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Abstract. A methodology is developed to assign, from an observed sample, a joint-probability
distribution to a set of continuous variables. The algorithm proposed performs this assignment by
mapping the original variables onto a jointly-Gaussian set. The map is built iteratively, ascending
the log-likelihood of the observations, through a series of steps that move the marginal distributions
along a random set of orthogonal directions towards normality.
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1. Introduction and problem setting

Extracting information from data is a fundamental problem underlying many ap-
plications. Medical doctors seek to diagnose a patient’s health from clinical data,
blood tests and genetic information. Pharmaceutical companies analyze the results
of massive in vitro tests of different compounds to select the best candidate for new
drug development. Insurance companies assess, based on financial data, the probabil-
ity that a number of credit-lines go into default within the same time-window. Using
commercial data, market analysts attempt to quantify the effect that advertising cam-
paigns have on sales. Weather forecasters extract from present and past observations
the likely state of the weather in the near future. Climate scientists estimate long-time
trends from observations over the years of quantities such as sea-surface temperature
and the atmospheric concentration of C'Os.

In many of these applications, the fundamental “data problem” consists of es-
timating, from a sample of a set of interdependent variables, their joint probability
distribution. Thus, the financial analyst dealing in credit derivatives seeks the proba-
bility of joint default of many debts over a specified time window; the medical doctor,
the likelihood that a patient’s test results are associated with a certain disease; the
weather forecaster, the likelihood that the pattern of today’s measurements anticipate
tomorrow’s rain.

For continuous variables, the density estimation problem can be posed as fol-
lows: Given a sample of m independent observations 27 of n variables x;, one seeks
a robust estimate of their underlying probability density, p(x). This problem has
been addressed in numerous ways. In a parametric approach, one considers a family
of probability densities depending on a set of parameters, and maximizes the likeli-
hood of the observations in the allowed parameter range; Gaussian mixtures [3] and
smoothing splines [9] are popular choices. Another procedure for density estimation,
widely used in the financial world, is the Gaussian copula, in which the set of the
marginal densities of the individual variables are estimated and then combined into
a joint Gaussian distribution [4]. Yet another approach is the so-called projection
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218 A DUAL ASCENT OF THE LOG-LIKELIHOOD

pursuit [5], which seeks optimal directions for functional fitting. Within this latter
framework, the Gaussianization procedure proposed in [6] has some commonality with
the methodology developed here.

We propose to perform density estimation by mapping the z’s into a new set of
variables y with known probability density p(y). Then the density p(z) is given by

plx)=Jy(x) py(z)), (1.1)

where J, (), the Jacobian of the map y(x), is computed explicitly alongside the map.
The map y(z) is built as an infinite composition of infinitesimal transformations, i.e.,
by introducing a flow z=¢;(z) such that

do() =z, lim 6u(x)=y(a). (12)

Associated with the map ¢¢(z) we can introduce the density p;(x); given by (1.1) but
with y(z) replaced by ¢:(x):

pir(@) = Jp, () (D1 ())- (1.3)
If (1.2) holds, then from (1.1) the density p:(z) satisfies

pox)=p(x)  lim pi(x)=p(z).

Given a sample 27, j=1,...,m, a measure of the quality of the estimated density p;(z)
is the log-likelihood of the sample with respect to this density,

m m

Zlogpt (7)== 3" (108, (#9) +Hlog(u(u(=)) . (1)

j=1

This suggests constructing the flow ¢; by following a direction of ascent of L[¢;], so
that the log-likelihood is always increasing,

4 g0 (L5)

dt
and that the map y(z)=lim;_ ¢;(z) is a (local) maximizer of the log-likelihood
function of the sample with respect to p(z) = poo(2):

Zlogpoo )= 3" (log(Ay (7)) +log(u(y()) . (16)
j=1

The methodology proposed here builds on the realization that such a direction of
ascent can be determined locally in time, based on the current values of 27 = ¢;(27),
i.e., without reference to the original sample. The original values of 7 can be thought
of as Lagrangian markers for a flow that carry the particles 2/ = ¢;(z7) toward a state
with probability density u.

It will emerge in the discussion below that the most natural choice for the target
distribution p is an isotropic Gaussian. This choice allows one to build the map ¢;
from the composition of single variable transformations, which are much easier to
determine.

The remainder of this paper is structured as follows. In section 2, we consider the
ideal situation where the sample consists of infinitely many observations. In this case
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the procedure gives rise to a nonlinear diffusive equation for the probability density p;
of the particles z=¢;(z). Section 3 shows numerical examples of the solution to this
partial differential equation, which displays fast convergence and robust “probability
fronts.” We prove in section 4 that the procedure makes p; always converge to the
target u, and hence the estimate p¢(x) converges to the actual density p(x). Section
5 shows how the procedure can be reduced, still in the case with infinitely many
observations, to the one-dimensional descent of each marginal density toward the
corresponding marginal of p.

Section 6 translates all these results into a procedure for density estimation from
samples of finite size. This involves the following new ingredients:

e Random rotations, which allows one to consider the marginals along all di-
rections in rapid succession.

e The introduction of a family of maps depending on only a handful of param-
eters, to act as building blocks for the flow ¢;. These maps have carefully
controlled length-scales, so as not to over-resolve the density and not turn it
into a set of delta-functions concentrated on the observational set.

e A straightforward procedure to discretize the time associated with the particle
flow.

Section 7 presents one- and two-dimensional examples of applications of the al-
gorithm to synthetic data. Real data scenarios, typically in much higher dimensions,
will be discussed elsewhere, in the context of specific applications, e.g., to medical
diagnosis from genetic and clinical data.

2. The continuous case
As the number of observations m tends to infinity, the log-likelihood function (1.4)
becomes

Lpl¢i] :/(log(Jm (z)) +log(u(¢:(x)))) p(x) da. (2.1)
Its first variation with respect to ¢; can be computed exactly and is given by

0L, - V.u(2)
5o~ )< u(2)

pi(2) —vzmz)) , (2.2)

where z=¢;(x) and

i) = ((;) . (2.3)

This function (not to be confused with p;(z) in (1.3)) is the probability density
of the variable z=¢;(x) given that z is distributed according to p(z).
In order to increase the log-likelihood, we evolve ¢;(z) according to

() =ur(¢i(x)) (2.4)
where
_ Varl2) 2)— z
ug(2) = u(2) pt(2) = V.pi(2). (2.5)

From (2.2), the velocity u:(z) is simply the gradient of the log-likelihood function
divided by the (positive) Jacobian Jy,(z). This guarantees that the evolution (2.4)
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follows a direction of ascent (though not steepest ascent) of the log-likelihood function
and hence increases the value of this function. To understand what dropping the factor
Js, (x) amounts to, note that

SLp[po o] V.p(2)
(5(,0 pid - ,U,(Z) pt(z) vzpt(z>7 (26)
where z=¢;(x). Thus, (2.4) corresponds to the evolution by steepest ascent on a
modified log-likelihood function in which, at time ¢, one uses z =¢;(x) as the current
sample rather than the original z.
It is also useful to write the dual of (2.4) by looking at the evolution of the density
pt(z). This function satisfies the Liouville equation

0]
or, explicitly using (2.5),
0 \Y
%ZV' <(thﬂ'upt> Pt> ) (2.8)

Thus, as the particles flow from z to y(z) via ¢:(x), their probability density p;
evolves from the (unknown) initial p toward the target p. At the same time, the
current estimate for the density of the markers, p;, evolves from p towards p. This is
what we refer to as dual ascent.

Finally, note that the Liouville equation 2.8 can be re-written in the form

Ipt 2 L(pe ?

—=V- VI=|— . 2.9

ot a 2\ p (2.9)
This is a nonlinear diffusion equation frequently used to model flows in porous media.
The form (2.9) clearly has the desired target p,=p as a stationary solution. Fur-
thermore, we shall prove in section 4 that all initial probability densities py converge

to p. Before doing this, however, we develop some tools for solving the PDE (2.9)
numerically.

3. Numerical solution of the PDE

3.1. The one-dimensional case. When z, and hence y and z, are one
dimensional, (2.9) becomes

dpy 0 9 (1(p)
at:az<“28z<2 (%) )) (31)

This equation adopts a simpler and numerically more tractable form if one makes a
change of variable from z to the cumulative distribution associated with the target

density, w= [~ __ u(s)ds:
Ore 0 (30 (15
ot ow (M ow (27}))’ (8:2)

where r; =p;/u and for simplicity we have assumed that p>0 on R (notice that r
still integrates to 1, since [pridw= [, pydz.)
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F1G. 3.1. Numerical solution of (3.2), with a uniform distribution on [—0.2,0.2] evolving toward
the target Gaussian. The left panel shows snapshots of r¢ as a function of w; the right panel
translates this evolution back to the original variables, showing pt as a function of .

Numerically, the form (3.2) is advantageous since it has a finite spatial domain,
0<w<1, and a target density » =1 which is uniform in w, making the simplest choice
for a numerical grid, the uniform one, also the most effective. At the boundary points
w=0 and w=1, one has the no-flux conditions

0 (1
1 3 — _— 2 =
whr&l,u S0 (2rt> 0. (3.3)

A numerical solution of the PDE (3.2) is displayed in figure 3.1, together with the
evolution of the density p:(z). In this run, the initial data po(z) is concentrated in
the interval |z| < 0.2, where it is distributed uniformly, and the choice for the target
distribution p(y) is a standard Gaussian. A noticeable feature of the solution, in
addition to its fast convergence from po(z) to p(z), is the persistence of sharp density
fronts. Such fronts, which occur when the support of p is finite, are ubiquitous in
nonlinear diffusive equations.

3.2. Extension to general dimensions. For certain pu’s, it is straight-
forward to extend the one-dimensional procedure to more dimensions. In Cartesian
coordinates, (2.9) reads

Ooe N~ 0 (120 (1(p)’
ot _;8% (M 82’1'(2(“ ’ (3-4)

where each term on the right-hand side has exactly the same form as in the one-
dimensional case. If the target density u(z) factorizes as a product of one-dimensional
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Fic. 3.2. Numerical solution of (3.6) for the two dimensional example of the density made of
the superposition of two bumps described in text. The left panel shows r¢ as a function of (wgz,wy)
at time t=0; the right panel shows the corresponding pt as a function of (x,y).

densities,

n

w(z) =Tz, (3.5)

i=1

as is the case for an isotropic Gaussian, one can introduce variables w; = ffoo wi(s)ds
(the cumulative distributions associated with the individual u;’s), and rewrite (3.4)

as
or 0 0 (1
677: :Z% <M’ui28w (27"?>> ) (3.6)
=1 ' ¢

where r; =p;/p. A numerical example is shown in figures 3.2, 3.3, and 3.4, where a
multimodal density, consisting of the superposition of two bumps of the form

bi(z.y)=a;[af —(x—a?)’]  [ai—(y—9)°] ., =12 (3.7)

where [-]; =max(+,0), evolves into the target isotropic Gaussian p(z,y).

4. Evolution of the Kullback-Leibler divergence
In order to prove that the solution p; of the PDE (2.9) always converges to the
target density p, one can consider the Kullback-Leibler (KL) divergence [8, 1] of u
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and ps,

Dir(p,pt) =/10g (;i) pdz, (4.1)

a non-negative, convex function of p;, which achieves its minimum value of zero when
pr = . Its evolution under (2.9) is given by

d p 9py / 0 pe\ |
“p _ _ [l Pt
7 KLt pt) /Pt 5 dz o \Y p

with equality if and only if p; = . Hence the Kullback-Leibler divergence of p and p;
does not stop decreasing until p;(z) reaches its target p(z).

Let us give a more general argument to prove convergence. This argument will
be useful later when we constrain the family of flows ¢, and sheds light on the nature
of the proposed dual ascent. Consider the Kullback-Leibler divergence of p and p;
instead of that of u and p;:

DKLwﬁnzi/mg<p>pdx S(0) = Ly(60), (43)

where S(p) is the time-independent Shannon’s entropy of the actual probability den-
sity [7],

dz <0, (4.2)

S(p)= [ 1os(p) pd. (4.4)
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and L,(¢) is the log-likelihood in (2.1). Then
d - d
—DKL(PW:&):_%L;)(@)- (4.5)

dt

Now consider the map ¢;(x) as the composition of two maps, ¢¢(x) =, 1+, (z)=
(¢1, 001, )(x). Replacing this in the log-likelihood (2.1), and changing variables to

Y=o, (z), yields
LP[¢t1+t2] = Lptl [¢t2] +I~/p [¢t1]7
where

Ly, [61,] = / (log(Ta,, (4)) +log (e (1)) ot (4) dy

is the log-likelihood associated with ¢, (y) under a distribution py, (y), and

Llée] = / log(Jy, () p(x)da

is a quantity that does not depend on to. Hence, at fixed tq,

d d

ELP(%) = d_tngtl (¢t2)'

(4.6)

(4.7)

(4.8)
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On the other hand, modifying the intermediate time ¢; does not affect the value
of Dk, just the relative weight of its two components under the partition (4.6). If
now we take the limit in which ¢; T¢ and ¢5 | 0 with t; +t5 =t, we obtain precisely the
likelihood L,, that determines the flow ¢; in (2.4), since

d
%LPH (¢t2) —>Ut(¢t) as t1 Tt and to lO with t1+ta=t. (410)
2
As a result
d - d SL,, . 9
DKL) ==L == [ Sl dy=— [ (o) Pdy<0, (@11)

with equality only when p; = p. This shows convergence of the solution of (2.9) towards
w since py = p if and only if py = pu.

This proof of convergence of the solution of (2.9) extends straightforwardly to
more general scenarios where the flows ¢, have further constraints. For p; to converge
to p, it just requires that, for the allowed flows ¢;, the implication

ptn = el (4.12)

holds, where the variation is taken at fixed p;.
Next, we discuss a class of restricted maps satisfying this property, that will be
instrumental in the development of a flow-based algorithm for density estimation.

5. One-dimensional maps and marginal densities

We consider a family of restricted flows, in which the particles are only allowed
to follow a one-dimensional motion, i.e., move only in one particular direction, and
with a speed that depends only on their coordinate in that direction.

Given an arbitrary direction 6, one can introduce an associated coordinate system
that decomposes the particle position z and flow ¢;(z) into their components in that
direction and its orthogonal complement,

= (;fi) - (q‘fi) . (5.1)

If one considers one-dimensional flows of the form

by <¢9 (Ie))’ (5.2)

T
the log-likelihood in (2.1) becomes

dgy

Lo lo= [ (10 (522 ) +1ogtuton(a))) pla) (53)

If, moreover, for every 6 the target density p admits the factorization
() =po(zo) po (1), (5.4)
then

Ly 60 = Ll¢s) + L. (5.5)
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where
plan)= [ pla)das (5.6)

is the marginal density associated with the direction 6,

zptonl= | (108 (522 ) +108(0o(n(a0)) ) ple) (5.7

is a one-dimensional log-likelihood functional, and

i= / log(ju. (2.1)) p(z) de (5.8)

does not depend on the flow ¢;.

Then, within this restricted class of flows, the flow that descends the global KL-
divergence between p; and p also descends the divergence between their marginals, p
and pg. Since the one-dimensional maps are unrestricted, we know from the arguments
in section 4 that this flow will only stop once p=pug. If the direction 6 is fixed
throughout the flow, clearly this is not equivalent to the global statement that p;
equals p: only one marginal has been properly adjusted.

Consider, however, the following procedure: at each time, all directions 6 are
considered and, at each point x, the corresponding velocity u; is computed as the
angular average of all the resulting one-dimensional fields. Since this is a superposition
of infinitesimal flows, linearity applies, and we conclude as in section 4 that, while
not all the one-dimensional flows are stagnant, the KL-divergence between p; and
p will continue to decrease. But, for each direction 8, the flow only stops when the
corresponding marginal p equals pg. Since all the marginals of two distributions agree
only when the distributions are equal, we conclude that the flow will make p,; converge
to u, and hence p; to p.

The only family of distributions satisfying the factorization requirement (5.4) for
all directions 0 is the isotropic Gaussian

u(x)zmexp (-'2“1'2) (5.9)

This is also a natural choice for a target, since Gaussian distributions are ubiquitous,
as a consequence of the central limit theorem (CLT). Furthermore, while evolving
the particles toward Gaussianity, one is aided by the attractive nature of Gaussian
distributions, also a consequence of the CLT. Hence we expect robustness of the
convergence under observational and numerical noise.

6. Back to density estimation

Clearly, we do not really know the probability distribution p(z) — else there would
be no problem to solve —, but just the finite sample consisting of the m observations
27, Yet the procedure described above extends very naturally to this discrete scenario.
The points =7 are natural Lagrangian markers for the flow ¢;. Additional points x
where one seeks to evaluate the density p(x) can be carried along passively by the flow
¢+(x). The only new requirement is to define, at each time, a finite-dimensional class
of maps so that one can compute the gradient of the log-likelihood L in (1.6) with
respect to the corresponding parameters, which is the discrete version of the variation
with respect to ¢; in the continuous case.
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6.1. Random directions. From the discussion in section 5, it is enough to
concern ourselves with one-dimensional maps. Every row of the matrix X ={x7} is
a sample of the marginal with respect to all the other variables. In order to obtain
marginals in other directions, is is enough to rotate the matrix X though an orthogonal
matrix U. One simple algorithmic choice is the following;:

At each time step, given the matrix Z = {zf } of current position of the particles,
rotate it through a randomly chosen orthogonal matrix U:

Z—-UZ.

(We do not need to think of this as an actual particle movement; it is more natural
to view it as a change of coordinates. Notice that orthogonal transformations have
unitary Jacobians, and henceforth no effect on the estimated density p;.)
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Fi1G. 6.1. The solid curve shows the result of the successive application of two maps (6.1) on
the identity function. The crosses are points on a equiprobability grid of a Gaussian distribution.
Notice that the choice of mollifier € in (6.2) guarantees that the smaller the density of crosses, the
more aggressive the mollification of the map.

6.2. A family of maps. After rotation, one seeks, for each row i of Z, a
near-identity map ¢(z;) that moves it toward Gaussianity. These maps need to satisfy
a few requirements.

1. The maps must be smooth enough so that their lengthscale at all points is
larger that the typical distance between flow-markers nearby. This is required
to not over-resolve the density and make it converge to a set of approximate
delta-functions centered at each observation (it amounts to a regularization
of the log-likelihood function (1.4) when the number of observations is finite).
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2. The maps must be flexible enough to accommodate for quite arbitrary distri-
butions p(z), while remaining simple and computationally manageable. This
is not an impossibly challenging requirement: the full map between = and y
results from the composition of the many near-identity maps that discretize
the time evolution of the continuous flow ¢.(x). Hence it is enough to have
among these elementary maps robust building blocks for general transforma-
tions.

3. The maps need to be explicit and to have explicitly computable derivatives
with respect to z (for the Jacobian) and to their parameters (for the varia-
tion), so that the flow ascending the log-likelihood can be determined easily.

In this paper, we selected the following simple five-parameter (v,0,xq,po,€) family
which satisfies these requirements:

<p(;v):(1—0)x+g00+7\/62+[(1—U)x—x0]2. (6.1)

When v, ¢ and ¢g are zero, the map reduces to the identity. The parameter o
quantifies the amount of stretching; ¢q, displacement; and -, the slope change at z,
where it switches between dy/dr~1—0c—v and dp/dr~1—oc+~. The parameter ¢
mollifies the transition between the two slopes of the map to the left and right of xg.
Its value is zg-dependent:

2
e:\/ﬂnpexp <x20> , (6.2)
where n, is the desired average number of data points within the transition area
(the length of the transition needs to be larger in sparsely populated areas, not to
over-resolve the map where there are few points).

In each step of the descent algorithm, the parameters v, o, and ¢y are chosen
close to zero, yielding near-identity transformations, in the ascent direction. The
other parameters are externally provided, not selected by ascent: xq, the location of
the slope switch, is picked at random from a standard normal distribution, so that,
near convergence, the number of opportunities for local distortions is proportional to
the density of observations, and e is determined by (6.2).

This family constitutes a simple building block for general maps (see figure 6.1):
it consists of a mollified, continuous piecewise linear function, which changes slope at
zo. Without mollification, which implies a smoothness condition, it is clear that any
transformation f(z) can be built as a superposition of such elementary maps.

6.3. Ascent. At each step, the parameters o= (v,0,p0) in (6.1) are picked
by ascent, e.g.,

ax VL, (6.3)

where L is the one-dimensional version of the log-likelihood in (1.6), with the zJ
replaced by 2. The gradient is evaluated at o =0, corresponding to the identity map.
A procedure that we found effective is to pick

oL
a=At——Yob (6.4)

V1462V L[

where At and ¢ are adjustable parameters which control the size of the ascending
steps.
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6.4. Computational effort. The amount of computational effort required
by the algorithm depends on the number of observations (m), the number of variables
(n), and the accuracy desired, which influences the time step At¢, the mollification
parameter n,, and the number of steps n,.

Every time-step, each variable x; ascends the log-likelihood independently, so the
associated effort is linearly proportional to n (and trivially parallelizable). It is also
linear in m, since the log-likelihood and its gradient consist of sums over the available
observations, and the map is performed observation-wise (The map is also performed
on the extra marker points where the density is sought, that the algorithm carries
passively; for the purpose of counting, we are including these points in the total m.)
Hence the effort of the core of the algorithm is linear in m and n.

Each time step also includes a random rotation. Constructing a general random
unitary matrix involves O(n3) operations; performing the rotation adds O(n?m) op-
erations. This is not too expensive when the number of variables is small. When n is
large, on the other hand, more effective strategies can be devised:

e The unitary transformations do not need to be random. In particular, they
can be read off-line. This has the additional advantage of allowing one to
keep track of the full map y(z), not just of the image of the tracer points
27 and the corresponding Jacobian. The full map is useful in a number of
applications, such as the calculation of nonlinear principal components, and
the addition of new observations half-way through the procedure.

e The transformations may have extra structure. For example, they may consist
of the product of rotations along planes spanned by random pairs of coordi-
nate axes. This makes their matrices sparse, reducing the cost of performing
a rotation to O(nm) operations, and the amount of matrix entries to read or
compute to O(n). With this, the complete algorithm is linear in n and m.

As for the number of steps ng, it is more difficult to offer precise estimates. We
have found empirically that, for a desired accuracy, this number is roughly indepen-
dent of the number of variables and observations. If ng is picked small to economize
effort, the time-step At should be correspondingly large, and the mollification pa-
rameter n, small (with few steps, the risk of over-fitting dissapears, and one should
permit the most effective maps).

7. Examples Figure 7.1 shows the results of a one-dimensional simulation,
where the algorithm is applied to a sample of 200 observations drawn from the centered
exponential density (it is convenient, though not necessary, to start the procedure by
removing the mean of the observations)

—(z+1) ifr>—1
e if ¢
)= - 7 7.1
px) {O otherwise. (7.1)

The top-left plot displays a histogram of the sample. The top row shows the evolution
of this histogram, as the sample is deformed by the normalizing flow. The bottom
row of plots shows the evolution of the corresponding estimate of the original density,
computed on a uniform grid.

The duality is clear: as the distorted sample becomes more Gaussian, the estimate
for the original p(x) moves from the original Gaussian guess to a sensible exponential.
There are more subtle manifestations of duality too: the still finite remainder, after
1000 iterations, of the original discontinuity on the left of the histogram, translates
into a smoothed discontinuity on the left of p;(x).
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Fic. 7.1. Illustration of the algorithm on a sample drawn from a one-dimensional centered

exponential density. The top panels show the evolution of the empirical distribution toward the
target Gaussian. The bottom panels show the dual evolution of the density of the original sample as
estimated by the procedure. Note that, as the empirical density evolves from the exponential toward
the Gaussian, the estimated density evolves from the Gaussian toward the exponential.
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Fic. 7.2. Same as in figure 7.1 for a sample drawn from a distribution uniform on two intervals.
In this figure, the number of data point is 200 only. This explains why the density produced by the
procedure is not as sharply separated into two as the original density. The quality of the estimated
density improves with the number of sampled points, as illustrated in figure 7.3.

A similar effect of duality can be seen in figure 7.2, which displays a run where
the original sample consists of 200 observations of a distribution concentrated in two
disjoint segments of the line. The fact that, after 1000 iterations, the two components
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Fic. 7.3. Same as in figure 7.2 but with a sample containing 10000 points. Note that the two
modes of the density are much better separated than in figure 7.2.

of the sample are not yet completely integrated, gives rise to a connected, though
tenuous, estimate p;(x).

This lack of a sharp divide (and of a sharp discontinuity in this and the previ-
ous case) is a consequence of (i) the finite number of iterations, (ii) the smoothness
imposed by the parameter € in (6.2), and (iii) the smallness of the number of obser-
vations in the sample. The quality of the estimated density improves as the size of
the sample increases, as illustrated in figure 7.3, where the number of observations
has risen to 10000 and the parameter n, to 100 points, yielding discontinuities and
separation between populations which are quite distinct.

Figure 7.4 shows the results of a two-dimensional simulation, where the algorithm
is applied to a sample of 200 observations drawn from a density made by mixture of
three Gaussians:

3
pl,y)=> piNj(z,y),
j=1

where p; are positive weights adding to 1 and N;(z,y) are three Gaussian densities
with different means and covariances. Clearly the algorithm yields a very sensible
estimation for the density underlying the data. The top row of panels displays not
only the evolution of the particles 27 = ¢;(27), but also that of the grid points used to
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0 iterations 500 iterations 3500 iterations

Fic. 7.4. Illustration of the procedure on a two-dimensional example with a density made by
mizture of 8 Gaussians. The top panels show the evolution of the 200 sample points as well as that
of the grid carried passively by the algorithm. The middle and bottom panels show, respectively,
the three-dimensional plot and contourplots of the estimated density as it evolves from a Gaussian
toward the estimation of the Gaussian mizture associated with the sample.

plot the resulting density, which are carried passively by the algorithm. Those grid
points which are located in areas with negligible probability are mapped far away, to
the tail of the target Gaussian pu.

8. Concluding remarks

A methodology has been developed to compute a robust estimate of the joint
probability distribution underlying a multivariate observational sample. The pro-
posed algorithm maps the original variables onto a jointly Gaussian set by ascent
of the log-likelihood of the sample. This ascent is performed through near-identity,
one-dimensional transformations that push the marginal distribution of each variable
toward Gaussianity along a random set of orthogonal directions.

For ease of visualization, the methodology has been exemplified here through the
density estimation of synthetic data in one- and two-dimensions. Yet the methodology
works in high dimensions too; examples of its specific application to medical diagnosis
will be reported elsewhere.
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