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A CONSTRAINED STRING METHOD AND ITS NUMERICAL
ANALYSIS∗
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Abstract. A constrained string method is developed to solve the saddle-point problem with con-
straints. Based on the intrinsic description of the string method, Lagrange multipliers are employed
for treating the constraints. Various mathematical properties are established such as the conservation
of the constraints and the energy dissipation law. We also investigate time discretization schemes
for the constrained string method and discuss possible alternative ways to enforce the constraints.
Some numerical examples are presented for illustration.
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1. Introduction
The computation of saddle points and minimum energy paths has been of much in-

terest in many areas of application, such as conformational changes in macromolecules,
chemical reactions, diffusion in condensed-matter systems, and nucleation events dur-
ing phase transformations [16, 17, 18]. Several numerical methods have been devel-
oped for computing the MEPs, including the Nudged Elastic Band (NEB) method
[10, 11] and more recently the string method and its various improvements [5, 6]. The
relevant saddle point can be identified with the highest energy point on the MEP [13].

In practical applications, the computation of MEPs and/or saddle points may
be subject to one or more constraints. In this brief report, we adopt the idea of
the string method and the method of Langrange multipliers to develop a constrained
string method for finding the MEPs and saddle points subject to general constraints.
While the resulting method is very natural and straightforward, we discuss some in-
teresting mathematical properties, not all of which are obvious. For instance, we not
only establish the energy dissipation law and the conservation of constraints, but also
show that the Lagrange multipliers may be taken to be independent of the string
parametrization. Furthermore, we examine other alternatives for dealing with con-
straints including both the penalty method and the augmented Lagrangian method.
We also conduct numerical experiments to complement our derivation and analysis
and to reveal the potential applications of the constrained string method.

The rest of the paper is organized as follows: a brief review of string method is
presented in the section 2. In section 3, we describe the mathematical formulation of
the constrained string method along with detailed analysis. In section 4, we present
the time discretization of the constrained string method. In section 5, the numerical
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algorithm is described for the constrained canonical string method and we use a 3D
example to illustrate the developed method. In section 6, we discuss possible alterna-
tives to treat the constraints, including the penalty formulation and the augmented
Lagrangian method. Final conclusions are made in section 7.

2. The string method and its variants
The string method was first developed by E, Ren, and Vanden-Eijnden [5] for

computing the minimum energy path (MEP) and saddle points for barrier-crossing
events. The method proceeds by evolving strings, i.e., smooth curves with intrinsic
parametrization, to the most probable transition path between two metastable regions
in the configuration space. More specifically, given a potential energy E=E(x) with
at least two local minima, at a and b, a MEP refers to a smooth curve ϕ∗ connecting
a and b that satisfies

(∇E)⊥(ϕ∗) = 0, (2.1)

where ∇E(ϕ)⊥ is the component of ∇E(ϕ) normal to a curve ϕ. That is, let τ̂ be
the unit tangent of the curve ϕ, then

(∇E)⊥(ϕ) =∇E(ϕ)−(∇E(ϕ), τ̂)τ̂ ,

where (·, ·) denotes the standard inner product.
To evolve a string in time, at each point on the curve ϕ we consider

ϕt=−(∇E)⊥(ϕ), (2.2)

which we call the general string dynamics. Indeed, the string method has been ana-
lyzed with a dynamical system view in [2]. In practice, to use a suitable form of (2.2)
in numerical computation, a particular parametrization of the string can be chosen.
Introducing α as the parameter for a suitable parametrization, ϕ(α,t) then gives the
instantaneous position of the string at time t with parameter α. One simple example
of the parametrization is the equal arc-length parametrization for which the following
condition holds:

(|ϕα|)α= 0. (2.3)

To impose the parametrization, a Lagrange multiplier is introduced, leading to
the system {

ϕt=−(∇E)⊥(ϕ)+λτ̂
(|ϕα|)α= 0. (2.4)

which we call the canonical string dynamics here with τ̂ =ϕα/|ϕα|. The canoni-
cal form takes on a special parametrization not imposed in the general string dy-
namics, and the Lagrange multiplier λ=λ(α,t) can be determined by the choice of
parametrization [5]. Since the tangential term does not affect the normal velocity
of the curve, the re-parametrization of the curve does not change the evolution of
the curve. As a result, a simple interpolation step is suggested in [5] to realize the
contribution from the term λτ̂ in the numerical algorithm.

It was later noticed that one of the computational complexity in the general or
canonical string dynamics lies in the calculation of the projected force. In particular,
care must be taken when computing the tangent vector around the saddle point to
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ensure the numerical stability. In [6], an improved string dynamics was developed to
eliminate the projection: {

ϕt=−∇E(ϕ)+ λ̄τ̂ ,
(|ϕα|)α= 0, (2.5)

where λ̄ remains to be a Lagrange multiplier for enforcing the particular parametriza-
tion of the string. To distinguish the different variants of the string method while
without completely altering the naming convention used in [6], we call the above sys-
tem (2.5) the improved canonical string dynamics. Equation (2.5) is in fact equivalent
to (2.4) with λ̄=λ+(∇E(ϕ), τ̂).

For the numerical implementation, [6] proposed the use of the simplified string
method based on a time splitting scheme. The discretized string is composed of a
number of images {ϕi(t),i= 0,1,...,N}. A two-step splitting procedure is used in the
simplified string method. First, the discrete images on the string are driven by the
potential force,

(ϕi)t=−∇E(ϕi),

which is the general string dynamics mentioned above. Then, a parametrization step
is applied to redistribute the images along the string. For instance, in the canonical
case, an equal arc-length parametrization is enforced. We refer to [12, 15] for the
latest applications of the string methods.

3. The constrained string method
Our objective is to study the string method and some of its variants for computing

the MEP and saddle points on a constrained configuration manifold. To deal with the
constraints, a natural choice to consider first is the method of Lagrange multipliers.

3.1. Constrained string dynamics. Without loss of generality, we first let

g(ϕ) = 0 (3.1)

denote a general constraint. In practice, (3.1) may represent, for example, the constant
volume constraint, constant surface area constraint or any other constraints that may
arise in applications.

The dynamical equation of the constrained string is then given by

ϕt=−(∇E)⊥(ϕ)+λT∇g(ϕ)+ λ̄τ̂ , (3.2)

where, as before, λ̄ is the Lagrange multiplier determined by the parametrization,
and the new parameter λ is the Lagrange multiplier for the constraint (3.1) whose
dimension matches with that of the constraint function g(ϕ).

To derive the explicit expression of the Lagrange multiplier λ, we start by taking
the time derivative of g(ϕ) to obtain

d

dt
g(ϕ) =∇gϕt=

(
−(∇E)⊥(ϕ)+λT∇g(ϕ)+ λ̄τ̂

)
∇g.

Taking α as the internal parametrization of the string ϕ, we have τ̂ =ϕα/|ϕα|. Due
to the constraint g(ϕ) = 0 for any t and α, we also have

d

dt
g(ϕ) = 0,

d

dα
g(ϕ) = 0.
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We then obtain ∇g(ϕ)ϕα= 0 and ∇g(ϕ)τ̂ = 0. Thus,

(∇g⊗∇g)λ=∇g(ϕ)(∇E)⊥(ϕ)− λ̄∇g(ϕ)τ̂ =∇g(ϕ)(∇E)⊥(ϕ).

Here, the symbol ⊗ denotes the tensor product having entries (∇gi ·∇gj) with {gi}
being the components of g(ϕ). If g(ϕ) has a single component, then ∇g⊗∇g= |∇g|2.

With the equal arc-length parametrization, the constrained canonical string dy-
namics is then ϕt=−(∇E)⊥(ϕ)+λT∇g(ϕ)+ λ̄τ̂ ,

(∇g⊗∇g)λ=∇g (∇E)⊥,
(|ϕα|)α= 0.

(3.3)

Furthermore, we have the improved constrained canonical string dynamics:ϕt=−∇E(ϕ)+λT∇g(ϕ)+ λ̃τ̂ ,
(∇g⊗∇g)λ=∇g∇E,
(|ϕα|)α= 0.

(3.4)

Consequently, the projection step can also be eliminated as well.
We note that in the second equation of (3.3) or (3.4), λ is independent of the

choice of parametrization λ̄ or λ̃. Thus, in numerical computation, the simplified
constrained string method can be efficiently implemented by adopting the simplified
string method with a time-splitting scheme.

3.2. Energy dissipation law. As shown before, changing the parametriza-
tion of the string does not affect the evolution of the curve so that instead of using
systems (3.3) or (3.4), it is more convenient for us to work with the constrained general
string dynamics as follows:{

ϕt=−(∇E)⊥(ϕ)+λT∇g(ϕ)
(∇g⊗∇g)λ=∇g (∇E)⊥. (3.5)

Here, the string parametrization is enforced via the gradient system (3.5).
In [2], Cameron, Kohn and Vanden-Eijnden analyzed the general string method

to identify MEPs on a given energy landscape. They pointed out that the string
evolution does not necessarily converge to a MEP if the MEPs are not isolated. The
same scenario can happen to problems with constraints. To avoid such a situation,
we adopt similar conditions in the convergence theorem in [2], properly modified for
the constrained setting, to assume that

1. both the potential energy E and the constraint g are twice continuously dif-
ferentiable;

2. E has isolated nondegenerate constrained critical points; and
3. the constrained sublevel sets S(C) ={x :E(x)≤C and g(x) = 0} are compact

for any point x of the initial path.
We also assume that the constrained MEPs are isolated to ensure the convergence

of the string evolution.
Before deriving the energy dissipation law for the constrained general string

method, we first recall it for the general string method without any constraint. The
string evolution is given by

ϕt=−(∇E)⊥(ϕ)
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and followed by the parametrization. The energy dissipation law can be obtained by
taking the time derivative of E(ϕ),

d

dt
E=∇Eϕt=−∇E(∇E)⊥(ϕ) =−|(∇E)⊥(ϕ)|2.

Similarly, for the constrained general string dynamics, we have

Proposition 3.1. The system (3.5) of the constrained general string dynamics pre-
serves the constraint and ensures the energy dissipation law.

Proof. First, we take the time derivative of g=g(ϕ). Using the second equation
of (3.5), we have

d

dt
g=∇g(−(∇E)⊥(ϕ)+λT∇g(ϕ)) = 0,

so that for every point ϕ on the string, the constraint is satisfied. Furthermore, since

λT (∇E,τ̂)τ̂∇g(ϕ) =
λT

|ϕα|
(∇E, ϕα

|ϕα|
)∇g(ϕ)ϕα= 0,

we have

d

dt
E=∇E(−(∇E)⊥(ϕ)+λT∇g(ϕ))

=−|(∇E)⊥(ϕ)|2 +∇g(ϕ)λT (∇E)⊥(ϕ)+λT (∇E,τ̂)τ̂∇g(ϕ)
=−|(∇E)⊥(ϕ)−λT∇g(ϕ)|2 =−|ϕt|2.

Thus, both the constraint and energy dissipation law are satisfied.

The above result implies in particular that the maximum of the energy E over
the string is non-increasing which provides a form of stability bound, even though the
point-wise energy may not always decrease.

4. Discretization of the constrained string method

4.1. Time-discretized constrained general string dynamics. Here,
we consider the time discretization of the constrained string method. We show in
particular that the properly defined scheme can ensure the energy dissipation law while
preserving the constraint. These features are more important than the accuracy of
the time discretization as our main concern is the constrained MEP calculation which
is the asymptotic limit of the constrained general string dynamics as t→∞. Let us
choose a fully implicit scheme for the system (3.5) as an example: ϕn+1−ϕn

h
=−∇E⊥(ϕn+1,ϕn)+λT∇g(ϕn+1,ϕn),

∇g(ϕn+1,ϕn)⊗∇g(ϕn+1,ϕn)λ=∇g(ϕn+1,ϕn)∇E⊥(ϕn+1,ϕn),
(4.1)

where h is the time step and ∇E(ϕn+1,ϕn) and ∇g(ϕn+1,ϕn) satisfy the conditions{
E(ϕn+1)−E(ϕn) =∇E(ϕn+1,ϕn)(ϕn+1−ϕn),
g(ϕn+1)−g(ϕn) =∇g(ϕn+1,ϕn)(ϕn+1−ϕn). (4.2)

If ϕ is a real scalar variable, the conditions in (4.2) are satisfied by the standard
finite differences. For vector-valued ϕ or ϕ defined in a Banach space, it is still possible
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to have (4.2) satisfied for many forms of the energy functional and the constraints as
shown in the later examples. We now have

Proposition 4.1. The system (4.1) for the constrained general string dynamics pre-
serves the constraint and ensures the discrete energy dissipation law if the conditions
(4.2) are satisfied.

Proof. The conservation of constraint is straightforward,

g(ϕn+1)−g(ϕn) =∇g(ϕn+1,ϕn) ·(−∇E⊥(ϕn+1,ϕn)+λT∇g(ϕn+1,ϕn))h
= 0.

Furthermore, we have

E(ϕn+1)−E(ϕn) =∇E(ϕn+1,ϕn)(ϕn+1−ϕn)
=∇E(ϕn+1,ϕn)(−∇E⊥(ϕn+1,ϕn)+λT∇g(ϕn+1,ϕn))h
=−|∇E⊥(ϕn+1,ϕn)−λT∇g(ϕn+1,ϕn)|2h
=−|ϕn+1−ϕn|2/h,

which is the discrete analog of the energy dissipation law.

4.2. Some illustrative examples. Motivated by our studies of nucleation
problems in solid materials and the deformation of vesicle membranes using the diffuse
interface methods [4, 16, 17], we take an energy functional and constraints written in
terms of the phase field variables as an example.

Let ϕ be a phase field variable defined in a cubic domain Ω, satisfying periodic
boundary condition. Let ε be the interfacial width parameter which is often small.
We then consider the following three functionals

A(ϕ) =
∫

Ω

ϕdx,

B(ϕ) =
∫

Ω

[
ε

2
|∇xϕ|2 +

1
4ε

(ϕ2−1)2

]
dx,

C(ϕ) =
∫

Ω

[ε(∆xϕ+
1
ε2

(1−ϕ2)ϕ)2]dx.

For a typical phase field function ϕ=ϕ(x), the functional A=A(ϕ) can be used to
approximate the difference of the volumes on the two sides of Γ, the zero level surface of
ϕ. Meanwhile, for ϕ satisfying a certain ansatz assumption, B=B(ϕ) and C=C(ϕ)
converge to, up to constant multiplicative factors, the surface area and the elastic
bending energy of Γ respectively as ε→0 [3, 14].

In the diffuse interface modeling of binary phase transition problems, we often
encounter the problem of computing for the MEP and/or saddle point of B(ϕ) subject
to a given value of A=A(ϕ), while in the study of lipid bilayer vesicle deformations,
we may consider the transition between different deformed states by computing the
MEP of C=C(ϕ) subject to both given values of A=A(ϕ) and B=B(ϕ) [4]. We
now illustrate the time discretization of constrained general string method for these
two examples. Let

η(ϕ) =−ε∆xϕ+
1
ε

(ϕ2−1)ϕ,
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for any phase field function ϕ=ϕ(x) and for any pair of functions ϕ1,ϕ2, let

κ(ϕ1,ϕ2) =− ε
2

∆x(ϕ1 +ϕ2)+
1
4ε

(ϕ2
1 +ϕ2

2−2)(ϕ1 +ϕ2),

σ(ϕ1,ϕ2) =
1
ε2

(ϕ2
1 +ϕ1ϕ2 +ϕ2

2−1),

γ(ϕ1,ϕ2) =σ(ϕ1,ϕ2)[η(ϕ1)+η(ϕ2)]−∆x[η(ϕ1)+η(ϕ2)]).

Direct calculation shows that

B(ϕ1)−B(ϕ2) =
∫

Ω

(ϕ1−ϕ2)κ(ϕ1,ϕ2)dx,

C(ϕ1)−C(ϕ2) =
∫

Ω

(ϕ1−ϕ2)γ(ϕ1,ϕ2)dx,

which can be used to verify (4.2).
Then, the time-discrete constrained string method for computing the saddle point

of B=B(ϕ) subject to the constraint A(ϕ) =α is given by
ϕn+1−ϕn

h
=−κ(ϕn+1,ϕn)⊥+λ,∫

κ(ϕn+1,ϕn)⊥dx=λ|Ω|.
(4.3)

Similarly, the time-discrete constrained string method for computing the saddle
point of C=C(ϕ) subject to the constraints A(ϕ) =α and B(ϕ) =β is given by

ϕn+1−ϕn

h
=−γ(ϕn+1,ϕn)⊥+λ1 +λ2κ(ϕn+1,ϕn),∫

γ(ϕn+1,ϕn)⊥dx=λ1|Ω|+λ2

∫
κ(ϕn+1,ϕn)dx,∫

γ(ϕn+1,ϕn)⊥κ(ϕn+1,ϕn)dx=λ1

∫
κ(ϕn+1,ϕn)dx+λ2

∫
κ(ϕn+1,ϕn)2dx.

For both examples, we know from earlier discussion that the discrete energy
dissipation laws are satisfied and the constraint(s) are automatically preserved.

In general, implicit schemes can assure energy dissipation while satisfying the
constraints and parametrization. Large time steps can often be taken if the time ac-
curacy is not of particular concern. While their implementation appears to be more
involved, it is possible to design either Newton-like or optimization-based iterative
schemes for their numerical solution. Explicit predictor-corrector type methods can
also be used so that sufficient number of corrections would provide good approxima-
tions to implicit schemes. In practice, it is not always necessary to implement an
implicit scheme as simple explicit schemes and high order time (and space) discretiza-
tions may also work well. For instance, it has been shown in [6] that a 4-th order
R-K time-integrator can provide effective implementation of the string method when
combined with cubic spline interpolation for the string re-parametrization. Such an
approach should also be applicable to the constrained case. The numerical examples
given later also illustrate how a simple explicit integrator can be implemented.
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5. Algorithm implementation and numerical simulations
We now give details on how to implement the constrained canonical string method

effectively.

5.1. Algorithm of constrained canonical string method. First, the
string is discretized by a number of points, i.e., {ϕi(t),i= 1,...,N}, and we may have
many different choices for the parametrization. In the string method, after the evolu-
tion of the string, a linear or cubic interpolation is used to implement the parametriza-
tion. In the simplest case, the equal arc-length parametrization could be enforced in
the canonical string method. For the constrained canonical string method, we take
advantage of the parametrization and implement the numerical algorithm by following
the approach proposed by E, Ren, and Vanden-Eijnden [6] which is outlined below.
Step 1: Evolution of the string: let ϕni ,i= 0,...,N be the positions of the images

after n iterations, and for illustration, let us use the explicit Euler scheme;
the Lagrange multiplier is then calculated by

(∇g(ϕni )⊗∇g(ϕni ))λn+1
i =∇g(ϕni )∇E(ϕni ).

The new set of images, ϕ′, satisfies the equation:

ϕ′i−ϕni
h

=−∇E(ϕni )+λn+1
i ·∇g(ϕni ).

Step 2: Parametrization of the string by the equal arc-length.
(1) Compute the arc length by the current images,

s0 = 0, si=si−1 + |ϕ′i−ϕ′i−1|, i= 1,2,...,N.

The grid points {α′i} are then obtained by {α′i=si/sN}.
(2) Apply the linear/cubic interpolation of {ϕ′i} to get the new images
{ϕn+1

i } at the grid points {αi= i/N}.
(3) With {ϕn+1

i } known, go back to Step 1 and iterate until convergence.

5.2. A finite dimensional example. We choose a 3D constrained problem
to illustrate the developed method. Consider the potential energy E=E(x,y,z) as

E(x,y,z) = (x2−1)2 +y2 +2z2, (5.1)

with the constraint

g(x,y,z) =x2 +y2 +z2−1 = 0.

The potential energy E=E(x,y,z) has two minima at a= (1,0,0) and b= (−1,0,0)
respectively. Without the constraint, the exact MEP connecting these two minima
should be the straight line between a and b (see figure 5.1(left)), and the saddle point
is (0,0,0). Taking into account the constraint g= 0, the exact constrained MEPs
connecting two minima are changed to the upper and lower branches of the unit circle
in the (x,y) plane, and saddle points are changed to (0,±1,0).

In our calculation, the string is discretized into N+1 points {(xi,yi)}Ni=0. We
used N that ranges from 20 to 200 in the experiments. An explicit scheme is applied
for the string evolution, and linear interpolation is used to redistribute the discrete
points at each time step according to the equal arc length. We take very small time
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Fig. 5.1. The exact MEP (left) and the calculated constrained MEP (right). The energy
landscape on the sphere is highlighted.

steps to ensure the numerical stability. In figure 5.1 (right), the calculated constrained
MEP is plotted by a red curve along the equator, and the energy surface on the sphere
is highlighted to offer an intuitive understanding.

To show the convergence as we increase the numbers of images, N , we compute
the error of the converged string defined by error(N) = maxi |

√
x2
i +y2

i −1|. The error
decreases linearly vesusN , as shown in figure 5.2, due to the use of linear interpolation.
The accuracy can be improved by using high order methods such as the cubic spline
interpolation presented in [6].

Fig. 5.2. error(N) of the calculated MEP vs N.

6. Alternative approaches to enforce the constraint

6.1. Calculation of saddle point by penalty formulation. An alternative
way to enforce the constraint is to use a direct penalty term in the improved string
dynamics, that is, we may consider a modified total energy functional of the form

EM (ϕ) =E(ϕ)+
M

2
g(ϕ)2 (6.1)

with M>0 being the penalty constant.
The improved string dynamics with the penalty formulation would then become

ϕt=−∇E(ϕ)−Mg(ϕ)∇g(ϕ). (6.2)

It is well known that finding a critical point of the energy function subject to
the constraint is not equivalent to finding a critical point of the modified energy with



1048 A CONSTRAINED STRING METHOD AND ITS NUMERICAL ANALYSIS

the penalty as M→∞. The saddle-point solution calculated by the penalty method
may not be the correct one. However, we will use an example to show that the string
method with the penalty formulation could avoid this issue and find the correct saddle
point, and the more general case can be derived in the same way.

Consider the 3D example in section 5.2, and the modified energy with a penalty
term by (5.1) is given by

E(x,y,z) = (x2−1)2 +y2 +2z2 +
M

2
(x2 +y2 +z2−1)2.

The critical point satisfies the Euler-Lagrange equation:4x(x2−1)+2Mx(x2 +y2 +z2−1) = 0,
2y+2My(x2 +y2 +z2−1) = 0,
4z+2Mz(x2 +y2 +z2−1) = 0.

(6.3)

It is easy to see, as M→∞, that

(x2 +y2 +z2−1)

x
y
z

= 0.

So, one saddle-point solution is (0,0,0), which has a lower energy than the other
saddle points (0,±1,0), but it does not satisfy the constraint. Thus, using directly
the penalty formulation to calculate the saddle point may lead to a wrong solution.
More generally, the Euler-Lagrange equation given by the penalty formulation is

∇E(xM )+Mg(xM )∇g(xM ) = 0.

One possible situation where the solution x∗ of the above equation could be a wrong
solution is the case when it satisfies both ∇E(x∗) = 0 and ∇g(x∗) = 0 but g(x∗) 6= 0.
There are other possibilities that the penalty formulation fails to find the saddle point,
such as when xM diverges or ∇E(xM ) becomes unbounded as M→∞.

The string method with the penalty formulation can overcome this flaw of the
penalty method. For instance, in the 3D example, if two ends of the string converge
to the local minima, every point on the string will satisfy the constraint when the
string converges to the MEP. Then the correct saddle-point solution is identified by
the point with the highest energy on the MEP. Otherwise, all points on the string
will shrink to a single point (0,0,0), which can be circumvented by using the initial
string where two ends lie in the two basins of attraction of the minima. Numerical
experiments for the 3D example correctly captured this phenomenon.

6.2. Enforce the constraint by augmented Lagrangian method. A
direct solution of (6.2) makes the algorithmic implementation much simpler than the
system (3.5), but it requires us to choose a large enough M to make sure that Mg(ϕ)
converges to the corresponding Lagrange multiplier. In order to avoid the stiffness and
ill-conditioning associated with a large penalty constant, an augmented Lagrangian
approach [8, 9] can be utilized which is based on modifying the total energy by

EALM (ϕ) =E(ϕ)+λT g(ϕ)+
M

2
g(ϕ)2 (6.4)

where the penalty constant M>0 becomes a fixed parameter.
The augmented Lagrangian method is implemented as follows:
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Step 1: For j≥0, assume that λj and ϕj are known, we let ϕj+1(0) =ϕj and apply
the simplified string method to evolve the string associated with the energy
E(ϕ)+λTj g(ϕ)+ M

2 g(ϕ)2 to get ϕj+1.
Step 2: Once the solution ϕj+1 is obtained, we update the multipler by

λj+1 =λj+Mg(ϕj+1)∇g(ϕj+1).

Then we take λj+1 and ϕj+1 back to Step 1 and iterate until convergence.

The augmented Lagrangian method has the advantage that the penalty constant
need not be very large and assures the convergence of the Lagrange multiplier and
thus the satisfaction of the constraint. In the numerical implementation, the initial
estimate of λT and the initial string can be obtained from the direct penalty method
with a suitable penalty constant.

As an example, we consider the energy functional B=B(ϕ) subject to the con-
straint functional A=A(ϕ), as defined in section 4.2. For small ε, this leads to a
diffuse interface description of the nucleation process governed by the interfacial en-
ergy for a concentration field subject to volume conservation [1]. To add a driving
force, we modify B=B(ϕ) slightly as

B(ϕ) =
∫

Ω

{
ε

2
|∇xϕ|2 +

1
4ε

[(ϕ2−1)2−(ϕ2
0−1)2−4(ϕ−ϕ0)(ϕ3

0−ϕ0)]
}
dx

with ϕ0 being the value of the concentration in the homogeneous state.
In the numerical computation, we choose Ω as a two dimensional square (−1,1)2

and set ε= 1/64. We fix one end of the string to be the initial state representing a
uniform concentration with ϕ0 =−0.94 in Ω, while allowing the other end to move but
generally within the energy well of the ground state or equilibrium solution. We use 31
points to discretize the string and the Fourier spectral method with a 256×256 grid for
computing the concentration profiles, i.e., points on the string. Using the augmented
Lagrangian formulation of the constrained string method, we are led to the MEP given
in figure 6.1 (left). The saddle point (middle) and the equilibrium solution (right) are
also given in figure 6.1. The variations of the saddle point and equilibrium solutions
are mostly concentrated near the origin, so that only the portions of the solutions
in the center of the square are plotted to offer a better view. While both the saddle
point and the equilibrium solution show some qualitative similarity with their circular
contours, we have found dramatically different saddle points and equlibrium solutions
when the elasticity effect is introduced, see [19] for more detailed discussions where
additional examples on the application of the augmented Lagrangian approach can
also be found.

Fig. 6.1. the MEP (left), the saddle point (middle) and the equilibrium solution (right)
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7. Conclusion
In this paper, a constrained string method is developed to solve the minimum

energy path and/or saddle-point problems with general constraints. By taking ad-
vantage of a Lagrange multiplier formulation for the constraint, the constrained string
method can be readily implemented without changing the intrinsic description of the
string method proposed in [5]. Furthermore, some analysis is provided for the con-
strained string method, including the demonstration of the energy dissipation law
while satisfying the constraints. It is also noticed that with the Lagrange multiplier
formulation, the equations to determine the Lagrange multipliers are in fact indepen-
dent of the choice of parametrization for both the constrained canonical string method
and the simplified or improved versions. In addition, some time discretization schemes
for the constrained string method are analyzed and nice approximation features are
presented. To offer more understanding and perhaps alternatives, other approaches
to enforce the constraints are also considered, such as the penalty formulation and
augmented Lagrangian method. The latter provides a simpler algorithmic implemen-
tation. More applications of the constrained string method are currently underway
in the study of nucleation and phase transition processes in materials and biology.
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