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FILTERING A NONLINEAR SLOW-FAST SYSTEM WITH STRONG
FAST FORCING∗

BORIS GERSHGORIN† AND ANDREW MAJDA‡

Abstract. A three-mode nonlinear slow-fast system with fast forcing is studied here as a model
for filtering turbulent signals from partial observations. The model describes the interaction of two
externally driven fast modes with a slow mode through catalytic nonlinear coupling. The special
structure of the nonlinear interaction allows for the analytical solution for the first and second order
statistics even with fast forcing. These formulas are used for testing the exact Nonlinear Extended
Kalman Filter for the slow-fast system with fast forcing. Various practical questions such as the
influence of the strong fast forcing on the slowly varying wave envelope, the role of observations, the
frequency and variance of observations, and the model error due to linearization are addressed here.
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1. Introduction
The growing need for fast and accurate weather and climate prediction demands

computationally inexpensive and effective filtering strategies, most of which are based
on the classical Kalman Filter (KF) [1, 5, 7, 14, 6, 10, 11, 2, 3, 27, 4, 15, 21]. Filtering
incorporates the dynamical forecast of the signal with full or partial observations in
order to obtain the best least-squares approximation of the true signal. The dynamics
of the studied signals is turbulent, with multiple time scales. A typical example is an
atmosphere model where a slow advective vortical Rossby wave is nonlinearly coupled
with the fast inertia-gravity waves [28, 9, 20]. A more complicated situation occurs
in the tropics when the intermediate mixed Rossby-gravity and Kelvin waves are also
present [29]. Moreover, the effect of tropical moist convection shows up as a strong
forcing of the gravity waves [18, 24, 25, 30, 31, 32]. The bursts of strong fast forcing
occur spontaneously and only last for short times. Moist convection that drives the
fast gravity waves has a drastic effect on the dynamics of the atmosphere and, there-
fore, consideration of models that incorporate fast forcing is crucial for the problems
of medium-range weather prediction. Filtering of atmospheric signals plays an impor-
tant role in weather forecasting. How do the fast modes influence the slow dynamics,
which is given by both the slow advective wave and the slowly varying envelope of the
fast gravity waves? This is one of the central questions of filtering slow-fast systems.
Another important issue for filtering atmospheric signals is that observations of the
quantities such as temperature, pressure, or velocity mix slow and fast waves. Very
often, one is faced with situations when the number of available observations is much
smaller than the number of the state variables in the system: the partial observa-
tions case [7, 6, 20]. Moreover, most models that describe the atmosphere and ocean
dynamics contain model errors due to inappropriate parametrization.

In this paper, we study a nonlinear three-dimensional multiple time test model
with strong fast forcing. This model was first introduced in [13] where filtering strate-
gies of the slow-fast systems were studied in detail. One of the important properties
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of the present test model that was omitted in [13] is the presence of the strong fast
forcing that adds effects mimicking moist convection in the model. The advantage of
using this low dimensional test model for filtering is that on the one hand it is simple
enough to have exactly solvable first and second order statistics needed for the dy-
namic forecast in the Nonlinear Extended Kalman Filter (NEKF). On the other hand,
the test model carries important properties of the realistic systems such as multiple
time scales, nonlinear non-Gaussian dynamics, and strong fast forcing.

The test model [13] is given by a three-dimensional system of stochastic differential
equations for the slow real mode u1 and complex fast mode u2

du1 =(−γ1u1 +f1(t))dt+σ1dW1, (1.1)

du2 =
(

(−γ2 + iω0/ε+ ia0u1)u2 +f2(t)
)

dt+σ2dW2, (1.2)

where γ1, γ2 and σ1, σ2 are damping and white noise coefficients, respectively, that
represent the interaction of the model with the unresolved modes [28, 23, 26]; the
small parameter ε measures the ratio between the deterministic time scales of the fast
and slow modes, a0 is the nonlinearity coefficient, and f1 and f2 represent the forcing
of the slow and fast modes, respectively. The structure of the model is motivated
by the studies of geophysical systems that demonstrate that the central feature of
the slow-fast interactions are slow vortical mode, represented by u1 here, and fast
gravity waves, represented by u2 here. Moreover, the tropical moist convection as
another major dynamical property of the system is represented by the strong fast
forcing f2. The fast forcing has a direct impact on the modulation of the fast wave
amplitude |u2|. Moreover, filtering mixes the fast modes with the slow mode through
observations and, therefore, an indirect impact of the fast forcing can also occur on
the slow mode.

In our study, we compare the exact NEKF with the linear KF with model error.
We show that for small values of observation time and observation noise, the NEKF
performs better than the linear KF with model error. However, as the observation
time and/or observation variance increases, we obtain a surprising result: the linear
KF performs better than the NEKF on the slowly varying amplitude |u2| of the fast
wave. We investigate this phenomenon and study the range of parameters when it
arises.

In section 2, we elaborate on the setup of the model and the structure of the
fast forcing, in particular. There, we also give the exact solution and exactly solvable
statistics by generalizing the exact solutions of the Kubo oscillator [19, 22]. In section
3, we study filtering strategies for the slow-fast system and present the results of filter
performance. There, we also address the issue of the model error due to linearization.
We end the paper with the concluding remarks.

2. Exact solution and exactly solvable statistics

2.1. The nonlinear test model with fast forcing. As discussed in the
introduction, we consider the system of a slow real mode u1 interacting with a fast
complex mode u2. The evolution of this system is given by a system of stochastic
differential equations

du1 =(−γ1u1 +f1(t))dt+σ1dW1, (2.1)

du2 =
(

(−γ2 + iω0/ε+ ia0u1)u2 +f2(t)
)

dt+σ2dW2. (2.2)

Here, γ1 and γ2 are the damping parameters of the modes and σ1 and σ2 represent the
strength of the white noise forcing of the corresponding modes. The small parameter
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ε characterizes the time scale separation between the slow and the fast modes, ω0

is a deterministic frequency of the fast mode in the units of ε, and a0 represents
the strength of nonlinear interactions between the modes. System (2.1) and (2.2) is
considered with the initial values

u1(t0)=u10, (2.3)

u2(t0)=u20, (2.4)

which are independent Gaussian random variables with the known parameters: 〈u10〉,
〈u20〉, Var(u10), Var(u20), Cov(u20,u10), Cov(u20,u

∗
20). As in [13], we choose an os-

cillatory forcing of the slow mode f1(t)=Asin(ωt). On the other hand, the forcing
f2 of the fast mode u2 is given by a piecewise constant function of time. Moreover,
regions where f2 6=0, which represent the bursts of external activity in the fast mode,
are alternated with regions where f2 =0 and the fast mode is not driven by external
forcing. Mathematically, we write

{

f2(t)= cj for t∈ [t2j ,t2j+1],

f2(t)=0 for t∈ [t2j+1,t2j+2],
(2.5)

where cj are generally non-zero constants. We model the starting times t2j of the
activity bursts in f2 to be distributed exponentially with the parameter λ

Prob(t2j+2− t2j <t)=1−e−λt. (2.6)

The time intervals [t2j ,t2j+1] where f2 6=0 are chosen to be of the same length τd. Fur-
thermore, since we want these intervals to be non-overlapping, we choose only those
t2j+2 that satisfy t2j+2>t2j+1 = t2j +τd. This restriction makes the distribution of
the time gaps between the sequential bursts in f2 different from the pure exponential
distribution with mean 1/λ. However, if the length τd of each burst is much smaller
than 1/λ, the deviation of the distribution of the t2j+2 from the exponential distribu-
tion is not significant and we can still estimate the average length between the bursts
as 1/λ. The size of the amplitude cj of the fast forcing f2 is chosen to be an inde-
pendent random variable uniformly distributed on the interval (−B,B). Note that
various values of the parameters λ, τd, and B lead to various regimes of fast forcing,
and, therefore, to different dynamics of the slow-fast system. In the bottom panel of
figure 2.1, we demonstrate a sample of the fast forcing as a function of time. There,
the values of the parameters are: B=50, λ=0.2, τd =0.6. One of the considerations
of choosing the parameters of the fast forcing can be the assumption about the mag-
nitude of the waves u1 and u2 — they can be either of the same order or one can have
larger amplitude than the other. Next, we discuss the exact path-wise solution for u1

and u2.

2.2. Path-wise solution. The system (2.1) and (2.2) can be solved exactly.
The solutions, u1 and u2, obtained in this fashion, provide a signal that will be filtered.
Using an integrating factor, we find the slow mode

u1(t)=u10e
−γ1(t−t0) +F1(t0,t)+σ1

∫ t

t0

e−γ1(t−s)dW1(s), (2.7)

where

F1(t0,t)=

∫ t

t0

f1(s)e
−γ1(t−s)ds. (2.8)



70 A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS

Now, we solve equation (2.2) to obtain the fast mode

u2(t)=e−γ2(t−t0)ψ(t0,t)u20 +

∫ t

t0

e−γ2(t−s)ψ(s,t)f2(s)ds

+σ2

∫ t

t0

e−γ2(t−s)ψ(s,t)dW2(s), (2.9)

where

ψ(s,t)=eiJ(s,t),

J(s,t)=

∫ t

s

(ω0/ε+a0u1(s
′))ds′ =(t−s)ω0/ε+a0

∫ t

s

u1(s
′)ds′

=JD(s,t)+JW (s,t)+b(s,t)u10, (2.10)

where the deterministic part is

JD(s,t)=(t−s)ω0/ε+a0

∫ t

s

F1(t0,s
′)ds′,

the noisy part is

JW (s,t)=σ1a0

∫ t

s

ds′
∫ s′

t0

eγ1(s
′′−s′)dW1(s

′′),

and the prefactor of u10 is

b(s,t)=
a0

γ1

(

e−γ1(s−t0)−e−γ1(t−t0)
)

.

2.3. Examples of trajectories and choice of parameters. Here, we
demonstrate the examples of typical trajectories given by equations (2.7) and (2.9).
In order to calibrate the parameters, we use physical intuition which helped us to
design the slow-fast system (2.1) and (2.2). The invariant measure for this system
without forcing is Gaussian [8] and is given by [13]

p(u1,u2)=

√
2γ1γ2

πσ1σ2
exp

(

− γ1u
2
1

σ2
1

− 2γ2|u2|2
σ2

2

)

. (2.11)

Now, we can choose the parameters for the model in order to control the average
energy. For the case of vanishing forcing, the energy equipartition

Eu1
=ERe[u2] =EIm[u2] (2.12)

yields

σ2
1

γ1
=
σ2

2

2γ2
. (2.13)

According to the assumption of scale separation, the oscillation time of the slow
mode is much longer than the oscillation time of the fast mode. We choose the
slow forcing frequency to be ω=1 and the forcing amplitude to be A=1. We used
the nonlinear parameter a0 =1. Then, the slow mode has the period of the order
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2π. On the other hand, the fast mode has the period of the order T2 =2πε/ω0.
We choose ω0 =1 and ε=0.1, then the fast mode has the period of the order εT2.
Next, we choose the typical decorrelation time that is proportional to the inverse
of the corresponding damping coefficient. We take γ1 =0.09 and γ2 =0.08 such that
T2≪1/γ1 and T2≪1/γ2. Suppose that the average energy of the slow mode is Eu1

=1.
Then in the energy equipartition case, we have σ1 =

√
γ1 =0.3 and σ2 =

√
γ2 =0.4.

However, the parameters for the fast forcing can affect the average energy as well.
We present two situations. In the first case, the fast forcing is chosen so strong that
the amplitude of the fast mode is significantly larger than the amplitude of the slow
mode. This case is more interesting from the academic point of view since it provides
a good test case for the filtering of the strongly forced systems. On the other hand,
in the second case, we consider moderate fast forcing, when the amplitude of the fast
mode is of the same order as the amplitude of the slow forcing. This case is intended
to model the typical realistic situation of the interaction of slow and fast waves.

In figure 2.1, we show the case of strong fast forcing. The parameters of the
fast forcing (panel 5 in figure 2.1), are shown there schematically B=50, λ=0.2, and
τd =0.6. Note the piecewise constant structure of f2. Panel 1 of figure 2.1 shows
the evolution of the slow mode that was computed via equation (2.7). We note a
random structure on the periodic background. Panel 2 of figure 2.1 demonstrates
the highly oscillatory behavior of u2 computed via equation (2.9) with a0 =1, i.e., in
the nonlinear regime. We note the sharp changes in the amplitude of u2 induced by
the bursts of activity in f2. Moreover, we observe how damping results in a gradual
amplitude decrease when f2 stays zero until the next burst (e.g., the segment for
t∈ [30,50] in Panel 2 of figure 2.1). In order to study the effect of nonlinearity, we
show the trajectory of u2 that is computed with the linear version of equation (2.9),
i.e., with a0 =0 (Panel 3 of figure 2.1). We used the same value of the noise W2(t)
for both the nonlinear and linear versions of u2. The linear trajectory also reacts by
sudden increases of the amplitude of u2 when the forcing in the fast mode switches
on. However, we note that the nonlinear trajectory has a larger amplitude on average
when compared to the linear trajectory. However, there are regions where the linear
trajectory has a larger amplitude, such as the region with t∈ [70,90] in Panel 3 of figure
2.1. Therefore, we conclude that both linear and nonlinear trajectories have their
amplitudes amplified by the fast forcing; however, the dynamics of the amplitudes is
different. Panel 4 of figure 2.1 shows the amplitude |u2| of both linear and nonlinear
regimes. Note that filtering of the slowly varying amplitude |u2| of the fast mode as
opposed to the fast mode u2 itself will be one of the problems that will be studied
below since this skill in capturing the envelope is important for applications. We
will find out that under certain conditions, the linear filter with model error actually
performs better on the amplitude |u2| than the exact nonlinear filter. Below, we also
study the effects of using a linear filter with model error.

In order to generate the truth signal we use the following procedure. We choose
the profile of the fast forcing f2 as discussed in section 2.1. We consider any random
Gaussian initial data (2.3) and (2.4) and obtain a realization of the trajectory (u1,u2)
using the exact solutions given by equations (2.7) and (2.9). Note that u1 can be
easily computed since its random part is Gaussian with known statistics. However,
u2 is not Gaussian and its random part depends on the evolution of u1. Therefore,
even if we need the true trajectory only at discrete times with a time step ∆t, we still
need to compute u1 with a much finer resolution with time step h. This fine trajectory
of u1 is then used to compute u2. The integrals in equation (2.9) are approximated
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Fig. 2.1. Panel 1: slow mode u1; panel 2: real part of nonlinear fast mode u2; panel 3: real
part of linear fast mode u2; panel 4: magnitude of linear and nonlinear u2; panel 5: fast forcing f2

with schematic notations for parameters B, λ, and τd.

numerically using the first order accurate quadrature formula for the deterministic
integral

∫ t

t0

g(s)ds≈h
N−1
∑

j=0

g(t0 +jh), (2.14)

and the half-order (in the strong sense [12]) accurate formula for the stochastic integral

∫ t

t0

g(s)dW (s)≈
N−1
∑

j=0

g(t0 +jh)∆Wj , (2.15)

where h=(t− t0)/N is a time step in the equidistant partition of the interval [t0,t]
into N subintervals and ∆Wj is independent Gaussian random variables with mean
0 and variance h.

2.4. Statistics of u1 and u2. The slow mode u1 is Gaussian with mean and
variance given by

〈u1〉= 〈u10〉e−γ1(t−t0) +F1(t0,t), (2.16)

Var(u1)=Var(u10)e
−2γ1(t−t0) +

σ2
1

2γ1

(

1−e−2γ1(t−t0)
)

, (2.17)
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where we used the following two properties of the Ito stochastic integral: (i) the mean
of the Ito stochastic integral is zero and (ii) the Ito isometry formula [12]

〈

(

∫

g(t)dW (t)
)2
〉

=

∫

g2(t)dt, (2.18)

for any deterministic g(t). Next, we obtain the mean of u2 by averaging equation
(2.9)

〈u2〉=e−γ2(t−t0)〈ψ(t0,t)u20〉+
∫ t

t0

e−γ2(t−s)〈ψ(s,t)〉f2(s)ds. (2.19)

We start with the second term in the right hand side of equation (2.19). Since J(s,t)
is Gaussian, using the properties of the characteristic function of a Gaussian random
field we find

〈ψ(s,t)〉= 〈exp(iJ(s,t))〉=exp

(

i〈J(s,t)〉− 1

2
Var(J(s,t)

)

, (2.20)

where

〈J(s,t)〉=JD(s,t)+b(s,t)〈u10〉,
Var(J(s,t))=Var(JW (s,t))+b2(s,t)Var(u10).

Making use of the Ito isometry formula (2.18), we find

Var(JW (s,t))

=−σ
2
1a

2
0

2γ3
1

(

2+2γ1(s− t)+2e−γ1(s+t−2t0)
(

−1−e2γ1(s−t0) +cosh(γ1(s− t))
)

)

.

The integral in the right hand side of equation (2.19) can be approximated numeri-
cally via the quadrature formula (2.14). Moreover, using a special piecewise constant
structure of f2, this integral can be simplified and only computed over the intervals
where f2 6=0. We continue with the first term in the right hand side of equation (2.19).
Using independence of the noise W1(t) of the initial conditions, we obtain

〈u20ψ(t0,t)〉=ψD(t0,t)〈ψW (t0,t)〉〈u20 exp(ib(t0,t))〉, (2.21)

where

ψD(t0,t)=eiJD(t0,t),

〈ψW (t0,t)〉=e−
1

2
Var(JW (t0,t)),

〈u20e
ib(t0,t)u10〉=

(

〈u20〉+ iCov(u20,u10)b(t0,t)
)

eib(t0,t)〈u10〉− 1

2
b2(t0,t)Var(u10).

(2.22)

equation (2.22) is computed via the properties of the characteristic function of a
Gaussian random field. The details of this computation are presented in [13]. Next,
we compute the variance of u2

Var(u2)= 〈u2u
∗
2〉−|〈u2〉|2. (2.23)
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Since |〈u2〉|2 can be found using equation (2.19), we only need to find the correlator
〈u2u

∗
2〉 to compute Var(u2). Using equation (2.9), we find

〈u2u
∗
2〉=e−2γ2(t−t0)〈|u20|2〉+σ2

2

∫ t

t0

e−2γ2(t−s)ds

+

∫ t

t0

ds

∫ t

t0

dr e−γ2(2t−s−r)〈ψ(s,t)ψ∗(r,t)〉f2(s)f∗2 (r)

+

(

e−γ2(t−t0)

∫ t

t0

e−γ2(t−s)〈u20ψ(t0,t)ψ
∗(s,t)〉f∗2 (s)ds+c.c.

)

, (2.24)

where we have used the fact that |ψ|2 =1 and the notation c.c. stands for complex
conjugate. Next, using the definition of ψ(s,t), we find that

ψ(s,t)ψ∗(r,t)=ψ(s,r). (2.25)

The integral in the third term of equation (2.24) is real and, therefore, only the real
part of ψ(s,r) should be considered. After some simplifications, we find

〈u2u
∗
2〉=e−2γ2(t−t0)

(

Var(u20)+ |〈u20〉|2
)

+
σ2

2

2γ2

(

1−e−2γ2(t−t0)
)

+

∫ t

t0

ds

∫ t

t0

dr f2(s)f2(r)e
−γ2(2t−s−r)Re[〈ψ(s,r)〉]

+

(

e−γ2(t−t0)

∫ t

t0

f2(s)e
−γ2(t−s)〈u20ψ(t0,s)〉ds+c.c.

)

, (2.26)

where we used equations (2.20) and (2.21) to find the integrands in equation (2.26).
Here, again we use the piecewise constant structure of f2 and the quadrature for-
mula (2.14) to approximate the integrals. In a similar manner, we find the cross-
covariances of Cov(u2,u1) and Cov(u2,u

∗
2). Since these computations are tedious, we

placed them in the Appendix.

2.5. Analytical formulas and Monte Carlo averaging. In this section,
we demonstrate how the results of the analytical formulas for the statistics of u1 and
u2 match the results of Monte Carlo simulation. We use the ensemble of M =104

members in Monte Carlo averaging. We choose one arbitrary profile of the strong
forcing f2 with the parameters λ=1.3, τd =0.6, and B=50. In figure 2.2, we demon-
strate the time evolution of the various first and second order statistics of u1 and u2

together with the profile of the fast forcing f2. There, the fast forcing f2 has a very
abrupt behavior and the statistics reflect to the bursts of activity in f2 (regions where
f2 6=0) by strong amplitude modulations. We note excellent agreement between the
analytical formulas and Monte Carlo averaging.

2.6. Nongaussianity of u2. One of the main properties of the test model (2.1)
and (2.2) is nongaussianity of the fast mode u2. Here, we show how the statistics of
u2 deviate from the corresponding Gaussian values. Both nonlinear structure (a0 6=0)
and fast forcing (f2 6=0) make it natural to expect nongaussian statistics of the fast
mode u2. As we discussed earlier, the invariant measure of our system is Gaussian.
However, the continuously applied fast forcing f2 prevents the system from converging
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Fig. 2.2. The solid line represents the analytical values of the statistics and circles correspond
to the Monte Carlo averaging. First panel: mean 〈u2〉; second panel: variance Var(u2); third panel:
covariance Cov(u2,u1); fourth panel: covariance Cov(u2,u∗

2); fifth panel: fast forcing f2. Note that
only real parts are shown for the mean and covariance.

to the Gaussian state. In order to detect the deviation from Gaussian statistics, we
measure skewness of the fast mode. For a random variable ξ, the skewness is

skewness(ξ)=

〈

(

ξ−〈ξ〉
)3〉

Var(ξ)3/2
.

For Gaussian ξ, skewness(ξ)=0. Earlier in [13], it was shown numerically that the
system (2.1) and (2.2) without fast forcing (f2≡0) has the skewness and kurtosis [12]
of the fast mode u2 converge to their Gaussian values (0 and 3, respectively) asymp-
totically as time evolves. In figure 2.3, we show evolution of the skewness of Re[u2] for
both f2 6=0 and f2≡0. Note that in the case of a piecewise constant f2, the deviation
of the skewness from zero is very strong and does not vanish as time progresses. On
the other hand, for f2≡0 the skewness is much weaker and approaches zero after the
decorrelation time.

3. Filtering
In this section, we first briefly discuss a general theory of the Nonlinear Extended

Kalman filter (NEKF); then, we demonstrate the performance of the NEKF on the
nonlinear test model with fast forcing.
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3.1. Nonlinear Extended Kalman filter. The linear Kalman filter [1, 5]
is used when the best possible approximation to the truth signal is needed. The
algorithm for finding this optimal approximation incorporates the assumed (linear)
dynamics with the observations of the signal and uses least squares minimization of
the error. Both dynamics and observations are characterized by deterministic and
Gaussian stochastic components. Because of the Gaussian statistics, the dynamics of
the ensemble can be fully described by the propagation of the mean and covariance.
The NEKF is a generalization of the linear KF for nonlinear systems. Similar to
the linear KF, the NEKF only requires the model for propagation of the mean and
covariance. However, due to nonlinear dynamics, the Gaussian ensemble of initial
data may not (and generally does not) stay Gaussian as time progresses, which makes
the NEKF only suboptimal.

Let us introduce the extended Kalman filter algorithm for the test model (2.1)
and (2.2). Suppose that at time tm =m∆t, where m≥0 is an observation time step
index and ∆t is the observation time step, the truth signal is denoted as um, which
is a realization of (u1,u2) computed via equations (2.7) and (2.9). We assume that
um is unknown and we are instead given an observation of the truth signal, which is
a linear transformation of um mixed with some Gaussian noise

vm =Gum +σ0
m, (3.1)

where G is a rectangular matrix of the size q×3 with the number of observations
q={1,2,3}, u=(x,y,z)T ≡ (u1,Re[u2],Im[u2])

T and σ0
m is the observation noise. The
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observation noise is assumed to be unbiased (mean-zero) with covariance matrix R0

of the size q×q. The goal of filtering is to find the filtered signal uf , which is as
close as possible to the original truth signal u. The information that can be used in
filtering is limited to

• the model for dynamical evolution of um,

• the matrix G, and

• the mean and covariance of the Gaussian noise σ0
m.

The Kalman filter [1, 5] consists of two steps: (i) forecasting using the dynamics
and (ii) correcting using observations. Denote the mean and covariance of the filtered
signal at time tm as 〈u〉m|m and Γm|m, respectively. Then the forecast step gives us
the following so called prior values of the mean and covariance at the next time step
tm+1:

〈u〉m|m →〈u〉m+1|m,

Γm|m →Γm+1|m. (3.2)

Note that 〈u〉m+1|m and Γm+1|m depend solely on the prior information up to time tm.
The posterior values of mean and covariance are obtained by utilizing the observations
vm+1 at time tm+1 via the least squares correction method

〈u〉m+1|m+1 = 〈u〉m+1|m +Km+1(〈v〉m+1−G〈u〉m+1|m),

Γm+1|m+1 =(I3−Km+1G)Γm+1|m,

Km+1 =Γm+1|mG
T (GΓm+1|mG

T +R0)−1, (3.3)

where Km+1 is a Kalman gain matrix of the size 3×q and I3 is the identity 3×3
matrix. For the linear forecast model, the posterior distribution is the Gaussian
distribution with the mean and covariance given in equation (3.3). However, in the
nonlinear dynamics, the prior and posterior distributions are not Gaussian. However,
the posterior distribution becomes the initial distribution for the next assimilation
cycle, which we again assume to be Gaussian. We note that Kalman gain Km tells
us how much weight the filter puts on the observations vs prior forecast.

3.2. Observations. In a typical slow-fast system, such as the shallow wa-
ter equations, observation of pressure, temperature, and velocity automatically mixes
the fast and slow components and can corrupt the filtering of the slow component.
Here, we consider exactly the same types of observations that were used by the au-
thors in [13] for the slow-fast system without forcing. In Table 3.1, we present these
prototype observations. According to equation (3.1), observations are defined by the
transformation matrix G and covariance matrix R0. We will consider three different
types of observations with the corresponding matrices G and R0. Here, we assumed
that the components of the observation noise σ0

m are independent mean-zero Gaus-
sian with variances given by R0. Note that observations of types 1 and 2 provide
only partial information about the truth signal. Moreover, even initially independent
slow and fast modes become correlated through the nonlinearity in equation (2.2) and
through mixed observation and equation (3.3). On the other hand the more idealistic
observations of type 3 are studied here to provide a benchmark for observations of
types 1 and 2, which are more practical.

3.3. Linear filter with model error. Now, suppose that the prior forecast
um+1|m is made using the linearized version of the analytical equations that we ob-
tained in section 2. We set a0 =0 in equation (2.2) and thus we introduce the model
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observation type G R0

1
(

1 1√
2

1√
2

)

2r0

2

(

1 1√
2

1√
2

1 1√
2
− 1√

2

)

(

2r0 0
0 2r0

)

3





1 1√
2

1√
2

1 1√
2
− 1√

2

1 0 0









2r0 0 0
0 2r0 0
0 0 r0





Table 3.1. Three type of observations given by equation (3.1) via the transformation matrix G

and covariance matrix R0.

error. As was studied in [13] for the slow-fast system without fast forcing, in the long
run the correlation between the slow wave u1 and fast wave u2 vanishes and so does
the effect of nonlinear coupling through a0. On the other hand, with fast forcing, the
nongaussianity is very strong and the model error due to linearization can be larger
than for the case of no fast forcing. Below, we will study the performance of the filter
with model error. In particular, we will be interested how the linear filter performs
on the slow mode and the slowly varying amplitude |u2| of the fast mode since often
only the slow dynamics of the system is important.

The advantage of using a linear model as an approximation of the true dynam-
ics is also for practical application. In real physical problems, the true dynamics of
the model is often unknown and ensemble approximations to the Kalman filter are
very expensive for a large dimensional system. Thus, the performance of the linear
filter in the nonlinear test model for the slow-fast system is interesting for several rea-
sons [16, 17]. Note that the truth signal is always produced via the nonlinear version
of equations (2.1) and (2.2) with a0 6=0. Therefore, if we use the linear approximation
to the original system we may not obtain the optimal filtered signal due to model
error. Below, we will compare the error in filtering the test problem using the NEKF
and the linear KF with model error.

In our test model, linearization only affects the fast mode u2. Substituting a0 =0
into equation (2.19) yields the following linear equation

〈u2〉=e(−γ2+iω0/ε)∆t〈u20〉+
∫ t

t0

e(−γ2+iω0/ε)(t−s)f2(s)ds. (3.4)

Therefore, the forecast is made according to

〈u〉m+1|m =B〈u〉m|m +C, (3.5)

where

B=





e−γ1∆t 0 0
0 e−γ2∆tcos(α) −e−γ2∆t sin(α)
0 e−γ2∆t sin(α) e−γ2∆tcos(α)



 , with α=∆tω0/ε, (3.6)

and

C=





F1(t0,t)
F2(t0,t)

0



 , (3.7)
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where F1(t0,t) is given by equation (2.8) and

F2(t0,t)=

∫ t

t0

e(−γ2+iω0/ε)(t−s)f2(s)ds.

Equation (3.5) is used as a prior forecast for the mean. Similarly by substituting a0 =0
into the expressions for Var(u2) (equation (2.23)) and Cov(u2,u1) and Cov(u2,u

∗
2) (see

Appendix), we obtain the prior covariance of the linearized model.
One of the important properties of the Kalman filter is observability, which shows

how trustworthy the observations are [1, 5]. The analysis of observability of the
linearized system (2.7) and (2.9) with a0 =0 is the same as it was in [13] for the case
of no fast forcing. There, in [13], it was shown that with observations of types 1 and
2, the linearized system looses observability if and only if

∆t=2πlε/ω0, (3.8)

for some integer l. Practically, the slow fast system can still lack observability even for
the case of full observations of type 3 when the observability matrix has full rank but
is close to being singular. In the nonlinear case, we also might expect deteriorating
filter performance around the values of ∆t described by equation (3.8).

3.4. Filter performance: individual trajectories. Let us turn to the
study of the NEKF performance on the test model (2.1) and (2.2). We choose a
realization of the truth signal computed via equations (2.7) and (2.9) as discussed in
section 2.3. Then, we apply the NEKF to the given truth signal and measure the
difference between the truth signal um and the posterior mean 〈u〉m|m. The filter
skill is defined by the proximity of the posterior signal to the truth signal. We use
the root mean square error (RMSE) to measure the filter skill

RMSE(z−w)=

√

√

√

√

1

N

N
∑

j=1

|zj −wj |2, (3.9)

where z and w are the complex vectors to be compared and N is the length of each
vector. The ratio of the RMSE and the typical magnitude of the signal gives the
normalized percentage error.

In figure 3.1, we show the truth signal with the corresponding fast forcing. Note
that we also demonstrate the evolution of the amplitude |u2| of the fast wave. The
amplitude B=15 of the fast forcing f2 was chosen to keep the amplitudes of both slow
and fast modes of the same order of size, which is a realistic situation in nature. We
compare the filter performance for the case of the NEKF with the mean and covariance
computed via the nonlinear equation (see section 2) with a0 =1 and the linear KF
with model error, where mean and covariance are computed with linear versions of
the same equations with a0 =0. We are interested in particular to see how both of
these filtering strategies deal with the sudden changes in the amplitude of the fast
mode due to the fast forcing. Therefore, we will restrict our attention only to a short
segment of the trajectory with t∈ [55,65] from figure 3.1 that includes the spike of
the fast forcing. We choose two values of the observation time: ∆t=0.1 and ∆t=1.0.
The first one is considerably smaller than the typical oscillation period T2 =2πε/ω0

of the fast mode and the other one is larger than T2. We also choose three values
of the observation variance: r0 =0.1, r0 =1.0, and r0 =10.0, which are smaller than,
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Fig. 3.1. Truth signal (u1,u2), amplitude |u2|, and fast forcing f2 with parameters B =15,
λ=0.1, τd =0.9.

r0
∖

∆t 0.1 1.0

0.1 0.14 (0.16) 0.33 (0.33)
1.0 0.22 (0.22) 0.35 (0.36)
10.0 0.34 (0.34) 0.49 (0.50)

Table 3.2. RMSE of the slow mode u1 of the exact NEKF and the linear Kalman filter with
model error (in parenthesis), observations of type 1. The truth signal is shown in figure 3.1 and the
segments of corresponding filtered signals are shown in figure 3.2

of the order of, and larger than the typical size of the truth signal. Moreover, we
use observations of type 1 here, because they represent the most interesting practical
example of mixed observations. In figure 3.2, we demonstrate the truth signal for the
slow mode u1 together with the two filtered signals: the NEKF with exact mean and
covariance and the linear KF with model error. In Table 3.2, we give the RMSE for u1

for the whole trajectory shown in figure 3.1. We note that the filter skill for the slow
mode depends on the observation time ∆t and observation variance r0 — the filter
skill drops if either of these quantities increases. However, the slow mode is filtered
as well with the NEKF as with the linear KF with model error.

Next, we look at the fast mode, which is shown in figure 3.3 and in the correspond-
ing Table 3.3 with RMSE. Here, we again note that the filter becomes less skillful if
either the observation time ∆t or the observation variance r0 increase. Furthermore,
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Fig. 3.2. Slow mode u1: truth signal (solid line), the exact NEKF (thick dashed line) and
the linear Kalman filter (thin dashed line). The corresponding RMSE for the whole trajectory from
figure 3.1 are shown in Table 3.2

r0
∖

∆t 0.1 1.0

0.1 0.24 (0.61) 0.62 (1.10)
1.0 0.44 (0.97) 0.98 (1.30)
10.0 1.05 (1.28) 1.25 (1.53)

Table 3.3. RMSE of the fast mode u2 of the exact NEKF and the linear Kalman filter with
model error (in parenthesis), observations of type 1. The truth signal is shown in figure 3.1 and the
segments of corresponding filtered signals are shown in figure 3.3

the skill for the fast mode of the linear KF deteriorates much more than of the NEKF.
This is naturally expected since the linearization affects the coupling of the fast mode
with the slow mode.

However, a surprising result appears when we compare the two filtering strategies
for the amplitude |u2| of the fast mode. In figure 3.4, we demonstrate the true and
filtered signals for |u2|. We note that the linear KF gives a much better approximation
of the truth for larger ∆t and r0. Table 3.4 confirms this result — the RMSE is
significantly smaller for the linear KF than for the NEKF. Therefore, not only is
the linear KF easier to compute but it also provides a better approximation of the
truth signals when only the envelope of the fast wave is an object of study. This result
justifies the use of the cheaper linear filters and demonstrates their effectiveness for the
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Fig. 3.3. Fast mode u2: truth signal (solid line), the exact NEKF (thick dashed line) and the
linear Kalman filter (thin dashed line). The corresponding RMSE for the whole trajectory from
figure 3.1 are shown in Table 3.3

r0
∖

∆t 0.1 1.0

0.1 0.17 (0.28) 0.44 (0.52)
1.0 0.36 (0.58) 0.91 (0.77)
10.0 1.03 (0.82) 1.20 (0.93)

Table 3.4. RMSE of the amplitude |u2| of the fast mode of the exact NEKF and the linear
Kalman filter with model error (in parenthesis), observations of type 1. Truth signal is shown in
figure 3.1 and segments of corresponding filtered signals are shown in figure 3.4. Numbers in bold
indicate the situations when the linear Kalman filter performs better than the exact NEKF

slow-fast systems with fast forcing. Below, we will study this phenomenon in greater
detail by examining the filter performance as a function of ∆t, r0, and observation
type.

3.5. Filter performance: dependence on observation type, observation
time, and observation variance. In this section, we study the performance of
both the NEKF and linear KF for various observation types, observation times ∆t,
and observation variance r0. We test the statistics of the filter error on two long
trajectories. The first one has moderate fast forcing with B=15 and, as a result,
the magnitudes of both slow and fast modes are of the same order: |u1|∼ |u2|∼4.
The second trajectory has strong fast forcing with B=50, which results in a stronger
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Fig. 3.4. Amplitude |u2| of the fast mode: truth signal (solid line), the exact NEKF (thick
dashed line) and the linear Kalman filter (thin dashed line). The corresponding RMSE for the
whole trajectory from figure 3.1 are shown in Table 3.4

fast mode. In this case, we have |u1|∼4 and |u2|∼12. The second situation is more
interesting from the academic point of view since it allows us to test the filtering
strategies for a more extreme case. In both situations, the frequency parameter of
forcing events and the duration of each event are chosen to be the same, i.e., λ=0.1
and τd =0.9, respectively. The frequency parameter is chosen such that the system
is allowed to relax in average after each forcing event because the average relaxation
time is of the order of 1/γ∼10 as is the average time ∼1/λ=10 between the fast
forcing bursts. The duration of each forcing event is chosen to be larger than the
typical fast oscillation time T2 =0.6 but smaller than the time between these events.
Both trajectories were computed for the time span [0,T ], where T =5000.

In figure 3.5, we demonstrate the dependence of the filter performance on the
observation time ∆t. There, we use the same moderate observation variance r0 =0.3.
We note that the RMSE depicted in figure 3.5 has peaks which correspond to the lack
of observability and which were predicted by linear observability analysis in equation
(3.8) (see [13]). We also note that observations of type 3 give the smallest error and
observations of type 1 give the largest error, which is an expected result because
observations of type 3 carry the most information and observations of type 1 carry
the least information among all three types of observations (see Table 3.1). However,
there is not much difference between the observations of types 2 and 3 when the
RMSE of the fast mode is studied. This is explained by the fact that the observations
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Fig. 3.5. RMSE as a function of observation time ∆t. The left column corresponds to the
moderate fast forcing with B =15 and the right column corresponds to the strong fast forcing with
B =50. The first row shows the RMSE of the slow mode, the second row shows the RMSE of the fast
mode, and the third row shows the RMSE of the amplitude of the fast mode. Thick lines correspond
to the exact NEKF and thin lines correspond to the linear Kalman filter. Solid lines correspond
to observations of type 1, dashed lines correspond to observation of type 2, and dashed-dotted lines
correspond to observations of type 3. The observation variance was r0 =0.3.

of type 3 provide additional information mostly about the slow mode, which only
slightly reflects the filtering of the fast mode. The NEKF appears to be much more
efficient than the linear KF with model error when the either the slow mode u1 or the
fast mode u2 are filtered. However, when the amplitude of the fast mode |u2| becomes
an object of study, for larger ∆t, the RMSE of the linear filter with model error is
not larger than the RMSE of the exact NEKF (the thick and thin solid lines cross
on the left lower panel in figure 3.5). This phenomenon was already observed above
for the path-wise filtering (see figure 3.4). Next, we compare the filter performance
for the two trajectories. We note that both the NEKF and the linear KF have larger
errors when applied to the trajectory with the strong fast forcing compared with the
trajectory with the moderate fast forcing. However, we should keep in mind that
the RMSE have to be normalized by the typical magnitudes of the signals, which are
larger for the case of strong fast forcing than for the case of moderate fast forcing. We
also would like to point out that the NEKF works well and provides stable filtering
even for the case of strong fast forcing and hence for strong nongaussianity.

In order to compare the NEKF and the linear KF, we test both of them on
the amplitude |u2| of the trajectory with moderate fast forcing. In figure 3.6, we
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Fig. 3.6. RMSE of filtering of |u2| as a function of observation time ∆t. The columns cor-
respond to observation types (shown on the top). The rows correspond to various noise variances
(shown on the left). The thick line shows the RMSE of the exact NEKF and the thin line shows
the RMSE of the linear Kalman filter. The trajectory with the moderate forcing with B =15 was
filtered.

compare the filter performance for all three types of observations and various values
of observation variance. We note that for the chosen range of ∆t∈ [0,2], the RMSE
of the linear Kalman filter is practically independent of ∆t, r0, or the observation
variance, whereas the RMSE of the exact NEKF is growing if either ∆t or r0 increases
or the number of observations decreases. We observe that for ∆t larger than certain
values (dependent on r0 and observation type), the linear KF is more skillful in
filtering of |u2| than the NEKF. We have chosen three different sets of the observation
parameters and, in figure 3.7, we compare filtering of |u2| for these sets of parameters.
In figure 3.7, the first panel corresponds to figure 3.6, second row and first column,
with observation type 1, r0 =0.9, and ∆t=1.6. We note that the signal obtained with
the linear KF follows the truth signal better than the signal obtained with the NEKF.
The second panel of figure 3.7 corresponds to figure 3.6, third row and first column,
with observation type 1, r0 =2.1, and ∆t=1.6. Here, again the linear filter performs
better than the NEKF. Finally, the third panel of figure 3.7 corresponds to figure
3.6, third row and third column, with observation type 3, r0 =2.1, and ∆t=2.0. And
again we have the prevailing of the linear filter over the NEKF.

We have studied how the performance of both linear and nonlinear filters depends
on the observation time ∆t. We have found that the linear KF with model error has
higher skill in filtering the slow amplitude |u2| when compared with the NEKF for
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Fig. 3.7. Comparison of the linear Kalman filter and the NEKF. Upper three panels show
the truth signal (solid line), the filtered signal with the NEKF (thin dashed line) and the filtered
signal with the linear Kalman filter (thick dashed-dotted line). The corresponding parameters of the
observations are shown on top of each panel. The lower panel shows the profile of the fast forcing.

a large enough observation time ∆t. Finally, we study the filter performance as
a function of observation variance r0. figure 3.8 shows the RMSE of filtering the
two test trajectories. We note that the filter skill monotonically decreases as the
observation variance increases. We also conclude that the observations of type 3 lead
to the best filter skill and observations of type 1 lead to the worst filter skill among
the three observation types. However, as was noted above, observations of types 2
and 3 lead to practically the same filter skill in the fast mode u2. It is also worth
noting that model error due to linearization is significantly larger in the case of the
trajectory with strong fast forcing with B=50.

4. Conclusions

We started this paper by introducing the nonlinear multiple time test model with
fast forcing. We motivated the model by the need of studying the effects of the moist
convection, represented by the fast forcing, on the filtering atmospheric signals. We
have shown a typical trajectory of the slow-fast system and discussed how the fast
forcing impacts the dynamics of the amplitude of the fast mode. We then presented the
analytical solution and first and second order statistics of the system. We specifically
pointed out the non-Gaussianity of the statistics of the fast mode, which is driven by
fast forcing and nonlinearly coupled to the slow mode. Then, we introduced the exact
Nonlinear Extended Kalman Filter (NEKF) and the linear Kalman filter (KF) with
model error for the slow-fast system with fast forcing. We compared the performance
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Fig. 3.8. RMSE as a function of observation variance r0. The left column corresponds to the
moderate fast forcing with B =15 and the right column corresponds to the strong fast forcing with
B =50. The first row shows the RMSE of the slow mode, the second row shows the RMSE of the fast
mode, and the third row shows the RMSE of the amplitude of the fast mode. Thick lines correspond
to the exact NEKF and thin lines correspond to the linear Kalman filter. Solid lines correspond
to observations of type 1, dashed lines correspond to observation of type 2, and dashed-dotted lines
correspond to observations of type 3. The observation time was ∆t=0.2.

of both filters under various filtering parameters. Next, we outline the results of our
study of the filter performance.

We studied the deterioration of the filter skill around the observation times that
were predicted by the observability analysis for the observations of types 1 and 2. We
also showed numerically that both the NEKF and the linear KF have high skill at
the observation times that are away from those non-observable values. We note that
the observations of type 3 have better skill for the slow mode than observations of
types 2, which in turn lead to higher skill than observations of type 1. However, for
the skill of the fast mode, observations of types 2 and 3 have almost equivalent skill
which is significantly better than the skill with observations of type 1. We have also
discovered that for the observation time and observation variance larger than certain
values and all three types of observations, the linear KF with model error performs
surprisingly better than the exact NEKF on the slowly varying amplitude of the fast
mode. This result should have practical significance when the envelope of the fast
gravity waves driven by moist convection is an object of interest.
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Appendix A. In this Appendix, we compute the cross-covariance Cov(u2,u1),

and Cov(u2,u
∗
2). We use the preliminary formulas for

〈

u20e
ibu10

〉 〈

u10u20e
ibu10

〉

and
〈

u2
20e

ibu10

〉

that were obtained in [13]

〈

u20e
ibu10

〉

=
(

〈u20〉+ ibCov(u20,u10)
)

eib〈u10〉− 1

2
Var(u10), (A.1)

〈u10u20 exp(ibu10)〉

=

(

〈u10〉〈u20〉+Cov(u20,u10)+ ib
(

〈u10〉Cov(u20,u10)+〈u20〉Var(u10)
)

−b2Var(u10)Cov(u20,u10)

)

exp

(

ib〈u10〉−
1

2
b2Var(u10)

)

, (A.2)

〈u2
20 exp(i2bu10)〉

=
(

Cov(u20,u
∗
20)+〈u20〉2 +4bi〈u20〉Cov(u20,u10)−4b2Cov(u20,u10)

2
)

×exp
(

i2b〈u10〉−2b2Var(u10)
)

. (A.3)

A.1. Covariance Cov(u2,u1). Combining equations (2.7) and (2.9) we find

Cov(u2,u1)=
〈

(u2−〈u2〉)(u1−〈u1〉)
〉

=
〈(

e−γ2(t−t0)[ψ(t0,t)u20−〈ψ(t0,t)u20〉]+
∫ t

t0

e−γ2(t−s)[ψ(s,t)−〈ψ(s,t)〉]f2(s)ds

+σ2

∫ t

t0

e−γ2(t−s)ψ(s,t)dW2(s)
)(

[u10−〈u10〉]e−γ1(t−t0) +σ1

∫ t

t0

e−γ1(t−s)dW1(s)
)〉

=e−(γ1+γ2)(t−t0)[〈u10u20ψ(t0,t)〉−〈u10〉〈u20ψ(t0,t)〉]

+

∫ t

t0

e−γ2(t−s)[〈u10ψ(s,t)〉−〈u10〉〈ψ(s,t)〉]f2(s)ds

+σ1e
−γ2(t−t0)

〈

∫ t

t0

e−γ1(t−s)dW1(s)u20ψ(t0,t)
〉

+σ1

∫ t

t0

e−γ2(t−s)
〈

ψ(s,t)

∫ t

t0

e−γ1(t−s′)dW1(s
′)
〉

f2(s)ds. (A.4)

In the first term, we use

〈u10u20ψ(t0,t)〉−〈u10〉〈u20ψ(t0,t)〉
=
(

Cov(u20,u10)+ ib(t0,t)〈u20〉Var(u10)−b(t0,t)2Var(u10)Cov(u20,u10)
)

×exp
(

ib(t0,t)〈u10〉−
1

2
b(t0,t)

2Var(u10)
)

ψD(t0,t)exp
(

− 1

2
Var(JW (t0,t))

)

.
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In the second term, we have

〈u10ψ(s,t)〉−〈u10〉〈ψ(s,t)〉

= iVar(u10)b(s,t)exp
(

ib(s,t)〈u10〉−
1

2
b(s,t)2Var(u10)

)

×ψD(s,t)exp
(

− 1

2
Var(JW (s,t))

)

.

In order to compute the third and the fourth terms, we note that

∂

∂t

〈

exp(iJW (s,t))
〉

=
∂

∂t

〈

exp
(

i

∫ t

s

ds′σ1a0

∫ s′

t0

e−γ1(s
′−s′′)dW1(s

′′)
)〉

= iσ1a0

〈

exp(iJW (s,t))

∫ t

t0

e−γ1(t−s′)dW1(s
′)
〉

. (A.5)

On the other hand, we obtain

∂

∂t

〈

exp(iJW (s,t))
〉

=−1

2
exp

(

− 1

2
Var(JW (s,t))

) ∂

∂t

(

Var(JW (s,t))
)

,

where

∂

∂t
(Var(JW (s,t)))=

σ2
1a

2
0

γ2
1

(

1+e−γ1(s+t−2t0)
[

−1−e2γ1(s−t0) +eγ1(s−t)
])

. (A.6)

Then, after some simplifications, the third term becomes

σ1e
−γ2(t−t0)

〈

u20ψ(t0,t)

∫ t

t0

e−γ1(t−s)dW1(s)
〉

=
i

2a0
e−γ2(t−t0)

∂

∂t

(

Var(JW (t0,t))
)

〈u20ψ(t0,t)〉.

The fourth part becomes

σ1

∫ t

t0

e−γ2(t−s)
〈

ψ(s,t)

∫ t

t0

e−γ1(t−s′)dW1(s
′)
〉

f2(s)ds

=
i

2a0

∫ t

t0

e−γ2(t−s) ∂

∂t

(

Var(JW (s,t))
)

〈ψ(s,t)〉f2(s)ds. (A.7)

Finally, we obtain

Cov(u2,u1)

=

(

[

Cov(u20,u10)+ ib(t0,t)〈u20〉Var(u10)

−b(t0,t)2Var(u10)Cov(u20,u10)
]

e−(γ1+γ2)(t−t0) +
i

2a0
e−γ2(t−t0)

× ∂

∂t

(

Var(JW (t0,t))
)[

〈u20〉+ iCov(u20,u10)b(t0,t)
]

)

×ψD(t0,t)exp
(

− 1

2
Var(JW (t0,t))

)

exp
(

ib(t0,t)〈u10〉−
1

2
b(t0,t)

2Var(u10)
)

+
i

2

∫ t

t0

e−γ2(t−s)f2(s)〈ψ(s,t)〉
[

2Var(u10)b(s,t)+
1

a0

∂

∂t

(

Var(JW (s,t))
)]

ds. (A.8)
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A.2. Covariance Cov(u2,u
∗
2). First we compute the correlator 〈u2

2〉 by taking
square of equation (2.9) and then averaging it

〈u2
2〉

=

〈(

e−γ2(t−t0)ψ(t0,t)u20 +

∫ t

t0

e−γ2(t−s)ψ(s,t)f2(s)ds+

σ2

∫ t

t0

e−γ2(t−s)ψ(s,t)dW2(s)

)(

e−γ2(t−t0)ψ(t0,t)u20

+

∫ t

t0

e−γ2(t−s)ψ(s,t)f2(s)ds+σ2

∫ t

t0

e−γ2(t−s)ψ(s,t)dW2(s)

)〉

=e−2γ2(t−t0)〈u2
20ψ

2(t,t0)〉+
∫ t

t0

ds

∫ t

t0

dr e−γ2(2t−s−r)〈ψ(s,t)ψ(r,t)〉f2(s)f2(r)

+2e−γ2(t−t0)

∫ t

t0

e−γ2(t−s)〈u20ψ(t0,t)ψ(s,t)〉f2(s)ds. (A.9)

We compute the right hand side term by term

e−2γ2(t−t0)〈u2
20ψ

2(t,t0)〉
=exp

(

−2γ2(t− t0)+2iJD(t0,t)−2Var(JW (t0,t))
)

〈

u2
20 exp

(

i2b(t0,t)u10

)

〉

.

In order to compute the double integral, we first compute the following average

〈ψ(s,t)ψ(r,t)〉
=ei(JD(s,t)+JD(r,t))

〈

ei(JW (s,t)+JW (r,t))
〉〈

ei(b(s,t)+b(r,t))u10

〉

=ei(JD(s,t)+JD(r,t))e−
1

2
Var
(

JW (s,t)+JW (r,t)
)

ei(b(s,t)+b(r,t))〈u10〉− 1

2
(b(s,t)+b(r,t))2Var(u10),

where

Var
(

JW (s,t)+JW (r,t)
)

=Var
(

JW (s,t)
)

+Var
(

JW (r,t)
)

+2Cov
(

JW (s,t),JW (r,t)
)

.

Let us assume that s<r. Then, we find

Cov
(

JW (s,t),JW (r,t)
)

=Cov
(

JW (s,r)+JW (r,t),JW (r,t)
)

=Cov
(

JW (s,r),JW (r,t)
)

+Var
(

JW (r,t)
)

. (A.10)

The covariance in the right hand side can be computed using the fact that intervals
(s,r) and (r,t) do not intersect:

Cov
(

JW (s,r),JW (r,t)
)

=σ2
1a

2
0

〈

∫ r

s

ds′
∫ s′

t0

eγ1(s
′′−s′)dW1(s

′′)

∫ t

r

dr′
∫ r′

t0

eγ1(r
′′−r′)dW1(r

′′)

〉

=σ2
1a

2
0

∫ r

s

ds′
∫ t

r

dr′
∫ s′

t0

exp
(

γ1(2s
′′−s′−r′)

)

ds′′

=−σ
2
1a

2
0

2γ3
1

(

1−eγ1(s−r)
)(

1−eγ1(t−r)
)(

eγ1(r−t)−eγ1(2t0−s−t)
)

. (A.11)
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In the case when s>r we have to swap r and s in the last expression. In order to
obtain a general formula, we use min(s,r) instead of s and max(s,r) instead of r in the
right hand side of equation (A.10) and in equation (A.11). Now, in order to compute
the double integral in equation (A.9), we use the fact that f2 has finite support

∫ t

t0

ds

∫ t

t0

dr e−γ2(2t−s−r)〈ψ(s,t)ψ(r,t)〉f2(s)f2(r)

=
∑

j

∑

m

∫

Ij

ds

∫

Im

dr f2(s)f2(r)e
−γ2(2t−s−r)〈ψ(s,t)ψ(r,t)〉.

Next, we compute the last term in the right hand side of equation (A.9). First, we
find

〈u20ψ(t0,t)ψ(s,t)〉=ei(JD(t0,t)+JD(s,t))
〈

ei(JW (t0,t)+JW (s,t))
〉〈

u20e
i(b(t0,t)+b(s,t))u10

〉

,

where
〈

ei(JW (t0,t)+JW (s,t))
〉

=e−
1

2
Var
(

JW (t0,t)+JW (s,t)
)

=e−
1

2
Var
(

JW (t0,t)
)

− 3

2
Var
(

JW (s,t)
)

−Cov
(

JW (t0,s),JW (s,t)
)

. (A.12)

The covariance in equation (A.12) is computed using equation (A.11) and quadrature
formula (2.14)

∫ t

t0

e−γ2(t−s)〈u20ψ(t0,t)ψ(s,t)〉f2(s)ds=eiJD(t0,t)− 1

2
Var
(

JW (t0,t)
)

×
∑

j

∫

Ij

f2(s)e
−γ2(t−s)+iJD(s,t)− 3

2
Var
(

JW (s,t)
)

−Cov
(

JW (t0,s),JW (s,t)
)

×〈u20e
i(b(t0,t)+b(s,t))u10

〉

ds.

Finally, to find the covariance Cov(u2,u
∗
2), we use

Cov(u2,u
∗
2)= 〈u2

2〉−〈u2〉2. (A.13)
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