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Abstract. A stochastic model for representing the missing variability in global climate models
due to unresolved features of organized tropical convection is presented here. We use a Markov chain
lattice model to represent small scale convective elements which interact with each other and with the
large scale environmental variables through convective available potential energy (CAPE) and middle
troposphere dryness. Each lattice site is either occupied by a cloud of a certain type (congestus, deep
or stratiform) or it is a clear sky site. The lattice sites are assumed to be independent from each
other so that a coarse-grained stochastic birth-death system, which can be evolved with a very low
computational overhead, is obtained for the cloud area fractions alone. The stochastic multicloud
model is then coupled to a simple tropical climate model consisting of a system of ODEs, mimicking
the dynamics over a single GCM grid box. Physical intuition and observations are employed here
to constrain the design of the models. Numerical simulations showcasing some of the dynamical
features of the coupled model are presented below.
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1. Introduction

Stochastic methods and stochastic modelling are becoming increasingly impor-
tant for both numerical simulations and theoretical studies in science and engineer-
ing. While Langevin-like stochastic differential equations constitute the benchmark
for theoretical studies of slowly varying processes that interact with other processes
evolving on much faster scales, which are often treated as a background noise, Monte
Carlo simulations aim to track the detailed stochastic evolution of the microscopic
processes, using physical first principles. Since the pioneering works of Gillespie (e.g.
[5, 6]) with his famous exact stochastic algorithms and the recent advancement in
computational capabilities, Monte Carlo simulations are becoming more and more
popular (e.g. [17]).

Although stochastic models have been around for decades, their use in large scale
climate simulations is very recent. They are used essentially to account for the missing
variability in general circulation models (GCMs) due to small-scale unresolved convec-
tive processes. Buizza et al. [1] used a stochastic backscattering model to represent
the model uncertainties in a GCM and Lin and Neelin [45, 46] used a stochastic
parametrization to randomize the way in which deep convection responds to large
fluctuations via a prescribed probability distribution function for the convective time
scale. Nonetheless, Majda and Khouider [35] are the first to propose a stochastic
model for convective inhibition allowing both internal interactions between convec-
tive elements and between convective elements and the large scale/resolved variables.
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Their model is based on an Ising-type spin-flip model used earlier to model phase
transitions in material sciences [16, 15, 8]. The stochastic dynamics are then coarse
grained to derive a hierarchy of birth-death stochastic models, which are intermediate
between the microscopic spin-flip dynamics and the mean field equation [18, 19] and
thus very inexpensive to run on a computer. Such a coarse-grained birth-death pro-
cess is used successfully by Khouider et al. [25] to couple a fully stochastic model for
convective inhibition to a toy GCM. Further analysis of such small scale/stochastic
models coupled to a large scale dynamical system addressing the important issues of
phase transition, meta-stability and intermittency can be found in the series of papers
by Katsoulakis et al. [11, 12, 13, 14]. In the same vein, Crommelin and Vanden Eijden
[2], used detailed numerical simulation data to infer the conditional probability laws
for a Markov process representing the subgrid scale modes for the Lorenz system.

Here, we propose to develop such intermediate stochastic models to represent
cloud elements in a parametrization for organized tropical convection consisting of
three cloud types of different height and vertical extent [20, 23, 24]. The cloud ele-
ments interact among themselves and with the environment based on some intuitive
assumptions consistent with observations. The rest of the paper is organized as fol-
lows. An introductory discussion on moist convection and organized tropical convec-
tive systems is given in section 2 while the multicloud stochastic model is introduced
in section 3. The computational grid box is divided into a rectangular lattice and
convective elements evolve at each lattice site according to a Markov process whose
states determine whether we have clear sky or a cloud of a certain type. It is shown
in section 3 that the resulting set of Markov chains have a stationary-limiting distri-
bution depending solely on the large scale/background state. In section 4, we derive
an intermediate stochastic model for the evolution of cloud area fractions without
having to evolve the microscopic site dynamics [18, 19, 25] and deduce the mean-field
equations. In section 5, the multicloud stochastic model is coupled to a large scale
tropical climate model which has a crude vertical resolution reduced to the two first
baroclinic modes and a constant horizontal profile, mimicking the dynamics over one
single GCM grid box — a one column model [20]. Some discussion and concluding
remarks are given in section 6.

2. Organized convection and tropical convective systems

Recent satellite observations reveal that convection in the tropics is organized
into a hierarchy of space and time scales ranging from the individual convective cells
(clouds) of one to 10 kilometres and a few hours, to mesoscale cloud clusters (also
known as mesoscale convective systems) of a few hundreds of kilometres and one to
two days, to super-clusters of a few thousands of kilometres and five to 10 days, to
their planetary/intraseasonal scale envelopes known as the Madden-Julian oscillation
[30, 44, 49, 50, 7, 31, 3, 9, 53, 10, 26, 40]. The physical and dynamical features
of organized convection and the associated interactions across scales are not all well
understood. Furthermore, despite the recent progress in computing resources, the cur-
rent general circulation models (GCMs) poorly represent these organized multiscale
convective systems, partly due to the inadequate representation of unresolved fea-
tures of organized convection by the cumulus parametrizations utilized in the GCMs
[47, 42, 43, 41].

Nonetheless, it is has been recently recognized that tropical convective systems
are qualitatively self-similar in terms of their cloud morphology and flow structure
[40, 26, 38, 34, 27]. As noted by Mapes et al [40] and others, the heating field of

tropical convective systems, for instance, from the mesoscale convective systems and
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squall lines [55, 56] to synoptic scale convectively coupled waves [50, 48] to the plane-
tary/intraseasonal scale Madden-Julian oscillation [10, 26] involves three cloud types.
Congestus cloud decks with a vertical extent which does not exceed the freezing level,
at about 5 to 6 km, in front, are followed by deep convective towers extending to
the top of the troposphere, which in turn are lagged by stratiform anvils in their dis-
sipation phase. Congestus clouds heat the lower troposphere due to condensational
heating and induce upper troposphere cooling because of detrainment at their tops
and thus serve essentially to precondition and moisten the middle troposphere. Deep
convective towers dominate the core of the storm and are believed to be responsible
for most of the tropical rainfall and provide the bulk heating for the whole tropo-
spheric column. Stratiform anvil clouds, in the wake of the wave, heat the upper
troposphere and cool the lower troposphere due to the evaporation of stratiform rain.
A cartoon of the three cloud types is sketched in figure 2.1. While the transition

Top of the troposphere

(d)

Top of the boundary layer

Fi1G. 2.1. A cartoon of the three cloud types showing congestus (c), deep convective (d), and a
decaying deep convective tower with a lagging large stratiform anvil (s), with stratiform rain falling
into a dry region below it where it eventually evaporates and cools the environment (hatched area).
The arrows indicate convective motion within the cloud.

from deep to stratiform is easily interpreted as the passing of the cloud from a liquid
phase to an ice phase within the upper troposphere, the delay in the formation of
deep convective towers is less obvious. A plausible explanation is given here in terms
of the buoyancy of a rising convective parcel evolving in an environment whose mois-
ture content is constantly changing, from dry to moist and vice-versa. Two different
scenarios are sketched in figure 2.2: that of a dry environment (left) and that of a
moist environment (right). Unlike dry convection where the fluid becomes unstable
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when the Rayleigh number exceeds its critical value, moist convection is subject to
what is known as “conditional instability”. Atmospheric air is stratified; it is stable
to infinitesimal displacements because the displaced parcel cools down/warms up by
expansion/compression and finds itself heavier/lighter than the surrounding air. But
when a moist parcel is raised beyond some threshold height, the lifted condensational
level, it becomes saturated and starts to condense liquid water, which is accompa-
nied by latent heat release that compensates for the cooling due to pressure drop
and the parcel becomes positively buoyant [4]. In the ideal situation, when the ris-
ing parcel doesn’t exchange mass and/or heat with the environment its equivalent
potential temperature, .p, is conserved (at least to a first order approximation). It
thus follows the vertical dashed—straight line shown in figure 2.2, known as the moist
adiabat, while the solid thick curve represents the saturation equivalent potential
temperature, 0%, of the environment. The rising parcel remains positively buoyant
as far as 0., >0;. The vertical integral of buoyancy of a parcel following the moist
adiabat is called convectively available potential energy (CAPE). In reality however,
the convecting parcel mixes with the environmental air as it rises and thus loses some
of its buoyancy due to entrainment of dry air and would hit the environmental curve
typically right above the turning point, which happens to lie below the freezing level
when the middle troposphere is dry (left panel in figure 2.2). Such a dry situation
is often observed in the front of tropical convective systems; it gives rise to cumulus
congestus clouds which then serve to moisten the middle troposphere, partly because
they detrain and dissipate and partly because they trigger low-level convergence of
moisture [20, 23] and reduce the conditional stability of the environment by “pushing”
the turning point of the 8}-curve to the right, thus preconditioning the environment
for upcoming convective parcels, which can then rise beyond the freezing-level and
gain extra buoyancy due to freezing and generate deep convective towers (right panel
in figure 2.2).

The progressive deepening of convection from shallow to congestus to deep to
stratiform is believed to be responsible for the front to rear tilt seen in the wind,
temperature, and moisture fields of all convective complexes, at all scales, starting
from mesoscale clusters and squall lines, to super-clusters, and then to the planetary
scale MJO [53, 26]. However, tropical convective systems have genuine multiscale and
multiphysics dynamics in the sense that the larger scale features are not just a simple
linear /rescaling transformation of the smaller scale features, unlike homogeneous tur-
bulence, but they enjoy many dynamical differences as well [54, 26, 27]. For instance
the fluid mechanics of the MJO are different from those of a Kelvin wave, etc. More-
over, because of the causality principle of the three cloud types, Mapes et al. [40]
arrived at the interesting conclusion that it is impossible to reproduce the hierarchy of
tropical convective systems, having all the same-self-similar cloud morphology, etc.,
by a simple progressive embedding of a certain number of smaller entities into the
larger ones, starting with three cloud type individual cells, as the building-blocks.
Instead they propose a stretched building-block hypothesis where, within a mesoscale
cloud cluster, there are mostly congestus clouds in front, mostly deep clouds in the
centre and mostly stratiform anvils behind, as opposed to just congestus, just deep,
and just stratiform, respectively. Therefore, on average (statistically speaking) the
mesoscale convective system is an envelope of a certain number of convective cells
with the same tri-cloud morphology (see their figure 11) with congestus cloud decks
in front, deep convective clouds in the middle, and stratiform anvils behind. The
synoptic scale super-clusters and planetary scale envelopes, in turn, are such that
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their front is formed by cloud clusters with mostly congestus clouds, their center is
formed by cloud clusters with mostly deep clouds, and their back has cloud clusters
with mostly stratiform cloud decks, etc.

Here we propose a stochastic lattice model, where each individual site represents
one convective element, organized within each large scale grid box in a fashion mim-
icking the stretched building block paradigm of Mapes et al. [40]. Each lattice site
is occupied by either a congestus, deep, or stratiform cloud or none (a clear sky site)
according to certain probability rules depending on the large scale environment.
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FiG. 2.2. Buoyancy of a rising parcel of moist air. The left panel sketches the case of a dry
environmental sounding where the rising parcel, being mized with the dry environmental air, loses
its buoyancy before it reaches the freezing level and thus leads to the formation of congestus clouds.
The right panel represents the case of the moist-preconditioned environment with a much smaller
curvature allowing the rising parcel to reach the freezing level and thus gain extra-buoyancy, leading
to the formation of deep penetrative towers. See text for details.

3. The multicloud stochastic model

We aim to represent the unresolved variability of organized tropical convection in a
typical large scale—climate simulation with a mesh size of 100 to 200 km. We consider
a horizontal grid box for the tropical troposphere, above the planetary boundary
layer, of rectangular shape, divided onto a lattice of n xn lattice points or sites. The
parameter n is a positive integer on the order 100, so that the lattice sites are 1 to
2 kilometres apart, the typical scale for an individual cloud. Nonetheless, coarser
lattices with mesh sizes of up to 10 to 15 km can be justified if one wants to take into
account convective features such as large stratiform anvils and cold pools. A sensivity
steady to the number of lattice sites is presented below. We assume that each lattice
site is either occupied by a certain cloud type (congestus, deep, or stratiform) or it is
clear sky, as shown in figure 2.3. A given site will switch from a given configuration
to another according to some probability rules, which depend on the large scale-
resolved variables. We thus construct a stochastic process at each lattice site taking
the discrete values from zero to three according to whether the site is clear sky or
occupied by a congestus, a deep, or a stratiform cloud, respectively. Notice that we are
implicitly assuming that stratiform clouds exist as single entities, separated from the
deep convective towers they originated from, as we don’t assume that there is always
a deep convective cloud site that is next to each stratiform anvil, unlike the cartoon



192 A STOCHASTIC MULTICLOUD MODEL
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FiG. 2.3. Lattice cloud model. A given lattice site is either clear sky (0) or occupied by a
congestus cloud (1), a deep convective cloud (2), or a stratiform anvil cloud (3).

in figure 2.1 where the stratiform anvil is shown to be attached to a decaying deep
convective tower. The three cloud type microscopic multi-state model is presented
next.

3.1. The three cloud type microscopic multistate lattice model.  Let
X? i=1,...,nxn and t is time, be a continuous time stochastic process (Markov
chain) such that at time t we have

0 if site ¢ is clear sky

1 if site 7 is occupied by a congestus cloud

2 if site 7 is occupied by a deep convective cloud
3 if site 7 is occupied by a stratiform anvil.

X/ = (3.1)

For convenience, we assume that the transition probabilities among the four states
0,1,2,3, at any given lattice site 7, i=1,...,n X n, satisfy the following general require-
ments.

P, =Prob{ X} A, =k/X; =1} =R}, At+0(At), (3.2)
for [,k=0,1,2,3, and [ #k
and
Py=Prob{X{, o, =l/X{=1}=1— ) P, (3.3)
k=0,k#l

where At>0 is a small time increment and the Rj,’s are prescribed transition rates
which for simplicity are assumed to depend solely on the large-scale/resolved variables
according to the following intuitive interaction rules between the different cloud types
and the environment.

1. A clear site turns into a congestus site with high probability if CAPE is
positive and the middle troposphere is dry.
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2. A congestus or clear sky site turns into a deep convective site with high
probability if CAPE is positive and the middle troposphere is moist.

3. A deep convective site turns into a stratiform site with high probability with
a prescribed conversion rate, which may or may not depend on the state of
the environment.

4. A cloudy site turns back to clear sky with a certain probability according to
a prescribed decay time scale for each cloud type.

5. It is very unlikely, during the short period of time At, for a clear sky or a
congestus site to turn into a stratiform site, for a deep convective or stratiform
site to turn into a congestus site, or for a stratiform site to turn into a deep
convective site.

Notice that the assumption that the transition rates depend only on the large
scale variables amounts to ignoring interactions between the lattice sites all together
and it implies that the stochastic processes associated with the different sites are iden-
tical. Therefore, unless otherwise stated, in the remaining of the paper, we drop the
superscript ¢ and consider only the generic process X; with the transition probabilities
Py, and transition rates Ryy.

It follows immediately from Assumption 5 that

R03:R13=R21 :R31 =R32 =0. (34)

To a first order approximation the stochastic matrix for the discrete generic multistate
Markov chain Xo, Xa¢, Xoat,..., for sufficiently small At, is given by

1—Po1 — Pp2 Py, Pyo 0
Py 1—-Pyo— P2 Py 0
M= 3.5
Py 0 1-Pyy—P3 Po (3:5)
Psg 0 0 1— Py

where Py, = Rjp At +o0(At). For a fixed large-scale state, the transition rates are con-
stants, independent of time. It follows immediately that Xxa¢,k=0,1,2,..., is a sta-
tionary Markov chain. Notice that the zeros in the matrix M in (3.5) approximate
the most improbable transitions according to (3.4).

Among all the physical quantities used to describe the state of the atmosphere,
in a given large scale numerical model, two are considered to be important for both
triggering and maintaining tropical convection, i.e, for the formation and decay of
the three cloud types (congestus, deep, and stratiform). These quantities are the
convective available potential energy (CAPE) and the relative moisture content, i.e,
moistness or rather dryness of the middle of the troposphere. In practice both CAPE
and the atmospheric dryness are well defined functions of the large scale moist ther-
modynamic variables. We consider these below in section 4, where we couple the
stochastic model to a deterministic one-column model.

For the time being we assume that both CAPE and dryness are two external
parameters represented by the letters C' and D, respectively, varying roughly between
0 and 2.

Let

l—e™™ ifz>0
(=)= { 0 Otherwise.
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Time description Case 1 Case 2
To1 formation of congestus 1 hour | 3 hours
T10 decay of congestus 5 hours | 2 hours
T2 conversion of congestus to deep | 1 hour | 2 hours
To2 formation of deep 2 hours | 5 hours
To3 conversion of deep to stratiform | 3 hours | 0.5 hour
T20 decay of deep 5 hours | 5 hours
T30 decay of stratiform 5 hours | 24 hours

TABLE 3.1. Ezample of prescribed values of the time scale of formation or decay of each cloud
type or of conversion of one cloud type to another.

Then according to the assumptions 1,2,3,4 given above, we let

Ror = L 1(C)T(D), Ro» = —T(C)(1-T(D)),
To1 T02

RlOZLF(D), R12:ir(0)(1_F(D))7 (36)
T10 T12

Roo = —(1-T(C). Rag=1/mas, Rao=1/s0

Note for instance that Rp; is zero when C'<0 or D <0 and approaches 7'0_11 when
C and D are sufficiently large and positive, consistent with Assumption 1 above.
Here the 7;’s are prescribed time scales of formation or decay of the corresponding
cloud type or of conversion of cloud type [ to cloud type k. There is no obvious
way to chose their values. Based on physical intuition gained from observations,
numerical simulations, and theory of tropical convection (see for e.g. [10, 39, 20, 23]
and references therein), the rule of thumb is that the cloud life time is of the order
of hours, that the rate of cloud formation is much faster than that of their decay,
and that stratiform clouds should decay much more slowly than either congestus or
deep. Here we consider the two effectively extreme cases of cloud interaction time
scales, depicted in Table 3.1, to highlight some interesting features of the stochastic
multicloud model parametrization.

In (3.6), we assumed for simplicity that the stratiform generation and decay rates,
Rs3 and R3¢, are both independent of the large scale parameters C, D. However, there
is no physical reason why this should be the case and obviously, the results would be
sensitive to such dependence. To illustrate this point we also consider, in addition
to (3.6), an example where Ro3 increases slowly with CAPE, using the timescales
associated with Case 2 of Table 3.1

Ras— —T(VO). (3.7)

T23

3.2. The stationary distribution, cloud area fractions, and the equilib-
rium statistics of the lattice model.  The equilibrium distribution, P,, of the
multistate Markov chain X; introduced above is given by the left eigenvector of the
stochastic matrix M associated with the eigenvalue one. It is given by
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1
Ro1
1 Rio+Ri2 (3 8)
- 1 Ri2Roy .
Z Ra0+Ra3 (R02 + Rio+Ri2 )

Ros 1 _RipRoy
R30 R20+Ras Roz + Rio+Ri12

where Z is a normalization constant, so that the entries of P, sum to one.

Next, we define the area fractions o.,04,05 occupied by clouds of type congestus,
deep, or stratiform at any given time ¢, as the number of lattice sites for which
X =1,2,3, respectively, divided by the total number of sites N =n xn:

1 & 1 & 1<
o= D Uixicay oa=5 > Uixizap o= D lixi=y (3.9)
1=1 1=1 =1

where

L1 irxi=k
{Xi=k} 71 0 otherwise.

The clear sky area fraction is given by
Oes=1—0.—043— 0.

For all practical purposes the area fraction vector (o.s,0.,04,05) can be interpreted
as (and is equal to) the probability distribution of the generic stochastic process X
at time t. Therefore, the equilibrium distribution P, in (3.8) yields the long time
statistical equilibrium for the filling fractions o.,04,05.

A first test for the stochastic multicloud model is whether, on average, the equi-
librium distribution should favour either congestus, deep, stratiform, or clear sky sites
to form depending on the environmental conditions, according to the intuitive rules
1, 2, 3, 4. In figure 3.1, we plot on each corresponding panel the equilibrium clear sky,
congestus, deep, and stratiform area fractions, as functions of CAPE, C, and dryness,
D, for the 7y, values in Table 3.1, Case 1. We consider both the cases when (A) Raj is
independent on the large scale/external variables as given in (3.6) and (B) when Ras
is given by (3.7). As expected, both cases depict the general behaviour that for small
CAPE values, independent of the dryness, we have clear sky dominated equilibrium
and when both CAPE and dryness are large congestus dominates while deep con-
vection and stratiform anvils dominate when CAPE is positive and the environment
is moist. However when Ra3 is also allowed to depend on CAPE (B) deep convec-
tive coverage becomes more important for moderate values of CAPE while stratifrom
clouds dominate when CAPE is large. Although not shown here, an important factor,
which somehow determines the average life time of a given cloud type, is the ratio
between the generation and decay time scales. For instance when both the stratiform
decay time, T30, is increased from 5 hours to 10 hours and the time of conversion of
deep to stratiform is decreased from 3 hours to 1.5 hours, the strength of stratiform
cloudiness is increased considerably, especially for high values of CAPE, at the ex-
pense of the deep cloud coverage. Therefore, regardless of the large scale/external
parameters C, D, the 1;;’s provide a nice set of parameters to tune in order to set
the desired cloud coverage configuration at equilibrium. The equilibrium cloud area
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fractions are of fundamental importance for the dynamics of large scale/deterministic
convective parametrizations [33, 32]. Also, clearly the choice of the reference CAPE
and dryness values used (below in section 5) for the renormalization of C and D are
both crucial for the dynamics of the stochastic cloud fractions as they actually set
the way in which the subgrid model responds to variations in CAPE and moistness
in the middle of the troposphere.

We used a Monte Carlo method to simulate the sequence of Markov chains X7,
1=1,2,...N, associated with each one of the lattice sites, employing an acceptance-
rejection algorithm [5, 6, 28] where the times until each transition occurs are assumed
to be independent exponential random variables. A maximum of two random numbers
are thus generated at each iteration and for each lattice site, conditional on the states
0,1,2,3. Recall that state 0 can change to state 1 or state 2, state 1 can go to either 0
or 2, and 2 can go to either 0 or 3, while state 3 can go only to 0. The first random
number determines whether we make a change or not and the second random number
determines if we go up or down, accordingly in the hierarchy of states. Only one
random number is generated for state 3, since only one change (3 to 0) is permitted.

As a test case, we let C'=0.25 and D =0.75: a relatively moist middle troposphere
with a moderate but positive CAPE value. Starting with a random initial lattice
configuration, we integrate the stochastic lattice model for about 100 hours, with
n=20 and the typical time scales displayed in Table 3.1, Case 1. A snapshot (single
realization at some fixed time) of the lattice state is shown in figure 3.2 (a) while the
associated time series of the area fractions for each cloud type are shown in figure
3.2 (b), with the corresponding equilibrium values, from (3.8), are overlaid. Starting
initially with a random lattice configuration, the cloud coverage fractions relax quickly
to their corresponding equilibrium values and fluctuate around them with a significant
variability of about 5% to 25% of the total area.

4. Averaged birth-death stochastic model and the mean-field equa-
tions

Clearly, for a large number of sites of about 100 x 100, the full Monte Carlo
simulation of evolving the 100 x 100 Markov chains all at once becomes impractical.
However, for small enough At one can argue that because the probability that only one
site will undergo a change is much higher than the probability that more than one site
undergoes a transition, for all practical purpose it is equivalent to testing whether one
site at a time will undergo a transition or not; rather than testing them all at once (see
[17] and references therein). Moreover, it is possible to derive the stochastic dynamics
for the cloud coverages alone, which can be evolved without the detailed knowledge
of the micro-state configuration, by using a coarse-graining technique [18, 19, 25] that
yields here a system of three birth-death-like processes, corresponding to the three
cloud types.

Let N=nxn be the total number of lattice sites. Let N! be the number of
congestus sites, N/ the number of deep convective sites, and N! the number of strat-
iform sites, inside the lattice, at any given time ¢ >0. The number of clear sky sites
is Nl,=N—-N!—N!—N! by conservation of the total number of sites. Next, we
compute the (transition) probabilities for the numbers (random variables) N!, N} N
to go up or down during the small interval of time (¢,t+ At].

We have

N
Prob{N/"2 > k+1/N!=k}=> Prob{X; =0} P, +0(At),
i=1
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Fic. 3.1. Contour plots of the equilibrium area fractions as given by the stationary distribution
in (3.8) in terms of CAPE and dryness parameters C and D. Note the difference in color scales
between the clear sky and cloud types filling fractions. (a) The transition rates are as (3.6) and the
T11’s are as in Table 3.1, Case 1, and (b) is same as (a) except for Ra3 is given by (3.7).
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Fic. 3.2. An example of Monte Carlo simulation of stochastic multicloud model with n=20,C' =
0.25,D=0.75, and the cloud time scales are as in Table 3.1, Case 1. (A) A snapshot picture of one
typical lattice configuration and (B) time series of the total coverages associated with each cloud
type with the equilibrium values overlaid (dashed lines).

i.e, the probability that the number of congestus sites goes up by at least one is the
sum of all the probabilities that a given clear sky site will turn into a congestus site.
Given that all the sites are identical, i.e, the transition probability P}, is independent
of i, if in addition we assume that initially the lattice configuration is uniform, then
we have (see (3.9))

: Nt : Nt
Prob{Xf:l}:W‘:az, Prob{X§:2}=Wd:o§,
; Nt : N,
Prob{X§:3}:Wb:az, Prob{X; =0} = ]\(;:ozs, Vi=1,2,...,N. (4.1)

Therefore, using the fact that a single transition is most likely to occur when At is
small — allowing only one change at a time (which is equivalent to assuming that
N.,N4,N; are combinations of Poisson processes), we arrive at
Prob{ Nt =k 4 1/N! =k} = N, Py, +0(At) = Neg Ryt At + o( At). (4.2)
Similarly, we have
N
Prob{N/"' =k —1/N!=k}=> Prob{X; =1} (P{;+P{y)+o(At)

i=1

= Ne(Rio+ Ri2) At +o0(At), (4.3)

N
Prob{Nj"* =k+1/Nj=k}=> Prob{X} =0} Pj,+Prob{X}=1}P,+o(At)

i=1
:(NCSRO2+N(:R12)At+O(At)7 (44)
N
Prob{Nj"* =k —1/Nj=k} =" Prob{X; =2} (Pj,+ Pi3)+o(At)
i=1

:Nd(R20+R23)At+O(At), (45)



KHOUIDER ET AL. 199

N
Prob{N!*4"=k+1/N!=k}=> Prob{X] =2} Pj;+o(At)
1=1
:NdRngt-i-O(At), (46)

N
Prob{N!*4'=k—1/N!=k}=> Prob{X] =3} Pj,+o(At)
1=1

:N3R30At+O(At). (47)

The time sequences N, z=cs,c,d,s are thus viewed as a coupled system of birth-
death Markov processes whose transition probabilities are given by (4.2) to (4.7),
which can be easily evolved in time using Gillespie’s exact algorithm [5, 6], while the
cloud coverages are recovered according to (4.1), consistent with (3.9). In practice, we
can also view this coupled birth-death system as a multistate/multivariable Markov
chain undergoing one of the following seven transitions at a time: one congestus is
formed from a clear sky, one deep is formed from a clear sky, one congestus is converted
to deep, one deep is converted to stratiform, or one cloudy site turns to clear sky. The
associated transition probabilities are given by the the original rates in (3.6) multiplied
by the total number of sites that are subject to the given transition in a way which
is consistent with the formulae (4.2) to (4.7). For example the rate of transition from
clear sky to congestus is N.sRp1 and the rate of convection of congestus to deep is
NCng, ete.

As one would expect, the dynamics of the area fractions obtained by evolving the
full microscopic lattice-model, described in the previous section, through the detailed
description of each one of the stochastic processes, X} are statistically equivalent to
those obtained by evolving the coarse-grained birth-death processes described in this
section. This is confirmed by numerical tests, which are not shown here. However, it
is important to note that the computations are orders of magnitude cheaper in the
latter case: Compare generating and testing seven random numbers versus 2 X n X n
where n is the total number of sites.

Normalizing by the total number of sites N and dividing by At, the equations in
(4.2) to (4.7) yield the mean field equations for the cloud coverages o.,04,05, given
by the following third order system of ODEs:

oc.=(1—0.—04—05)Ro1 —0c(Rio+ Ri2)
Ga=(1—0.—04—05)Ro2+0cR12—0a(Rao + Ra3) (4.8)

s =0qRo3— 0, R30.

Note that the growth and decay rates of the mean field variables in (4.8) are given
respectively by the birth and death rates in (4.2) to (4.7). This is a non-homogeneous
linear system of ODEs with a unique equilibrium solution corresponding to the sta-
tionary distribution in (3.8), if all the transition rates in (3.6) are nonzero.

In figure 4.1, we plot the contours of the real and imaginary parts of the eigenval-
ues of the matrix (corresponding to the system) in (4.8) as functions of the parameters
C and D, using the time scales from Table 3.1, Case 1. As we see from figure 4.1,
the equilibrium of the mean field equation (4.8) goes from an asymptotically stable
node to a stable spiral as C' is increased. In other words this system bifurcates from
an exponentially damped regime to an oscillatory damped regime as C' is increased
away from zero: For large values of C' we distinguish one real negative eigenvalue and
a pair of complex conjugate eigenvalues whose real part is negative while for small
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values of C', and only slightly depending on the values of D, we have three negative
real eigenvalues. The imaginary part increases significantly with increasing values of
C, especially for slightly moist conditions corresponding to D between 0.2 and 0.3.
The damping strength is also sensitive to changes in C' and D. This behaviour of
the mean field model may provide some insight into the behaviour of the stochastic
system [11, 12, 13, 14]. One could argue that an important non-dimensional num-
ber for the stochastic multicloud model is given by the ratio of the frequency to the
damping rate, for the complex conjugate pair, plotted in Figure 4.2(E). In Figure 4.2,
we display two time series of the area coverages obtained by evolving the stochastic
model with D=0.4 and the two different values of C=0.1 and C=1.5. According
to figure 4.2(E), the case C'=0.1 has a frequency to damping ratio near zero (below
0.1) while in the second case this ratio is above 0.6. As anticipated, the two series
are qualitatively different with the one corresponding to C'=1.5 having sharper peaks
and the one corresponding to C'=0.1 has much longer excursions. Therefore, we con-
jecture here that a large frequency to damping ratio, in a complex conjugate pair for
the mean field equations, would yield sharp and rapid oscillations for the associated
stochastic system, while a small ratio would yield smoother oscillations with much
longer excursions from equilibrium.

Real part
2
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0 1
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Fic. 4.1. Equilibrium eigenvalues of the mean field equations. Panels (A), (B), and (C)

represents the contours of the real parts of the three eigenvalues, respectively, as CAPE C (horizontal
azis) and dryness D (vertical azis) are varied from 0 to 2, Panel (D) shows the imaginary part of
the complex conjugate pair, and Panel (E) displays the ratio of the frequency over the damping rate.
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F1G. 4.2. Stochastic oscillations for both (a) when the frequency to damping ratio is small and
(b) when it is large for the parameter values D=0.4 and C'=0.1 and C=1.5, respectively, and the
Tk ’s are as in Table 3.1.

5. Coupling to a deterministic convective parametrization: case of a
one-column model

As mentioned earlier, one of the main objectives of the multicloud stochastic
model is to account for the unresolved variability due to cloud dynamics and cloud-
cloud interactions in a global numerical simulation of the atmospheric circulation.
Typically, the general circulation models (GCMs) used by climate and weather fore-
casters solve the primitive equations on a large grid and all the unresolved physical
processes are represented by a set of deterministic closures (in the form of differential
and/or algebraic equations) known as parametrizations. In a series of papers, two
of the authors have been developing and testing such parameterization models for
organized tropical convection, with a crude vertical resolution reduced to the first two
baroclinic mode/shallow water-like equations. This is the minimum possible vertical
resolution which can account for a linear response to the heating fields induced by the
three cloud types considered here: congestus, deep, and stratiform [20, 22, 23, 24].
As a further simplification, and in order to test temporal variability alone, in this
paper we neglect the spatial dependence in the deterministic large scale convective
parameterization equations and simply couple the stochastic multicloud-lattice model,
described above, to the following simple ODE system [21, 36]:

90, 0,

ot ~Ha=Qra—

00 0,

o =He—Ho=Qfp— = (5.1)
ey 1, 1

ot _Te(eb Ocs) th

0q 1

—=—P+—D,,

ot Y,

Here 601,05 are the potential temperature components, associated with the first and

second baroclinic modes, where the primed quantities represent a deviation from a
(radiative-convective) equilibrium solution, so that the total potential temperature
perturbation (in non dimensional units) is given by

0" =07 sinz+20,sin(22),0< 2z <7 Hr, (5.2)
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F1G. 5.1. Time series of the large-scale variables (top) and the (stochastic) cloud area fractions
(bottom) for the parameter values corresponding to Case 1 in Table 5.2 with v =4 and number of
lattice sites is 100 x 100. The dashed lines on the bottom panel are the corresponding initial-RCE
area fractions.

where 0. is the equivalent potential temperature in the boundary layer and ¢ is the
vertically averaged water vapor content in the free troposphere [20, 21], above the
boundary layer (g is rescaled in units of temperature). The forcing terms Hgy, H., H
are heating rates associated with deep convection, congestus, and stratiform clouds,
respectively. P and D, are, respectively, the precipitation rate and downdraft mass
flux, exchanged between the free troposphere and boundary layer and %(921,*9515)
accounts for evaporation effects from the ocean surface with 7, being the saturation
equivalent potential temperature in the boundary layer and 7. the evaporation time
scale. The terms Q%’l and Q%’Z are fixed cooling rates due to long wave radiation

while 75 is a Newtonian cooling time scale. As in Khouider and Majda [20, 23], here

2¢/2
P:TfHda Dm:m0(1+N(HS_HC))+(0€b_9€m)

where © >0 is a tuning parameter, myq is a fixed constant, representing the downdraft
mass flux scale, and #.,,, is the equivalent potential temperature in the middle of the
troposphere where 0/, =q' + ¥ (0] + a263).

According to (5.2), the deep convective heating Hy has a half sine profile in
the vertical and thus serves to heat the entire troposphere while the congestus and
stratiform heating rates H., H, have a full sine profile, thus they serve to heat and cool
the lower troposphere and cool and heat the upper troposphere, respectively. Based
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Fia. 5.2. Same as figure 5.1 except results are shown for the short period of one day.

on physical intuition, consistent with observations of tropical convective systems [29,
10, 53, 26] and detailed (cloud resolving) numerical simulations [52, 51], and earlier
work [39, 33], Khouider and Majda [20, 21, 22, 23, 24] introduced deterministic closure
formulas for each one of the heating rates which accounted for the causal dependence
between the three cloud types depending on the large scale moisture and CAPE
distributions. Especially, the progressive deepening of convection from shallow to
deep is successfully captured by a moisture switch function, varying between zero
and one according to the moistness and dryness of the middle troposphere. Here we
circumvent this purely deterministic moisture function, although it is very plausible
and technically simple, and assume that the strength of the heating rates due to the
three cloud types is proportional to the area coverages o.,04,0, inferred directly from
the stochastic lattice model presented in the previous sections. Thus, the following
closure formulas are assumed here:

1

Te(04)

+
Hy= (adQ+ (a10};, +azq’ —ao (64 +729é))>

0d
Te(og) = U—drg

H.—0o, ‘;‘{as V CAPE* (5.3)

m

H, =0, i‘{o‘c \/CAPE;,

m
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FIG. 5.3. Same as figure 5.1 except for v =2.

where
CAPE= CAPE+ R(0., — (0] +7205))
CAPE; = CAPE+ R(0., —v(07 +~505)) and

2
CAPE= If—gl@
«

are the convectively available potential energies integrated over the whole troposphere
(CAPE), integrated over the lower troposphere (CAPE;) and in radiative-convective
equilibrium (CAPE). The two different energies, CAPE and CAPE, distinguish envi-
ronments where either deep convection or congestus clouds are active [23, 24]. Typ-
ically 79 =0.1 for deep convective and stratiform heating, which allows only a weak
dependence on 5, while 1<~% <4 for congestus heating, which emphasizes a strong
dependence on #, of low level buoyancy. Though we consider both high and low
extremes of 5 for the sake of comparison, Khouider and Majda [23] used the value
5 =2, which is computed according to plausible physical assumptions. Here a~15
K is the unit scale of temperature and the rest of the model parameters and variables
are explained in Table 5.1.

Consistent with the work of Lin and Neelin [45] (see also [46]), the convective
time scale 7. in (5.3) is inversely proportional to the stochastic area fraction of deep
convection, and that at equilibrium, when o4 =054, 7. is set to the value 70 =2 hours
used in the original deterministic multicloud model of Khouider and Majda [20, 23].

Clearly, the stochastic-lattice multicloud model affects the large-scale/resolved
deterministic equations in (5.1) directly through the area fractions o4,0.,0 in the
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FiG. 5.4. Same as figure 5.1 except for v5=1.

definition of the heating rate closures in (5.3). The feedback from the resolved vari-
ables to the stochastic subgrid model is accounted for through C and D, which as
mentioned earlier, are linearly proportional to CAPE and the dryness of the middle
of the troposphere

CAPE = hd p=lefem (5.4)

C= CAPE, To

Therefore either (3.1)—(3.7) or (4.1)—(4.7), together with (3.9) and (5.1)—(5.4) form
a complete description of the coupled stochastic-deterministic one-column multicloud
model, depending on whether we use brute-force Monte-Carlo for the microscopic dy-
namics or the much-cheaper coarse-grained birth-death process to evolve the stochas-
tic lattice model. In (5.4), CAPE, and T} are reference values of CAPE and dryness
whose values are specified in Tables 5.1 and 5.2.

5.1. A deterministic model using the mean field cloud fraction equa-
tions. A dynamical closure for the area fractions is given by the mean field
equations (4.8), which, when coupled to equations (5.1)—(5.4) and (3.9) form a fully
deterministic system coupling the subgrid area fractions to the large scale convective
parametrization. The behavior of this model compared to the stochastic version is
discussed below.

A radiative convective equilibrium solution (RCE) for the coupled system is
defined as a steady state solution for the large scale equations (5.1) where the
area fractions are set to the equilibrium distribution in (3.8) or equivalently to
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Fic. 5.5. Same as figure 5.1 except for the coarser lattice with 40x40 sites.

the steady state solution of the mean field equations (4.8). Given the (external)
parameters, p,q, o, Hp,Hy, h, each set of values of the climatological constants
Q(}m,@_eb féem,egb — 6,5, which yields a unique RCE solution through which the val-
ues of mg,7.,CAPE and the area fractions, 7.,54,05 are uniquely determined. Given
CAPE and 6.j, — 0., the values of the ’s are uniquely determined through (3.8) while
the value of CAPE itself requires the solution of the nonlinear algebraic equation

Q% :ad(CAPE)Hi\/ CAPE, (5.5)
m
which is solved by a numerical root-finding method (f-zero of matlab is used here).
In (5.5), 54(CAPE) highlights the functional dependence of 54 on CAPE via (3.8)
and (5.4). The parameters, v, v, V5, a2, a1, as, ag are not involved in the RCE solu-
tion, however they, as well as «.,as, and u, have important effects on the dynamics
of the deterministic ODE system in (5.1). These effects are evident even if the area
fractions are fixed to their equilibrium values. Unless otherwise stated, the parame-
ter values in Tables 3.1-5.2, are chosen so that the RCE solution for the uncoupled
large-scale multicloud parametrization is linearly stable. Slightly raising the values
of p and/or a., for instance, can lead to instability. The parameter sensitivity of the
deterministic one-column model is extensively studied in [21] and therefore it is not
repeated here. The important examples are those in which non-trivial dynamics occur
in the stochastically coupled system despite the fact that the RCE solution is stable
under the deterministic cloud model. Recall from figure 4.1 that the most exciting
dynamics associated with the deterministic mean field equations are damped oscilla-
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tions. Therefore, coupling the mean field equations to the one-column parametrization
equation (5.1) in a parameter regime for which the large scale cloud RCE is a stable
equilibrium does not introduce any instability. Though we do not show the results
here, numerical simulations confirm that the solutions all damp to their equilibrium
values.

5.2. The coupled stochastic model. In this section, we discuss the results of
coupling the coarse grained stochastic birth-death system described by the equations
in (4.1)—(4.7) and (3.9) to the one-column model equations (5.1). To integrate the
equations, we employ a third order Adams-Bashforth scheme in order to minimize
both numerical instabilities and artificial dissipation. The coarse grained birth-death
process is evolved in time by means of an acceptance-rejection Markov Chain Monte
Carlo method based on Gillespie’s exact algorithm [5, 6] where a rescaled version of
the transition rates in (3.5)—(3.7) is utilized, consistent with the approximations in
(4.1)—(4.7). We evolve N =100 x 100 lattice sites of the coarse grained system with
much less computational expense than would be necessary using the full Monte Carlo
dynamics.

Below, we present some results of the numerical simulations for the coupled
stochastic-deterministic system for the parameter values in Tables 3.1-5.2. The re-
sults are sensitive to variations in most of the model parameters listed in Table 5.1
and to the cloud time scales in Table 3.1. Here we consider only the two main cases
reported in Table 5.2, with the corresponding stochastic time scales reported in Ta-
ble 3.1 in order to showcase some of the most interesting and typical regimes of the
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Fic. 5.7. Same as figure 5.1 except for the parameter values corresponding to Case 2 column
in Table 5.2: CAPEy = 2000 J/kg.

coupled deterministic/stochastic model; a more thorough parameter sensitivity study
is necessary and is deferred to future work.

A time series of both the large-scale variables (top) and the cloud area-fraction
coverages for the parameter values in Table 5.1 and on the first rows (case 1) of
Table 3.1 and 5.2, are plotted in figure 5.1 and in greater detail in figure 5.2. Most
notable is the time synchronization of the oscillations of both the stochastic and the
deterministic variables. After the transient period of less than one day, the time series
enter a quasi-periodic oscillatory regime with roughly a half day period. The other
striking feature is the organization of the cloud fraction oscillations. Congestus bursts
are followed by deep convective busts, which in turn lead stratiform peaks, consistent
with the physical intuition utilized to design the model. The fluctuations in the cloud
area fractions are directly related to changes in the large scale fields. The increase
in congestus area fraction is a direct response to CAPE build up (corresponding to
the 6gp-peaks). Congestus heating anomalies then yield a rise in 65 by direct heating,
which yields a rise in 6., — an artificial moistening, which in turn triggers the
peak in o4 and the rise in o5 follows naturally as expected, since there is non-zero
probability that a fraction of the deep convective clouds are converted into stratiform
clouds, regardless of the background state. Notice that the moisture anomalies are
weak in this case although some regeneration of moisture follows quickly after a deep
convective sudden drying, due to the evaporation of stratiform rain.

In figure 5.3, the same experiment is repeated but with the more realistic, smaller
value 75, =2. The most considerable change is seen in the period of the oscillations
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Fi1c. 5.8. Same as figure 5.7 except for the low value CAPEy = 200 J/kg.

which increase from a half day to about one day. Recall that 75 directly affects the
way in which low level CAPE depends on low-level potential temperature anomalies,
i.e, B5. A large 74 implies a rapid heating of the low-level troposphere by congestus
convection and a quick recovery in 65 during the congestus episode, which then leads
to a decrease in €, — 0., (an artificial moistening) creating deep convective clouds,
and so on. On the other hand when 4 =2, the congestus heating is not artificially
large and therefore doesn’t yield artificially high 6, values, allowing some time for
realistic moistening, i.e, a significant rise in mid-tropospheric moisture, ¢, prior to
deep convection. The other extreme case is presented in figure 5.4 for the value 4 =1.
As one would expect from the previous two cases, the period of oscillation increases
significantly to about three days. Consequently, convective activity completely ceases
between the intermittent bursts. During the quiet episodes, moisture rises by about
1 K and may play a central role in the regeneration of deep convection.

We emphasize that the regeneration of CAPE, marked by the sudden increase in
O.p by a few degrees over a few hours, is consistent with the relaxation time of 7, ~8
hours associated with surface evaporation. If downdrafts are completely absent and
By is initially set to its equilibrium value, so that 6%, —6.,(0) =10K according to the
RCE solution, the parameters allow an increase in 6., of about 20 K over a period of
8 hours. This exponential growth of 6., is evident from the higher resolution plots;
in figure 5.2, 6., increases about 1.5 K over a period of about 1.5 hours and similar
scale of growth is evident in the more intermittent case of figure 5.4.

We address the sensitivity of the model to the number of lattice sites in figures
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5.5 and 5.6 where 40x40 and 20x20 sites are used, respectively, as opposed to the
100 x 100 sites used elsewhere in this paper. The means and standard deviations of
each one of the dynamical variables for the three different values of site numbers are
reported in Table 5.3. As one would expect decreasing the number of lattice ele-
ments causes an overall increase in the variability of the stochastic area fractions,
fe, fs- Correspondingly, the variability of the large scale variables, 61,6s,q, increases,
as revealed by the standard deviations in Table 5.3. The boundary layer equivalent
potential temperature, 0.,, whose variability is dominated by the deterministic sur-
face evaporation process, is more robust against changes in the number of lattice sites.
Consistent with the balance between deep convection and boundary layer fluxes, vari-
ations in standard deviation of deep convective clouds follow that of 6.,. However,
it is important to note, from Table 5.3, the consistent decrease of the mean cloud
area fractions and the changes in mean large scale quantities as the number of lattice
sites is decreased from 100x100 to 40x40 to 20x20. A coarser lattice tends to lead
to a colder and drier boundary layer but significantly colder and moister middle tro-
posphere that compensate for the small cloud fractions. The most noticeable feature
when comparing figures 5.5 and 5.6 is that as the number of lattice sites is reduced
to 20 x 20 the system becomes much more intermittent and quiescent periods can last
up to two days.

Figures 5.7, 5.8, and 5.9 correspond to Case 2 in Table 3.1, and 5.2 for
CAPE(;=2000, 200 and 20 J/kg, respectively. The long integration time shows a
slow upward drift of moisture above its RCE value, which takes place during the first
10-20 days. This is especially evident for the case CAPE;=2000 J/kg in figure 5.7
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Parameter | Description Nature Value
(1’271 First baroclinic radiative Climatological 1 K day !
cooling
%2 Second baroclinic radia- | Determined at RCE Varies
tive cooling
Oty —Oern | Discrepancy between Climatological 11 K
boundary  layer  and
middle tropospheric
equivalent potential
temperatures
* —0cp | Discrepancy between sat- Climatological 10 K

uration and actual bound-
ary layer equivalent po-
tential temperatures

70 Reference convective time Fixed parameter 2 hours
scale

mo Downdraft mass flux scale | Determined at RCE Varies

Te Sea surface evaporation | Determined at RCE Varies
time scale

CAPE Value of CAPE at RCE Determined at RCE Varies

1 Relative contribution of Tunable Varies 0.25, 0.5
stratiform evaporative
cooling to downdrafts

Qg Contribution of CAPE to Fixed 0.25
stratiform heating

Qo Contribution of CAPE to Tunable 0.1-0.5

congestus heating

TABLE 5.1. Constants and parameters for the deterministic multicloud large-scale parametrization.

but much less significant for the case CAPE(=200 J/kg in figure 5.8 and nonexistent
when CAPE(=20 J/kg in figure 5.9.

Note that CAPE( acts as an “activation-energy” threshold for convection, and
these results suggest that when this threshold is low, moisture anomalies tend to be
small and when it is large, moisture anomalies tend to be large. A plausible expla-
nation for this correlation resides in the way CAPE and moisture affect the cloud
transition rates in (3.6) and (3.7). When CAPEj is large, the cloud formation time
scales (i.e, 79;,2=1,2,3) tend to be large, allowing enough time for large scale moist-
ening (by downdrafts) to take place between successive convective episodes which, in
turn, allow large scale precipitation to provide a significant amount of drying. On
the other hand, small values of CAPE yield short cloud formation timescales and
therefore result in rapid and small fluctuations of moisture and more intermittency.

6. Summary and discussion

A stochastic lattice model to account for the unresolved variability due to orga-
nized tropical convection in general circulation models is presented here. It is based
on the assumption that organized convection involves three cloud types, congestus,
deep, and stratiform, which occur in a more or less organized manner in space and
time. Each lattice site is represented by a Markov process taking discrete values from
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Table 5.1 (continued)
aq Contribution of 6., to Fixed 0.1
deep convective heating
anomalies
as Contribution of ¢ to deep Fixed 0.9
convective heating anoma-
lies
ao Contribution of 8y to deep Fixed 5
convective heating anoma-
lies
0P Relative contribution of 05 Fixed 0.1
to deep convective heating
anomalies
Contribution of 6; to Fixed 1.7
CAPE anomalies
R CAPE constant Fixed | 2.1413e-04 J/kg K—!
4 Relative contribution of 6 | Tunable 24
to low level CAPE anoma-
lies
CAPE, | Reference value of CAPE | Changes 20-2000 J/Kg
used in stochastic model
Ty Reference value of dryness | Tunable 15 K
used in stochastic model

Case 1 2
CAPE, 2000 J/kg 2000 J/kg, 200 J/kg, 20 J/kg
1 0.25 0.5
v 4,2,1 2
Q. 0.1 0.5
CAPE 6.5087 J/kg 8.7366 J/kg, 2.1426 J/kg
Te 8.33 hours - -
mo 0.0181 m s~ ! 0.0184 m s~ ', 0.0164 m s+
%,2 0.6421 K day~! 0.3547 K day~—!, 0.1523 K day !
TIE'S Tab. 1, Case 1 Tab. 1, Case 2
Ros equation (3.6) equation (3.7)

TABLE 5.2. Parameter values used in each one of the different cases considered for coupled
numerical stmulations.

0 to 3 according to whether the sky is clear or a cloud of a certain type is active at
that site. The transition from one state to another occurs according to some proba-
bility laws motivated by physical intuition gained (elsewhere) from observations and
detailed numerical simulations of tropical convective systems. The transition time
scales depend, in a physically realistic way, on the large scale distribution of CAPE
and dryness of the middle troposphere. For the very different physical processes of
upscale convective momentum transport, Majda and Stechmann [37] have developed
a class of stochastic models based on similar design principles. When CAPE is posi-
tive and the atmosphere is dry congestus clouds are formed with high probability and
when CAPE is positive and the atmosphere is moist congestus sites are converted into
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number of sites 100x100 40x 40 20x 20

mean

01 0.0208 0.0087 -0.1497

02 -0.0117  -0.0040 -0.2245

Ocp -0.1831  -0.1701 -0.4311

q 0.0738 0.0773  0.4152

fe 0.0810 0.0631  0.0185

fa 0.0088 0.0076  0.0031

fs 0.0142 0.0105  0.0035
Standard deviation

01 0.0137 0.0266  0.1882

(3 0.0692 0.0672  0.2322

Ocp 0.4994 0.4954  0.4667

q 0.0427 0.0443  0.1956

fe 0.0221 0.0271  0.0324

fa 0.0091 0.0095  0.0081

fs 0.0050 0.0063  0.0069

TABLE 5.3. Change in variability with respect to changes in number of lattice sites.

deep convective sites with high probability. Deep convective sites are then converted
into stratiform sites in a manner which may or may not depend on the background
CAPE.

For the sake of simplicity the individual lattice sites are assumed to be inde-
pendent of each other so that a coarse-grained stochastic birth-death system for the
cloud area fraction of each cloud type is easily derived and numerically integrated
with very low computational overhead. The birth-death system naturally yields a
system of mean-field linear ordinary differential equations whose equilibrium solution
corresponds to the stationary distribution of the Markov chains. After a short tran-
sient period, the stochastic system oscillates around this equilibrium solution forever,
when the large scale dynamics are frozen.

As expected, the dynamics of the stochastic lattice model are sensitive to both the
prescribed convective time scales and variations in the large-scale external variables.
For instance, the mean-field equilibrium is in a purely damped mode when CAPE
is small, and bifurcates to an oscillatory damped regime for large enough values of
CAPE. As the numerics demonstrate, this has the non-trivial implication that, when
CAPE is large the stochastic oscillations around the equilibrium state are rapid and
have large amplitudes, whereas when CAPE is small the oscillations have small am-
plitudes with very intermittent large excursions. This is somewhat similar to what is
observed in Katsoulakis et al. [13] and in Majda et al. [36].

The stochastic multicloud model is coupled to a deterministic tropical climate
model consisting of a simple ODE system representing the dynamics of a two-
baroclinic model over one GCM grid-box: a one-column model, based on the multi-
cloud model equations of Khouider and Majda [20, 24]. The multicloud deterministic
equations are integrated by a 3rd order Adams-Bashforth method while the stochas-
tic birth-death cloud model is evolved according to the exact stochastic algorithm of
Gillespie [5, 6], where the cloud populations are viewed as a sum of Poisson processes.

An important result of this paper is that the stochastic multicloud model responds
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to variations in the large scale variables according to the intuitive rules used to con-
struct these models. Quasi-periodic fluctuations in CAPE and moisture are correlated
with well organized large oscillations in the cloud area fractions in a kind of “stochastic
resonance” behavior. Positive 0., anomalies (positive CAPE) trigger a rise in con-
gestus cloudiness which preconditions the environment and provokes deep convective
bursts. Deep convection is followed by stratiform convection, which consumes CAPE
by downdrafts and helps moisten the environment for the next convective episode. A
detailed understanding of the complexity with which the coupled system responds to
changes in the various parameters utilized here (and listed in Tables 3.1 and 5.1) is
beyond the scope of this paper. However, the few simulations reported at the end of
section 5 demonstrate two important facts.

1. The time scale with which congestus heating responds to lower tropospheric
temperature (i.e 62) is crucial for setting the frequency and strength of the
stochastic oscillations of the cloud area fractions and, therefore, of the large
scale dynamics. Large congestus-to-, time-scales (corresponding to small v4)
yield slow but somewhat strong oscillations in both the large scale variables
and the cloud area fractions while small congestus-to-f> time-scales yield
rapid and somewhat weaker oscillations. The average oscillation period is
about 3 days when 5 =1 and half day when 74 =4. Coincidentally, the more
realistic value of 74 =2, yields a one-day period.

2. CAPEy, the reference scale by which the stochastic cloud model responds to
variations in large scale CAPE, acts as an “activation energy”, yielding strong
and more intermittent bursts of convection when CAPE; is large (2000 J/kg)
and very rapid and weak fluctuations in both the cloud area fractions and
large scale climate variables when CAPE( is small (200 J/kg and more so
when 20 J/kg). Interestingly however, the weaker value of 20 J/kg seems to
present very intermittent strong bursts, from time-to-time, on top of the very
weak, faster oscillation.
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