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Abstract. Squall lines are coherent turbulent traveling waves on scales of order 100 km in
the atmosphere that emerge in a few hours from the interaction of strong vertical shear and moist
deep convection on scales of order 10 km. They are canonical coherent structures in the tropics and
middle latitudes reflecting upscale conversion of energy from moist buoyant sources to horizontal
kinetic energy on larger scales. Here squall lines are introduced through high resolution numerical
simulations which reveal a new self-similarity with respect to the shear amplitude. A new multi-scale
model on mesoscales which allows for large vertical shears, appropriate for squall lines, is developed
here through systematic multi-scale asymptotics. Mathematical and numerical formulations of the
new multi-scale equations are utilized to illustrate both new mathematical and physical phenomena
captured by these new models. In particular, non-hydrostatic Taylor-Goldstein equations govern
the upscale transports of momentum and temperature from the order 10 km microscales to the
order 100 km mesoscales; surprisingly, upright single mode convective heating without tilts can
lead to significant upscale convective momentum transport from the microscales to the mesoscales
due to the strong shear. The multi-scale models developed here should be especially useful for
dynamic parameterizations of upscale transports as well as for new theory in three-dimensions with
a transverse shear component, where contemporary theoretical understanding is meager.
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1. Introduction

Geophysical flows are a rich source of fascinating problems for applied math-
ematicians involving complex multi-scale nonlinear systems, where energy cascades
upward from the small scales to the large scales through anisotropic processes involv-
ing vortices and gravity waves. On the other hand, the improved parameterization
of unresolved features of moist tropical convection is a central challenge in current
computer models for long range ensemble forecasting of weather and short term cli-
mate with large worldwide societal impact [41]. The reason for this is the observed
multi-scale features of organized coherent tropical convection across a wide range
of scales varying from tens of kilometers and a few hours to the planetary scale of
order 40,000 km on intraseasonal time scales with significant energy transfer across
these scales [20, 38, 42, 46]. Recent processing of observational data [38] suggests
the statistical self-similarity of tropical convection from the smallest, shortest scales
to organized mesoscale convective systems [19] to convective clusters to equatorial
synoptic-scale superclusters to planetary/intraseasonal oscillations. For this reason,
it is interesting to develop systematic multiscale asymptotic models [24, 25, 26, 30, 34]
for the nonlinear cascade across scales in the tropics, and the first author has done
this recently for the self-similar behavior from the microscales to mesoscales to plane-
tary/intraseasonal scales [31, 32]. Such quantitative models are useful for quantifying
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the observed multiscale behavior in, for example, tropical intraseasonal oscillations
[2, 3, 4, 5, 33, 37].

The important spatio-temporal scales for cloud resolving modeling are the fully
nonlinear scales with active moisture, involving spatio-temporal scales

Lm =10km, Tm =15min. (1.1)

The organized impact of moist convection on the scales in (1.1) through squall lines,
tropical cyclogenesis, and other mesoscale convective systems [8, 19, 39, 43] occurs on
the mesoscale spatio-temporal scales, LM and TM , with

LM =100km= ǫ−1Lm, TM =2.5hrs= ǫ−1Tm (1.2)

for ǫ≈0.1. The spatial scale Lm =10km in (1.1) is called the microscale below,
while the scale LM =100km in (1.2) is called the mesoscale. Contemporary numerical
weather prediction (NWP) models [40] currently can have a finest mesh size on the
order of 10 km= Lm, so new numerical strategies that lead to the improved represen-
tation of the mesoscale impacts of tropical convection have central importance.

The topic of the present paper is the development of new multi-scale models on
the spatio-temporal scales in (1.1) and (1.2), which provide potentially new insight
into the multi-scale development of organized squall lines on mesoscales. Squall lines
are coherent structures consisting of turbulent traveling waves which emerge on the
mesoscales in (1.2) from the interactions of shear and moist convection on the smaller
scales in (1.1). There is a beautiful far field theory for the upscale cascade effects of
squall lines in [39], and numerous well-designed high resolution numerical simulations
[10, 27, 43, 47, 49] which illustrate various multi-scale aspects of squall line dynamics
involving the two scales in (1.1) and (1.2). An elegant theory of moist gravity currents
which gives insight into the propagation of long-lived squall lines in middle latitudes
has been developed in [45]. The recent survey article for meteorologists [19] is strongly
recommended to the interested reader. Despite all of this effort, the detailed multi-
scale mechanisms in squall lines are not fully understood.

The earlier work for studying squall lines in multi-scale models on mesoscales
[26, 31] or the hurricane embryo [35, 36] involved two assumptions: low Froude number
velocities and a weak temperature gradient (WTG). Here we develop new multi-
scale models which do not require low Froude numbers and are more realistic for
the strong shears that occur in squall lines. The new multi-scale models both have
new mathematical features and capture important additional physical phenomena
compared with the earlier models. Here is the outline for the remainder of the paper.
In section 2, we provide some new high resolution numerical simulations of squall lines
for tropical jet shears which both serve as an introduction to squall line dynamics as
turbulent multi-scale traveling waves for mathematicians and also demonstrate, for
the first time, surprising self-similarity in squall line dynamics as the ambient shear
strength changes. The new multi-scale models for squall lines are developed in section
3. Mathematical and numerical formulations of the resulting multi-scale equations
are developed in section 4 together with simple applications illustrating the physical
effects and new phenomena in these models. The paper ends with a brief concluding
discussion.

2. Tropical squall-lines — turbulent traveling waves

In this section, we show some basic effects of typical tropical squall lines by
three squall line simulations. We first present the moist anelastic equations which
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are utilized as the basic equations to generate a squall line. Then the background
environment is carefully selected for mimicing the formation of a squall line in a few
hours. Based on this background, three squall line simulations are run with different
shears. Large scale effects and turbulent eddy fluxes are shown to demonstrate the
main features of the propagating squall line.

2.1. Preliminaries: the moist anelastic equations. Here the moist non-
hydrostatic anelastic equations with bulk cloud microphysics [17, 29] are utilized as
the basic equations for the microscale dynamics. With suitable nondimensional units
explained below [26], which have the space-time scales

Lm =10km and Tm =15min, (2.1)

with

[uh]= [w]=10m/s,

these equations are given by the dynamical core

Duh

Dt
=−∇hp

Dw

Dt
=−pz +ǫ−1θ+(ǭqv −qr−qc)

Dθ

Dt
+N2(z)ǫ−1w= ǫ−1L

θ0
p0

(Cd−Er)

divhuh +ρ−1(ρw)z =0, (2.2)

with

D

Dt
=
∂

∂t
+uh ·∇h +w

∂

∂z
(2.3)

and the cloud dynamic equations

Dqv
Dt

=−Cd +Er

Dqc
Dt

=Cd−Ar

Dqr
Dt

− 1

ρ

∂

∂z
(ρVtqr)=Ar−Er. (2.4)

In (2.2), ρ(z), N2(z), θ0(z), and p0(z) are the nondimensional versions of the dry
statically stable vertical profile [26, 34]. The potential temperature in (2.2) is scaled
as small deviation from hydrostatic balance; that is, the units of θ are 3 K, which
compares with a dry lapse rate of 30 K over 10 km; thus ǫ≈0.1 in (2.2) (see the
appendix for more detailed discussion and [26, 31, 35] for additional information).
The quantities qv, qc, and qr are the mixing ratios for cloud vapor, water, and rain,
respectively, rescaled by the factor ǫ−2. This rescaling developed in [26] renders the
potential temperature equation in (2.2) dimensionless with order-1 latent heat pref-
actor L and simultaneously guarantees that the condensation of cloud vapor, Cd,
evaporation of rain, Er, and the conversion of cloud water to rain by both autocon-
version and collection, Ar, as well as the fall velocity, VT , are order one processes on
the time scales in (2.1). While the detailed forms of Cd, Er, and Ar [8, 17] are not
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needed for the discussion here, the tacit standard assumption utilized in achieving a
single time scale governing the moisture source terms in (2.2) and (2.4) is that the
very fast processes associated with supersaturated water vapor are equilibrated by
constraining the cloud vapor to always lie below or equal to saturation [17, 26, 29].
For simplicity in exposition, all other source terms and dissipation in (2.2) and (2.4)
have been set to zero; they are readily added in the analysis below. The equations in
(2.2) and (2.4) have been utilized extensively as the microscale dynamical equations
in both cloud-resolving modeling and superparameterization [11, 12, 13, 15], so they
are a natural starting point for this paper.

2.2. The squall line environment. In the remaining part of this paper, as
discussed above, non-dimensional units are used with the following reference scales,
except for some cases where detailed explanations are provided.

Parameter Nondimensional units Description

L 10 km length scale
t 15 min time scale
u,w 10 km/15 min ≈ 10 m/s horizontal & vertical velocity scale
θ 3 K potential temperature scale

The squall line experiment designed in [14] is explored here. The model we solve
is a 2D version of (2.2), where everything is a function of x, z only, and the horizontal
velocity uh is reduced to the east/west component uh. The experiment has a 2D
domain of 1024 km length and 25 km height. The grid employed here is a uniform
2-km horizontal grid and 0.25-km vertical grid, with a gravity wave absorber applied
in the uppermost 7km of the domain. An open lateral boundary condition is used.
The initial temperature, humidity profiles, and horizontal wind fields are based on
the GARP GATE Phase-III mean sounding. A 4-km-deep, 512-km-long cold pool of
Dθ′ = -6.75 K and Dq′v = -3.5 g kg−1 is placed in the domain on the initial data
to initiate convection. This initial cold pool, which was prescribed as a negative
potential temperature and moisture perturbation on the initial condition as shown in
figure 2.1, is set to mimic the background cold air produced by a decaying cold front
in the synoptic environment [21].

A large-scale forcing representing climatological background, as shown in figure
2.2, is imposed on the model through the cooling and moistening rates. We keep
this large-scale forcing for 6 hours, then remove it and observe whether a squall line
forms and keeps propagating for many hours afterwards as a turbulent free wave. To
provide small-scale excitation (important for the initial development of convection),
a 10% amplitude random noise is added to the surface fluxes, with random numbers
generated at every model time step.

Three different initial large scale background shears, with same shape and different
magnitude, are used to generate the squall lines. They are given by

Ū(z)=

{
a(cos( πz

1.2 )−cos( 2πz
1.2 )) if z<1.2,

−2a otherwise,
(2.5)

for a fixed coefficient a. We show the case when a=1 in figure 2.3. The steering
level refers to the height where the phase speed is equal to the squall line flow speed
of the emerging wave. It is marked in figure 2.3, based on the squall line speed
computed from the experiment below. Next, we run this squall line experiment in
the same thermodynamic environment for three different cases with a=1, 0.8 and 0.5,
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Fig. 2.1. The contours of the initial cold pool. Left: Potential temperature; Right: Specific
humidity.

K day -1

z

-40 -20 0 20 40

advective cooling
advective moistening

1

2

0.5

1.5

Fig. 2.2. Vertical profiles of the prescribed large scale advective cooling and moistening rates
used in the experiments.

and compare these results where we systematically reduce the ambient shear and thus
raise the Richardson number ([30], chapter 3). It is interesting that a propagating
squall line always emerges in these three cases with speed determined by the exact
same steering level. We have repeated the experiments with no initial cold pool
imposed, and the same steering level is observed. Further experiments demonstrate
that the steering level changes as we modify either cooling or moistening profiles.
Therefore, the steering level is independent of the magnitude of background shears
and the initial cold pool condition, but depends on the background thermodynamics.
If the squall line is non-traveling, it is easier for us to analyze the data. For this
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Fig. 2.3. Plot of Ū(z). The steering level for the squall lines is at roughly 3.5 km in height.

purpose, we subtract the speed of the steering level from the initial large scale shear
in our experiment, and this is the background shear we actually use and get steady
turbulent fronts.

2.3. The squall line simulations. With the above background information,
we report in detail on the three squall line simulations. The stopping time is set as 36
hours, when the squall line remains statistically steady for a long time. This can be
clearly observed from the space-time contours of the surface precipitation shown in
the top left of figure 2.4, 2.5 and 2.6. In table 2.1, we show the velocity of the steering
level (also noted as squall line speed) and the maximum of the original background
shear before we subtract the squall line speed, defined as jet max here, from which we
observe that the steering level keeps the same for all these experiments. This shows
that if we only change the magnitude of the background shear and keep the same
thermodynamic base state, the steering level will not change. However, we expect
that if the shear becomes sufficiently weak, i.e., if a in (2.5) is small enough, the
turbulent traveling wave will decay and will not propagate in time. We find that
when a=0.3 or smaller, the wave dies after the initial formation. The corresponding
surface precipitation is shown in figure 2.7 for a=0.3, from which we observe that for
the first few hours the initial cold pool generates convection. It stays for few hours,
after that it starts to die and disappears completely after the 20th hour. Note that
the same background thermodynamic sounding is used in this case. This shows that
even in a thermodynamic background favorable for the formation of a squall line, a
weak enough background shear flow does not generate a squall line.

Next, we concentrate on large scale features in these simulations. As we can see
from the surface precipitation contour plots, the three squall lines are statistically
quasi steady as turbulent traveling waves after the initial phase. Hence we compute
the time average over the five hours between the 18th and 23rd hours in the frame
moving with the steering level wind, to gather time averaged statistical data. This
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Experiment a=1 a=0.8 a=0.5
Jet max 1.125 0.9=1.125×a 0.5625=1.125×a

Squall line speed 0.825 0.66=0.825×a 0.4125=0.925×a
Steering level (height) 0.34 0.34 0.34

Table 2.1. The jet max, squall line speed, and steering level of three 2D CRM simulations.

time averaged numerical solution of horizontal velocity is denoted by 〈u〉(x). Moreover
the large scale velocity 〈ū〉, on mesoscales of order 100 km or 10 in nondimensional
units, is defined as the spatial average

〈ū〉(x)=
1

9.6

∫ 4.8

−4.8

〈u〉(x+s)ds, (2.6)

and the spatial fluctuation of velocity is given by

〈u′〉(x)= 〈u〉(x)−〈ū〉(x). (2.7)

Since 3.2 is often chosen as the large scale resolution in the superparameterization
test [14, 48], 9.6 which corresponds to the length of 3 large scale cells, is used instead
of 10 in (2.6). Similarly, we can compute 〈θ̄〉, 〈θ′〉 and the source terms 〈S̄θ〉, 〈S′

θ〉 for
the temperature equation in (2.2). This large scale data is shown in figure 2.4, 2.5
and 2.6 for different experiments. The plot of the source term 〈S̄w〉 for the vertical
velocity is not included here, because it is one order smaller when compared with
the source term 〈S̄θ〉. Hence we concentrate on the source term 〈S̄θ〉 in the following
discussion, as it dominates the source terms. From these figures, we observe that
the large scale horizontal velocities have very similar structures, due to the fact that
the initial background shears share the same structure. The horizontal velocity has
a shock-like structure with strong negative velocities at low levels in front but at
high levels behind the squall line, i.e. a jump updraft [19]. To further explore the
self-similarity, we compute the correlation between these plots after a phase shift
aligning the center of the squall lines. The results are shown below in table 2.2. The
correlation is very high, which shows very good structural agreement among them.
We remind the reader that these large scale variables are the most important thing
to examine in a squall line. Their structures are not affected by altering the strength
of the background shears only and are qualitatively self-similar.

Between experiments a=1 and 0.8 Between experiments a=1 and 0.5
〈ū〉 0.9278 0.8923
〈θ̄〉 0.9002 0.8579
〈S̄θ〉 0.8972 0.8431

Table 2.2. The correlation between the large scale variables from these simulations.

Next, other useful statistical features of the squall line dynamics are presented.
If we split the model into mesoscale and microscale, the upscale turbulent eddy fluxes
(〈w′〉〈u′〉)z and (〈w′〉〈θ′〉)z play an important role in the mesoscale, which will be
shown later in section 3. Also, the fluctuation of the source terms S′

θ and S′
w are im-

portant in determining the small scale structure. We then show the data: (〈w′〉〈u′〉)z,
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Fig. 2.4. The contours of the variables from the squall-line simulation with a=1. Top left:
Surface precipitation; Top right: Large scale horizontal velocity 〈ū〉, averaged over five hours and
96km domain as defined in (2.6); Bottom left: Large scale potential temperature 〈θ̄〉; Bottom right:
Large scale source term 〈S̄θ〉. Note: 1, the units for the x-axis and height are both km in these plots,
rather that the non-dimensional units; 2, solid contour line represents positive value and dashed one
represents negative value.

(〈w′〉〈θ′〉)z, 〈S′
θ〉 and 〈S′

w〉, from these three experiments in figure 2.8, 2.9 and 2.10.

We point out that for the upscale eddy flux (〈w′〉〈u′〉)z, very similar structures are
observed by eye for the three simulations. This shows that within the same back-
ground thermodynamic sounding, if ambient shear strength changes the squall line
experiments generate almost the same structure of upscale eddy flux (〈w′〉〈u′〉)z, but
the magnitude diminishes with the shear strength parameter a.

A central issue for squall line dynamics is the following: depending on the nature
of the thermodynamic background and the ambient shear, how much of the propa-
gating squall line dynamics depends on the mean heating S̄θ compared with upscale
turbulent cascades from the smaller scales reflected by the turbulent eddy fluxes de-
scribed above. There is different role for these processes for different types of shears,
as illustrated by several insightful numerical studies [9, 10, 27, 43, 47, 49], but this
issue is not completely understood even in two space dimensions. For squall lines
with three-dimensional transverse shear components, as often occur in nature, such
theoretical understanding is meager at the present time [19]. This issue is important
for parameterization and the main goal for the new models developed in section 3 is
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Fig. 2.5. Same as figure 2.4, but for a=0.8.

to provide a mathematical framework for clarifying these important issues.

3. Derivation of the multi-scale model for squall lines

With the background in section 2 about some basic physical effects in squall lines,
we use asymptotic analysis to develop new systematic Multi-scale Squall Line Models
(MSSLM) on mesoscales and microscales in this section.

3.1. General derivation in 3-D. We first repeat a simplified version of
equation (2.2):
Equations of motion

Duh

Dt
=−∇hp

Dw

Dt
=−pz +ǫ−1(θ)−Sw

Dθ

Dt
=−ǫ−1w+Sθ

divhuh +wz =0, (3.1)

where the details for Sθ and Sw can be found in equation (2.2). Equation (2.4) for the
mixed ratios qv, qc and qr are ignored here and are regarded as specifying the source
terms Sθ, Sw. Also, for simplicity in exposition a uniform vertical density ρ(z) and
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Fig. 2.6. Same as figure 2.4, but for a=0.5.

Fig. 2.7. The contours of surface precipitation from the dying scattered convection simulation
with a=0.3.
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Fig. 2.8. The contours of the variables from the squall-line simulation with a=1. Top left:
Source term fluctuation 〈S′

θ
〉; Top right: Source term fluctuation 〈S′

w〉; Bottom left: The eddy flux

(〈u′〉〈w′〉)z; Bottom right: The eddy flux (〈w′〉〈θ′〉)z. Note: 1, the units for the x-axis and height
are both km in these plots, rather than the non-dimensional units; 2, a solid contour line represents
positive value and a dashed one represents negative value.

constant N2(z) are assumed here. We focus on the spatial microscales

Lm =10km and Tm =1.5min, (3.2)

and spatial mesoscales

LM = ǫ−1Lm =100km and TM = ǫ−1Tm =15min, (3.3)

with the same nondimensional units (see (3.10) below) and ǫ≈0.1 as in section 2.1.
With these basic units, we expand the solutions of (3.1) as functions of xh, t, Xh = ǫxh,
and τ = t/ǫ reflecting all the scales in (3.2) and (3.3). First, we recall some basic facts
of multiple scales. Given a general function f(Xh,xh,t,τ), the spatial and time average
of f over the microscales of order ten kilometers in space and order 1.5 minutes in
time are defined by

f̄(Xh,t,τ)= lim
L→∞

1

(2L)2

∫ L

−L

∫ L

−L

fdxdy

〈f〉(Xh,xh,t)= lim
T̃→∞

1

2T̃

∫ T̃

−T̃

fdτ, (3.4)
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Fig. 2.9. Same as figure 2.8, but for a=0.8.

with the variables (Xh, t) and (xh,τ) regarded as independent variables. In the multi-
scale procedure, the space-time gradient of f(Xh,xh,t,τ) is calculated according to
the chain rule as

ǫ∇Xh
f+∇xh

f,
∂f

∂t
+ǫ−1 ∂f

∂τ
.

For a function f(Xh,t,τ) involving the mesoscale in space and the two time scales
with time average 〈f〉(Xh,t), we define the fast time scale fluctuations by

f̃(Xh,t,τ)=f−〈f〉. (3.5)

A general function of both spatio-temporal scales, f(Xh,xh,t,τ), has a large scale
spatial mean, f̄(Xh,t,τ), so that

f(Xh,xh,t,τ)= f̄(Xh,t,τ)+f ′(Xh,xh,t,τ), (3.6)

where the fluctuations, f ′, automatically satisfy f ′≡0. With the above definitions, a
general function f(Xh,xh,t,τ) has the decomposition

f(Xh,xh,t,τ)= 〈f̄〉(Xh,t)+ ˜̄f(Xh,t,τ)+f ′(Xh,xh,t,τ), (3.7)

into the space-time average plus temporal fluctuations of the spatial mean plus spatial-
temporal fluctuations.
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Fig. 2.10. Same as figure 2.8, but for a=0.5.

With the above motivation and definitions, we start with the following general
ansatz to develop the multi-scale squall line models,

uh = ǫ−1Uh(Xh,z,t)+(u′
h + ūh)+ǫuh,1

w=W (Xh,z,t)+ ˜̄w+w′+ǫ(w̄+w′
1)+ǫ2(w̄2 +w′

2)

p= ǫ−2P (Xh,z,t)+ǫ−1(p̄−1 +p′−1)

θ= ǫ−1Θ(Xh,z,t)+(θ′+ θ̄)+ǫθ1. (3.8)

In (3.8), we have used capital letters like Uh, W , etc to denote the leading order
space-time average over the small fast scales, i.e. Uh = 〈uh,−1〉, etc. We also assume
the following expansions for the source terms

Sθ = ǫ−1(S′
θ,−1 + S̄θ,−1)+(S′

θ,0 + S̄θ,0)

Sw = ǫ−1(S′
w,−1 + S̄w,−1)+(S′

w,0 + S̄w,0). (3.9)

In (3.8), we use the variables with the following scales which include those in section
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2

[t]=15min, [τ ]=1.5min, τ =
t

ǫ
,

[xh]=10km, [Xh]=100km, Xh = ǫxh,

[uh]= [w]=10m/s, [θ]=3K,

[Sθ]=30K/15min, [Sw]=100m/s/15min. (3.10)

The main new assumption here, compared with earlier work [26, 31], is that there
exists a possibly strong large scale zonal flow ǫ−1Uh. We have already seen the im-
portance of large scale shears in squall line dynamics in section 2. So this assumption
is natural here.

a. Strong large scale background flow. After the substitution of the ansatz
(3.8) and (3.9) into the equation (3.1), a spatial and temporal average over the mi-
croscale scales is taken to develop the model on the mesoscale. We then collect the
terms of different orders, with D

Dt
= ∂

∂t
+Uh ·∇Xh

+W ∂
∂z

denoting the large scale av-
erage advection. Order ǫ−1 of the space-time averaged momentum equation gives
us

DUh

Dt
=−∇Xh

P. (3.11)

We also pick the leading order ǫ−2, ǫ−1 and ǫ0 of the space-time averaged vertical
momentum equation, potential temperature equation, and conservation of mass re-
spectively

∂

∂z
P =Θ

DΘ

Dt
=−W +〈S̄θ,−1〉

divXh
Uh +Wz =0. (3.12)

The equations above in (3.11) and (3.12) are simply the nonlinear Boussinesq
equations with hydrostatic balance on 100 km scales. They apply if the forcing satisfies

〈S̄θ,−1〉 6=0,

i.e., if there is heating of 120 K/hr on the scale of order 100km, and W ≡〈w̄〉 has
velocities of 10m/s; this actually does not happen in nature. Examples illustrate a
weaker 〈S̄θ,−1〉, as shown in figure 2.4, 2.5 and 2.6. In general, we make

Assumption 3.1. 〈S̄θ,−1〉=0.
It is important to note that we can find special solutions of the above equation

(3.11) and (3.12) satisfying Assumption 3.1, with Θ≡z the background stratification,
W ≡0 and Uh =(U(z), V (z)); these are shear flows and provide the background flow
in squall lines. There are even more general time-dependent solutions of this type
with P ≡0.

b. Fast-time equations. First we study the small scale fluctuation on the fast
time scale. We substitute the ansatz (3.8) and (3.9) into the equation (3.1) and then
compute the corresponding fast-time fluctuation equations. We collect the order ǫ−1
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of the momentum, temperature equations and order ǫ0 of conservation of mass

∂u′
h

∂τ
+Uh ·∇xh

u′
h +w′(Uh)z =−∇xh

p′−1

∂θ′

∂τ
+Uh ·∇xh

θ′+w′Θz =−w′+S′
θ,−1

∂w′

∂τ
+Uh ·∇xh

w′ =−(p′−1)z −S′
w,−1 +θ′

divxh
u′

h +w′
z =0. (3.13)

The equations in (3.13) with Θ≡z generalize the non-hydrostatic time dependent
Taylor-Goldstein equations [18] from 2-D, i.e., for the special case with Uh =(U(z),0).

Next, we study the large scale fluctuations on the fast time scale, ˜̄uh, ˜̄w, ˜̄θ.
From order ǫ0 of conservation of mass, it is easy to show that ˜̄wz =0, so the non-slip
boundary condition ˜̄w|z=0 =0 guarantees ˜̄w≡0. With ˜̄w≡0, the large scale fast-
time fluctuations in the order ǫ−1 momentum equations and potential temperature
equation are

∂ ˜̄uh

∂τ
=0

∂ ˜̄θ

∂τ
= ˜̄Sθ,−1

0=−(˜̄p−1)z − ˜̄Sw,−1 + ˜̄θ. (3.14)

The first equation shows that ˜̄uh = ˜̄u0
h(Xh,z,t), and by definition 〈f̃〉≡0 so ˜̄u0

h ≡0. The
last two equations in (3.14) define the large scale fast time fluctuations of potential
temperature and pressure. As shown in the examples from section 2, in general
the large scale fluctuating heat sources and vertical momentum sources are weak,
˜̄Sθ,−1,

˜̄Sw,−1≡0 and all large scale fast-time fluctuations vanish; if they are non-
zero mathematically, then their vertical averages need to satisfy simple compatibility
conditions.

c. Large scale equations. So far we have assessed the perturbation contri-
butions to the strong large scale background flow from the smaller scale fast time
fluctuations. Next we calculate the large scale space-time averaged perturbation field.
Thus, we collect the order ǫ0, ǫ−1, ǫ0 and ǫ1 of the space-time averaged horizontal
momentum equation, the vertical momentum equation, potential temperature equa-
tion and conservation of mass, respectively. With the definitions, 〈ūh〉=uh, 〈θ̄〉=θ,
〈w̄〉=w, 〈p̄〉=p, 〈S̄θ,0〉=Sθ,0, 〈S̄w,−1〉=Sw,−1 and D

Dt
= ∂

∂t
+Uh ·∇Xh

+W ∂
∂z

, we ob-
tain the Large Scale Equations

D

Dt
uh +w(Uh)z =−pXh

−〈w′u′
h〉z

pz =θ−Sw,−1

D

Dt
θ+uh ·∇Xh

Θ+w · ∂
∂z

Θ=Sθ,0−〈w′θ′〉z
divXh

uh +wz =0. (3.15)

Note that since the large scale fast-time vertical velocity fluctuations, ˜̄w, satisfy
˜̄w≡0, the large scale fast-time contributions to the turbulent fluxes in (3.15) always
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vanish. However, the large scale perturbation equations in (3.15) are driven both by
mean source terms and turbulent eddy flux divergence from the fluctuations. Next,
we address how these turbulent fluxes are calculated from the fluctuating equations.

For the upscale eddy fluxes in (3.15), we write

u′
h = 〈u′

h〉+u′′
h, 〈u′′

h〉=0,

w′ = 〈w′〉+w′′, 〈w′′〉=0,

θ′ = 〈θ′〉+θ′′, 〈θ′′〉=0. (3.16)

Then, we have

〈u′
hw

′〉= 〈u′
h〉〈w′〉+〈u′′

hw
′′〉,

〈θ′w′〉= 〈θ′〉〈w′〉+〈θ′′w′′〉, (3.17)

where the right hand sides 〈θ′〉〈w′〉 and 〈u′
h〉〈w′〉 are the stationary turbulent eddy

fluxes and the terms 〈u′′
hw

′′〉 and 〈θ′′w′′〉 are the transient eddy fluxes. In general, for
squall lines the stationary turbulent fluxes in the traveling wave reference frame are
more significant than the transient ones. Then we can make

Assumption 3.2. For propagating traveling waves, only the stationary turbulent eddy

flux in the traveling reference frame is important.

With the above simplifying assumption, we just need to model the stationary
eddy fluxes in the large scale model. There is a simple way to obtain closed equations
for the stationary eddy fluxes. Take equation (3.13) for the small-scale fluctuations
and average in the fast time to obtain generalized steady Taylor-Goldstein equations

Uh ·∇xh
〈u′

h〉+〈w′〉(Uh)z =−∇xh
〈p′−1〉

Uh ·∇xh
〈θ′〉+〈w′〉Θz = 〈S′

θ,−1〉
Uh ·∇xh

〈w′〉=−〈p′−1〉z −〈S′
w,−1〉+〈θ′〉

divxh
〈u′

h〉+〈w′〉z =0. (3.18)

Thus, with Assumption 3.2, the solution of the steady equations in (3.18) can be
found and utilized to compute 〈θ′〉〈w′〉 and 〈u′

h〉〈w′〉 as needed in the stationary eddy
fluxes. An example is illustrated in section 4.

3.2. Specialization to 2-D. In this subsection, we specialize the 3-D multi-
scale squall line model (3.15) and (3.13) to the 2-D case, since the 2D version is much
simpler and already contains the main feature of the squall line. We assume Uh =
(Ū(z),0), Θ=z, and everything is a function of x and z only. The direct simplification
gives us the following equations.

A) Small Scales

u′τ + Ūu′x +w′Ūz =−(p′−1)x

w′
τ + Ūw′

x =−(p′−1)z +θ′−S′
w,−1

θ′τ + Ūθ′x =−w′+S′
θ,−1

u′x +w′
z =0 ū′,w̄′, θ̄′ =0. (3.19)
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B) Large Scales

D

Dt
u+wŪz =−pX −〈w′u′〉z

pz =θ− S̄w,−1

D

Dt
θ=−w+ S̄θ,0−〈w′θ′〉z

uX +wz =0, (3.20)

with D
Dt

= ∂
∂t

+ Ū(z) ∂
∂X

.

Note that the small scale equation is now a forced non-hydrostatic time-dependent
Taylor-Goldstein Equation. Also, the large scale equation in (3.20) is a forced hydro-
static Taylor-Goldstein equation with essentially the same structure but forced by
turbulent fluxes from the small scales. These equations display yet another example
of self-similarity across scales in stratified flows [32]. The steady state solution of the
small scale equations gives us the necessary information for the large scale models
under Assumptions 3.1 and 3.2, which we assume here. In section 4, we illustrate how
to solve these equations numerically.

3.3. Comparison with simpler multi-scale models. In [26], Klein and
Majda studied scale interaction in the atmosphere involving moist physics, and devel-
oped multi-scale models for mesoscale organized convection. Two spatial scales (the
same as ours here) and the single time scale ([t]=15 min) are explored there. Repeat-
ing those ideas, but replacing the active moisture effects by source terms as in (3.9),
the following multi-scale models are obtained under the weak temperature gradient
(WTG) and low Froude number assumptions. (A similar ansatz is used without the
large scale zonal shear ǫ−1Uh, ǫ−1Θ, etc as in (3.8) and (3.9).)

Small Scales

θ′ =S′
w,−1

w′ =S′
θ,−1

Du′
h

Dt
=−∇hp

′+(w′u′
h)z

divxh
u′

h +w′
z =0. (3.21)

Large Scales

∂ūh

∂t
=−∇Xp̄−(w′u′

h)z

p̄z = θ̄− S̄w,−1

∂θ̄

∂t
=−w̄+ S̄θ,0−(w′θ′)z

divXh
ūh + w̄z =0. (3.22)

In (3.21), the advective derivative is given by D
Dt

= ∂
∂t

+(ūh +u′
h) ·∇xh

+w′ ∂
∂z

.
Comparing the large scale equations (3.22) with our large scale model (3.15), we

notice that if we assume Uh =0 and Θ=z, those two models are exactly the same.
Because there are no Uh and Θ in the ansatz used to derive these models, the above
assumption is natural. Hence we can view our large scale model (3.15) as an extension
of (3.22). The small scale models (3.21) and (3.13) are a little different, as these are
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derived with different time scales. But there are also some connections between them.
Also we first assume Uh =0 and Θ=z in (3.13). Then the first and second equations
of (3.21) are identical to the steady solution in (3.18) with p′−1≡0. The momentum
equation has a different form due to the different time scale used. However, for a
two-dimensional flow field u′

h =(u′(x,z,t),0) the horizontal momentum equation in
(3.21) is trivially satisfied and the equations in (3.21), (3.22) are exactly the limit of
the large scale 2-D steady state equations in section 3.2 with Ū ≡0 and Θ≡z.

Consider the reduced asymptotic equations in (3.21) and (3.22) in 2-D; they
have the advantage that they are readily solved explicitly for (u′(x,z,t),w′(x,z,t)),
so that the nonlinear momentum equation in (3.21) is trivially satisfied [2, 32, 37].
Earlier studies of convective momentum transport (CMT) have emphasized the im-
portance of wave tilts for upscale momentum transport in squall lines [39, 40]. In
this small scale model, there is a balance (w′ =S′

θ,−1) between the vertical veloc-
ity w′ and the potential temperature source S′

θ,−1. For the two-dimensional (x-z)
setup, we consider a heat source with two phase-lagged baroclinic modes S′

θ,−1 =

kcos[kx−wt]
√

2sin(z)+αkcos[k(x+x0)−ωt]
√

2sin(2z) as a simple model for a tilted
wave. Two key parameters here are α, the strength of the second baroclinic heating,
and x0, the lag between the heating in the two vertical modes. We can then compute
the vertical and zonal velocities of the small scale solution of (3.21) by the WTG
balance w′ =S′

θ,−1 and the continuity equation u′x +w′
z =0:

u′(x,z,t)=−sin[kx−wt]
√

2cos(z)−2αsin[k(x+x0)−ωt]
√

2cos(2z)

w′(x,z,t)=kcos[kx−wt]
√

2sin(z)+αkcos[k(x+x0)−ωt]
√

2sin(2z).

Then, the eddy flux divergence is given by

〈w′u′〉z =
3

2
αksin(kx0)[cos(z)−cos(3z)].

Note that a third vertical baroclinic mode is generated. If either α or x0 is zero, no
eddy flux is generated. Hence both phase lags and wave tilts are important for the
upscale momentum transport. Here in our new multi-scale squall line models, as we
will see soon in section 4, there is no such requirement of wave tilts to obtain upscale
momentum transport. Heating alone plus shear creates tilt and upscale transports
automatically.

The large scale equations in (3.22) are the forced hydrostatic linear gravity wave
equations. These equations can be readily solved explicitly by vertical separation of
variables [30] for the known source terms and small scale turbulent fluxes. In the
present 2-D setting, the small scale model described above provides an elementary
model for calculating the turbulent fluxes. However, despite their simplicity, these
large scale equations fail to capture the advection by the large scale flow, unlike the
new models developed here.

4. Upscale transports in squall lines

Here we present mathematical formulations of the multi-scale squall line equations
from section 3 which lead to simple numerical algorithms. We demonstrate that the
large scale model can capture the main large scale effect of the squall line simulations
presented in section 2. We also show some simple numerical tests for the small scale
model alone, which show that upright heating plus shear alone can create nonzero
eddy fluxes without any small scale phase lagged heating.
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4.1. Vorticity stream formulation and numerical methods. First, we
refer to the 2D MSSLM from section 3.2. For the small scale model (3.19), we first
introduce a stream function

(u′, w′)=(−ψ′
z, ψ

′
x) (4.1)

and vorticity ω′

ω′≡−u′z +w′
x =ψ′

xx +ψ′
zz =∆ψ′. (4.2)

Taking the curl of (3.19) results in the Vorticity Stream Form (VSF)

ω′
τ +Uω′

x−w′Uzz =θ′x−(S′
w,−1)x

θ′τ +Uθ′x =−w′+S′
θ,−1

∆ψ′ =ω′ (u′, w′)=(−ψ′
z, ψ

′
x), (4.3)

by using the fact w′
xx +w′

zz =∆w′ =∆ψ′
x =ωx.

For simplicity, a periodic domain in the small scale variable x is used. A natural
approach to solve the small scale equation in (3.19) numerically is to solve (4.3) by
separation of variables in x, i.e., ω′, θ′, ψ′, and the source terms are expanded via

f(x,z)=
∑

|k|≤N

f̃k(z)eikx, k is an integer.

Time-dependent decoupled single space dimensional, linear ODE’s are obtained, which
are easy to solve.

If we assume that

ω′(x,z,t)=
∑

|k|≤N

ω̃k(z,t)eikx, ψ′(x,z,t)=
∑

|k|≤N

ψ̃k(z,t)eikx,

θ′(x,z,t)=
∑

|k|≤N

θ̃k(z,t)eikx,

and

S′
w,−1 =

∑

|k|≤N

S̃k
w(z,t)eikx, S′

θ,−1 =
∑

|k|≤N

S̃k
θ (z,t)eikx,

we have

∂

∂t
ω̃k(z,t)+ ikUω̃k− ikψ̃kUzz = ikθ̃k− ikS̃k

w

∂

∂t
θ̃k(z,t)+ ikUθ̃k =−ikψ̃k + S̃k

θ . (4.4)

ψ̃k is calculated by solving the elliptic equation

(
ψ̃k(z,t)

)
zz
−k2ψ̃k(z,t)= ω̃k, (4.5)

with given boundary conditions as discussed below.
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Equation (4.4) can then be easily solved for each wave number k. We then collect
ω̃k(z,T ) and θ̃k(z,T ) at stopping time T in Fourier space and transfer them back into
physical space, where u and w can be computed based on them.

A periodic boundary condition is used in the horizontal direction, hence the sepa-
ration of variables method can be used. In the z direction, we assume w′ =0 on z=0,
hence

w′|z=0 =0 ⇔ w̃(0,t)=0.

On the other boundary, we use a far-field radiation boundary condition when z→∞.
Following [1], we have the radiation boundary condition

w′
z +kw′ =o

(
1

z

)
, z→∞,

for each wave number k. Hence, one possible boundary condition is

(
∂

∂z
+k

)
w′ =0. (4.6)

We refer to [1] for more details about these radiation boundary conditions.
A similar strategy is used for the large scale models in (3.20) from section 3.2.

Because ω=−uz +ǫwX , the term −uz is the leading order component of the vorticity
equation. Thus as in the above, we take the equation for uz

∂

∂t
uz +U(z)uXz +wUzz =−pXz −(w′u′)zz

pXz =θX −(Sw,−1)X

D

Dt
θ=−w+Sθ,0−(w′θ′)z

uX +wz =0, (4.7)

and eliminate the pressure to get Vorticity Stream Form (VSF)

∂

∂t
uz +U(z)(uz)X +wUzz =−θX +(Sw,−1)X −(w′u′)zz

∂

∂t
θ+U(z)θX =−w+Sθ,0−(w′θ′)z

(uz)X +wzz =0. (4.8)

Comparing these equations with the VSF for small scale models (4.3), we can find
those two have something in common. Actually if we make the substitution ω=−uz in
(4.8), these two VSFs share the same left hand side, and the only difference comes from
the source terms. A nice version of self-similarity [32] on mesoscales and microscales
is observed for these equations.

Once again, with this formulation the large scale equations (3.20) can be solved
easily by separation of variables in X “spectrally” as below (4.3). We then have

∂

∂t
w̃k

zz(z,t)+ ikUw̃k
zz − ikw̃kUzz =−k2θ̃k +k2S̃k

w + ik(w̃′u′)k
zz

∂

∂t
θ̃k(z,t)+ ikUθ̃k =−w̃k + S̃k

θ −(w̃′θ′)k
z , (4.9)
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where w̃k is calculated by solving the elliptic equation

(
w̃k(z,t)

)
zz

= w̃k
zz(z,t). (4.10)

Consistent with the self-similarity we observed above, the spectral form of these equa-
tions has a similar structure, as we can observe from (4.3) and (4.9). The only differ-
ence comes from the definition of vorticity under two scales: ω=−uz in the large scale
model and ω=−u′z +w′

x in the small scale one. Hence the elliptic equation (4.10) can
be viewed as the one for small scale (4.5) with k=0. Similar boundary conditions are
employed, with k=0 in equation (4.6). Therefore, the same numerical methods can
be used to solve these equations.

4.2. Large scale effect of mean heating. We are solving the large scale
model (4.8) only to mimic a squall line experiment. In this illustration, we show that
this model can qualitatively capture some features of the large scale effect of the squall
line. Since we are interested in only qualitative changes here, we solve (3.20) without
the changes in density with height, which are utilized in section 2.

The same background shear with a=1, as shown in (2.5), is used. Now we
need four input variables in (4.8): the source term Sθ,0, Sw,−1, and the eddy fluxes

〈w′θ′〉z and 〈w′u′〉z. First, the source term Sw,−1 is much smaller and less important,
compared with Sθ,0, since in acceleration units of 10 m/s per 15 minutes, Sw in
figure 2.8, 2.9, 2.10, has to be order 100 for Sw,−1 to be significant. Also, for this
particular background shear our numerical tests demonstrate that the eddy fluxes
〈w′θ′〉z and 〈w′u′〉z are also relatively smaller than the source term Sθ,0. Hence, Sθ,0

is the dominant term among these. A simple numerical test is that we keep Sθ,0 and
leave the other three source terms zero. Then we can analyze how much of the large
scale flow in the squall line is contributed by the source term Sθ,0. To calculate the
source term Sθ,0, we go back to the 2D CRM squall line test in section 2.3. In the
steady regime of that experiment, we compute the large scale average of the source
term S̄θ and take the time average 〈S̄θ〉 of it over several hours. This 〈S̄θ〉 from the
experiment is the input of the large scale model from Sθ,0 in the large scale model
from (3.20) for our simple test here.

In the numerical test of (3.20), the domain size is set to be 1024 km with 15 km in
vertical direction. We take zero initial conditions for uz, θ, and run this experiment
for a long time to an equilibrium state, with 2 km horizontal and 0.25 km vertical
resolution. The numerical solution u can then be obtained through uz. It is shown
in the top left of figure 4.1. Note that from ansatz (3.8), we know that the spatial-
temporal average of the horizontal velocity is

uǫ = ǫ−1U+u, (4.11)

where we represent the left hand side by uǫ for clarification. What we show in figure
4.1 is actually the velocity perturbation u on the right hand side. We want to compare
this u with the corresponding large scale velocity perturbation obtained through the
2D CRM simulation in section 2.3, which is shown in the top right of figure 4.1. Note
that the velocity shown in the top right of figure 2.4 is the total velocity uǫ on the left
hand side of (4.11), and the velocity shown in the top right of figure 4.1 is the large
scale velocity perturbation u=uǫ−ǫ−1U . We also repeat the experiment with weaker
background shears: a=0.8 and 0.5. Similarly, we collect Sθ from the corresponding
CRM tests as in section 2.3. The numerical results are shown in the middle and
bottom parts of figure 4.1.
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Comparing the left three figures with the right three of figure 4.1, we can observe
similar squall line structure by eye. We also notice that in the area far from the
center of the squall line and near the boundary, the qualitative agreement between
them is not very good. We believe this is due to the periodic boundary condition we
used, where the “shock like” jump updraft is aliased to a periodic domain which is
not all that large. In the 2D CRM simulation, an open lateral boundary condition is
employed. From this reason, we cannot expect the same structure near the boundary.
We concentrate on the area near the center of squall line, and compute the correlation
between them. The horizontal domain from -256 km to 256 km is considered, and the
correlation between the large scale horizontal velocity u of the 2D CRM simulation and
this test is 0.7573, 0.7034 and 0.6346 for the three cases a=1, 0.8 and 0.5 respectively.
From these, we also conclude that this simple test captures some main large scale
effects of this squall line despite ignoring density changes with height. Of course
another simple test is to add models for the other three source terms and include
density changes, then check if they create an improved correlation with the CRM
solution. We leave this for further research. The interested reader should consult [6,
28] for other physically interesting solutions of the hydrostatic forced Taylor-Goldstein
equations.

4.3. The small scale model and upscale transports. The small scale
model (4.3) is solved in this subsection. We show that simple vertical heating alone
plus shear creates nontrivial upscale transports automatically without any small scale
tilts in the heating in contrast to the model in section 3.3.

We use the same large scale background shear with a=1, as shown in (2.5). One
critical issue to set up such an experiment is how we define the source term S′

θ,−1 and
(S′

w,−1)x. For simplicity, we assume that the source term (S′
w,−1)x is zero in this test

for the same reason explained before since it is much weaker anyway. The heating
S′

θ,−1 is defined as

S′
θ,−1 =eik(x−ct)Q0(z),

where k= 2π
L

and c=0 is taken. Following the plots of S′
θ shown in the squall line

simulation (figure 2.8, 2.9 and 2.10), we define Q0(z) as

Q0(z)=

{
b sin(πz/0.4) if z<0.4,
0 otherwise,

and b=1 is taken in this experiment. A plot for Q0(z) is shown in figure 4.2. We
take a zero initial condition for ω′, θ′, and run this experiment for a long time to
an equilibrium state. The domain size is taken to be 51.2km with 15km in vertical
direction.

In figure 4.3, we show some numerical results obtained after the steady state is
reached. We also repeat the test with different background shears a=0.8 and 0.5 in
(2.5). Note that the main connection between the small scale model in (3.19) and
large scale model (3.20) is through the eddy flux terms 〈w′θ′〉z and 〈w′u′〉z. Hence

we utilize Assumption 2 and plot the flux terms 〈w′〉〈θ′〉 and 〈w′〉〈u′〉 for these three
tests in figure 4.4, where we can clearly observe that a tilt has been generated in these
fluxes. As we mentioned in section 3.3, earlier studies emphasize the importance of
wave tilts for upscale momentum transport, and now we find out that here the shear
itself produces the tilt, which is the important effect passed to the large scale model
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Fig. 4.1. The contours of horizontal velocity u. Top: Test with background shear a=1; Middle:
Test with background shear a=0.8; Bottom: Test with background shear a=0.5; Left: Velocity from
the large scale test; Right: Velocity from the CRM simulation. Note: 1, the units for the x-axis
and height are both km in these plots, rather than the non-dimensional units; 2, a solid contour line
represents positive value and a dashed one represents negative value.

in the squall line. Also notice that the strength of these upscale fluxes diminishes
with a.

The plots for the eddy flux terms (〈w′〉〈θ′〉)z and (〈w′〉〈u′〉)z are also shown in
figure 4.5. They demonstrate that background shears of the same structure generate
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Fig. 4.2. Plot of Q0(z).

the eddy fluxes with the similar structure with amplitude diminishing with a. The
main forcing from eddies occurs around 2–4 km high. The eddy momentum flux is
associated with acceleration of the shear flow at these levels of 2–4 km; this is the
same effect happening qualitatively in the simulations from section 2 at levels of 2-4
km, as the reader can surmise by recalling the calculated eddy momentum flux in the
lower left hand panel of Figures 2.8, 2.9, 2.10. This acceleration of the large scale flow
is a typical example of the upscale transfer in squall lines of moist available potential
energy to the large scale horizontal momentum [27, 39, 40, 47]. The strength of the
eddy forcing decays as the shear amplitude becomes smaller.

5. Concluding discussion

In section 2 we introduced squall lines to the applied mathematics community as
multi-scale turbulent traveling waves in the atmosphere and illustrated a surprising
new self-similarity principle. New multi-scale asymptotic models that are appropri-
ate for squall lines were developed in section 3. The new mathematical and physical
phenomena in the resulting multi-scale equations were developed in section 4 as well
as a simple connection with the squall line simulations in section 2. There are re-
markable important three-dimensional effects in squall lines both in nature and from
high resolution numerical simulations involving the effects of mean shear transverse
to the propagating turbulent front [19]; there is no existing theory for this behavior.
The 3-D version of the new multi-scale models developed in section 3 provides an
important starting point for new theories to understand these effects.

As mentioned in the introduction, a major stumbling block in the accurate pre-
diction of weather and short-term climate is the accurate parameterization of moist
convection in numerical models [8, 40]. Recently, an alternative strategy, called su-
perparametrization [11, 12, 13, 44], for including the effects of moist convection in
numerical models through explicit turbulent fluxes calculated from a cloud-resolving
model has been developed. Superparameterization blends conventional parameteriza-
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Fig. 4.3. The contours of the variables from the small scale squall-line test. Top left: Horizontal
velocity u′; Top right: Vertical velocity w′; Bottom left: Potential temperature θ′; Bottom right:
Vorticity ω′. Note: 1, the units for the x-axis and height are both km in these plots, rather that the
non-dimensional units; 2, a solid contour line represents positive value and a dashed one represents
negative value.

tion on a coarse mesh with detailed cloud-resolving modeling on a finer mesh with an
imposed scale gap. This method has yielded promising new results regarding tropical
intraseasonal behavior [11, 12, 13, 23], but a systematic formulation and analysis for
such superparameterization strategies that might lead to algorithmic improvements
are not yet available despite interesting progress in this direction [13, 14, 16, 22]. Sys-
tematic asymptotic models which make links both with superparameterization and
heterogeneous multiscale methods (HMM) [7] but require low Froude numbers have
been developed [31]. Recently, the authors with Wojciech Grabowski have developed
a new sparse space-time efficient algorithm for superparameterization on mesoscales
[48] which exploits small scale self-similarity even though there is a scale gap. The new
asymptotic models developed in section 3 of this paper can be applied directly to these
algorithms to provide basic understanding of superparameterization as a numerical
algorithm. The authors plan to do this in the near future.
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Fig. 4.4. The contours of the variables from the small scale squall-line test. Left: The flux
〈w′〉〈θ′〉; Right: The flux 〈w′〉〈u′〉; Top: Experiment a=1; Middle: Experiment a=0.8; Bottom:
Experiment a=0.5. Note: 1, the units for the x-axis and height are both km in these plots, rather
than the non-dimensional units; 2, a solid contour line represents positive value and a dashed one
represents negative value.

Appendix A. Non-dimensionalization of the equations. In this appendix,
we briefly present the derivation of the non-dimensionalized equations. We start from
the governing anelastic equations with the bulk, warm-rain parameterization of moist
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Fig. 4.5. The contours of the eddy flux terms. Left: The flux (〈w′〉〈θ′〉)z; Right: The flux

(〈w′〉〈u′〉)z; Top: Experiment a=1; Middle: Experiment a=0.8; Bottom: Experiment a=0.5. Note:
the units for the x-axis and height are both km in these plots, rather than non-dimensional units.

thermodynamics

Duh

Dt
=−∇hp,

Dw

Dt
=−∂p

∂z
−g ρ

′

ρ0
+(ǭqv −qr−qc),

Dθt

Dt
=L

γ−1

γ

θ0
p0

(Cd−Er),

∇h ·uh +ρ−1(ρw)z =0, (A.1)
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and the cloud dynamic equations are given by

Dqv
Dt

=−Cd +Er,

Dqc
Dt

=Cd−Ar,

Dqr
Dt

− 1

ρ

∂

∂z
(ρVtqr)=Ar−Er, (A.2)

with

D

Dt
=
∂

∂t
+uh ·∇h +w

∂

∂z
. (A.3)

Here uh =(u,v) is the horizontal velocity, w is the vertical velocity, p is pressure,
g is the acceleration of gravity, θ is the potential temperature, qv, qc, qr are water
vapor, cloud water, and rain water mixing ratios, respectively, and γ is the isentropic
exponent. ǭ+1 is the ratio of gas constants of water vapor and dry air, L denotes the
latent heat of condensation, p0 =105kgm−2, and ρ0 =1kgm−3. We assume

θt =θ0 +θbg(z)+θ,

θ0 =300K,

dθbg

dz
=
N2(z)θ0

g
,

ρ′

ρ0
=− θ

θ0
,

where

N(z)=−g
ρ

dρ

dz

is the Brunt-Väisälä buoyancy frequency. Thus the system (A.1) becomes

Duh

Dt
=−∇hp,

Dw

Dt
=−∂p

∂z
+g

θ

θ0
+(ǭqv −qr−qc),

Dθ

Dt
+w

dθbg

dz
=L

γ−1

γ

θ0
p0

(Cd−Er),

∇h ·uh +ρ−1(ρw)z =0. (A.4)

We introduce the following non-dimensional units

u=U û, w=Wŵ, θ=Θθ̂,

x=Hx̂, z=Hẑ, t=T t̂,

p=P p̂, N(z)=N0N̂(z),

qv = q∗vsq̂v, qc = q∗vsq̂c, qr = q∗vsq̂r,

Cd =
q∗vs

T
Ĉd, Er =

q∗vs

T
Êr, Ar =

q∗vs

T
Âr,
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with

U =W =
H

T
, Θ=

N0θ0H

gT
,

q∗vs =

(
ρv,sat

ρd

)

ref

, P =
WH

T
=
H2

T 2
. (A.5)

Substituting these non-dimensional units in (A.4), we obtain

D̂û

Dt̂
=−∇̂hp̂, (A.6a)

D̂ŵ

Dt̂
=−∂p̂

∂ẑ
+N0T θ̂+

T 2

H
q∗vs(ǭq̂v − q̂r − q̂c), (A.6b)

D̂θ̂

Dt̂
+
H

Θ

N2θ0
g

ŵ=
q∗vs

Θ
L
γ−1

γ

Θθ̂0
P p̂0

(Ĉd− Êr), (A.6c)

∇̂h · û+ρ−1(ρŵ)bz =0, (A.6d)

Dq̂v

Dt̂
=−Ĉd + Êr, (A.6e)

Dq̂c

Dt̂
= Ĉd−Âr, (A.6f)

Dq̂r

Dt̂
− 1

ρ

∂

∂ẑ
(ρV̂tq̂r)= Âr− Êr. (A.6g)

Note that the coefficient of ŵ in (A.6c) becomes

H

Θ

N2θ0
g

=
N0T

Θ

N0θ0H

gT
N̂2 =

N0T

Θ
ΘN̂2 =N0TN̂

2(z). (A.7)

We now fix the reference magnitudes as following

H=10km=104m,

T =15min=900s,

N0 =10−2s−1,

Θ=
Nθ0H

gT
=

0.01×300×104

10×900
≃3K,

P =
WH

T
=
H2

T 2
=100,

q∗vs =0.01,

γ=1.4.

Thus, we can compute the coefficients in (A.6)

N0T =0.01×900≃10= ǫ−1,

T 2

H
q∗vs =

9002

104
×0.01≃1,

H

Θ

N2θ0
g

=N0TN̂
2(z)≃ ǫ−1N̂2(z),

q∗vs

Θ
L
γ−1

γ

Θθ̂0
P p̂0

(Ĉd− Êr)≃ ǫ−1L̂
θ̂0
p̂0

(Ĉd− Êr), (A.8)
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where L̂ is order 1 latent heat prefactor, and ǫ=0.1. Therefore, the system (A.6)
becomes (the hat is dropped for convenience)

Duh

Dt
=−∇hp

Dw

Dt
=−pz +ǫ−1θ+(ǭqv −qr−qc)

Dθ

Dt
+N2(z)ǫ−1w= ǫ−1L

θ0
p0

(Cd−Er)

divhuh +ρ−1(ρw)z =0

Dqv
Dt

=−Cd +Er

Dqc
Dt

=Cd−Ar

Dqr
Dt

− 1

ρ

∂

∂z
(ρVtqr)=Ar −Er. (A.9)
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