∂βψ

j(z), where Gαβ(z) = ∂αψ
i(z)∂βψ

i(z). (5.11)

Here ∂ with Greek subscripts denotes differentiation with respect to the z-variables.
Let us now compute the second derivatives, ∂2

jkφ
i(x). We have

∂2
jkφ

i(x) = lim
t→∞

∂2
jkϕ

i(x,t), (5.12)

where

d

dt
∂2

jkϕ
i(x,t) = −∂2

ilV (x)∂2
jkϕ

l(x,t)− ∂3
ill′V (x)∂jϕ

l(x,t)∂kϕ
l′(x,t) (5.13)

with the initial condition ∂2
jkϕ

i(x,0) = 0. This is a linear nonhomogeneous equation
with constant coefficients solved by (taking (5.9) into account)

∂2
jkϕ

i(x,t) = −∂3
k′ll′V (x)

∫ t

0

∂k′ϕi(x,t−s)∂jϕ
l(x,s)∂kϕ

l′(x,s)ds. (5.14)

Again, in the coordinate frame that diagonalizes the Hessian we obtain the more
explicit expression

∂2
jkϕ

i(x,t) = −e−λi(x)t∂3
ijkV (x)

∫ t

0

e(λi(x)−λj(x)−λk(x))sds. (5.15)
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We now observe from equation (5.15) that if λi(x) 6=0, then ∂2
jkϕ

i(x,t)→0 as t→∞.
This is because if λj(x)+λk(x)>0, the exponent in front of the integral on the right-
hand side of (5.15) dominates and if λj(x)=λk(x)=0, then ∂3

ijkV (x)=0 (since M
is the manifold of minimizers of V (x), the latter has to be differentiated twice in the
normal direction to obtain a nonzero result). If λi(x)=0, then ∂3

ijkV (x) 6=0 only if
λj(x)=λk(x) 6=0; for such indices we find

∂2
jkϕ

i(x,t) = −∂iλj(x)

∫ t

0

e−2λj(x)sds−→−1

2
∂i lnλj(x) as t→∞ (5.16)

(no summation over repeated indices in this formula). In particular, denoting the
product of the nonzero eigenvalues of the Hessian of V

(

ψ(z)
)

by h(z), we may rep-
resent the term ∇φ(x)∆φ(x) in (5.4) as

∂jφ
i(x)∂2

kkφ
j(x) = −1

2
∂jφ

i(x)∂j lnh(z). (5.17)

Note that even though we derived (5.11) and (5.17) in particular coordinate frames,
the final expressions are invariant with respect to the coordinate choice.

5.1.3. Derivation of the final formula. Once we have all the ingredients
in (5.6) explicitly computed, we may represent it as

dXi
t = ∂αψ

i(Zt)G
−1
αβ(Zt)∂βψ

j(Zt)
[

−∂jF (Zt)dt+
√

2τ σj
r ◦ dW r

t

]

, (5.18)

where F (z) is the reduced energy given by

F (z) = U
(

ψ(z)
)

+
τ

2
lnh(z). (5.19)

Since for Stratonovich equations we have dXi
t =∂αψ

i(Zt)dZ
α
t , it becomes immediate

that Xt =ψ(Zt) will satisfy equation (5.18), provided Zt satisfies

dZα
t = −G−1

αβ(Zt)∂βF (Zt)dt+
√

2τ σ̂α
r (Zt)◦ dW r

t , (5.20)

where the matrix σ̂α
r (z) is given by

σ̂α
r (z) =G−1

αβ(z)∂βψ
j(z)σj

r . (5.21)

Finally, we obtain formulas (2.5) and (2.6) by changing the x variables to x=JTx′,
where JTJ =D and dropping the primes in final formulas. This concludes the proof
of Theorem 2.2. �

5.2. Convergence of the invariant measure. Let us recall that the original
equation (2.1) possesses the invariant measure (2.7), which is of the form dµǫ(x)=
ρǫ(x)dx, where

ρǫ(x) =
1

Zǫ
e−Eǫ(x)/τ , Zǫ =

∫

Rn

e−Eǫ(x)/τ dx, Eǫ(x) = U(x) +
1

ǫ
V (x).

(5.22)
(Here we assume that the normalizing constant Zǫ exists, i.e., the invariant measure is
finite. This, however, does not need to be the case for the calculation below and merely
affects the scaling constant.) The following proposition describes what happens to the
measure ρǫ(x) as ǫ→0.
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Proposition 5.2. (Concentration of the invariant measure) Let V (x) and M be
as described in Assumption 2.1 and ρǫ(x) exist. Then, in the limit as ǫ→0, dµǫ(x)
converges to a measure on M, whose density with respect to the Hausdorff measure
is given by

ρ(x)=Z−1 exp{−F (x)/τ}, F (x) = U(x)+
τ

2
lnh(x), (5.23)

where h(x) is the product of nonzero eigenvalues of the Hessian of V (x) and Z is the
normalizing factor. That is, for any test-function ϕ(x) the following is true:

lim
ǫ→0

∫

Rn

ϕ(x)ρǫ(x)dx=

∫

M

ϕ(x)ρ(x)ds(x). (5.24)

Here ds(x) is the volume element on M inherited from dx of R
n (the Hausdorff

measure).

Sketch of the proof. By assumption, the fast potential V (x) attains its minima
on the manifold M. This implies that in the limit as ǫ→0 the invariant measure be-
comes concentrated on M and we may compute it using the saddle-point method [21].
For any smooth function ϕ(x) we have

〈ρǫ,ϕ〉 =

∫

ρǫ(x)ϕ(x)dx=
1

Zǫ

∫

exp

{

− 1

ǫτ
V (x)

}

e−U(x)/τf(x)dx. (5.25)

The principal contribution to the integral in (5.25) comes from an O(ǫ) neighborhood
of M, in which we may decompose (5.25) into an integral over M and an integral
over the directions normal to M. This amounts to making a change of variables,

x=Ψ(y,z), (5.26)

such that Ψ(0,z) parametrizes M, while ∂Ψ(0,z)/∂z and ∂Ψ(0,z)/∂y are mutually
orthogonal. In fact, we may require that the (y,z)-coordinate frame be orthonormal
in a sufficiently small neighborhood of M. The (local) existence of such a variable
change can be derived, e. g., from the Morse-Bott lemma [1].

For simplicity, we first consider only test functions ϕ(x) whose support lies in one
of the coordinate charts in which the local coordinate change (5.26) can be carried
out. In this case, the integral (5.25) can be represented as

∫∫

exp

{

−V (Ψ(y,z))

ǫτ

}

exp

{

−U(Ψ(y,z))

τ

}

ϕ
(

Ψ(y,z)
)

∣

∣

∣

∣

∂Ψ(y,z)

∂(y,z)

∣

∣

∣

∣

dydz. (5.27)

Denoting ψ(z)=Ψ(0,z) and evaluating the inner integral in equation (5.27) via the
saddle-point method, we obtain

lim
ǫ→0

〈ρǫ,ϕ〉= 1

Z

∫
∣

∣

∣

∣

∂2V (Ψ(0,z))

∂yµ∂yν

∣

∣

∣

∣

−1/2

exp

{

−U(ψ(z))

τ

}

ϕ
(

ψ(z)
)

∣

∣

∣

∣

∂Ψ(0,z)

∂(y,z)

∣

∣

∣

∣

dz,

(5.28)
where

Z = lim
ǫ→0

(2πτǫ)n−meV (M)/ǫτZǫ.
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Since we have chosen the (y,z)-frame to be orthonormal, the determinant of the
y-Hessian of V (Ψ(0,z)) is exactly the product of the nonzero eigenvalues of the x-
Hessian of V (x) at x=Ψ(0,z), while the Jacobian |∂Ψ(0,z)/∂(y,z)| is the scaling
factor for the volume element on M in the z-variables. Consequently, we find

lim
ǫ→0

〈ρǫ,ϕ〉 =
1

Z

∫

1
√

h(z)
exp

{

−U(ψ(z))

τ

}

ϕ
(

ψ(z)
)

ds(z), (5.29)

where ds(z) is the volume element on M (the Hausdorff measure). Thus we recover
(5.24), as claimed.

In general, the support of the test function ϕ(x) cannot be covered by a single
coordinate chart of the type described above. In this case one has to employ partitions
of unity to compute the integral in (5.25) as a sum of integrals of the type (5.27) in
local charts. We skip the details of this technical part of the proof. �

5.3. Degenerate diffusivity and partial restriction. Here, we revisit the
hard constraint scenario when the diffusivity matrix, D, in (2.1) is degenerate, which
we briefly discussed in Remark 2.5. Recall that, in this case, the dynamics prescribed
by (2.1) is constrained to the hyperplane Range(D)+X0⊂R

n, and thus the limiting
dynamics, in fact, occurs on M̃, which is the intersection of M with this hyperplane.
This time, rather than deriving reduced equations on M̃, we still want to consider the
reduced equation on M. The reduced diffusivity, D̂(z), must remain degenerate to
keep the constraint intact. Let us rename the matrices D−1 and D̂−1(z) in (2.6) into
G and Ĝ(z) respectively (since D and D̂(z) are now singular and thus their normal
inverses do not exist). Our goal is to derive formula (2.9) for a proper (providing the
correct expression for D̂(z)) inversion of the matrix Ĝ(z).

Proposition 5.3. Assume that the submanifold M̃=M∩(Range(D)+X0) is
generic, i.e., M̃ does not undergo topological changes with small variations of X0,
and that Theorem 2.2 is applicable within each hyperplane Range(D)+Y 0 for all Y 0

in some neighborhood of X0. Then the conclusion of Theorem 2.2 and equation (2.5)
for the reduced process, Zt, on M hold true provided the reduced diffusivity is given
by

D̂(z) = P
[

PT ĜP + τ QTQ
]−1

PT , (5.30)

where P (z) is an arbitrary projector on the tangent space of M̃ at z, Q(z)= I−P (z),
and τ >0.

Sketch of the proof. Applying Theorem 2.2 we can obtain a reduced equation
on M̃ parametrized by some z̃∈R

m̃: dZ̃t = −D̃(Z̃t)∇F̃ (Z̃t) dt+
√

2τ σ̃(Z̃t)◦ dW t.
Assuming that M̃ may be parametrized (within the z-space R

m) via z=ζ(z̃) and
using the Stratonovich change of variables formula for Zt =ζ(Z̃t) we can then lift
this equation to M, obtaining an analogue of (2.5) where the matrix D̂(z) is given by

D̂αβ(z) =

m̃
∑

µ,ν=1

∂ζα(z̃)

∂z̃µ
D̃µν(z̃)

∂ζβ(z̃)

∂z̃ν
. (5.31)

This formula, however, may well be too complicated to use, since it involves the matrix
D̃(z̃) and the gradients of ζ(z̃), which are not necessarily easily available. Our goal
is to show that D̂(z) may, in fact, be computed directly using the formula (5.30).
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Let G denote a symmetric matrix that inverts of D from (2.1) in its range, H (G
may be computed, e.g., using the result of Lemma 5.1 below). Consider the matrix
Ĝ(z) given by

Ĝαβ(z) =

n
∑

i,j=1

∂ψi(z)

∂zα
Gij

∂ψj(z)

∂zβ
. (5.32)

Let P (z̃) denote a particular projector on H, given by

Pαβ(z̃) =
m̃

∑

µ,ν=1

∂ζα(z̃)

∂z̃µ
T−1

µν (z̃)
∂ζβ(z̃)

∂z̃ν
, (5.33)

where

Tµν(z̃) =

m
∑

α=1

∂ζα(z̃)

∂z̃µ

∂ζα(z̃)

∂z̃ν
. (5.34)

We then have that [D̂ĜP ]αβ(z) is given by

m̃
∑

η,ξ,µ,ν=1

m
∑

γ,δ=1

n
∑

i,j=1

∂ζα(z̃)

∂z̃µ
D̃µν(z̃)

∂ζδ(z̃)

∂z̃ν

∂ψi(z)

∂zδ
Gij

∂ψj(z)

∂zγ

∂ζγ(z̃)

∂z̃η
T−1

ηξ (z̃)
∂ζβ(z̃)

∂z̃ξ
.

(5.35)
Taking into account that (using the chain rule)

n
∑

i,j=1

m
∑

δ,γ=1

∂ζδ(z̃)

∂z̃ν

∂ψi(z)

∂zδ
Gij

∂ψj(z)

∂zγ

∂ζγ(z̃)

∂z̃η
= D̃−1

νη (z̃), (5.36)

we simplify (5.35) to

[D̂ĜP ]αβ(z) =

m̃
∑

µ,ν,η,ξ=1

∂ζα(z̃)

∂z̃µ
D̃µν(z̃)D̃−1

νη (z̃)T−1
ηξ (z̃)

∂ζβ(z̃)

∂z̃ξ
= Pαβ(z̃). (5.37)

Summarizing all of the above, we see that D̂(z) is a symmetric matrix whose range is
H and which satisfies D̂(z)Ĝ(z)P (z)=P (z), therefore by the Lemma 5.1 below, it is
uniquely defined and may be computed by means of the formula (5.30), as claimed.�

Lemma 5.1. Consider a subspace H of R
m. Let G be a symmetric matrix which

is positive on H, i.e., for all nonzero x∈H, xTGx>0. Then there exists a unique
symmetric matrix D whose range is precisely H and which inverts G in H, i.e., D
satisfies DGP =P , where P is some projector on H. Moreover, D may be represented
as

D = P
[

PTGP + τ QTQ
]−1

PT , (5.38)

where P is now an arbitrary projector on H, Q= I−P , and τ is an arbitrary positive
constant.

Proof. First of all, let us show that the matrix in square brackets in (5.38) is
invertible for all τ >0. Choose an arbitrary v∈R

n and represent it as v=x+u
where x∈H, u∈Range(Q). We then have

vT
[

PTGP + τ QTQ
]

v = xTGx+ τuTu≥ 0, (5.39)
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with equality if and only if x=u=0. Therefore PTGP + τ QTQ is positive (clearly,
it is symmetric) and thus invertible.

To see that D satisfies DGP =P , observe that

DGP =P
[

PTGP +τ QTQ
]−1

PTGP

=P
[

PTGP +τ QTQ
]−1

(PTGP +τ QTQ)P =P. (5.40)

Now assume that someD1 andD2 satisfy the required conditions with some projectors
P1 and P2, respectively. Then for all x,y∈H,

xTD1Gy = xTD1GP1y = xTP1y = xTy

= xTP2y = xTD2GP2y = xTD2Gy, (5.41)

i.e., xT (D1−D2)Gy=0. However, if D1 6=D2, there exists x∈H such that (D1−
D2)x=y 6=0, but then 0=xT (D1−D2)Gy=yTGy — a contradiction as G is posi-
tive on H.

5.4. An estimate on the Ginzburg-Landau energy. Here we show that
in the limit of small ǫ, the deviations from the kink shape (4.6) are energetically
expensive. For simplicity we will only consider the single-kink solutions. Consider
the rescaled Ginzburg-Landau energy (rescaling is introduced in order to simplify the
subsequent calculations),

F [u] =

∫

R

[

u2
x +

(

1−u2
)2

]

dx, (5.42)

on functions satisfying u(x)→±1 as x→±∞. This energy is minimized by the family
of single-kink solutions v(x|Z)=tanh(x−Z) with F [v]=8/3 (2

√
2/3ǫ in the original

scaling (4.3)). Without loss of generality let us set Z=0, and exclude the translations
restricting perturbations of the kink shape to the subspace orthogonal to the transla-
tional mode, see below. Let L be (half) the second variation of the energy F [u] near
the critical point u(x)=tanhx,

L =
1

2
D2F [tanhx] = −∂2

xx + 4− 6

cosh2x
. (5.43)

The eigenvalues and eigenfunctions of L may be found explicitly:

λ0 = 0, ψ0(x) = cosh−2x; (5.44)

λ1 = 3, ψ1(x) = sinhx cosh−2x.

Here λ0 corresponds to the translational mode (the eigenfunction ψ0(x) shifts the
tanh-layer), whereas λ1 corresponds to the shear mode (ψ1(x) rips the tanh-layer in
two). The following lemma is a variation of the Theorem 3.1 in [17].

Lemma 5.2. There exists ν >0 such that whenever (w,ψ0)L2 =0 and ‖w‖H1 <ν,

F [w(x) + tanhx]− 8

3
≥ 1

3
‖w‖2

H1 . (5.45)

Proof. By direct computation we can verify that

F [w(x) + tanhx]− 8

3
= (w,Lw)L2 +

∫

R

[

w(x) + 4tanhx
]

w3(x) dx. (5.46)
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From (5.44) we obtain that for any w(x) satisfying (w,ψ0)L2 =0,

(w,Lw)L2 ≥ 3‖w‖2
L2 . (5.47)

From (5.43), using that (w2,ψ0)L2 ≤‖w‖2
L2 , we obtain that

(w,Lw)L2 = ‖wx‖2
L2 + 4‖w‖2

L2 − 6(w2,ψ0)L2 ≥ ‖wx‖2
L2 − 2‖w‖2

L2 . (5.48)

Summing (5.47) and (5.48) we estimate the first term on the right-hand side of equa-
tion (5.46) as

(w,Lw)L2 ≥ 1

2
‖w‖2

H1 . (5.49)

In order to estimate the second term in (5.46), recollect that (by the Cauchy-Schwartz
inequality)

‖w‖∞ ≤ 1√
2
‖w‖H1 , (5.50)

and thus
∣

∣

∣

∣

∫

R

[

w(x) + 4tanhx
]

w3(x) dx

∣

∣

∣

∣

≤
[

1√
2
‖w‖H1 + 4

]

‖w‖3
L3

≤
[

1√
2
‖w‖H1 + 4

]

‖w‖∞‖w‖2
L2 ≤ 2

√
2‖w‖3

H1 +
1

2
‖w‖4

H1 . (5.51)

Finally, combining (5.51) with (5.49) and (5.46) we obtain that

F [w(x) + tanhx]− 8

3
≥ 1

2
‖w‖2

H1 − 2
√

2‖w‖3
H1 − 1

2
‖w‖4

H1 . (5.52)

Clearly, whenever ‖w‖H1 is sufficiently small, F [w(x) + tanhx]− 8/3≥‖w‖2
H1/3, as

claimed.

Corollary 5.4. Now let uǫ(x)=w(x/ǫ
√

2)+tanh(x/ǫ
√

2). A straightforward rescal-
ing shows that for the original Ginzburg-Landau energy (4.3) we have

Eǫ[uǫ]−Eǫ
k =

√
2

4ǫ

[

F [w(x)+tanhx]− 8

3

]

≥
√

2

12ǫ
‖w‖2

H1 . (5.53)

Thus the deviations (in H1) from the kink shape come with the O(1/ǫ) energy cost.
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