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CATASTROPHIC FILTER DIVERGENCE IN FILTERING
NONLINEAR DISSIPATIVE SYSTEMS*

JOHN HARLIM! AND ANDREW J. MAJDA?

Abstract. Two types of filtering failure are the well known filter divergence where errors may
exceed the size of the corresponding true chaotic attractor and the much more severe catastrophic
filter divergence where solutions diverge to machine infinity in finite time. In this paper, we demon-
strate that these failures occur in filtering the L-96 model, a nonlinear chaotic dissipative dynamical
system with the absorbing ball property and quasi-Gaussian unimodal statistics. In particular, catas-
trophic filter divergence occurs in suitable parameter regimes for an ensemble Kalman filter when
the noisy turbulent true solution signal is partially observed at sparse regular spatial locations.

With the above documentation, the main theme of this paper is to show that we can suppress
the catastrophic filter divergence with a judicious model error strategy, that is, through a suitable
linear stochastic model. This result confirms that the Gaussian assumption in the Kalman filter
formulation, which is violated by most ensemble Kalman filters through the nonlinearity in the model,
is a necessary condition to avoid catastrophic filter divergence. In a suitable range of chaotic regimes,
adding model errors is not the best strategy when the true model is known. However, we find that
there are several parameter regimes where the filtering performance in the presence of model errors
with the stochastic model supersedes the performance in the perfect model simulation of the best
ensemble Kalman filter considered here. Secondly, we also show that the advantage of the reduced
Fourier domain filtering strategy [A. Majda and M. Grote, Proceedings of the National Academy
of Sciences, 104, 1124-1129, 2007], [E. Castronovo, J. Harlim and A. Majda, J. Comput. Phys.,
227(7), 3678-3714, 2008], [J. Harlim and A. Majda, J. Comput. Phys., 227(10), 5304-5341, 2008] is
not simply through its numerical efficiency, but significant filtering accuracy is also gained through
ignoring the correlation between the appropriate Fourier coefficients when the sparse observations
are available in regular space locations.
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1. Introduction

The difficulties of many real time prediction problems range from extremely com-
plex physical processes that are hardly understood, to expensive numerical compu-
tations when there are interactions between multi scale processes, and to our inabil-
ity to obtain information or observations of the dynamical variables at every model
grid point. Bayesian hierarchical modeling [6] and reduced order filtering strategies
[29, 15, 34, 3,4, 7, 30, 20, 16, 17] have been developed with some success for predicting
extremely complex turbulent systems. The basis for such dynamic prediction strate-
gies for complex spatially extended systems is the classical Kalman filtering algorithm
[2, 9, 21], which is an optimal strategy that combines the information from the prior
forecasts and the observations when the strict assumptions, linearity and Gaussian
distributions, are satisfied.

The beauty of the ensemble Kalman filter [14, 7, 3] as one of the computationally
cheap strategies for filtering spatially extended partially observed nonlinear dynamical
systems lies in its simplicity in implementation, that is, it treats the model as a
black box and it does not require any linear tangent or even linear adjoint model as
the other alternative strategy, 4D-VAR [13, 11, 32, 31|, which is often considered as
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28 CATASTROPHIC FILTER DIVERGENCE

the state-of-art in the weather prediction community. Instead, it estimates the true
solution with an ensemble of solutions that is generated through the Kalman filter
formulas whenever the observations are available. However, this supposedly Gaussian
distributed ensemble is a sub-optimal sample when the ensemble size is too small or
when the Gaussian assumption of the Kalman filter formula is not satisfied due to
the nonlinearity of the model (for example, see [5, 29] for the failure of the ensemble
Kalman filter in the presence of a bimodal distribution). There are two types of
filtering failures: the first type, commonly referred to as filter divergence, is simply
poorly filtered solutions with enormous errors that may exceed the size of the chaotic
attractor. In many cases, as we will see in some of the numerical experiments below,
the filtered solutions simply do not track the true signal. The second type of filtering
failure is catastrophic filter divergence. In this case, some of the ensemble members
become unbounded (machine infinite in finite time) due to ensemble collapse.

In this paper, we will show that a catastrophic filter divergence may occur even
in filtering a chaotic dissipative nonlinear system with the absorbing ball property
[10] when the turbulent signal is observed at regularly spaced sparse locations and
in a perfect model situation with ensemble size twice the number of model variables.
Specifically, we will show the catastrophic filter divergence in filtering the L-96 model
[23] exhibited by two ensemble square root filters [33], ETKF (ensemble transform
Kalman filter of Bishop [7], reformulated as in [20] for efficient implementation) and
EAKF (ensemble adjustment Kalman filter of Anderson [3]), as variants of the en-
semble Kalman filter. This dissipative chaotic dynamical system not only has the
absorbing ball property but its solutions are unimodally distributed and only weakly
skewed from a Gaussian distribution [1], which mimics a typical atmospheric turbu-
lent system [25]. In the perfect model experiment with ETKF, the catastrophic filter
divergence is exhibited in almost every chaotic regime ranging from weakly chaotic to
fully turbulent when the observations are at most one half of the number of the model
grid points. On the other hand, the identical perfect model experiment with EAKF
produces very accurate solutions in the weakly chaotic and strongly chaotic regimes.
However, EAKF is not immune from catastrophic filter divergence in a suitable sparse
observed regime and it exhibits filter divergence with errors larger than the size of
the chaotic attractor in stronger chaotic regimes with suitable parameters.

With the above documented filtering failures, the goal of this paper is to show
that judicious model error through suitable linear stochastic models [18] is an alter-
native strategy to avoid a catastrophic filter divergence. We will show that although
the filtering skill with these model errors is inferior to those with the perfect model
when the nonlinearity is weak, there are parameter sets where this strategy produces
more skillful results compared to the solutions with the perfect model simulations.
In particular, we shall see that the consistent Gaussian distribution evolution via
the linear stochastic model prohibits catastrophic filter divergence. With guaranteed
Gaussian prior and posterior distributions, the remaining factors for assessing the
filter inaccuracies are the sparse observations and the model errors.

The second point of this paper is to show that the reduced Fourier domain filtering
strategies, formulated by one of the authors in [26] and advocated in the recent work
of both authors in [8, 19] for filtering both plentifully observed and regularly spaced
sparsely observed complex linear stochastic constant coefficient PDEs and for filtering
plentifully observed nonlinear dynamical systems [18], is an alternative cheap filter-
ing strategy that produces skillful filtered solutions beyond those produced via more
expensive spatially based ensemble filters, ETKF and EAKF, when linear stochastic
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models are used. In other words, we advocate that when the observations are sparse
and only available at regularly spaced locations, it is not only numerically advan-
tageous to simply ignore the cross correlation between appropriate different Fourier
coefficients but it yields better accuracy in the presence of model errors. Furthermore,
this Fourier domain imperfect model filter even supersedes the perfect model simula-
tion with ETKF or EAKF in suitable parameter regimes. Finally, we find that this
reduced filter offers an alternative efficient filtering strategy, similar to 3D-VAR [22],
when the observations are very infrequent in time beyond the model decorrelation
time.

The rest of this paper is organized as follows: In section 2 we state the L-96
model, review two square root filter strategies (ETKF and EAKF), show examples
of catastrophic filter divergence, and review alternative linear stochastic strategies as
in [18] as well as the Fourier domain filter reduction strategy as in [26, 19]. We then
show numerical results in section 3 and conclude the paper with final discussion in
section 4.

2. Filtering regularly spaced sparse observations

In this section, we describe the L-96 model [23] and show the difficulties of filter-
ing this dissipative nonlinear toy model in certain chaotic regimes for regularly spaced
sparse observations. In particular, we will show a catastrophic filter divergence with
the Ensemble Transform Kalman Filter (ETKF of Bishop et al. [7], reformulated as
in [20] for efficient implementation) and a much more stable and often quite accu-
rate scheme, the Ensemble Adjustment Kalman Filter (EAKF of Anderson [3]), that
sometimes still suffers from catastrophic filter divergence and sometimes simply di-
verges with errors larger than the size of the chaotic attractor of the corresponding
model. Finally, we briefly describe a stochastic filtering strategy that is immune from
catastrophic filter divergence but has model errors.

2.1. The Lorenz-96 model. The L-96 model [23] represents an “atmospheric
variable” u at J equally spaced points around a circle of constant latitude. The jth
component is propagated in time following differential equation

%Z(%H*W—ﬂ%—l*%JrF (2.1)
where the cyclic indices j=0,...,J — 1 represent the spatial coordinates (“longitude”).
Note that this model is not a simplification of any atmospheric system, however, it
is designed to satisfy three basic properties: it has linear dissipation (the —u; term)
that decreases the total energy defined as F = %ijlu?, an external forcing term
F that can increase or decrease the total energy, and a quadratic advection term
that conserves the total energy (i.e. it does not contribute to dF/dt) just like many
atmospheric models (MW [28]). These properties combine to guarantee the absorbing
ball property [10] for this model. Following Lorenz [23], MAG [24], and MW [28,
p-239], we set J =40 so that the distance between two adjacent grid points roughly
represents the midlatitude Rossby radius (= 800 km), assuming the circumference of
the midlatitude belt is about 30,000 km.

2.2. Two ensemble square root filters. In this section, we briefly describe
two ensemble square root filters which are Kalman filter based filtering methods.
The basic idea of the ensemble Kalman filter is to produce a posterior ensemble

{uanlmH,k: 1,...,K} that reflects both the best guess (ensemble mean %y, 1m+1)
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Fi1G. 2.1. Snapshots of a single ensemble member exhibiting catastrophic filter divergence from
the 80 member ensemble in ETKF at the fourth assimilation cycle. The parameters are FF'=16,p=
2,Tops =0.234,7°=3. In each panel, we show the posterior or prior state (solid), the true signal

(dashes), and observations (circles), as functions of the model space. In the last panel, the prior
state is not plotted since it diverges to co.

and the uncertainty (ensemble error covariance 7,4 1|s,+1) in the following fashion

k = k
U 4+1jm+1 = Um+1|m+1 +6U",

where §U* is the k-th perturbation state to be determined. The statistical quantities
Um1jm+1 and 7,141 are updated through a statistical least squares procedure
[2, 9] by accounting for the information from observations or measurements at time
step m+1 and the prior forecast statistical values @, 41|, and 7y, 1),- This update in
the data assimilation community is called the “analysis”. The prior forecast statistical
values, sometimes also referred as the “background”, are obtained through feeding the
previous posterior ensemble {ufnm,k =1,...,K} to the model. This two-step process,
forecast and analysis, completes one data assimilation cycle.
The ensemble transform Kalman filter (ETKF of Bishop et al. [7]) chooses

k k

where perturbation vectors 6U* and (5U/jl+1|m = u’:nﬂ‘m — Uppy+1|m are the k-th column
of matrices U and 6U,,41m, respectively, and T' is a transformation matrix to be
determined such that the ensemble samples the posterior error covariance matrix, i.e.,

1 1
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FiG. 2.2. Snapshots of 27 members exhibiting catastrophic filter divergence from the 80 member
ensemble in EAKF at assimilation cycle 2931. The parameters are F=8,p=5,At=0.234,7°=0.01.
All the posterior ensemble members on the left panels are collapsing on the same exploding large
amplitude state. In each panel, we show the posterior or prior states (in solid black), the true signal
(dashes), and observations (circles). In the last panel, the prior state is not plotted since it diverges
to co.

Practically, in the algorithm 7, | 1},,,41 is never computed. Instead this form is inserted
into the Kalman gain matrix and covariance update matrix as constraints to specify
T through a singular value decomposition (SVD).

Anderson [3], on the other hand, introduced an alternative square root factor A
and chose

su* :A5Ufn,+1|m

such that

1 1
Tm+1lm+1 = migU((SU)T “K_1

This choice of ensemble update is called the ensemble adjustment Kalman filter
(EAKF). Tippett et al. [33] showed the similarity between the two schemes by partic-
ular choices of A and T and the two schemes have identical compuational costs. In our
implementation of EAKF, however, we follow [20] to avoid calculating a singular value
decomposition on the prior covariance matrix rp,;1j,,. Thus, EAKF is numerically
more expensive than the reformulated ETKF. In real applications, however, EAKF is
implemented sequentially [4] to avoid explicit computation of the SVD by processing
the observations in smaller collected subset, or even individually.

In our simulations with ensemble size K =80 (double the model state space
J =40), fixed variance inflation 5% to avoid ensemble collapse [5, 35], and 5000 assim-

AaUm+1\m(5Um+1|m)TAT
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Fic. 2.3. Snapshots of the filtered solutions at time 1172.1 (or after 5000 assimilation cycles)
for F=6, p=2, r°=1.96, and n=15. In each panel, the true signal is denoted in dashes, the
observations in circles, and the filtered solution in the solid line.

ilation cycles, we find that EAKF is a better scheme compared to ETKF when dealing
with sparse observation. In particular, we find that ETKF suffers from catastrophic
filter divergence when the observation error variance is at least 1/4 of the chaotic
attractor size for any sparse observed network (p>2, i.e., the number of observations
are at most 1/p, that is, 1/2 of the model grid points), regardless of whether the
dynamics is weakly chaotic F' =6, strongly chaotic F'=8, or fully turbulent F =16.
In figure 2.1, we show an example of catastrophic filter divergence exhibited by one of
its ensemble members among a total of 80 ensemble members after only 3 steps of a
data assimilation cycle when filtering the L-96 model with F'=16, p=2, observation
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F1G. 2.4. Snapshots of the filtered solutions at time 1172.1 (or after 5000 assimilation cycles)
for F=8, p=4, r°=3.24, and n=15. In each panel, the true signal is denoted in dashes, the
observations in circles, and the filtered solution in the solid line.

time Tpops =0.234 (corresponds to 28 hours according to the doubling time [23]), and
observation noise size r°=3. In this simulation, the initial ensemble is sampled from
a Gaussian distribution with the true state as the mean and the equilibrium energy
E as the variance.

In parallel simulations, EAKF is very skillful in almost every regime except

I) When observations are very sparse (p=>5 or 1/5 of the model grid points), the
observation time T,;,s =0.234 is infrequent, with very small observation noise
variance r° =0.01, EAKF suffers from a catastrophic filter divergence as well.
In figure 2.2, we show snapshots of 27 ensemble members exhibiting catas-
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Fi1c. 2.5. Snapshots of the filtered solutions at time 890.7 (or after 5000 assimilation cycles)
for F=16, p=2, r°=0.81, and n=5. In each panel, the true signal is denoted in dashes, the
observations in circles, and the filtered solution in the solid line.

trophic filter divergence from the 80 member ensemble in EAKF at assimi-
lation cycle 2931. All the posterior ensemble members on the left panels are
collapsing onto the same exploding large amplitude state.

IT) When the model is fully turbulent (F'=16) and the observation time is shorter
than its decorrelation time, the filtered solution diverges (but not catastrophi-
cally) and becomes unskillful. See the panel denoted by “EAKF true” in figure
2.5 where we show the snapshot after 5000 assimilation cycles of simulation
with F'=16, p=2, To,s =0.078, ° =0.81. Also notice the poor average RMS
error and low average spatial correlation in Table 3.3 for this corresponding
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Fic. 2.6. Snapshots of the filtered solutions at time 11,721.10 (or after 5000 assimilation
cycles) for F=8, p=2, r°=3.24, and n=150. In each panel, the true signal is denoted in dashes,
the observations in circles, and the filtered solution in the solid line.

perfect model simulation.

2.3. Linear Stochastic Model. An alternative approach is to introduce rad-
ical model errors through stochastic linear models [18]. Instead of using the full L-96
model (2.1), for each Fourier mode, we propose a filter model that solves a temporal
discretization of the following stochastic differential equation

%E(t):Epfl(Ffﬂ)+(Akfdk)ﬁk(f)+akﬁ/k(f), (2.2)
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where i, (f) is the Fourier coefficient of the renormalized L-96 model [18] through

a:“_E , i=\/Ept (2.3)

E

such that @ has zero mean and unit energy variance. In (2.2)—(2.3), E, is the average
variance in the energy fluctuation (see MAG [24] or MW [28] for details on how to
compute these quantities), @ represents the (temporal) mean state, and

Ak:Ep—1/2 [(eQWik/J_e—Mrik/J)a_l (2.4)

is the linear dynamical operator. This linear model (2.2) also includes a linear damp-
ing term dj, >0 and a stochastic white noise term with noise strength oy; these two
terms are added to reproduce the truncated nonlinearity with hope that they gener-
ate a statistically reasonably approximate solution for filtering the 1-96 model (2.1)
following the simplest stochastic modelling strategies for chaotic signals [18, 12]. In
real space, the decoupled stochastic white noise term corresponds to the following
correlated stochastic forcing

ooW = Z Jke%ikj/‘]ﬁ/k, (2.5)
k|<J/2

where sz(WkJ —|—iV~Vk72)/\/§ where V~Vk7j is a Wiener process and notation ooW
describes the inverse Fourier transform of the white noise.

In discrete form, given an observation time Tops =tm41—t, We can write our
filter model for each Fourier mode as

ﬁk,m+1|m:ConSt'+Fkﬁk,7rL|m +Mk,ms (26)

where the prior state iy, 11}, denotes the kth Fourier coefficient before we include
observations at time t,,,+1, while the posterior state @y, |m denotes the the kth Fourier
coefficient after we include observations at time ¢, (or after analysis). These two
states are defined as an estimate of the true signal 4y, generated by the nonlinear
L-96 model that is hidden from the filter.

The filter model (2.6) has three terms: a constant term E,'(F—u)(A—

d) 1 (1 —eAr=4)Tovs) only for the zeroth mode, a dynamical operator Fj, and a
noise term 7, m ~N(0,r) where the variance 7y, is given as follows

2

_ Ok —2Re{dr—Ap}Tops
= ——|1- . 2.
"k 2R6{dk - Ak} ( ¢ ) ( 7)

This leaves us to wonder which values of dj and o yield better filtered solutions.
In this paper, we show results with fitting the model to the climatological statistical
values (as in [18], we referred to this parametrization strategy as the climatological
stochastic model or CSM). In this strategy, the variances o) and the damping dj, are
chosen uniquely to match the climatological energy spectrum and correlation time and
are independent of the observation time, At¢. This is the simplest linear stochastic
modelling strategy [12]. A second parametrization strategy is to fit only the noise term
ok to the climatological statistics but the damping term is chosen to minimize the
RMS errors at a given observation time, At, when plentiful observations are available
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(again, see [18] for details). We referred to this method as the climate noise varying
damping model or simply CNVD.

In this paper, we assume that observations ¥y, ,,, (the Fourier coefficients of the
rescaled observations, = (v—u)/ \/E) are sparsely available at every p model grid
point with observation errors reflected by a Gaussian distribution, i.e., 69, ~ N (0,7°).
In the real domain, this variance corresponds to 7°=JE,7°/p. By Theorem 3 in [26]
or as in [19], the Fourier space representation of the observation is given as follows

bom= Y fpm+05, (2.8)
keA(L)
where
J
A(£)={k\k=€+q(J/p)7|k|S?qez} (2.9)

is the aliasing set for mode ¢. For simplicity, we assume that J/p, which represents
the total number of observations, is an integer value. As an example, consider J =40
as in the L-96 model and p=2; then the model has 21 Fourier modes whereas the
observations have 11 Fourier modes. According to formula (2.9), there are a total
of 11 aliasing sets: A(0)={0,—20}, A(1)={1,-19},...,.4(9) ={9,—11}, and A(10) =
{10}. Thus, the filtering problem is decoupled into 10 two-dimensional filters with
scalar observations for Fourier modes in the aliasing sets 0 to 9 and a scalar filter on
the 10th mode. This filtering reduction simply ignores the correlation between the
Fourier coefficients in different aliasing sets. As in [18, 19], we referred to this filtering
reduction as the Fourier domain Kalman filter or simply FDKF.

We will also show a variant of FDKF which simply filters only the most energetic
mode in each aliasing set. Therefore, this approximate filter reduces to uncoupled
scalar filters in which the unfiltered Fourier coefficients trust the dynamics fully. We
call this approach the reduced Fourier domain Kalman filter or RFDKF following [19].

3. Numerical Results

In each numerical simulation, a true trajectory u’ isgenerated by integrating the
L-96 model (2.1) with the Runge-Kutta method with time step At=1/64. The sparse
observations are simulated by adding uncorrelated Gaussian noises at every p model
grid point with variance r° to the true trajectories at every observation time Ty,ps =
nAt. When F' =8, Lorenz suggests that 0.05 non-dimensionalized units are equivalent
to 6 hours based on doubling time in a global weather model [23]. Thus, our choices of
n’s correspond to roughly 9 hours for n =5 and 28 hours for n=15; both observation
times are still within the 3 days decorrelation time. The observation noise variance
r° is chosen relative to the fraction of the size of the chaotic attractor that can be
roughly estimated by taking the temporal average of the RMS (root-mean-square)
difference between two long trajectories initiated from two almost identical model
states. In our numerical results, we call this average difference as the errors due
to “no filter”. The ETKF and EAKF are initiated by an exactly similar ensemble
of initial conditions that is randomly chosen from a Gaussian distribution with the
true state u’ as the mean and average variance of the energy spectrum E, as the
covariance. To be consistent with the simulation with ETKF and EAKF, we initiate
the Fourier domain filters exactly from the true state.

In each experiment, we run the data assimilation cycle for 5000 cycles and to
measure the performance we compute the temporal average of the RMS error and the

average spatial correlation, both, between the true state u!, and the mean posterior
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state @), As a benchmark, we show results from a perfect model simulation with
EAKF (which we denoted as “EAKF true” in the remainder of this paper) and the
unfiltered solution. We do not show the ‘ETKF true’, that is ETKF with perfect
model, since its solution blows up, i.e., it always suffers from catastrophic filter diver-
gence, in the parameter regimes considered below. In this paper we will not compare
the filtered solutions to the observation time model error as in [18], instead we provide
simulations of EAKF and ETKF for both linear stochastic models CSM and CNVD.
In this sense, we can compare how well FDKF performs compared to both ensemble
methods in the presence of model errors.

In the first numerical simulation, we consider a weakly chaotic regime F' =6 with
a long observation time n=15 (i.e., T,ps =0.234). We consider sparse observations
with p=2 and error variance 7°=1.96 to be the square of one-half of our rough esti-
mate of the size of the chaotic attractor, which is 2.8 for this weakly chaotic regime
[24, 28]. Figure 2.3 shows snapshots of the filtered solutions after 5000 assimilation
cycles from various approaches including the perfect model simulation EAKF true,
the four filtering strategies EAKF, ETKF, FDKF, and RFDKF in the presence of
model errors through CSM and CNVD, and the unfiltered solutions. Notice that
the filtered solutions of the Fourier domain filters with model errors are less skillful
than those with the EAKF true; in the region with rather large amplitude of oscilla-
tions, the presence of model errors hurts the filter when observations are not available.
However, the Fourier domain FDKF shows substantial skill (much better than the un-
skillful solutions) and notice that the model errors through CSM and CNVD also hurt
both ensemble methods, EAKF and ETKF, at similar unobserved locations (compare
snapshots in figure 2.3). In fact, the two ensemble filters with model errors produce
larger average RMS errors and lower average spatial correlations compared to the
exactly identical assimilation with FDKF (see Table 3.1). It is interesting that the
catastrophic filter divergence in ETKF vanishes when both linear stochastic models
(CSM and CNVD), which essentially include model errors, are implemented. We also
notice that there is filtering skill even with the cheapest scheme RFDKF with solu-
tions comparable to those produced by ETKF. The surprising skill of REDKF can be
justified as follows: the strongly energetic modes in the weakly chaotic L-96 model are
concentrated within modes 6 to 10 [24, 28] and the structure of the aliasing set defined
in (2.9) allows these energetic modes to be distributed in different aliasing sets so that
the unfiltered modes (modes where RFDKF fully trusts the dynamics) are the weakly
energetic modes. On the other hand, when the model is strongly chaotic F =8 or fully
turbulent F'=16, the energy spectrum becomes more homogeneous so that ignoring
some of the energetic modes may hurt the filter substantially. In other unreported
experiments, we confirm the declining skill with RFDKF for stronger chaotic regimes.
In the second experiment, we consider sparser observations with p=4. The results in
figure 2.4 are from a simulation in the strongly chaotic regime F' =8 with observation
noise size r°=3.24 (i.e., square of a one-half of the chaotic attractor size 3.6) and
observation time n=15 (Typs =0.234). Qualitatively, we find that the filtered solu-
tions underestimate the unobserved peaks in the true signal even with perfect model
simulation. The presence of model errors through linear stochastic models do not
magnify the RMS errors as significantly as we saw in the earlier experiments; CNVD
increases errors by about 1.17 times in this experiment, compared to 3 times in the
earlier experiment. In this experiment, the filtered solution with the perfect model
simulation, EAKF true, produces filtered solutions with the lowest average RMS error
of 2.69 and the highest average spatial correlation of 0.68. In the presence of model
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TABLE 3.1. Awverage RMS errors and spatial correlations for simulations with F=6, p=2
r°=1.96, and n=15 (corresponding to Tops =0.234). This is a regime where EAKF true is superior.

Spatial domain scheme | RMS | corr. || Fourier domain scheme | RMS | corr.
EAKF true 0.82 | 0.95
EAKF CSM 2.20 | 0.64 FDKF CSM 2.07 | 0.69
EAKF CNVD 2.09 | 0.70 FDKF CNVD 1.99 | 0.73
ETKF true 00 -
ETKF CSM 2.50 | 0.55 RFDKF CSM 2.39 | 0.60
ETKF CNVD 2.39 | 0.62 RFDKF CNVD 2.38 | 0.62

errors, the RMS errors with CNVD is lower than those with CSM. Comparing both
the average RMS error and the average spatial correlation for linear stochastic model
CNVD, the highest skill is obtain through FDKF, follows by EAKF, and ETKF (see
Table 3.2). In the third numerical experiment (see figure 2.5 for the snapshots of

TABLE 3.2. Average RMS errors and spatial correlations for simulations with F =8, p=4,
r®=3.24, and n=15 (corresponds to Typs =0.234). This is a regime where EAKF true is mildly
superior.

Spatial domain scheme | RMS | corr. || Fourier domain scheme | RMS | corr.
EAKEF true 2.69 | 0.68
EAKF CSM 3.28 | 0.46 FDKF CSM 3.16 | 0.51
EAKF CNVD 3.15 | 0.52 FDKF CNVD 3.06 | 0.56
ETKF true 00 -
ETKF CSM 4.18 | 0.32
ETKF CNVD 3.66 | 0.43

the filtered solution after 5000 assimilation cycles and Table 3.3 for its corresponding
average RMS errors and spatial correlations), we consider a fully turbulent regime
F =16 with a shorter observation time n=5 (T,5s =0.078), observation density p=2,
and observation error r°=0.81 (which is the square of a quarter of it’s chaotic attrac-
tor size 6.4). In this regime, the perfect model experiment, EAKF true, is completely
unskillful with average RMS error 7.55, larger than the attractor size 6.4. On the
other hand, the model errors either through CSM or CNVD improve the filtering skill
(again, see Table 3.3). The model errors also improve the EAKF substantially, but
the numerically cheaper FDKF still has the lowest average errors and highest average
correlation. Finally, ETKF, which suffers from a catastrophic filter divergence with
perfect model, has some skill when radical model errors through CSM are introduced
but still has conventional filter divergence with CNVD (although not catastrophi-
cally). The better filtering skill through the linear stochastic model compared to the
EAKF true, as discussed in this numerical experiment is also observed when the L-
96 is strongly chaotic with F'=8 and intermediate observation times with n=>5 to
n="7. Finally, we consider a super-long observation time with n=150 (T,,s =2.34,
this corresponds to 12 days which is far beyond the 3 days decorrelation time of the
L-96 model with F'=8 [23]). In this numerical experiment, we set all parameters as
in the second experiment: F =8,r°=3.24, but with p=2 instead of p=4. We find
that (see also figure 2.6 for snapshots) the average RMS error and the average spatial
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TABLE 3.3. Awerage RMS errors and spatial correlations for simulations with FF=16, p=2,
r°=0.81, and n=>5 (corresponding to Tops =0.078). This is a regime where FDKF is superior.

Spatial domain scheme | RMS | corr. || Fourier domain scheme | RMS | corr.
EAKEF true 7.55 | 0.48
EAKF CSM 5.15 | 0.61 FDKF CSM 4.80 | 0.66
EAKF CNVD 5.87 | 0.57 FDKF CNVD 4.78 | 0.68
ETKF true 00 -
ETKF CSM 5.80 | 0.54
ETKF CNVD 7.45 | 045

correlation of the perfect model simulation EAKF true are, respectively, 2.96 and
0.59, which are slightly worse than those of the FDKF CSM (RMS=2.82, corr=0.64),
as expected given the earlier trends, EAKF CSM (RMS=3.03, corr=0.57) and ETKF
CSM (RMS=3.21, corr=0.53), do not produce better filtered solutions compared to
FDKF or EAKF true. In each filtering strategy, we ignore simulations with CNVD
since its filtering skills are not much different from CSM. In fact, we find similar
filtering skill if we simply use the climatological mean and covariance as the prior
statistics (FDKF CLIMATE in figure 2.6 produces RMS=2.81,corr=0.64). Thus, for
a very long observation time beyond the decorrelation time, a dynamic-less filter akin
to the 3D-VAR [22] scheme is an alternative strategy.

4. Summary

In this paper we show that in filtering the dissipative nonlinear L-96 model [23]
with an absorbing ball property and a unimodal quasi-Gaussian distribution, when
the number of observations are at most one half of the model spatial dimension and
when these observations are located at regularly spaced grid points the perfect model
simulation with ETKF (reformulated as in [20]) exhibits catastrophic filter divergence
in various turbulent regimes. Moreover, the perfect model simulation with EAKF,
which is a more stable and very skillful filtering scheme compared to ETKF, is not
immune from catastrophic filter divergence. Our numerical simulations show that in
several chaotic regimes where the perfect model simulation with EAKF does not suffer
from a catastrophic filter divergence, this method produces unskillful results with
errors larger than their corresponding attractor sizes which is a more conventional
filter divergence.

As an alternative, we implement the Fourier domain Kalman filter (FDKF), an
innovative filter reduction strategy for filtering turbulence as shown in [19] and for-
mulated in [26], to linear stochastic models [18] of the L-96 model. We compare
this strategy with the perfect model simulations and simulations with model errors
(through the same linear stochastic models used in the Fourier domain filters) with
EAKF and ETKF. From these experiments, we find that in the weakly chaotic regime,
the perfect model simulation with EAKF is superb and unbeatable compared to any
simulations with model errors. Here, ETKF suffers from a catastrophic filter diver-
gence. Secondly, among the simulations with model errors we find that FDKF is a
better alternative strategy and this suggests that ignoring the correlations between
Fourier coefficients in different aliasing sets (which is not done in both ensemble
methods EAKF and ETKF) improves the filtered solutions. Most importantly, our
numerical experiments also show that the improvement through this approach is ro-
bust throughout all regimes we tested, which confirms the superiority of this reduced
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filtering strategy. Thirdly, we find that trusting fully the dynamics in the weakly
energetic modes within each aliasing set, which is prescribed in RFDKF, produces
comparable results as those with the computationally more expensive ETKF in the
weakly chaotic regime, F'=6. However, when the system is strongly chaotic or fully
turbulent, since the energy spectrum is more uniformly distributed, then trusting fully
the dynamics (as in RFDKF) in the potentially strongly energetic truncated modes
can lead to very poor filtering skill.

We find that in the fully turbulent regime, F =16, and with short observation time
(much shorter than the decorrelation time), the model errors through linear stochastic
models improve the filtering skill; FDKF is the most skillful filter for this situation;
in EAKF, the unskillful filter divergence with the perfect model is improved to a rea-
sonably more skillful result; for ETKF with the stochastic models, the catastrophic
filter divergence with the perfect model is avoided, however, the filtered solution still
diverges when CNVD is used. The fact that FDKF supersedes the perfect model
simulation with EAKF is rather interesting. The nonlinearity in the fully turbulent
L-96 model, in fact, only skews the prior ensemble {xfn +1‘m} sample slightly from a
Gaussian distribution [1] and what is surprising is that this quasi-Gaussian prior den-
sity is sufficient to cause the EAKF to diverge and the ETKF to exhibit catastrophic
filter divergence. On the other hand, the model errors through the linear stochastic
model guarantee a Gaussian prior ensemble {z* +1|m} distribution. We also find that
it is beneficial to consider a cheap dynamics-less filter (which is a cheaper version
of the 3D-VAR [22] with climatological prior distribution) whenever the observation
time is longer than the model decorrelation time. Finally, it is important to note here
that filtering sparse regular observation in Fourier space with the climate stochastic
model, CSM, always gives essentially comparable and sometimes superior results as
the CNVD model yet requires only minimal information of the climatological vari-
ances and correlation times in fitting this model. Thus, CSM would be the practical
algorithm of choice for the context here.

From the viewpoint of nonlinear analysis, in filtering sparse observations the catas-
trophic filter divergence of ETKF and EAKF in a chaotic dynamical system with the
absorbing ball property clearly needs further mathematical theory. The catastrophic
divergence in figures 2.1 and 2.2 resembles classical nonlinear instability for finite
difference schemes (see p.66 of [27]) but new mechanisms occur here.
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