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MULTIPLICITY OF SINGULAR VALUES FOR TENSORS∗
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Abstract. In linear algebra, both eigenvalue problems and singular value problems for matrices
are of fundamental importance. In this paper, we use critical point theory from nonlinear analysis
and tools from algebraic topology to study the existence and multiplicity problem of singular values
in the higher order tensor setting.
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1. Introduction

Higher order tensors are generalizations of matrices; a matrix is a second order
tensor. Tensors have numerous applications in many branches of mathematics and
physics. In addition to the classical areas, such as differential geometry, elasticity, and
gravitation theory, they have been involved in various new areas of applied mathemat-
ics, e.g., higher order statistics (HOS), signal processing, medical image processing;
see for instance [12]. Many important ideas, notions, and results have been success-
fully extended from matrices to higher order tensors. Among these, in particular,
are the notions and certain basic algebraic and geometric properties of rank, eigen-
value/eigenvector, and singular values, for higher order tensors, see [8, 14, 12, 18].
Decomposition techniques and algorithms for tensors are also developed in these set-
tings [13].

The concept of eigenvalues for tensors was first introduced and studied by Qi [18]
and Lim [14]. Qi proved the existence of a real eigenvalue for a symmetric tensor,
and Lim proved the existence of a nonnegative eigenvalue for an irreducible tensor
with nonnegative entries. Moreover, Qi introduced the characteristic polynomial for
a symmetric tensor via multi-dimensional determinants of polynomial systems, by
which he was able to count the number of complex eigenvalues of a symmetric tensor.
As a parallel subject, the notion of singular values for a tensor was introduced in [12]
(see also [14]); it is used in the canonical decomposition of a tensor. The existence of
a singular value was also proved in [14] via a variational approach.

Unfortunately, due to the nonlinear nature of the eigenvalue and the singular value
problem for tensors, methods in classical linear algebra and matrix theory cannot be
applied directly. Although methods of algebraic geometry are powerful and effective
over the complex field, in dealing with the real eigenvalue/singular value and the
real eigenvectors, we appeal to topological methods. Previously, we have extended
the result of the existence of n eigenvectors for a symmetric n×n matrix to tensors
by the classical Liusternik-Schnirelmann theory [4], and we have also extended the
classical Perron-Frobenius theorem for irreducible nonnegative matrices to irreducible
nonnegative tensors by the Brouwer fixed point theorem [3].

The main purpose of this paper is to generalize the well known result on singular
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values of a matrix to the higher order tensor setting, i.e., there exist r pairs of positive/
negative singular values ±c1,··· ,±cr for an n×m rectangle matrix with rank r. More
sophisticated tools from algebraic topology are required.

For a (p,q) order (n,m) dimensional real tensor A=(ai1···ipji···jq ), a real number λ
is called a singular value of A [5] if there exists (x,y)∈ (Rn\{0})×(Rm\{0}), satisfying
the system:

{

∑

1≤i2,···,ip≤n,1≤j1,···,jq≤m
ai,i2,···,ip,j1,···,jqxi2 ···xipyj1 ···yjq =λxp+q−1

i , 1≤ i≤n
∑

1≤i1,···,ip≤n, 1≤j2,···,jq≤m
ai1,···,ip,j,j2,···,jqxi1 ···xipyj2 ···yjq =λyp+q−1

j , 1≤ j≤m.

As before, if p+q is even, we can reformulate the problem as a variational problem,
and then apply the critical point theory to the function:

fA(x,y)=
∑

1≤i1,···,ip≤n, 1≤j1,···,jq≤m

ai1,···,ip,j1,···,jqxi1 ···xipyj1 ···yjq ,

on the product of spheres Sn−1×Sm−1, when n,m≥2.

Our approach is divided into two parts: p,q are both even or p,q are both odd.
We study them separately. Here is a brief summary of our main results of this paper:
When p,q are both even, since the function fA(x,y) is even in both variables x and
y, the problem is reduced to a function on the product space of two real projective
spaces RP

n−1×RP
m−1. Consequently, we focus on the estimation of the L-S category

and the cup-length of the space.

Theorem 1.1. If p and q are both even, then, counting multiplicities, A possesses at
least m+n−1 singular values.

When p,q are both odd, the function f(x,y) is invariant under the transformation
(x,y) 7→ (−x,−y), which generates a two element group G isomorphic to Z2. We
investigate the mod-2 cohomology ring of the space Sn−1×Sm−1/G to estimate its
L-S category catG . We obtain the following:

Theorem 1.2. If p and q are both odd, then, counting multiplicities, A possesses at
least catG ≥min(n,m)+1 singular values.

As a byproduct, a Borsuk-Ulam type theorem is formulated. Although the lower
bound for the number of singular values may not be sharp in general, in a few cases,
the results can be improved.

It is worth pointing out that when p and q are both odd, tensors are similar to
matrices in the sense that singular values appear in pairs. We shall explore these
properties in the last section of the paper.

By introducing the Condition (S) (see section 4), a more in-depth investigation on
the topology of the level sets for the function fA is conducted. Let Λ be the eigen-set
corresponding to the singular value 0; we prove the following:

Theorem 1.3. Assume that catG(Λ)=s, and that Condition (S) holds. If p and q
are both odd, then, counting multiplicities, the function fA has at least r−s positive
and r−s negative critical values; in particular, counting multiplicities, A has at least
r−s positive and r−s negative singular values, where r=min{n,m}.

This theorem yields the result on singular values for matrices as a special case.
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Our paper is organized as follows: in section 2, we introduce the basic notions
and results from [4, 5], and [18]. The lifting tensor TA of a rectangle tensor A is
defined, and then we establish the relationship between the eigenvalues for TA and
the singular values for A. Moreover, we study the special case where at least one of
n and m equals one. The first part of section 3 is devoted to study the case where
p and q are both even, while the second part of section 3 is devoted to study the
case where p and q are both odd. An in-depth investigation of the cohomology ring
structure of the space Sn−1×Sm−1/G is needed. In addition, the exact values of
the L-S category of Sn−1×Sm−1/G in some special cases are obtained. Finally, in
section 4, we analyze the features of the function fA when p and q are both odd,
and introduce the Condition (S). Although Lemma 4.2 is very simple, it is crucial in
computing the category of certain level sets of fA. Our main Theorem 1.3 is deduced
from this lemma and the Liusternik- Schnirelmann multiplicity theorem.

2. Singular values of a real tensor

We assume p, q, m, and n are positive integers with n,m≥1. Let A=(ai1···ipji···jq )
be a real tensor, where ik ∈{1,··· ,n} for 1≤k≤p and jk ∈{1,··· ,m} for 1≤k≤ q. We
call it a (p,q) order (n,m) dimensional tensor. When p= q=1, such a tensor A is
simply an n×m rectangular matrix.

For any vector x∈R
n and y∈R

m, let Axp−1yq be a vector in R
n with

(

Axp−1yq
)

i
=

n
∑

i2,···,ip=1

m
∑

j1,···,jq=1

aii2···ipji···jqxi2 ···xipyj1 ···yjq .

Similarly, let Axpyq−1 be a vector in R
m with

(

Axpyq−1
)

j
=

n
∑

i1,···,ip=1

m
∑

j2,···,jq=1

ai1···ipjj2···jqxi1 ···xipyj2 ···yjq .

For any vectors x∈R
n, y∈R

m, and any real number α, denote x[α] =[xα1 ,x
α
2 ,...,x

α
n]T

and y[β] =[yβ1 ,y
β
2 ,··· ,y

β
m]T .

Definition 2.1. A complex number λ is called a singular value of A if there ex-
ists a vector (x,y)∈ (Cn\{0})×(Cm\{0}), which is called the associate eigenvector,
satisfying the following system:

Axp−1yq=λx[M−1]

Axpyq−1 =λy[M−1],

where M =p+q.

In the following, we restrict our attention to real singular values and real eigen-
vectors. We now present a way to reduce the singular value problem to an eigenvalue
problem.

Let N =n+m and let

z=

(

x

y

)

∈R
N =R

n×R
m.

We introduce the lifting TA =(tk1,k2,···,kM
) of A as the M =p+q order N =m+n
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dimensional tensor defined by:

tk1,k2,···,kM
=















pak1,···,kp,kp+1−n,···,kM−n, if
{

1≤k1,···,kp≤n,
n+1≤kp+1,···,kM≤N,

qak1−m,···,kq−m,kq+1,···,kM
, if

{

m+1≤k1,···,kq≤N,
1≤kq+1,···,kM≤m,

0, elsewhere.

By definition,

TAz
M =MAxpyq where z=(x,y) , ∇(TAz

M )=M

(

pAxp−1yq

qAxpyq−1

)

,

and

TAz
M−1 =

(

pAxp−1yq

qAxpyq−1

)

.

Recall the definition of a weakly symmetric tensor given in [4]:

Definition 2.2. Let C be an M order N dimensional real tensor. It is called weakly
symmetric if

∇f(z)=MCzM−1, where f(z)=CzM , z∈R
M .

Thus, T =TA is weakly symmetric. Let B=(bk1,···,kM
), where

bk1,k2,···,kM
=







p, if 1≤k1 = ···=kM ≤n,
q, ifn+1≤k1 = ···=kM ≤N,
0, elsewhere.

Since

BzM =p

n
∑

1

xMi +q

m
∑

1

yMj and ∇(BzM )=M

(

px[M−1]

qy[M−1]

)

=MBzM−1,

the critical points of the function f(z)=T zM =MAxpyq with constraint b(z)=BzM =
1 are solutions of the system:

Axp−1yq=λx[M−1]

Axpyq−1 =λy[M−1],

with λ=T zM =MAxpyq.

Note that the only difference between the singular value of A and the eigenvalue
of T is the following: in the definition of singular value, x 6=0 and y 6=0, but in the
critical value case, (x,y) 6=(0,0).

According to the definition, 0 is always a critical value of f on b−1(1), because
(x,0) with p

∑n
1 x

M
i =1, and (0,y) with q

∑m
1 y

M
j =1, are critical points with critical

value 0, but they are not critical points with respect to any singular value. These
critical points are trivial.

On the other hand, if c 6=0 is an eigenvalue of T =TA, then it must be a singular
value of A, because if (x,y) is a critical point with respect to c, then neither x nor y
can be zero.
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Let Z be the set of all (x,y)∈ (Rn\{0})×(Rm\{0}) satisfying

Axp−1yq=0

Axpyq−1 =0.

Then c=0 is a singular value if and only if Z 6=∅.
The following multiplicity result for weakly symmetric tensor was established in

[4]:

Theorem 2.3. Assume A is a weakly symmetric tensor, B is a weakly symmetric
positive definite tensor, and both have the same order M and dimension N . Then
the eigenvalue problem (A−λB)zm=0 has at least N real eigenvalues, counting mul-
tiplicity, with N distinct pairs of real eigenvectors.

This theorem nevertheless does not help counting the multiplicities of singular
values; as we have seen, there are a large number of trivial critical points. Regardless
of this fact, we have:

Theorem 2.4. Assume M =p+q is even. Then for every nonzero tensor A, the
singular value always exists.

Proof. We consider the function f(z) on the manifold M={z∈R
M |b(z)=1}.

Since M is even, M is compact. Since f 6=0, at least one of the maximum and the
minimum value of f does not equal zero, which is a nonzero critical value for f , so it
is a nonzero eigenvalue for TA, hence a singular value for A.

Remark 2.5. The result of Theorem 2.4 has been previously obtained in [5]. M =
p+q being even is necessary to insure the compactness of the manifold M. So, in our
subsequent arguments, we need only distinguish the two cases where either p and q
are both even or p and q are both odd.

Now we focus on the study of the multiplicities of singular values of A. Observing
that the functions T zM and BzM are all positively homogenous of total degree M ,
we normalize the vectors x and y by defining the following manifold:

X=

{

z=(x,y)|
n

∑

1

xMi =

m
∑

1

yMj =1

}

.

Theorem 2.1. A vector (x,y)∈ (Rn\{0})×(Rm\{0}) is an eigenvector with respect
to a singular value λ of A if and only if

1. there is a unique t>0 such that λ is an eigenvalue of TA with eigenvector
t(x,y)∈X, when λ 6=0,

2. there exist unique s>0,t>0, such that λ is an eigenvalue of TA with eigen-
vector (sx,ty)∈X when λ=0.

Proof. We note that (x,y)∈X is a critical point of f if and only if (x,y)∈X
satisfying (3) with critical value λ=Axpyq. Also, (x,y)∈ (Rn\{0})×(Rm\{0}) is an

eigenvector with singular value λ= Axpyq

Σn
1 x

M
i

= Axpyq

Σm
1 y

M
j

, which is equivalent to

n
∑

1

xMi =

m
∑

1

yMj =
Axpyq

λ
,

if λ 6=0. Let t=( λ
Axpyq )

1
M and the result follows.
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In the case λ=0, if (x,y)∈X is a critical point with critical value λ, then it is
obviously an eigenvector with singular value 0. Conversely, if (x,y) is an eigenvector
with singular value 0, then one may choose s>0,t>0 such that (sx,ty)∈X satisfying
(4).

The case when at least one of n,m equals one is rather special. Without loss of
generality, we assume that m≥n=1. First, if m=n=1, A=a 6=0 is a scalar, and
then

(i) for p,q both even and λ=a, there are 2 pairs of eigenvectors (1,±1),(−1,±1).

(ii) for p,q both odd and λ=±a, there are 2 pairs of eigenvectors ±(1,1) corre-
sponding to λ=a and ±(−1,1) corresponding to λ=−a.

Next, if m>n=1, the (p,q)-order tensor A can also be seen as a q-order tensor.
If there is no confusion, we shall not distinguish these two.

Corollary 2.6. Suppose that M =p+q is even and m>n=1. If TA has, counting
multiplicities, s nonzero eigenvalues and if the q-order tensor A has r pairs of eigen-
vectors with eigenvalue zero, then A has, counting multiplicities, r+s singular values.

In the rest of this paper, we may always assume m,n≥2.

3. Proofs of Theorems 1.1, 1.2 and related results

3.1. Some algebraic topological preliminaries. We have reduced the
singular value problem to a critical point problem on the compact manifold X={z=
(x,y)|

∑n
1 x

M
i =

∑m
1 y

M
j =1}. We define a homeomorphism X≃Sn−1×Sm−1 by

x′i= |xi|
M
2 xi, i=1,···n

y′j = |yj |
M
2 yj , j=1,··· ,m.

Based on critical point theory, the minimum number of critical points of a function
depends on the underlying topological space as well as the behavior of the given
function. We shall study the singular value problem in several different cases.

The crucial result we rely on is the following classical Lusternik-Schnirelmann
(L-S) Multiplicity Theorem; see for instance [6]:

Theorem 3.1. Let M be a compact C1 manifold and suppose f ∈C1(M,R1). Then
the number of critical points of f is greater than or equal to cat(M), where cat(M) is
the L-S category of M .

We begin by recalling some definitions and facts involving the L-S category of a
topological space; for details, see [6, 10, 11, 23]:

Proposition 3.2. Let X and Y be paracompact, Hausdorff, and path-connected
topological spaces.

1. cat(X) is defined to be the least integer k such that ∃ open covering
V1,V2,... ,Vk of X, where Vi,1≤ i≤k are contractible open subsets of X. In
particular, cat(Sa)=2 and cat(RP

a)=a+1.

2. cuph(X), the Z2 cup-length of X, is defined to be the least integer k such that
all k+1 fold cup products vanish in the cohomology ring H∗(X;Z2) .
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3.

cuph(X)+1≤ cat(X)≤dim(X)+1,

and

cuph(X×Y )+1≤ cat(X×Y )≤ cat(X)+cat(Y )−1.

4. Let β∈Hn(Sa;Z2) be the Kronnecker dual of the fundamental class (mod 2
orientation class). One has:

H∗(Sa;Z2)=Z2[β]/β2 =0. So, cuph(Sa)=1.

5. Let Z2 denote the two element group consisting of the identity map and the
antipodal map on the space R

a+1\{0}. Let RP
a=Sa/Z2 be the real projec-

tive space, and let w1∈H
1(RP

a;Z2) be the first Stiefel-Whitney class of the
classifying line bundle over RP

n. One has H∗(RP
a;Z2) is isomorphic to the

truncated Z2-polynomial algebra Z2[w1]/w
a+1
1 =0. Hence, cuph(RP

a)=a.

6. If there exists a discrete group π acting freely on X, then cat(X)≤ cat(X/π).

7. If X is a connected PL-manifold satisfies cat(X)≥ (dim(X)+3)/2, then
cat(X×Sℓ)=cat(X)+1 for all ℓ≥1, i.e., the Ganea conjecture on L-S cat-
egory holds for X.

Some more results in algebraic topology concerning the cup-product in product
spaces are needed. We refer to [24] for details.

Theorem 3.3. Let R be a field. In the graded cohomology R-algebra H∗(X×Y ;R),
we have the following product formula:

(u1×v1)∪(u2×v2)=(−1)|v1||u2|(u1∪u2)×(v1∪v2),

where |v1| and |u2| denote the degrees of the cohomology classes of v1 and u2, ∪ denotes
the standard cohomology cup products, and × denotes the standard cohomology cross
product, i.e. if π1 :X×Y →X and π2 :X×Y →Y are the projections, then for any
u∈H∗(X;R) and v∈H∗(Y ;R),

u×v=π∗
1(u)∪π∗

2(v).

Note: if R has characteristic 2, then there is no sign change in the product
formula.

3.2. When p and q are both even. We first consider the case where p and
q are both even. In this case, the function fA(x,y)=Axpyq can be seen as a function
defined on the product space RP

n−1×RP
m−1 =Sn−1×Sm−1/Z2⊕Z2, where the Z2⊕

Z2 action is give by the equivalence relation (x,y)∼ (−x,y)∼ (x,−y)∼ (−x,−y).

By setting X :=RP
n−1 and Y :=RP

m−1 for m,n≥2, we have the following iden-
tities:

Theorem 3.4. cuph(RP
n−1×RP

m−1)=n+m−2 and cat(RP
n−1×RP

m−1)=n+
m−1.

Proof. It suffices to show cuph(RP
n−1×RP

m−1)=n+m−2, since the rest will
follow from

cat(RP
n−1×RP

m−1)≤dim(RP
n−1×RP

m−1)+1=n+m−1.
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Let a∈H1(RP
n−1;Z2) and b∈H1(RP

m−1;Z2) be the corresponding generators. For
0≤ i≤n−1 and 0≤ j≤m−1, ai∈Hi(RP

n−1;Z2) and bj ∈Hj(RP
m−1;Z2) are the re-

spective generators. By Künneth’s Formula, ai×bj is a generator of Hi+j(RP
n−1×

RP
m−1;Z2) for 0≤k= i+j≤m+n−2. In the cohomology algebra H∗(RP

n−1×
RP

m−1;Z2), consider the (n+m−2)-fold cup product

(a×1)n−1∪(1×b)m−1 =(an−1×1)∪(1×bm−1)=an−1×bm−1 6=0,

so cuph(RP
n−1×RP

m−1)≥n+m−2. On the other hand, cuph(RP
n−1×RP

m−1)≤
n+m−2 by (3) in the proposition, which completes the proof.

We can now derive, by an inductive argument, the following generalization:

Corollary 3.5. Let n1,··· ,nk≥1. Then

cuph(RP
n1 ×···×RP

nk)=n1 + ···+nk and cat(RP
n1 ×···×RP

nk)=n1 + ···+nk+1.

Combining Theorems 3.1 and 3.4, we arrive at:

Theorem 3.6. Let A be a (p,q) order (n,m) dimension real tensor. Assume both p
and q are even; then A possesses at least m+n−1 singular values, counting multi-
plicities.

3.3. When p and q are both odd. The rest of this section is focused on
the case where p and q are both odd. We shall assume m≥n≥2 unless otherwise
specified. For notational simplicity, we make the following dimensional shift.

Let G be the group consisting of two elements: {id,g}, where id is the identity
map and g : (x,y) 7→ (−x,−y) is the antipodal map. Let Mn,m=Sn×Sm/G be the
quotient manifold with the quotient map p1.

Theorem 3.7. The following properties hold for H∗(Mn,m;Z2):

1. There is an isomorphism  between the cohomology groups

 :H∗(Mn,m;Z2)
∼=
→H∗(RP

n;Z2)⊗Z2
H∗(Sm;Z2).

2. The cohomology algebra H∗(Mn,m;Z2) has H∗(RP
n;Z2)∼=Z2[w1]/w

n+1
1 =0 as

a subalgebra.

3. cat(Mn,m)≥ cuph(Mn,m)+1≥min{m,n}+2.

Proof. Let i :Sn →֒Sm be the standard embedding. Let ∆ :Sn→Sn×Sn be the
diagonal map, i.e., ∆ :x 7→ (x,x). Let φ=(1× i)◦∆ be the composition, where 1 rep-
resents the identity map on the first factor; then φ :Sn→Sn×Sm is a Z2-equivariant
embedding. We identify RP

n with Sn/Z2 under the projection map p2, where the
Z2-action is given by gluing the antipodal points x∼−x. It follows that φ induces a
smooth embedding η :RP

n→Mn,m.

Let L be the classifying line bundle over RP
n. Let E=(m+1) ·L be the Whitney

sum of m+1 copies of L, which is itself an (m+1)-plane bundle over RP
n with the

canonical projection π. We identify:

(m+1) ·L∼=Sn×R
m+1/G.

Let E0 be the complement of the zero section in the vector bundle E. Let π0 be the
restriction of π on E0. Since Mn,m is a strong deformation retraction of E0, they
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are homotopy equivalent, i.e. there exist maps r :E0→Mn,m and s :Mn,m→E0, such
that r◦s=idMn,m

and s◦r=idE0
. Let ζ=s◦η :RP

n→E0 be the composite map.
We now illustrate the relations among these spaces and the corresponding maps

in the following commutative diagrams:

Sn×Sm
p1
−→ Mn,m

ր 1×i ց s

Sn×Sn
x




φ

x




η E0

տ ∆ ր ζ

Sn
p2
−→ RP

n

and

Sn×Sm
p1
−→ Mn,m

ր 1×i տ r

Sn×Sn
x




φ





y
E0

տ ∆ ւ π0

Sn
p2
−→ RP

n

Since Mn,m is homotopy equivalent to E0, they have isomorphic cohomology rings. In
the subsequent arguments concerning the mod-2 cohomology algebra, we shall use E0

in place of Mn,m. Note that E0 is a Sm-bundle over RP
n, thus we have the following

mod-2 Gysin cohomology long exact sequence:

···
ψ

−→Hj−m−1(RP
n;Z2)

µ
−→Hj(RP

n;Z2)
π∗
0−→Hj(E0;Z2)

ψ
−→Hj−m(RP

n;Z2)
µ

−→··· ,
(G)

where µ :x 7→x∪wm+1 with wm+1∈H
m+1(RP

n;Z2) being the top Stiefel-Whitney
class of E. For details, see [16]. Since m≥n, wm+1∈H

m+1(RP
n;Z2)=0, so the map

µ in the Gysin sequence (G) is in fact the zero homomorphism. Consequently, the
Gysin sequence (G) breaks up and yields isomorphisms

Hj+m(E0;Z2)∼=Hj(RP
n;Z2)

if either m>n and j=0,1,··· ,n or m=n and j=1,··· ,n. Furthermore, we claim
there exists a unique nonzero class v∈Hm(E0;Z2) satisfying δ∗(v)=u, where δ∗

is the co-boundary homomorphism in the cohomology long exact sequence of the
pair (E,E0) and u∈Hm+1(E,E0;Z2) denotes the Thom class. For m>n, from
Hm(E;Z2)=Hm+1(E;Z2)=0, δ∗ :Hm(E0;Z2)→Hm+1(E,E0;Z2) is an isomorphism,
thus the existence and uniqueness of v is clear. For m=n, since Hm(E,E0;Z2)=0
and Hm+1(E,E0;Z2)={u}·Z2, again there exists a unique class v∈Hm(E0;Z2), such
that δ∗(v)=u and Hm(E0;Z2)∼=Hm(RP

n;Z2)⊕{v}·Z2. These together prove asser-
tion (1).

We now turn our attention to the ring structure. Since we have defined the
composite map ζ :RP

n→E0, it induces the map ζ∗ :H∗(E0;Z2)→H∗(RP
n;Z2) such

that ζ∗ is a multiplicative left inverse of π∗
0 , i.e.,

ζ∗ ◦π∗
0 =1H∗(RPn;Z2).

By the naturality of the cup product, both ζ∗ :H∗(E0;Z2)→H∗(RP
n;Z2) and π∗

0 :
H∗(RP

n;Z2)→H∗(E0;Z2) preserve the cup product, i.e.,

ζ∗(a∪b)= ζ∗(a)∪ζ∗(b) and π∗
0(a∪b)=π∗

0(a)∪π∗
0(b) ∀a,b.
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Let ω=π∗
0w1∈H

1(E0;Z2), where w1∈H
1(RP

n;Z2) is the generator; we then have

π∗
0(wi1)=(π∗

0w1)
i=ωi∈Hi(E0;Z2) ∀i.

Since π∗
0 is monomorphic, we have

0 6=ωi∈Hi(E0;Z2), 0≤ i≤n.

By our first assertion, for 1≤ i≤n, Hi(E0;Z2)∼=Hi(RP
n;Z2) has only one generator

ωi, thus, Hi(E0;Z2) is generated by {ωi}; assertion (2) follows.
Although all maps in the Gysin sequence (G) are module homomorphisms, the

map ψ has certain multiplicative property. We employ the following result due to W.
Massey (Lemma 1 in [15]): If x∈Hp(RP

n;Z2) and y∈Hq(E0;Z2), then ψ[(π∗
0x)∪y]=

x∪ψ(y). Choose x=wn1 ∈Hn(RP
n;Z2), and y=v∈Hm(E0;Z2); we claim ψ(v)=1.

If we set j=m in (G), then the 3-term sequence

0→Hm(RP
n;Z2)

π∗
0−→Hm(E0;Z2)

ψ
−→H0(RP

n;Z2)→0

is exact. Note that H0(RP
n;Z2)={1}·Z2, where 1 denotes the unit in H∗(RP

n;Z2).

If m>n, then Hm(RP
n;Z2)=0 and it follows that ψ(v)=1. If m=n, from the

exact sequence

Hm(RP
n;Z2)→Hm(E0;Z2)∼=Hm(RP

n;Z2)⊕{v}·Z2→H0(RP
n;Z2)

again we have ψ(v)=1. The image ψ[(π∗
0w

n
1 )∪v]=wn1 ∪ψ(v)=wn1 6=0 in

Hn(RP
n;Z2). This shows cuph(E0)≥n+1, hence it completes our proof.

We denote the category of the space Mn,m by catG , and simply written as cat.
Applying the Liusternik Schnirelmann Theorem directly, we obtain:

Theorem 3.8. Let A be a (p,q) order (n,m) dimension real tensor. Assume that p
and q are both odd. Then there exist singular values with at least min(n,m)+1 pairs
of eigenvectors for A.

Proof. Under the G-action, the function fA(x,y)=Axpyq on Sn−1×Sm−1

defines a function f̂A on Mn−1,m−1. By Theorem 3.6 (3), cat(Mn−1,m−1)≥

cuph(Mn−1,m−1)+1≥min(n,m)+1. Therefore, f̂A has at least min(n,m)+1 G
critical orbits, thus fA has singular values with as least min(n,m)+1 pairs of eigen-
vectors.
Remark 3.9. Utilizing another result in the same paper [15], one can actually prove
that the cohomology ring H∗(E0;Z2) is a quadratic extension of the cohomology
ring H∗(RP

n;Z2). In particular, given any element u∈Hq(E0;Z2), there exist unique
elements u1∈H

q(RP
n;Z2) and u2∈H

q−m(RP
n;Z2) such that u=π∗

0(u1)+a ·π∗
0(u2).

3.4. Corollaries and remarks. First, we prove the following Borsuk-Ulam
type theorem:

Lemma 3.10. Let p1 :Sn×Sm→Mn,m be the quotient map. Let σ be a path con-
necting a pair of antipodal points (x,y),(−x,−y)∈Sn×Sm. Then p1(σ) is a singular
closed chain with a nonzero representation in H1(Mn,m;Z2).

Proof. Let σ be a path connecting a pair of antipodal points (x,y),(−x,−y)∈
Sn×Sm. Since G→Sn×Sm

p1
−→Mn,m is a fibration, π1(Mn,m)∼=G∼=Z2, so p1(σ) is a

closed loop in Mn,m, which is not null-homotopic, i.e., the homotopy class [p1(σ)] 6=
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0. Let h :π1(Mn,m)→H1(Mn,m) be the Hurewicz homomorphism. Since Mn,m is
path connected and π1(Mn,m)∼=Z2 is commutative, h :π1(Mn,m)→H1(Mn,m) is an
isomorphism and h∗[p1(σ)]∈H1(Mn,m) is a generator, and hence is nonzero.

Theorem 3.11. Let f :Sn×Sm→Sk×Sℓ be a continuous G-equivariant map with
ℓ>max{m,n}. Then k≥min{m,n}.

Proof. We argue by contradiction. Suppose k<min{m,n}. Mn,m and Mk,ℓ are
G-spaces via the quotient maps p1 :Sn×Sm→Mn,m and p′1 :Sk×Sℓ→Mk,ℓ, respec-
tively. The map f induces a map: f̄ :Mn,m→Mk,ℓ satisfying:

f̄ ◦p1 =p′1 ◦f.

We claim the homomorphism

f̄∗ :H1(Mn,m;Z2)→H1(Mk,ℓ;Z2)

is nonzero. To see this, we choose a path σ connecting a pair of antipodal points
(x,y), (−x,−y)∈Sn×Sm, then f ◦σ is a path connecting the antipodal points
f(x,y),−f(x,y) in Sk×Sℓ. From the proceeding lemma, we see that p′1(f ◦σ) is
a singular closed chain, which has a nonzero representation in H1(Mk,ℓ;Z2). This
means f̄∗ 6=0. By duality, we have

0 6= f̄∗ :Z2
∼=H1(Mk,ℓ;Z2)→H1(Mn,m;Z2)∼=Z2.

Since H1(Mk,ℓ;Z2) has only one generator a,f̄∗(a) 6=0. Also, H1(Mn,m;Z2) has a
unique generator b, thus b= f̄∗(a). According to Theorem 3.6 (2),

0 6= bn= f̄∗(an).

This implies an 6=0 in Hn(Mk,ℓ;Z2). Now ℓ>k, so k≥n. This is a contradiction.

In general, it is unclear whether Theorem 3.6 (3) is sharp; however, we can cal-
culate the exact values of cat(Mn,m) in certain cases:

Theorem 3.12. The following conclusions hold

1. cat(M1,1)=3.

2. cat(M2,2)=4.

3. cat(M3,3)=5.

Proof. By Theorem 3.6 (3), it suffices to show cat(Mn,n)≤n+2 for 1≤n≤3.
Assertion (1) follows from the inequalities:

cat(M1,1)≤dim(M1,1)+1=3.

Since S2×S2 is diffeomorphic to G̃2(R
4), the Grassmannian of oriented 2-

dimensional subspaces of R
4, which is the universal double covering of G2(R

4), the
unoriented Grassmannian of 2-dimensional subspaces of R

4 (page 20, ex.10 (c) [9]).
So, M2,2 is homeomorphic to G2(R

4). Next we apply Berstein-Schwartz’s Theorem.
If X is a closed, connected manifold with π1(X)∼=Z2, then cat(X)=dim(X)+1 if
and only if ϕdim(X) 6=0, where ϕ generates H1(X;Z2) (Prop. 5.4 in [10]) to this
case with ϕ=w1. A classical result due to Borel [1] reveals the cohomology ring
H∗(G2(R

q);Z2)∼=Z2[w1,w2]/w
⊥
i =0 for i≥ q−1, where w1, w2 are the first and sec-

ond Stiefel-Whitney classes of the universal 2-plane bundle γ2 over G2(R
q), γ2⊕γ

⊥
2 is

the trivial bundle of dimension q, and w⊥
i =wi(γ

⊥
2 ). It is shown, in [25, Lem. 2.5] that

w⊥
q−1 =wq−1

1 if and only if q is a power of 2, consequently w3
1 =0 and cat(G2(R

4))<5,
which proves (2).
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Recall that Spin(n) is the universal double covering of SO(n) for n≥3 ([2, page
6, Prop. 6.19]). As special cases, since SO(3) is homeomorphic to RP

3(page 20,
ex.10(b) [9]), Spin(3)=S3. Furthermore, Spin(4)=Spin(3)×Spin(3) (page 292, ex.
12 [2]). So, Spin(4)=S3×S3 is the universal double covering of SO(4). It follows
that M33 =SO(4)=RP

3×S3. Therefore, from the proposition (7) in Proposition 3.2,
we obtain cat(M3,3)=cat(RP

3×S3)=5.
We end this section by exhibiting an example showing:

Proposition 3.13. Mn,m is, in general, not homotopy equivalent to RP
n×Sm.

Proof. It suffices to consider the case M2,2, which is homeomorphic to G2(R
4).

Since Gk(R
n) is orientable if and only if n is even, G2(R

4) is orientable. In particular,
H4(G2(R

4))=Z.
On the other hand, recall H0(RP

2)=Z, H1(RP
2)=Z2, and H2(RP

2)=0, so by
the Künneth Formula, we have

H4(RP
2×S2)=

∑

i+j=4

Hi(RP
2)⊗Hj(S

2)⊕
∑

i+j=3

Hi(RP
2)∗Hj(S

2)

=H2(RP
2)∗H1(S

2)

=Z2 ∗Z=0,

where ∗ denotes the standard torsion product from homological algebra, i.e., RP
2×S2

fails to be orientable. This completes the proof.

4. Further multiplicity results

In this section, we endeavor to improve the estimate given by Theorem 3.8. When
both p and q are odd, Theorem 3.8 asserts that the function fA(x,y)=Axpyq has at
least min(n,m)+1 pairs of antipodal critical points on Sn−1×Sm−1. However, it is
worth noticing the additional special feature of the function fA:

fA(x,y)=fA(−x,−y)=−fA(−x,y)=−fA(x,−y).

Thus, c>0 is a critical value with a pair of critical points (x0,y0),(−x0,−y0) if
and only if −c<0 is a critical value with a pair of critical points (−x0,y0),(x0,−y0).

In the remainder of this section, we always assume m≥n. We introduce the level
subsets

fa :={(x,y)∈Sn−1×Sm−1 |fA(x,y)≤a}, ∀a∈R
1,

and the 0 critical set Λ, i.e., the set (x,y)∈Sn−1×Sm−1 of solutions of the system

{

Axp−1yq=0
Axpyq−1 =0.

They are G-invariant closed subsets of Sn−1×Sm−1.
Let f̂a=fa/G, i.e. f̂a, consists of equivalence class of the form [(x,y)]={±(x,y)∈

fa}. ∀x∈fa, Let j :Sn−1→Sm−1 be an odd C1 map and r>0 be small. We set

B=B(j,r) :={(x,y)∈Sn−1×Sm−1 |y∈Dr(j(x))},

where Dr(u0)={u∈Sm−1 | ||u−u0||<r} is a disk.
It is easy to verify B=B(j,r) is a G invariant set and is also a disk bundle:

Dr→B
ρ

−→Sn−1.
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Let B̂=B/G be the quotient space consisting of equivalence classes [(x,y)]=
{±(x,y)∈B}. Then ρ̂ : B̂→RP

n−1 is a disk bundle with fibre Dr.

Definition 4.1. A (p,q) order (n,m) dimensional real tensor A is said to satisfy
Condition (S) if there is an odd C1 map

j :Sn−1→Sm−1 and r>0 small such thatB=B(j,r)⊂f0,

where f =fA.

Lemma 4.2. If A satisfies Condition (S), then ∀a>0, catG(f̂a)≥min(n,m)=n.

Proof. First, we show catG(B̂(j,r))=n=min(n,m). This is due to the facts:

H∗(B̂;Z2)∼=H∗(RP
n−1×Dr;Z2)∼=H∗(RP

n−1;Z2)⊗H
∗(Dr;Z2)∼=H∗(RP

n−1;Z2)

and cuph(RP
n−1)=n−1.

Second, since Sn−1 is compact and both fA and j are continuous, assuming
Condition (S), we have r>0 such that B=B(j,r)⊂fa. It follows that

n=catG(B̂)≤ catG(f̂a).

We now have the following improvement:

Theorem 4.3. Assume that catG(Λ̂)=s and that Condition (S) holds. If p and q
are both odd, then, counting multiplicities, the function fA(x,y)=Axpyq has at least
r−s positive and r−s negative critical values, where r=min{n,m}.

Proof. Since fA has only finitely many critical values, there exists ǫ>0 such that
fA has no critical value in the interval (0,ǫ].

We apply Lemma 4.2 to fǫ and obtain: catG(f̂ǫ)= r. We define critical values
c1≤ c2≤···≤ cr as follows to see that

cr := inf
catG(Ê)≥r

max(x,y)∈Ê fA(x,y)≤max(x,y)∈fǫ
fA(x,y)≤ ǫ.

By the choice of ǫ, we have cr≤0. We shall prove further that cr−s<0.

If 0 is not a critical value of fA, then cr−s≤ cr<0. Otherwise, by letting t=
catG(K̂0), where K0 is the critical set with critical value 0, we have cr−t<cr−t+1 =
···= cr=0. By definition, K0 =Λ, and we assume catG(Λ̂)=s, this implies t=s. Thus,
the existence of r−s negative critical values (counting multiplicities) as well as the
same number of positive critical values are established.

Corollary 4.4. Assume that catG(Λ̂)=s and that Condition (S) holds. If p and q
are both odd, then, counting multiplicities, the function fA(x,y)=Axpyq has at least
r−s eigenvectors (xi,yi), i=1,··· ,r−s with positive singular values and r−s eigen-
vectors (−xi,yi), i=1,··· ,r−s with negative singular values, where r=min{n,m}.

Corollary 4.5. Assume Condition (S) and (p,q) both odd. If Λ=∅ then, counting
multiplicities, the function fA has at least r positive and r negative critical values,
where r=min{n,m}.

It remains to answer when the Condition (S) holds for a tensor A with f =fA.
We provide the following examples:
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Example 4.6. Let A be a (p,1) order (n,m) dimensional tensor with m≥n. Assume

Axp 6=0, ∀x 6=0.

Then condition (S) holds.

We note:

f0 ={(x,y)∈Sn−1×Sm−1 |(Axp,y)≤0},

where Axp is a nonzero vector in R
m. We define:

j(x)=−
Axp

‖Axp‖
∈Sm−1.

Since

fA(x,j(x))=−‖Axp‖<0, ∀x∈Sn−1,

and Sn−1 is compact, there is r>0 such that f(x,y)<0∀ y∈Dr(j(x)), which implies
(S).

Example 4.7. If A is an n×m matrix, with rank r≤min(n,m), then Condition (S)
holds.

In fact, if r=min(n,m), this is a special case of example 4.5. We now assume
r<min(n,m). Let R(A) be the range of A, R(A)⊥ be the orthogonal complement
of R(A) in R

m, and P be the orthogonal projection from R
m onto R(A)⊥. Let

i :Rn→Rm be the inclusion.
Since dimR(A)⊥ =m−r,dimR(i)=n, and n>r, therefore R(i)

⋂

R(A)⊥ 6=∅. The
map

j(x)=−
Pi(x)+Ax

‖Pi(x)+Ax‖

is well defined, and is a C1 odd map.
From Ker(A∗)=R(A)⊥, it follows that

fA(x,j(x))=(Ax,j(x))=−
‖Ax‖2

‖Pi(x)+Ax‖
≤0,

i.e., Condition (S) holds.

Remark 4.8. According to Example 4.6, the matrix A possesses at least r positive
singular values and −r negative singular values. This is an elementary fact in linear
algebra. Thus, Theorem 4.3 serves as an extension of this fact to higher order tensors.

Example 4.9. Let A be a (p,q) order (n,m) dimensional tensor with m≥n. Assume
there is a linear subspace Y ⊂R

m isomorphic to R
n, i.e., ∃ i :Rn∼=Y ⊂R

m, such that
Axpi(x)q≥0, ∀x∈Sn−1; then Condition (S) holds.

Reason: The isomorphism −i induces an odd C1 map j :Sn−1→Sm−1 such that
Axpj(x)q≤0, ∀x∈Sn−1.
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