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FAST COMMUNICATION

RIGOROUS DERIVATION OF THE X-Z SEMIGEOSTROPHIC

EQUATIONS ∗

YANN BRENIER†
AND MIKE CULLEN ‡

Abstract. We prove that smooth solutions of the semigeostrophic equations in the incompress-
ible x−z setting can be derived from the Navier-Stokes equations with the Boussinesq approximation.

Key words. Semigeostrophic, Navier-Stokes equations, asymptotic analysis.

AMS subject classifications. 86A10, 35Q86, 76B03, 76B60, 86A05.

1. Introduction

We consider the Navier-Stokes equations with the Boussinesq approximation
(NSB):

ǫ(∂tv+(v ·∇)v)+αKv+∇p=y, ∇·v=0, (1.1)

∂ty+(v ·∇)y=G(x,y), (1.2)

where x∈D, D being a smooth bounded domain in Rd (d=2,3), v=v(t,x)∈Rd is the
velocity field, p=p(t,x) is the pressure field, y=y(t,x)∈Rd is a vector-valued forcing
term, G(x,y) is a given smooth vector-valued source term D×Rd →Rd, ǫ, α>0 are
scaling factors and K is the linear dissipative operator Kv=−∆v. We assume that
the fluid sticks to the boundary: v=0 along ∂D.

We now consider the formal limit of these equations obtained by dropping the
inertia term and the dissipative term (i.e. setting ε=α=0) in the NSB equations,

∇p=y, ∇·v=0, v ‖∂D, (1.3)

∂ty+(v ·∇)y=G(x,y). (1.4)

We are going to show that these equations can be justified under a strong uniform
convexity assumption on the pressure field p. The situation of interest in this paper
is the case when d=2 and the source term

G(x,y)=(x2,y1−x1). (1.5)

Then (1.3),(1.4) are the semigeostrophic Eady model equations in the special incom-
pressible “x−z” situation. By x−z, we mean that D is part of a vertical section, the
second coordinate x2 of each point x=(x1,x2)∈D being the vertical one. The source
term in (1.5) represents the effect of the missing third dimension. In this identifica-
tion, y represents the effects of rotation and stratification, and the relation ∇p=y in
(1.3) expresses geostrophic and hydrostatic balance.
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The semigeostrophic model was considered by Hoskins [11] to model front for-
mation in atmospheric sciences. The Eady model is defined in chapter 6 of [10], and
models a quasi-periodic evolution in which fronts form and decay. There has been a
lot of interest in these equations (see for instance [9, 1, 7, 6, 10]), due to their beautiful
geometric structure and their deep links with the Monge-Ampère equation and opti-
mal transport theory [5, 2, 3, 13]. The rigorous derivation of the full 3 dimensional
SG equations is still a challenging problem. The present short note is just the first
step toward this goal.

2. Motivation for a convexity assumption In their study of the SG equa-
tions, Cullen and Purser have introduced a convexity assumption on the pressure field
p, based on a combination of physical and mathematical arguments. Convexity is also
natural in the case of the general equations (1.3)–(1.4), independently of the choice
of the source term G, for the following reasons. At first glance, these equations look
strange since there is no evolution equation for v. However, y is constrained to be a
gradient. Therefore, v can be seen as a kind of Lagrange multiplier for this constraint.
(Vaguely speaking, due to the presence of a source term, in order to stay a gradient,
the field y needs to be continuously rearranged in a volume-preserving fashion under
the action of a time-dependent divergence-free vector field v.) As a matter of fact, it
is (formally) very easy to get an equation for v, once y=∇p is known. To do that,
let us start with the 2 dimensional case and write

y(t,x)=(∂1p,∂2p)(t,x1,x2), v(t,x)=(−∂2ψ,∂1ψ)(t,x1,x2)

(at least locally), where ψ is a “stream-function”. Then, let us “curl” equation (1.4)
and obtain

−∂2

11p∂
2

22ψ+2∂2

12p∂
2

12ψ−∂2

22p∂
2

11ψ=∂1(G2(x,∇p))−∂2(G1(x,∇p)). (2.1)

This is a linear second order elliptic equation in ψ, whenever p is a given strictly
uniformly convex (or concave) function of x, i.e., when D2

xp>0, in the sense of sym-
metric matrices, (or <0). In three space dimensions, we get some ”magnetostatic”
version of equation (2.1). Indeed, since v is divergence-free, we can (at least locally)
write v=∇×A for some “potential vector” A=A(t,x)∈R3, that we may assume to
be itself divergence-free. Then, by curling equation (1.4), we get a linear system for
A when p is convex, namely:

∇×(M(t,x)∇×A)=∇×(G(x,∇p)). (2.2)

This system is elliptic whenever the symmetric matrix M =D2
xp(t,x) is uniformly

positive and bounded, which means that p is convex in a strong sense. In higher
dimensions, v should be viewed as a d−1 form and p as a zero form. The divergence
free condition (locally) means that v=dA, where A is a d−2 form. Then, again taking
the curl of equation (1.4), we get the multidimensional generalization of system (2.1):
d(M(t,x)∗dA)=d(G(x,dp) (where ∗ denotes Hodge duality and M =D2p) which,
again, is an elliptic system in A when D2

xp is uniformly bounded and positive.
Thus we see that requiring p to be convex is a natural solvability condition for

equations (1.3)–(1.4).

3. Rigorous derivation from the Navier-Stokes equations

The generalized Cullen-Purser convexity condition plays a crucial role in the rig-
orous derivation of equations (1.3)–(1.4) from the NSB equations.
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Theorem 3.1. Let D be a smooth bounded convex domain. Assume G to be smooth
with bounded derivatives up to second order. Let (yε,vε,pε) be a Leray-type solution
to the NSB equations (1.1),(1.2), where K=−∆, with α=O(ε). Let (y=∇p,v) be
a smooth solution to equations (1.3),(1.4) on a given finite time interval [0,T ]. We
assume p(t,x) to have a smooth convex extension for all x∈Rd so that its Legendre
transform

p∗(t,y)= sup
x∈Rd

x ·y−p(t,x) (3.1)

is also smooth for y∈Rd with Hessian D2
yp

∗(t,y) bounded away from zero and +∞.
Then, the L2 distance between yε and y stays uniformly of order

√
ε as ε goes to

zero, uniformly in t∈ [0,T ], provided it does at t=0 and the initial velocity vε(t=0,x)
stays uniformly bounded in L2.

Notice that the theorem is meaningful, since the local existence of smooth solu-
tions has been proven by Loeper [12] (in the SG case) at least for periodic boundary
conditions, provided that that y(0,x)−x is not too large in some appropriate sense.

Proof. For the convergence, we use a relative entropy trick quite similar to the
one used by the author for the hydrostatic limit of the 2D Euler equations in a
thin domain [4]. We introduce the so-called Bregman function (or relative entropy)
attached to p∗

ηp∗(t,z,z
′)=p∗(t,z′)−p∗(t,z)−(∇p∗)(t,z) ·(z′−z)∼|z′−z|2 (3.2)

and the related functional

e(t)=

∫
D

( ǫ
|vε(t,x)−v(t,x)|2

2
+ηp∗(t,y(t,x),y

ε(t,x)))dx. (3.3)

Given a weak solution (yε,vε) to the NSB equations (1.1),(1.2) and a solution y of
(1.3),(1.4), we want to get an estimate of the form:

d

dt
(e(t)+O(ǫ))≤ (e(t)+O(ǫ))c, (3.4)

where c depends only on the limit solution (y,v) on a fixed finite time interval [0,T ]
on which (y,v) is smooth. From this estimate (3.4), we immediately get that y−yε

is of order O(
√
ǫ) in L∞([0,T ],L2(D)). So, we are left with proving (3.4). To save

time, we do calculations just as if the Leray solutions were smooth solutions. Let us
compute

I= I1 +I2 +I3 +I4,

I1 =
d

dt

∫
D

p∗(t,yε(t,x))dx,

I2 =− d

dt

∫
D

p∗(t,y(t,x))dx,

I3 =− d

dt

∫
D

(∇p∗(t,y(t,x))) ·yε(t,x)dx,
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I4 =
d

dt

∫
D

(∇p∗(t,y(t,x))) ·y(t,x)dx.

We first obtain

I1 =

∫
D

[(∂tp
∗)(t,yε(t,x))+(∇p∗)(t,yε(t,x)) ·G(x,yε(t,x))]dx,

(using that vε is divergence free and parallel to ∂D). Similarly,

I2 =−
∫

D

[(∂tp
∗)(t,y(t,x))+(∇p∗)(t,y(t,x)) ·G(x,y(t,x))]dx.

Next,

I3 =−
∫

D

[(∂t∇p∗)(t,y(t,x)) ·yε(t,x)+(D2

yp
∗)(t,y(t,x))(∂ty(t,x),y

ε(t,x))]dx

−
∫

D

(∇p∗)(t,y(t,x)) ·G(x,yε(t,x))dx+I5,

where

I5 =

∫
D

x ·(vε(t,x) ·∇)yε(t,x)dx

=−
∫

D

vε(t,x) ·yε(t,x)dx,

(where we have used, for the two last lines, that (∇p∗)(t,y(t,x))=x, which follows
from Legendre duality). Since vε solves the NSB equations, we find

I5 =−
∫

D

[ε(∂t +v
ε ·∇)vε +∇pε +αKvε] ·vε dx

=− εd

2dt

∫
D

|vε|2 dx−
∫
vε ·αKvε dx.

Similarly

I4 =

∫
D

[(∂t∇p∗)(t,y(t,x)) ·y(t,x)+(D2

yp
∗)(t,y(t,x))(∂ty(t,x),y(t,x))]dx+

+

∫
D

∇p∗(t,y(t,x)) ·G(x,y(t,x))dx.

Collecting all terms, we obtain

I= I5 +I6 +I7 +I8 +I9,

where

I6 =

∫
D

η∂tp∗(t,y(t,x),y
ε(t,x))dx,
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(which involves the Bregman functional associated with ∂tp
∗ and therefore is bounded

by e(t)c where c is a constant depending only on the limit solutions y=∇p),

I7 =−
∫

D

[(∇p∗)(t,y)−(∇p∗)(t,yε)] ·G(x,yε)dx,

I8 =

∫
(D2

yp
∗)(t,y)(G(x,y),y−yε)dx,

I9 =

∫
(D2

yp
∗)(t,y)(∂ty−G(x,y),y−yε)dx,

=

∫
(D2

yp
∗)(t,y)((v ·∇)y,yε−y)dx.

We easily see that

I7 +I8 =

∫
D

η∇p∗(t,y(t,x),y
ε(t,x)) ·G(x,y)dx

+

∫
D

[(∇p∗)(t,y)−(∇p∗)(t,yε)] ·(G(x,y)−G(x,yε))dx,

(which is again bounded by e(t)c where c is a constant depending only on the limit
solutions y=∇p). Let us finally consider the most delicate term I9. We can write I9
in index notation as

I9 =

∫ ∑
ijk

∂2

ijp
∗(t,y)vk∂kyi(y

ε−y)j ,

=

∫ ∑
ijk

δjkvk(yε−y)j =

∫
v ·(yε−y),

(indeed, p∗ is the Legendre transform of p and y=∇p, thus D2p∗(y)Dy=
D2p∗(∇p)D2p= Id)

=

∫
v ·yε,

(since y is a gradient and v is divergence free and parallel to ∂D)

=

∫
v ·(ε(∂t +v

ε ·∇)vε +αKvε),

(using the NSB equations)

=J1 +J2,

where

J1 =
d

dt
ε

∫
vε ·v,
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and

|J2|≤ε(
∫

|vε|2 +1)c≤ε(
∫

|vε−v|2 +1)c≤ (e(t)+ε)c,

where c are constants only depending on the limit solution v. Thus, again collecting
all terms, and using that

I5 =− εd

2dt

∫
D

|vε|2 dx−α
∫
vε ·Kvε dx,

we have obtained

I+
d

dt
(
ε

2

∫
|vε−v|2 +O(ε))+α

∫
vε ·Kvε dx≤ (e(t)+O(ε))c,

which leads to the desired inequality (3.4) and completes the proof.
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