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EXACT TRAVELING WAVE SOLUTIONS FOR SOME NONLINEAR
EVOLUTION EQUATIONS∗
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Abstract. In this paper, we obtain many traveling wave solutions for some nonlinear partial
differential equations. The modified tanh-coth method with the symbolic computation is imple-
mented for constructing multiple traveling wave solutions for the two dimensional coupled Burger’s,
ZK-MEW and one dimensional Ostrovsky equations. The results reveal that the implemented tech-
nique is very effective and convenient for solving nonlinear partial differential equations arising in
mathematical physics.
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1. Introduction
Most phenomena in real world problems are described through nonlinear partial

differential equations. These equations play an important role in various fields such
as fluid mechanics, plasma physics, optical fibers, chemical kinematics, nonlinear op-
tics, and so on. In order to better understand the nonlinear phenomena as well as
further practical applications, it is important to seek their more exact traveling wave
solutions. In the recent years, many powerful methods have been proposed for obtain-
ing traveling solitary wave solutions to nonlinear evolution equations such as Hirota’s
bilinear method [18], the sine-cosine method [20, 21], the exp-function method [16],
the Jacobi elliptic function method [12], the auxiliary ordinary differential equation
method [14], the direct algebraic method [17, 22], and so on.

However, practically there is no unified method that can be used to handle all
types of nonlinear partial differential equations. One of the most effective and direct
method for constructing soliton solutions for nonlinear equations is tanh-function
method [15]. The concept of tanh-function method was first proposed in [15] and it
was used to obtain the exact traveling wave solutions to many nonlinear problems. A
search in the literature have revealed that the various types of tanh-function meth-
ods have been proposed and applied to many nonlinear partial differential equations
[8, 13, 19, 10, 11]. The generalized tanh-function method is used for constructing ex-
act traveling wave solutions of general Burgers-Fisher and the Kuramoto-Sivashinsky
equations [8]. Later, Fan [13] proposed an extended tanh-function method and ob-
tained new traveling wave solutions of some nonlinear problems. More recently, El-
Wakil et al. [11] proposed a modified tanh-coth method for constructing soliton and
periodic solutions of nonlinear equations. Wazzan [19] applied the modified tanh-
coth method for obtaining new traveling wave solutions of KdV and the KdV-Burgers
equations. The main idea of this method is that it uses the Riccati equation and its
solutions. The modified tanh-coth method is rather heuristic and posses significant
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1054 TRAVELING WAVE SOLUTIONS

features that make it practical for the determination of many traveling solutions for a
wide class of nonlinear evolution equations. In this paper, we extend the application
of the modified tanh-coth function method to construct exact solutions of the two
dimensional coupled Burger’s equation, ZK-MEW equation and Ostrovsky equation.

2. Basic idea of the modified tanh-coth function method
In this section, we will present the modified tanh-coth function method in its

systematized form. The tanh technique is based on a priori assumption that the
traveling wave solutions can be expressed in terms of the tanh function. A partial
differential equation P (u,ut,ux,uxx,uxxx,···)=0 can be converted to an ordinary dif-
ferential equation (ODE)

Q(u,−kωu′,k2u′′,k3u′′′,···)=0 (2.1)

upon using a wave variable η =k(x−ωt), where k and ω represent the wave number
and velocity of the traveling wave respectively. The ordinary differential equation
(2.1) is then integrated as long as all terms contain derivatives, where the integration
constants are considered as zeros. The resulting ODE is then solved by the tanh-coth
method, which admits the use of a finite series of functions of the form [11]

u(η)=a0 +

M
∑

n=0

anY n(η)+

M
∑

n=1

bnY −n(η), (2.2)

and the Riccati equation

Y ′ =A+BY +CY 2, (2.3)

where A, B and C are constants to be prescribed later. Here M is a positive integer,
in most cases, that will be determined. The parameter M is usually obtained by
balancing the linear terms of highest order in the resulting equation with the highest
order nonlinear terms. Substituting (2.2) in the ODE (2.1) and using (2.3) results in
an algebraic system of equations in powers of Y that will lead to the determination
of the parameters an,bn(n=0,...,M),k, and ω. In this paper, we consider the special
solutions Y =cothη±cschη and Y =tanhη∓ i sechη of the Riccati equation (2.3).

3. Two-dimensional Burgers equation
The Burgers equation is a nonlinear partial differential equation of second or-

der and was introduced in [1]. This equation has a large variety of applications in
modeling of water in unsaturated soil, dynamics of soil water, statistics of flow prob-
lems, mixing, and turbulent diffusion [2]. Due to its important applications in science
and engineering, in fact it is necessary to find more exact solutions of the Burger’s
equation. In this paper, we obtain traveling wave solutions of coupled 2-dimensional
Burgers equation of the form [3, 6]

ut−2uux−uxx−uyy −2vuy =0 (3.1)

vt−2uvx−vxx−vyy −2vvy =0 (3.2)

where x, y and t denote the differentiation with respect to the same variables. More
recently, Biazar and Ayati [4] applied the exp-function method to construct soli-
tary solutions of the two-dimensional Burgers equations. To look for the traveling
wave solutions of equations (3.1) and (3.2), we use the transformation u(x,y,t)=
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u(η),v(x,y,t)=v(η),η =kx+ ly+ωt, where k,l and ω are constants, then equations
(3.1) and (3.2) reduce to

ωu′−2kuu′−(k2 + l2)u
′′ −2lvu′ =0, (3.3)

ωv′−2kuv′−(k2 + l2)v
′′ −2lvv

′

=0. (3.4)

Balancing the linear terms of highest order with the nonlinear terms of equations (3.3)
and (3.4) yields the required balancing number M =1, therefore the modified tanh-
coth method (2.2) admits the solutions of equations (3.3) and (3.4) in the following
form

u(η)=a0 +a1Y +
b1

Y
, (3.5)

v(η)= c0 +c1Y +
d1

Y
, (3.6)

where a0,a1,b1,c0,c1,d1 are constants to be determined and Y satisfies equation (2.3).
Substituting equations (3.5) and (3.6) in equations (3.3) and (3.4), and using

equation (2.3) collecting the coefficients of Y , yields a system of algebraic equations
for a0,a1,b1,c0,c1,d1,A,B,C,k,l and ω.

Case (I): If we set A=B =1, C =0 in equation (2.3), solving the system of algebraic
equations using Maple yields the following sets of solutions:

{

a0 =a0,a1 =a1,b1 =0,c0 = c0,c1 = c1,d1 =0,k =− lc1

a1

,l= l,

ω =− l(2a0a1c1− lc2
1− la2

1−2a2
1c0)

a2
1

}

,

{

a0 =a0,a1 =0,b1 = b1,c0 = c0,c1 =0,d1 =−kb1−k2− l2

l
,k =k,l= l,

ω =2ka0 +2lc0−k2− l2
}

,

{a0 =a0,a1 =±c1i,b1 = b1,c0 = c0,c1 = c1,d1 =∓b1i,k =±li,l= l,ω =±2la0i+2lc0} .

Substituting the above first set of values and Y =eη −1 in equations (3.5) and (3.6),
we obtain the following soliton solution

u1(x,y,t)=a0 +a1 (eη −1) , (3.7)

v1(x,y,t)= c0 +c1 (eη −1) , (3.8)

where η =− l
a2
1

{

a1c1x−a2
1y+

(

2a0a1c1− lc2
1− la2

1−2a2
1c0

)

t
}

.

For the second set of values, we obtain the following soliton solution

u2(x,y,t)=a0 +b1 (eη −1)
−1

, (3.9)

v2(x,y,t)= c0−
kb1−k2− l2

l
(eη −1)

−1
, (3.10)

where η =kx+ ly+
(

2ka0 +2lc0−k2− l2
)

t.
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Finally, we obtain the following soliton solution for the third set of values

u3(x,y,t)=a0±c1i(e
η −1)+b1 (eη −1)

−1
, (3.11)

v3(x,y,t)= c0 +c1 (eη −1)∓b1i(e
η −1)

−1
, (3.12)

where η = l{±ix+y±2(a0i±c0)t}.

Case (II): If we take A= 1

2
,B =0,C = 1

2
in equation (2.3), solving the system of

algebraic equations using Maple we obtain four sets of nontrivial solutions

{

a0 =a0,a1 =0,b1 =
k2 + l2−2ld1

2k
,c0 = c0,c1 =0,d1 =d1,k =k,l= l,ω =2ka0 +2lc0

}

,

{

a0 =a0,a1 =
k2 + l2−2lc1

2k
,b1 =0,c0 = c0,c1 = c1,d1 =0,k =k,l= l,ω =2ka0 +2lc0

}

,

{

a0 =a0,a1 =
k2 + l2−2ld1

2k
,b1 =a1,c0 = c0,c1 =d1,d1 =d1,k =k,l= l,ω =2ka0 +2lc0

}

,

{a0 =a0,a1 =±c1i,b1 =±d1i,c0 = c0,c1 = c1,d1 =d1,k =±li,l= l,ω =±2la0i+2lc0} .

Substituting Y =cothξ±cschξ and Y =tanhξ± isechξ in equations (3.5) and (3.6),
the first set gives the following soliton solutions

u(x,y,t)=a0 +
k2 + l2−2ld1

2k
(cothη±cschη)

−1
, v(x,y,t)= c0 +d1 (cothη±cschη)

−1

and

u(x,y,t)=a0 +
k2 + l2−2ld1

2k
(tanhη± isechη)

−1
, v(x,y,t)= c0 +d1 (tanhη± isechη)

−1
,

where η =kx+ ly+2(ka0 + lc0)t.
Moreover, we obtain the following soliton solutions with the use of second set of

values

u(x,y,t)=a0 +
k2 + l2−2lc1

2k
(cothη±cschη), v(x,y,t)= c0 +c1 (cothη±cschη),

and

u(x,y,t)=a0 +
k2 + l2−2lc1

2k
(tanhη± isechη), v(x,y,t)= c0 +c1 (tanhη± isechη),

where η =kx+ ly+2(ka0 + lc0)t.
Also, the third set gives the following soliton solutions

u(x,y,t)=a0 +
k2 + l2−2ld1

2k

{

cothη±cschη+(cothη±cschη)−1
}

,

v(x,y,t)= c0 +d1

{

cothη±cschη+(cothη±cschη)
−1

}

,
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and

u(x,y,t)=a0 +
k2 + l2−2ld1

2k

{

tanhη± isechη+(tanhη± isechη)
−1

}

,

v(x,y,t)= c0 +d1

{

tanhη± isechη+(tanhη± isechη)
−1

}

,

where η =kx+ ly+2(ka0 + lc0)t.
Finally, we obtain the following soliton solutions by using the fourth set of values

u(x,y,t)=a0±c1i(cothη±cschη)±d1i(cothη±cschη)
−1

,

v(x,y,t)= c0 +c1 (cothη±cschη)+d1 (cothη±cschη)
−1

,

and

u(x,y,t)=a0±c1i(tanhη± isechη)±d1i(tanhη± isechη)
−1

,

v(x,y,t)= c0 +c1 (tanhη± isechη)+d1 (tanhη± isechη)
−1

,

where η = l{±ix+y+2(c0±a0i)t} .

4. ZK-MEW equation
In this section,we consider the two dimensional ZK-MEW equation [5]

ut +α(u3)x +(βuxt +γuyy)x =0 (4.1)

where α,β and γ are constants. The ZK-MEW equation governs the behavior of
weakly nonlinear ion-acoustic waves in a plasma comprising cold ions and hot isother-
mal electrons in the presence of a uniform magnetic field [5]. Recently, ZK-MEW
equation is solved by exp-function method in [5]. In order to obtain the traveling
wave solutions, we use the transformation u(x,y,t)=u(η), η =kx+ ly+ωt. The ZK-
MEW equation (4.1) can be converted to the ODE

wu+αku3 +(βk2ω+γl2k)u
′′

=0, (4.2)

upon using u(x,y,t)=u(η), η =kx+ ly+ωt and integrating the resulting ODE once
and neglecting the constant of integration.

To determine the parameter M , we balance the linear terms of highest order in
equation (4.2) with the highest order nonlinear terms. This in turn gives M =1. As
a result, the modified tanh-coth method (2.2) admits the use of the finite expansion

v(η)=a0 +a1Y +
b1

Y
. (4.3)

Substituting equation (4.3) in the reduced ODE (4.2) and using equation (2.3) collect-
ing the coefficients of Y , yields a system of algebraic equations for a0,a1,b1,A,B,C,k,l

and ω.

Case (I): If we set A=B =1, C =0 in equation (2.3), solving the system of algebraic
equations using Maple yields the following nontrivial solution:







a0 =
b1

2
,a1 =0,b1 = b1,k =±

√
2

b1

√

αb2
1 +2γl2

αβ
,l= l,ω =∓ αb1

2
√

2

√

αb2
1 +2γl2

αβ







.
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Substituting the above set of values and Y =eη −1 in equation (4.3),

we get the soliton solution u1(x,y,t)= b1
2

+b1 (eη −1)
−1

= b1
2

coth η
2
, where

η =±
√

2

b1

√

αb2
1
+2γl2

αβ
x+ ly∓ αb1

2
√

2

√

αb2
1
+2γl2

αβ
t.

Case (II): If we set A= 1

2
,B =0,C =− 1

2
in equation (2.3), solving the system of

algebraic equations using Maple we obtain the following four sets of solutions:






a0 =0,a1 =0,b1 = b1,k =± 1

b1

√

2αb2
1 +γl2

αβ
,l= l,ω =∓αb1

√

2αb2
1 +γl2

αβ







,







a0 =0,a1 =a1,b1 =0,k =± 1

a1

√

2αa2
1 +γl2

αβ
,l= l,ω =∓αa1

√

2αa2
1 +γl2

αβ







,







a0 =0,a1 =a1,b1 = b1,k =± 1

2a1

√

2αa2
1 +γl2

αβ
,l= l,ω =∓2αa1

√

2αa2
1 +γl2

αβ







,







a0 =0,a1 =a1,b1 =−a1,k =± 1√
2a1

√

−2αa2
1 +γl2

αβ
,l= l,

ω =±
√

2αa1

√

−2αa2
1 +γl2

αβ







.

Substituting Y =cothξ±cschξ and Y =tanhξ± isechξ in equation (4.3), the first set
gives the soliton solutions

u2(x,y,t)= b1 (cothη±cschη)
−1

, u3(x,y,t)= b1 (tanhη± isechη)
−1

,

where η =± 1

b1

√

2αb2
1
+γl2

αβ
x+ ly∓αb1

√

2αb2
1
+γl2

αβ
t. Also the second set gives the soliton

solutions

u4(x,y,t)=a1 (cothη±cschη), u5(x,y,t)=a1 (tanhη± isechη),

where η =± 1

a1

√

2αa2
1
+γl2

αβ
x+ ly∓αa1

√

2αa2
1
+γl2

αβ
t.

Furthermore, the third set gives the soliton solutions

u6(x,y,t)=a1 (cothη±cschη)+b1 (cothη±cschη)
−1

,

u7(x,y,t)=a1 (tanhη± isechη)+b1 (tanhη± isechη)
−1

,

where η =± 1

2a1

√

2αa2
1
+γl2

αβ
x+ ly∓2αa1

√

2αa2
1
+γl2

αβ
t.

Finally, the fourth set gives the soliton solutions

u8(x,y,t)=a1

{

cothη±cschη−(cothη±cschη)
−1

}

,

u9(x,y,t)=a1

{

tanhη± isechη−(tanhη± isechη)
−1

}

,

where η =± 1√
2a1

√

− 2αa2
1
+γl2

αβ
x+ ly±

√
2αa1

√

− 2αa2
1
+γl2

αβ
t.
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4.1. Ostrovsky equation. In this section, we consider the nonlinear evolution
equation

(ut +c0ux +puux +quxxx)x =νu. (4.4)

The equation (4.4) presented in [7] is used to describe nonlinear surface and internal
waves in rotating ocean. Here c0 is the velocity of dispersionless linear waves, p is
the nonlinear coefficient, q is the Boussinesq dispersion, and ν is the Coriolis disper-
sion coefficients. Later Vakhnenko and Parkes [9] demonstrated that the Ostrovsky
equation (4.4) can be transformed to the new integrable equation of the form

uuxxt−uxuxt +u2ut =0. (4.5)

To look for the traveling wave solutions of equation (4.5), we consider the transfor-
mation u(x,t)=u(η), η =k(x−ωt), then equation (4.5) becomes

k2uu
′′′ −k2u′u′′+u2u′ =0. (4.6)

By balancing uu
′′′

and u2u′ gives the desired balancing number M =2. In this case,
the modified tanh-coth method (2.2) admits the use of the finite expansion

v(η)=a0 +a1Y +a2Y
2 +

b1

Y
+

b2

Y 2
. (4.7)

Substituting equation (4.7) in the reduced ODE (4.6) and using equation
(2.3) collecting the coefficients of Y yields a system of algebraic equations for
a0,a1,a2,b1,b2,A,B,C,k, and ω.

Case (I): If we set A=B =1, C =0 in equation (2.3) and by the same calculation as
in previous sections, the following sets of solutions are obtained:

{

a0 =0,a1 =0,a2 =0,b1 =−6k2,b2 =−6k2,k =k,ω =ω
}

.

{

a0 =−k2,a1 =0,a2 =0,b1 =−6k2,b2 =−6k2,k =k,ω =ω
}

.

Substituting the above values and Y =eη −1 in equation (4.7), we obtain the soliton
solution

u1(x,t)=−6k2
{

(eη −1)−1 +(eη −1)−2
}

=
3k2

1−coshη
, where η =k(x−ωt).

u2(x,t)=−k2
{

1+6(eη −1)−1 +6(eη −1)−2
}

=
k2(2+coshη)

1−coshη
, η =k(x−ωt).

Case (II): If we set A= 1

2
,B =0,C =− 1

2
in equation (2.3), solving the system of

algebraic equations using Maple we obtain the following six sets of nontrivial solutions:

{

a0 =
k2

2
,a1 =0,a2 =−3k2

2
,b1 =0,b2 =0,k =k,ω =ω

}

, (4.8)

{

a0 =
3k2

2
,a1 =0,a2 =−3k2

2
,b1 =0,b2 =0,k =k,ω =ω

}

, (4.9)
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{

a0 =
k2

2
,a1 =0,a2 =0,b1 =0,b2 =−3k2

2
,k =k,ω =ω

}

, (4.10)

{

a0 =
3k2

2
,a1 =0,a2 =0,b1 =0,b2 =−3k2

2
,k =k,ω =ω

}

, (4.11)

{

a0 =−k2,a1 =0,a2 =−3k2

2
,b1 =0,b2 =−3k2

2
,k =k,ω =ω

}

, (4.12)

{

a0 =3k2,a1 =0,a2 =−3k2

2
,b1 =0,b2 =−3k2

2
,k =k,ω =ω

}

. (4.13)

According to equations (4.8)–(4.10), we obtain the exact traveling wave solution in
the following form

u3(x,t)=
k2

2

{

1−3(cothη±cschη)2
}

, u4(x,t)=
k2

2

{

1−3(tanhη± isechη)2
}

,

u5(x,t)=
3k2

2

{

1−(cothη±cschη)2
}

,u6(x,t)=
3k2

2

{

1−(tanhη± isechη)2
}

,

u7(x,t)=
k2

2

{

1−3(cothη±cschη)−2
}

, u8(x,t)=
k2

2

{

1−3(tanhη± isechη)−2
}

,

where η =k(x−ωt).
Finally equations (4.11)–(4.13) lead the exact traveling wave solutions in the

following form

u9(x,t)=
3k2

2

{

1−(cothη±cschη)−2
}

, u10(x,t)=
3k2

2

{

1−(tanhη± isechη)−2
}

,

where η =k(x−ωt).

u11(x,t)=−k2

2

{

2+3(cothη±cschη)2 +3(cothη±cschη)−2
}

,

u12(x,t)=−k2

2

{

2+3(tanhη± isechη)2 +3(tanhη± isechη)−2
}

,

where η =k(x−ωt).

u13(x,t)=
3k2

2

{

2−(cothη±cschη)2−(cothη±cschη)−2
}

,

u14(x,t)=
3k2

2

{

2−(tanhη± isechη)2−(tanhη± isechη)−2
}

,

where η =k(x−ωt). For k =1, the behavior of the obtained traveling wave solutions
u3 and u9 of Ostrovsky equation are shown graphically, see figures 4.1 and 4.2.

It should be noted that the solution of the ansatz (2.2) goes back to the solutions
of standard tanh method once bn =0, 1≤n≤M . On the other hand in case of bn 6=0,
the corresponding solutions are quite new and cannot be obtained from standard tanh
method.
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Fig. 4.1. Solitary wave solution u3 of Ostrovsky equation (4.4).

Fig. 4.2. Solitary wave solution u9 of Ostrovsky equation (4.4).
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5. Conclusion
In this paper, we implemented a reliable algorithm called modified tanh-coth func-

tion method to obtain traveling wave solutions for some nonlinear evolution equations.
The computer symbolic systems such as Maple and Mathematica allow us to perform
complicated and tedious calculations. It is interesting to mention that the sign of the
parameters in the Riccati equations can be used to judge the numbers and types of
traveling wave solutions. The result reveals that the proposed method is simple and
effective, and can be used for many other nonlinear evolutions equations arising in
mathematical physics.
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