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FINITE-DIMENSIONAL DESCRIPTION OF THE LONG-TERM

DYNAMICS FOR THE 2D DOI-HESS MODEL FOR LIQUID

CRYSTALLINE POLYMERS IN A SHEAR FLOW∗
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Abstract. The existence of inertial manifolds for a Smoluchowski equation arising in the 2D
Doi-Hess model for liquid crystalline polymers subjected to a shear flow is investigated. The presence
of a non-variational drift term dramatically complicates the long-term dynamics from the variational
gradient case, in which it is solely characterized by the steady states. Several transformations are
used in order to transform the equation into a form suitable for application of the standard theory
of inertial manifolds. A nonlinear and nonlocal transformation developed in [J. Vukadinovic, Nonlin-
earity, 21, 1533-1545, 2008] and [J. Vukadinovic, Commun. Math. Phys., 2008, to appear] is used to
eliminate the first-order derivative from the micro-micro interaction term. A traveling wave transfor-
mation eliminates the first-order derivative from the non-variational term, transforming the equation
into a nonautonomous one for which the theory of nonautonomous inertial manifolds applies.
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1. Introduction

One of the most prominent models for non-Newtonian fluids is the Doi-Hess molec-
ular kinetic theory for nematic liquid crystalline polymers. Polymer molecules are
viewed as identical rigid rods (cylinders) of length L and diameter b, with b≪L.
A population of these molecules is described by a probability distribution function,
f(t,x,m), for the axis of symmetry m∈S2 of the molecule with the center of mass
at x at time t. Accounting for Brownian effects leading to rotational and transla-
tional diffusion, effects of the flow, and intermolecular interaction, the evolution of f
is governed by the so-called Smoluchowski equation

∂tf +u ·∇xf +∇m ·(Wf)=D∆xf +Dr∆mf +(Dr/kBT )∇m ·(∇mV f),

where ∇m =m×∂m stands for the gradient operator on the unit sphere and ∆m =∇2
m

stands for the Laplace-Beltrami operator. The constants c, Dr, D, T and kB repre-
sent the concentration, (pre-averaged) rotational diffusivity, translational diffusivity,
absolute temperature T , and the Boltzmann constant kB , respectively. The equation
is also often studied in two dimensions, in which case the orientations m∈S1, and the
above differential operators are modified correspondingly. In the context of nematic
polymers, the equation was first proposed in the works of Doi [10] and Hess [20]. It
accounts for both the micro-micro interaction between the rods and the macro-micro
interaction when the equation is coupled to macroscopic fluid equations. If, how-
ever, the interaction with the ambient flow is neglected, the equation is a nonlinear
Fokker-Planck equation — a gradient system with the free energy as the Lyapunov
functional. Historically, the Smoluchowski equation was preceded by a variational
model proposed by Onsager in his seminal work [31]. Onsager calculated the free
energy functional and derived the Euler-Lagrange equation for the steady-states. He
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proposed that the interparticle (micro-micro) interaction, due to the excluded volume
effects, be modelled using the mean-field ansatz

V (t,x,m)=kBT

∫ 2π

0

β(m,m′)f(x,m′,t) dm′ = 〈β(m,·)〉f(t).

The function β(m,m′) represents a volume surrounding a molecule with orientation
m within which the center of mass of a molecule with orientation m′ is not allowed.
It depends on the shape of the particles, and in the case of cylindric rods it is given
by the formula β(m,m′)=2cdL2|m×m′|. Expanding β in terms of products of ir-
reducible tensors and retaining only the second term in this expansion, one arrives
at the formula β(m,m′)=−3/2U((m ·m′)2−1/3), where U ∝ cL2b denotes the in-
tensity of the potential. Employing this β instead of the one proposed by Onsager
yields the so-called Maier-Saupe potential (see [29]). This significantly simplifies the
mathematical treatment of the model. Nevertheless, it is widely accepted that it
affords sufficient degrees of freedom to capture the essential dynamics of the micro-
micro interaction. In a recent development, the bifurcation diagram for the Onsager
equation (and therefore also Smoluchowski equation in the absence of the flow) with
the Maier-Saupe potential was confirmed rigorously (see [6, 7, 9, 13, 25, 26]). The
equation undergoes two bifurcations. At a lower potential intensity, the equation un-
dergoes a saddle-node bifurcation, in which a prolate nematic branch of steady-states
(where probability distribution concentrates in one direction) and an oblate nematic
branch of steady-states (where the probability distribution concentrates uniformly on
the equator) emerge. At a higher potential intensity, the equation undergoes a tran-
scritical bifurcation. The oblate branch intercects with the isotropic state, and there
is a transfer of stability. Since in this case the Smoluchowski equation is a gradient
system, its global attractor is fairly simple; it merely consists of the steady states and
their unstable manifolds.

The microscopic Smoluchowski equation is coupled to macroscopic fluid equations
(e.g. Navier-Stokes equations) via the drift term

W (x,m,t)=(I−mm)(m ·∇x)u

and via the viscoelastic stresses that the mesogenic insertions induce in the fluid.
There are many challenges to the analysis of the full model, and one resorts to sim-
plifications. Even the simplest situation of spatially homogeneous suspensions in a
shear flow leads to complicated and peculiar dynamical behavior. The presence of a
non-variational symmetry breaking drift term in the Smoluchowski equation dramat-
ically complicates the dynamics. The equation ceases to be a gradient system, and
the attractor becomes a very complicated set, exhibiting not only steady-states, but
also various time-periodic solutions (see [12, 17, 18, 24, 27, 30], and even chaos (see
[1, 19]). Despite many existing numerical simulations, a rigorous bifurcation analysis
presents a great challenge.

Although intrinsically infinite-dimensional, many dissipative parabolic systems
exhibit long-term dynamics with properties typical of finite-dimensional dynamical
systems. The global attractor, often considered the central object in the study of
long-term behavior of dynamical systems, appears to be inadequate in capturing this
finite-dimensionality, even when its Hausdorff dimension is finite. This is mainly due
to two facts. Firstly, the global attractor can be a very complicated set, not necessarily
a manifold. The question whether the dynamics on it can be described by a system of
ODEs is yet to be resolved in the literature. Secondly, although all solutions approach
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this set, they do so at arbitrary rates, algebraic or exponential, and consequently
the dynamics outside the attractor are not tracked very well on the attractor itself.
When they exist, inertial manifolds emerge as the most adequate objects to capture
the finite-dimensionality of a dissipative parabolic PDE. Introduced by Foias at al. in
[15], they are defined to remedy the shortcomings of the global attractor just described;
they should be finite dimensional positive-invariant Lipschitz manifolds which attract
all solutions exponentially, and on which the solutions of the underlying PDE are
recoverable from solutions of a system of ODEs, termed ‘inertial form’.

The challenge to proving the existence of inertial manifolds for the Smoluchowski
equation lies in the presence of the gradient in the nonlinear Fokker-Planck and the
drift terms. In its original form the equation does not satisfy the spectral gap condi-
tion required in all existing theorems for proving the existence of inertial manifolds.
The problem was open for a while, and the author recently succeeded in proving
their existence for the gradient case by employing a nonlinear nonlocal transforma-
tion which eliminates the first-order derivatives from the equation, transforming it
into a Schrödinger-like equation. The question remained open for the case in which
the Smoluchowski equation is not a gradient system, and for which the question of
existence of inertial manifolds becomes even more important due to the complex struc-
ture of the global attractor. In this paper, we consider the two-dimensional shear flow
case. We employ a similar nonlinear nonlocal transform as the ones in papers [34, 35]
to eliminate the gradient from the nonlinear Fokker-Planck term. However, we are
still left with gradients in the drift term. The variational portion is then eliminated
by another transform of a similar type, while the non-variational portion is eliminated
using a traveling wave transformation. The trade-off is that the resulting equation
contains a time-dependent forcing term, and it is therefore nonautonomous. The
spectral gap condition, however, is now satisfied, and we apply the theory of nonau-
tonomous inertial manifolds, which are obtained as time-dependent periodic sets. The
theory of inertial manifolds is very well established, even for nonautonomous systems
(see [21, 22, 23]), and there are several different methods for proving their existence,
all of which yield the spectral gap condition as one of the (sufficient) conditions for
their existence. In the appendix, we shall review some concepts from the theory of
nonautonomous dynamical systems, such as the pullback attractor. We shall define
nonautonomous inertial manifolds, and, following [2], we shall sketch the proof for
their existence.

Since the global attractor is completely embedded in the inertial manifold, the
dynamics on it are governed by the inertial form. This, at least theoretically at this
point, provides an avenue to a rigorous bifurcation analysis of the equation, as well
as significant improvement of the existing numerical studies. Some directions employ
nonlinear Flocket theory, or study the equation as a nonautonomous perturbation of
a gradient system.

Let us remark here that the described method still does not work for the three-
dimensional case in the presence of a flow. In paper [35], the three-dimensional flow in
the absence of the ambient flow is treated. However, finding a transformation which
eliminates the first-order derivatives from the drift term still presents a challenge.

2. Preliminaries

We study a Smoluchowski equation for a spatially homogeneous suspensions of
rodlike polymers

∂tf +∇m ·(Wf)=Dr∆mf +(Dr/kBT )∇m ·(∇mV f).
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The interparticle (micro-micro) interaction term, due to the excluded volume effects,
is given by the Maier-Saupe potential

V (x,m,t)=kBT

∫ 2π

0

β(m,m′)f(x,m′,t) dm′ = 〈β(m,·)〉f(t),

where β(m,m′)=−3/2U((m ·m′)2−1/3) (the 3D case) or β(m,m′)=−2U((m ·
m′)2−1/2) (the 2D case). The macro-micro interaction term

W (x,m,t)=(I−mm)(m ·∇x)u

is due to the rotation of the axes by the velocity gradients ∇xu. In this paper, we shall
consider spatially homogeneous suspensions in a plane (f(x,m,t)=f(m,t), x∈ IR2,
m∈S1) under an imposed shear flow u(x1,x2)=(Gx2,0), where G is the shear rate.
We express the particle orientations using a local variable ϕ, i.e., m(ϕ)=(cosϕ,sinϕ),
and write f(ϕ) instead of f(m). We will also use the notation w(ϕ)=(cos2ϕ,sin2ϕ).
The simplest quantity representing the anisotropy of a probability distribution f is the
orientational order-parameter tensor, which is calculated as the traceless equivalent
of the second moment tensor

S[f ]= 〈mm− I/2〉f =

∫ 2π

0

[m(ϕ)m(ϕ)− I/2]f(ϕ) dϕ.

The scalar order parameter

S[f ]= (2S[f ] :S[f ])
1

2 =(〈w〉f · 〈w〉f )
1

2 ∈ [0,1]

represents the degree of molecular alignment. For the isotropic phase, f̄ =1/2π, S[f̄ ]=
0, and for the perfect alignment S[f ]=1.

After rescaling, the Smoluchowski equation becomes

ft =fϕϕ +(Wf)ϕ +(Vϕf)ϕ, (2.1)

where the Maier-Saupe potential is given by

V [f ]=−
U

2
(mm− I/2) :S[f ]=−U〈w〉f ·w. (2.2)

Here we use the notation 〈g〉f =
∫ 2π

0
f(ϕ)g(ϕ) dϕ. Observe that |V [f ]|≤U . Also,

W (ϕ)=Gsin2ϕ=
G

2
(1−cos2ϕ).

Denoting

Ṽ (ϕ)=−
G

4
sin2ϕ,

equation (2.1) can be written as

ft−
G

2
fϕ =fϕϕ +((Vϕ + Ṽϕ)f)ϕ.

With regard to the existence, uniqueness and regularity of solutions of (2.1), it is easy
to prove the following theorem (see [6, 7]).
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Theorem 2.1. Let f0 >0 be a continuous function on S1 such that
∫ 2π

0
f0 =1. A

unique smooth solution f(t)=Σ(t)f0 of (2.1) for an initial data f(0)=f0 exists for
all nonnegative times, and remains positive and normalized

∫ 2π

0

f(ϕ,t) dϕ=1.

Symmetry with respect to the origin — reflecting the fact that that we do not
distinguish between orientations w and −w — is preserved. Therefore, we can expend
the solutions in Fourier series as

f(ϕ,t)=
1

2π
+

1

π

∞∑

k=1

[ak(t)cos(2kϕ)+bk(t)sin(2kϕ)],

where

ak(t)= 〈cos(2kϕ)〉f(t) =

∫ 2π

0

cos(2kϕ)f(ϕ,t) dϕ,

bk(t)= 〈sin(2kϕ)〉f(t) =

∫ 2π

0

sin(2kϕ)f(ϕ,t) dϕ.

In this setting, the 2D Smoluchowski equation can also be written as an infinite system
of ODEs

a0 =1

b0 =0

a′
k =−4k2ak +2Uk[a1(ak−1−ak+1)−b1(bk−1 +bk+1)]

+
k

2
G(−bk−1 +2bk−bk+1)

b′k =−4k2bk +2Uk[b1(ak−1 +ak+1)+a1(bk−1−bk+1)]

−
k

2
G(−ak−1 +2ak−ak+1).

Multiplying the equation for a′
k by ak/2 and the equation for b′k by bk/2, and adding

the two over k =1,2,3,... implies the following equation

1

2

d

dt

∞∑

k=1

a2
k +b2

k

k
+4

∞∑

k=1

k(a2
k +b2

k)=2U(a2
1 +b2

1)+
G

2
b1. (2.3)

This implies that the equation is dissipative in the space H−1/2(S1), and also the fact
that if S[f(t)]→0 as t→∞, then f(t)→ 1

2π as t→∞. Similar to [8], one can prove
the dissipativity in Gevrey classes of functions, which, in turn, imply the dissipativity
in any Sobolev space Hk(S1). Also, the fact that a1 and b1 are determining modes is
proven in a similar fashion. Let us state the following:

Theorem 2.2. Equation (2.1) is dissipative in the Sobolev space Hk(S1), for any
k∈ IN0, in the following sense. There exists ρk =ρk(U)>0 such that for any bounded
set U ⊂L2(S1), there exists TU >0 so that for positive f0∈U and t≥TU the solution
f(t)=Σ(t)f0 satisfies ‖∂k

ϕf(t)‖L2 ≤ρk. In other words, the ball Bk
ρk

={f ∈Hk(S1) :
‖f‖Hk ≤ρk} is an absorbing set: all solutions of (2.1) enter this set to remain there,



980 INERTIAL MANIFOLDS FOR A SMOLUCHOWSKI EQUATION IN SHEAR FLOW

eventually. In particular, the solution operator Σ(t) is compact, and the equation has
a finite-dimensional global attractor A. This is the maximal compact set which is
invariant: Σ(t)A=A for all t∈ IR, and attracts all solutions: dist(Σ(t)f0,A)→0 as
t→∞ for any f0∈L2(S1).

Let us also remark that the scalar order parameter tensor evolves according to
the equation

1
2

d
dtS[f(t)]2 = (2U −4)S[f(t)]2

+2U(−a2
1a2−2a1b1b2 +b2

1a2)+ G
2 (b1−a1b2 +a2b1).

(2.4)

We shall also use the fact that when U >2 there exists sU >0 such that for any solution
f(t) of equation (2.1) there exists a time Tf >0 so that S[f(t)]>sU for all t≥Tf .

3. The main result

3.1. Schrödinger-like equation. Let us begin this section by explaining the
method behind transforming the Smoluchowski equation into a form suitable for the
application of the classical theory of inertial manifolds. The idea originates in the
theory for linear Fokker-Planck equations of the form

∂tψ =∆ψ+∇·(ψ∇V ),

where V is a given (possibly time-dependent) potential. Even for this linear equation,
the classical theory of inertial manifolds generally does not apply, since the spectral
gap condition is not satisfied. However, the transform

ψ =ue−V/2

transforms the Fokker-Planck equation into what is referred to as a Schrödinger-like
equation

∂tu=∆u+
1

2

[
∂tV +∆V −

1

2
|∇V |2

]
u.

As long as the laplacian operator has spectral gaps which are increasing indefinitely,
after imposing some conditions on V it can be proven that this Schrödinger-like equa-
tion possesses inertial manifolds. Due to the fact that the above transformation is
invertible, we can infer the existence of inertial manifolds for the linear Fokker-Planck
equation as well.

The situation is more complicated for the Smoluchowski Equation (2.1) since the
potential is not given a priori. Rather, it is related in a non-local fashion to the
probability function f

V [f ]=−U〈w〉f ·w.

As a projection, this relation is not invertible. Following the discussion for the linear
Fokker-Planck equation, we introduce the transform

u=feV/2 =fe−
U
2
〈w〉f ·w, (3.1)

which is now a nonlinear nonlocal transformation. Similar to above, substitution into
the Smoluchowski equation yields the equation

ut =uϕϕ +(Wu)ϕ +
1

2

(
Vt +Vϕϕ−

1

2
(Vϕ)2−WVϕ

)
u.
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The question immediately arises whether this equation can be viewed as a closed
equation in u, or, in other words, whether V (and therefore by virtue of (3.1) f , as
well) can be retrieved from u. Unfortunately, this seems not to be the case. However,
it turns out that the following, very similar transformation

u=fe−V/2 =fe
U
2
〈w〉f ·w (3.2)

is invertible on a large open set of functions. The reason is that, given a function u,
one can exploit the conservation of the L1 norm to first recover the second eigenmode
〈w〉f ·w, thus also V [f ] and f from u. The change of the sign in the exponent
of the transformation is easily accomplished if the transformation (3.2) is preceded
by a transformation which changes the sign of the second eigenmode in the Fourier
expansion of f and preserves the positivity of f , for example

g =Θ(f)=f −2P2f +d=f +cV +d,

where c= 2
Uπ and d= 4

π . Notice that f >0 implies g >0 and
∫ 2π

0
f(ϕ)dϕ=1 implies∫ 2π

0
g(ϕ)dϕ=9. It can be easily seen that f satisfies the Smoluchowski equation if

and only if g satisfies

gt =gϕϕ +(Wg)ϕ +(Vϕg)ϕ +H(g,ϕ), (3.3)

where

H(g,ϕ)= c[Vt−Vϕϕ−(V (W +Vϕ))ϕ]−d(W +Vϕ)ϕ.

As already indicated, the transformation

u=gexp(V/2)=ge
U
2
〈w〉g·w (3.4)

can be proven to be invertible, and it eliminates the first-order derivative from the
nonlinearity. This will be done in the next section by employing a Laplace-like trans-
form. Note that from now on,

V [g]=U〈w〉g ·w.

One can now easily verify that the function g satisfies (2.1) if and only if u=gexp(V/2)
satisfies the equation

ut =uϕϕ +(Wu)ϕ +
1

2

(
Vt +Vϕϕ−

1

2
(Vϕ)2−WVϕ

)
u+H(g)eV/2. (3.5)

In view of the equation for the evolution of V [g] and the fact that ‖V [g]‖∞≤U , we
can write the latter equation as

ut =uϕϕ +(Wu)ϕ +F (g,ϕ), (3.6)

where F depends Lipschitz-continuously on g and ϕ and is periodic in ϕ. Our next
goal is to express g as a function of u in order to view (3.6) as a closed semilinear
parabolic equation in u.
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3.2. Transformation inverse. Let us rewrite the transform (3.4) in the
following form

g =ue−V/2 =ue−
U
2
〈w〉g·w.

Given u, this is a nonlinear nonlocal equation in g. The conservation of the L1 norm
yields that

∫ 2π

0

u(ϕ)e−(U/2)〈w〉g·w(ϕ) dϕ=9, (3.7)

and multiplication by w and integration yields the equation
∫ 2π

0

u(ϕ)w(ϕ)e−(U/2)〈w〉g·w(ϕ) dϕ= 〈w〉g. (3.8)

It turns out that these two equations are sufficient to solve for g. For any u∈L1(S1),
we define the Laplace-like transform û∈C∞(IR2)

û(x)=

∫ 2π

0

u(ϕ)e−x·w(ϕ) dϕ.

Equation (3.7) becomes

û((U/2)〈w〉g)=9

and equation (3.8) becomes

−∇û((U/2)〈w〉g)= 〈w〉g.

In order to solve the latter two equations for 〈w〉g, let us develop the following
framework. Firstly, similar to the Fourier and the Laplace transforms, for a∈ IR2, we
define the operator

µau(ϕ) :=u(ϕ)e−a·w(ϕ)∈L1(S1),

and so

µ̂au(x)=

∫ 2π

0

u(ϕ)e−(x+a)·w(ϕ) dϕ=: τaû(x).

We define the function sets H=L2(S1;IR+), and

X =

{
g∈H :

∫ 2π

0

g(ϕ) dϕ=9

}
.

Also let

X =

{
u∈H :

∫ 2π

0

µau(ϕ) dϕ<9 for some a∈ IR2

}
,

X1 =
{

u∈X :
∫ 2π

0
u(ϕ) dϕ≥9

}
, and X2 =

{
u∈X :

∫ 2π

0
u(ϕ) dϕ<9

}
, so that X =X1∪

X2. For u∈X we have

∇û(x)=−

∫ 2π

0

µxu(ϕ)w(ϕ) dϕ,

∇∇û(x)=

∫ 2π

0

µxu(ϕ)(w(ϕ)w(ϕ)) dϕ.
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∇∇û(x) is positive definite, since by Cauchy-Schwarz

det(∇∇û)= 〈w2
1〉〈w

2
2〉−〈w1w2〉

2 >0,

where 〈f〉=
∫ 2π

0
f(ϕ)µxu(ϕ) dϕ, so û is a concave.

If u∈X1, the level set

Γ(u)={x∈ IR2|û(x)≤9}

is a nonempty convex set, and the there exists a unique point r∈∂Γ(u) so that
|r|=dist(Γ(u),o), where o=(0,0). Note that r is the unique point on ∂Γ(u) for which
there exists U >0 such that

∇û(r)=−
2

U
r.

We now define the mappings

R :X1→ IR2,

u 7→r,

G :X1→X,

u 7→g =µR(u)u=ue−R(u)·w,

Y :X1→ IR2,

u 7→−(∇û)(R(u))=

∫ 2π

0

u(ϕ)e−R(u)·w(ϕ)w(ϕ) dϕ=<w>G(u)

Υ:X1→ IR+,

u 7→U =2|R(u)|/|Y (u)|.

Note the inequality R(u)≤Υ(u)/2. We will need the following:

Lemma 3.1. R, G, Y , and Υ are continuous functions on X1.

We prove the continuity of R, and the continuities of G, Y and Υ follow. To
prove the statement by contradiction, we chose a sequence (vn)n∈IN in X1 and u∈X1

such that vn →u in L2(S2). This obviously implies v̂n → û and v̂n
′
→ û′ in L∞(S2).

Let r=R(u), sn =R(vn), and suppose sn 6→r as n→∞. Let Un =2|R(vn)|/|Y (vn)|=
4|sn|/|∇v̂n(sn)|. One can easily observe that the sequence (sn) is bounded. There-
fore, without loss of generality, we can assume that sn → s 6=r as n→∞. Because
of the convergence in the sup norm, v̂n(sn)→ û(s) and ∇v̂n(sn)→∇û(s). Therefore,
v̂n(sn)=9 implies û(s)=9, and Un →U :=2|s|/|∇û(s)|, so ∇û(s)=− 2

U s. This is a
contradiction to s 6=r.

As discussed earlier, g(t)=Θ(f(t)) is a solution of (3.3) for some U >0 if and only
if

u(t)=g(t)eV [g(t)]/2

satisfies

ut =uϕϕ +(Wu)ϕ +F (G(u),ϕ). (3.9)

As already mentioned, we need Lipschitz continuity of the nonlinear term in order
to apply the classical theory of inertial manifolds. In the following lemmas, we shall
establish some facts about the Lipschitz continuity of the transformation.
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Lemma 3.2. Let U >0 be fixed, and let XU =Υ−1{U}. The functions R|XU
, G|XU

,
and Y |XU

, are Lipschitz continuous. In particular, GU =G|XU
:XU →X is a Lipschitz

homeomorphism. Its inverse is given by

G−1
U (g)=ge(U/2)<w>g·w.

We prove the Lipschitz continuity of R, and the others follow. Let u,v∈XU , and
let r=R(u), s=R(v). The mean-value theorem implies the existence of θ1∈ [0,1] and
θ2∈ [0,1] so that, with the convexity of û and v̂, we have

û(s)− û(r)=∇û(r+θ1(s−r)) ·(s−r)≥∇û(r) ·(s−r)=−
2

U
r(s−r)

and

v̂(r)− v̂(s)=∇v̂(s+θ2(r−s)) ·(r−s)≥∇v̂(s) ·(r−s)=−
2

U
s(r−s).

Adding both equations yields

∫ 2π

0

(u(ϕ)−v(ϕ))(e−s·w(ϕ)−e−r·w(ϕ)) dϕ≥
2

U
|s−r|2,

and therefore there exists C3 =C3(U)>0 so that

2

U
|s−r|2≤C3‖u−v‖L2 |r−s|,

and so |R(u)−R(v)|≤ UC3

2 ‖u−v‖L2 . 2

For κ>0 let us define the ball Bκ ={u∈H :‖u‖L2 ≤κ}. Let us now choose
κ : IR+→ IR+, continuous and increasing, such that the ball Bκ(U) satisfies Bκ(U)⊃

G−1
U (Θ(Bρ0(U))). Observe that the ball Bκ(U) is an absorbing ball in L2(S1) for the

transformed equation (3.9).
We have proved the Lipschitz continuity of the transformation on the set of func-

tions Υ−1{U} on which Υ(u) is kept fixed at U . Since the potential intensity U is
given a priori and it is not changed by the original equation, this is also true for the
transformed equation. However, the transform changes the geometry of the phase
space, and Υ−1{U} is not a Hilbert space. In order to apply the classical theory, we
need to imbed this set in a larger Hilbert space, and we accomplish this by allowing
U to change. Υ(u) becomes a quantity that is preserved under the solution operator.
In the following lemma we expand the already established Lipschitz continuity to this
larger Hilbert space.

Lemma 3.3. Let U1 >0 and K >0. Let U =Bκ(U1)∩Υ−1(0,U1)∩{u∈X1 :K <
|Y (u)|}. Then R|U , G|U , Y |U , U |U are Lipschitz continuous.

Let u,v∈U , and let r=R(u), s=R(v). As before, we have

û(s)− û(r)≥
2

Υ(u)
r(r−s)

and

v̂(r)− v̂(s)≥
2

Υ(v)
s(s−r).
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Since r(r−s)+s(s−r)= |r−s|2 ≥0, we distinguish between the following cases:

Case 1: r(r−s)≥0 and s(s−r)≥0.
In this case, similar to the previous Lemma, we have

∫ 2π

0

(u(ϕ)−v(ϕ))(e−s·w(ϕ)−e−r·w(ϕ)) dϕ≥
2

U1
|s−r|2,

so |R(u)−R(v)|≤ U1C3(U1)
2 ‖u−v‖L2 .

Case 2: r(r−s)<0 and s 6∈Γ(u).
In this case,

û(s)− û(r)>0>
2

Υ(v)
r(r−s)

and

v̂(r)− v̂(s)≥
2

Υ(v)
s(s−r),

and one arrives at the same conclusion as in the previous case.

Case 3: r(r−s)<0 and s∈Γ(u).
Since s∈Γ(u), there exists s′∈∂Γ(u)∩ [o,s]. Let v′ =µs−s

′v, and so v̂′ = τs−s
′ v̂. Thus,

v̂′(s′)= v̂(s)=9, so R(v′)= s′ follows. Another easy observation is that r(r−s′)≤0,
and so

û(s′)− û(r)=0≥
2

Υ(v)
r(r−s′)

and

v̂′(r)− v̂′(s′)≥
2

Υ(v′)
s′(s′−r)≥

2

Υ(v)
s′(s′−r),

and we again conclude that |r−s′|≤ U1C3(U1)
2 ‖u−v′‖L2 . On the other hand, since s

and s′ are collinear,

v̂(s′)− v̂(s)≥
2

Υ(v)
s(s−s′)=

2

Υ(v)
|s||s−s′|≥K|s−s′|.

Since v̂(s)= û(s′), we have |s−s′|≤ U1C3(U1)
K ‖v−u‖L2 . The desired result follows with

the estimate

‖v−v′‖2
L2 =

∫ 2π

0

(v(ϕ)−v′(ϕ))2dϕ=

∫ 2π

0

v(ϕ)2(1−e(s′−s)·w(ϕ))2 dϕ

=

∫ 2π

0

[G(v)(ϕ)]2(es·w(ϕ)−es
′·w(ϕ))2 dϕ≤C2

4 |s−s′|2‖G(v)‖2
L2 ≤C2

5‖v−u‖2
L2 .

where the constants C4 and C5 depend on K and U1 only.

Case 4: s(s−r)<0.
The inequalities for this case follow in an analogous fashion to the previous two cases.
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Lemma 3.4. Let 0<U <U1 and K =sU , and let U be defined as in the previous
lemma. Let V =U ∪(XU ∩Bκ(U)). Then the functions R|V , G|V , Y |V , and U |V are
Lipschitz continuous.

Let us partition V into three regions: V1 =XU ∩Bκ(U)∩R−1(0,s1/2], V2 =XU ∩
Bκ(U)∩R−1(s1/2,s1), and U . By the previous two lemmas, the functions are Lipschitz
continuous on any of these three regions, as well as on the sets V1∪V2 and V2∪U .
The Lipschitz continuity on V1∪U follows since both of these sets are bounded in L2

and dist(R(V1),R(U))>s1/2. This implies the Lipschitz continuity on V. 2

3.3. Prepared equation. Before we can prepare the equation, and apply the
theory, we need to preform a few more transformations in order to have the equation
in the form to which the classical theory applies. Firstly, we eliminate the variational
portion of the drift Ṽ =−G

4 sin2ϕ term by employing the Lipschitz-homeomorphism

u=K(v)=ve−Ṽ /2. This leads similarly as before to an equation of the form

vt =vϕϕ +
G

2
vϕ + F̃ (G(K(v)),ϕ), (3.10)

where F̃ is Lipschitz continuous in both components and is periodic in ϕ. Denoting

N(v,ϕ)= F̃ (G(K(v),ϕ),

we can write the equation as

vt =vϕϕ +
G

2
vϕ +N(v,ϕ). (3.11)

We now follow the usual procedure known as preparing the equation in which we mod-
ify the nonlinearity outside the absorbing set K−1B2κ(U1). We modify the nonlinear
term:

NP (v,ϕ)=

{
N(v,ϕ), if Kv∈V
0, if Kv∈H\B2κ(U1).

This is clearly a Lipschitz function. Denote by C >0 its Lipschitz constant. Following
[36], a Lipschitz-continuous function defined on a subset of a Hilbert space can be
extended to a Lipschitz continuous function defined on the entire Hilbert space, even
preserving the Lipschitz constant C >0. Without changing the notation, let us denote
such an extension by NP :H× IR→ IR. The prepared equation now reads ass

vt =vϕϕ +
G

2
vϕ +NP (v,ϕ). (3.12)

Finally, the traveling wave transformation w(t,ϕ)=v(t,ϕ− G
2 t) leads to the equation

wt =wϕϕ +NP (w,ϕ−
G

2
t). (3.13)

The term NP (w,ϕ− G
2 t) is now globally Lipschitz, periodic in both t and ϕ, and we

find ourselves in the situation of Theorem A.1.
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3.4. Main theorem. We are now able to prove the existence of the inertial
manifold of the Smoluchowski equation.

Theorem 3.5. Let U >2. The Smoluchowski Equation (2.1) possesses in inertial
manifold MU .

The positivity of Aw=−wϕϕ, the global Lipschitz continuity of NP and the fact
that it vanishes outside of a ball in H suffice to prove that the prepared equation
has a solution for all positive times for any initial datum in H, and it is dissipative.
The complete set of eigenfunctions for the linear operator A is given by wn

1 (ϕ)=
cosnϕ, wn

2 (ϕ)=sinnϕ, n=0,1,... , with eigenvalues λn =n2, n=0,1,... . If C1 is a
Lipschitz constant for NP , there exists n∈ IN such that λn+1−λn =2n+1>4C1, and
the spectral gap condition is satisfied. Theorem A.1 applies, and we infer the existence
of a nonautonomous time-periodic inertial manifold MP for the prepared equation
(3.13), given as a graph of a Lipschitz function ΦP :

G[ΦP ]={(t,p+ΦP (t,p)) : t∈ IR,p∈PnH}.

Because of the fact that ΦP is Lipschitz in both components, it can be easily seen
that the set

MP =
⋃

t∈IR

(p+ΦP (t,p))(·+
G

2
t)

is an inertial manifold for (3.12). We now define MU =Bρ0(U)∩Θ−1GU (XU ∩
K(MP )). Since GU :XU →X is a Lipschitz homeomorphism, it is immediate that MU

is a finite dimensional Lipschitz manifold. It is positively invariant under, since both
Bρ0(U) and Θ−1GU (XU ∩K(MP )) are positively invariant. It is also nonempty, since it
contains the global attractor of (3.12). It remains to prove that MU is exponentially
tracking. Let f0∈H and f(t)=Σ(t)f0. Let v(t)=K−1G−1

Υ Θ(f(t)), t≥0. Since MP is
exponentially tracking, there exists v0∈MP such that for the solution vP of (3.12) to
this initial datum we have ‖v(t)−vP (t)‖L2 →0, as t→∞, exponentially. Also, there
exists T >0 such that vP (t)∈K−1(U) for t≥T . However, since NP |K−1(U) =N |K−1(U),
Υ(K(vP (t)))=U for t≥T . Therefore, h(t) :=Θ−1GK(vP (t))∈Θ−1GK(MP ), t≥T is
a solution of (2.1). For some T ′≥T we have h(t)∈Bρ0(U), t≥T ′, and therefore
h(t)∈MU , t≥T ′. Finally, since all the transformations are Lipschitz continuous,
‖f(t)−h(t)‖L2 →0 as t→∞, exponentially. This concludes the proof. 2

Appendix A. Inertial manifolds for nonautonomous evolution equa-

tions. In this section, we shall define time-dependent (nonautonomous) inertial man-
ifolds and state and partially prove a theorem on their existence. Just like for the
autonomous evolution equations, for which the theory originated, there now exists
a well developed theory of inertial manifolds for the nonautonomous evolution equa-
tions, which applies to our case. In papers [21, 22, 23], the authors prove the existence
using cone invariance and strong squeezing properties. In [2], the authors used the
Lyapunov-Perron method to prove the existence of inertial manifolds for the case in
which N is assumed to be linear in u and periodic in t. Following this paper, with-
out reproducing the entire proof, we shall indicate here how the inertial manifolds
are constructed using the Lyapunov-Perron method for the case of nonlinear N and
periodic t.
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We consider an evolution equation on a Hilbert space H endowed with the inner
product (·,·), and the norm | · | of the form

du

dt
+Au=N(t,u), (A.1)

where A is a positive self-adjoint linear operator with compact inverse, and N : IR×
H →H is a locally Lipschitz function in u and T -periodic and continuous in t. Recall
that, since A−1 is compact, there exists a complete set of eigenfunctions wk for A

Awk =λkwk.

We arrange the eigenvalues in a nondecreasing sequence λk ≤λk+1, k =1,2,... It is a
well known fact that λk →∞ as k→∞. We also define the projection operators

Pnu=

n∑

k=1

(u,wk)wk

and Qn = I−Pn.
For the autonomous case, i.e., when N(t,u)=N(u), we define inertial manifolds

in the following way.

Definition A.1. An inertial manifold M is a finite-dimensional Lipschitz manifold
which is positively invariant, i.e.,

Σ(t)M⊂M, t≥0,

and has the exponential tracking property, i.e., there exist µ>0 so that for every
u0∈H there exists v0∈M such that

|Σ(t)u0−Σ(t)v0|≤Ke−µt, t≥0,

where K =K(u0,v0)>0.

The dynamics of a a nonautonomous system are no longer described by a semi-
group, and thus the definitions for invariant sets, global attractors and inertial mani-
folds have to be modified. Rather than by a semigroup, the dynamics are described by
a two parameter family {Σ(t,θ) : t≥θ∈ IR} (or Σ(·,·) for short) of continuous operators
from H into itself such that

• Σ(θ,θ)= I

• Σ(t,σ)Σ(σ,θ)=Σ(t,θ)

• (t,θ) 7→Σ(t,θ)u0 is continuous for t≥θ and u0∈H.

The natural way to define invariance in this context is by the following.

Definition A.2. A family A={A(t)}t∈IR of nonempty sets A(t)⊂H is called a
nonautonomous set. It will be said to be forward invariant if

Σ(t,θ)A(θ)⊂A(t), t≥θ

and invariant if

Σ(t,θ)A(θ)=A(t), t≥θ.
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In this context, one also talks about two different kinds of attraction (dynamics),
the forward (t→∞), and the pullback (θ→−∞) attraction (dynamics). In gen-
eral, these two dynamics are different, and they will coincide only in some specific
situations, e.g., when Σ(·,·) is a semigroup in disguise. Let us recall here that for
autonomous systems, the global attractor can be characterized as the union of all
global in time defined trajectories which are also bounded. In order to achieve the
same classification for nonautonomous systems, it turns out that in the definition of
the global attractor we need to require the pullback attraction. We arrive at the
following.

Definition A.3. A pullback attractor is defined as an invariant family A={A(t)}t∈IR

of compact sets A(t)⊂H such that ∪t∈IRA(t) is compact, and it attracts all bounded
B⊂H in the pullback sense

lim
θ→−∞

dist(Σ(t,θ)B,A(t))=0, t∈ IR.

As for inertial manifolds, the definition has to be modified in the following way:

Definition A.4. A nonautonomous inertial manifold is a nonautonomous set M
with the properties that

• for each t∈ IR, M(t)is a finite-dimensional Lipschitz manifold,

• it is invariant,

• and it has the exponential tracking property, i.e., there exist µ>0 so that for
every θ∈ IR and u0∈H there exists v0∈M(θ) such that

|Σ(t,θ)u0−Σ(t,θ)v0|≤Ke−µt, t≥0

where K =K(θ,u0,v0)>0.
We shall need the following version of the existence theorem.

Theorem A.1. Suppose that the nonlinearity N(t,u) in (A.1) satisfies the following
three conditions.

• It has compact support in H, i.e., supp(N(t,·))⊂Bρ ={u∈H : |u|≤ρ} for
some ρ>0.

• It is continuous in t, and |N(t,u)|≤C0 for t∈ IR and u∈H, and for some
constant C0 >0.

• It is globally Lipschitz continuous, i.e. |N(t1,u1)−N(t2,u2)|≤C1|u1−u2|+
C2|t1− t2| for t1,t2∈ IR, u1,u2∈H, and for some constants C1,C2 >0.

Suppose that the eigenvalues of A satisfy the spectral gap condition

λn+1−λn >4C1

for some n∈ IN. Then there exists a T -periodic Lipschitz continuous function Φ:
IR×PnH →QnH so that the nonautonomous set given as a graph of Φ

M=G[Φ]={(t,p+Φ(t,p)) : t∈ IR,p∈PnH},

is an inertial manifold. Restricting (A.1) to M yields the ordinary differential equa-
tion for p=Pnu

dp

dt
+Ap=PnN(t,p+Φ(t,p)), (A.2)
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termed the inertial form.

(sketch) Let θ∈ IR and consider the equation

du

dt
+Au=N(θ+ t,u). (A.3)

Let β =λn+1−λn and η =β/2. Define the Banach space

X− ={f : IR−→H :f continuous and sup
t≤0

|eηtf(t)|<∞}.

First of all, observe that if u=e−λntv, then (A.3) is equivalent to

dv

dt
=(λn−A)v+eλntN(t+θ,e−λntv).

Next, note that a function v∈X− is a solution if and only if it satisfies the integral
equation

v(t)=e(λn−A)tp+

∫ t

0

e(λn−A)(t−s)PneλnsN(θ+s,e−λnsv(s)) ds

+

∫ t

−∞

e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds,

where p=Pnv(0). To see this, first observe that for a solution v∈X− and for τ ≤ t≤0,
we have by the variation of constants formula

Pnv(t)=e(λn−A)tp+

∫ t

0

e(λn−A)(t−s)PneλnsN(θ+s,e−λnsv(s)) ds

and

Qnv(t)=e(λn−A)(t−τ)Qnv(τ)+

∫ t

τ

e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds.

Then, observe that

|e(λn−A)(t−τ)Qnv(τ)|≤e−βt+(β−η)τ |v|X− →0

as τ →−∞. Thus

Qnv(t)=

∫ t

−∞

e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds.

The converse can also be established using the usual arguments.
Define the function F in the following way:

F :X−×PnH× IR→X−

(v,p,θ) 7→e(λn−A)tp+

∫ t

0

e(λn−A)(t−s)PneλnsN(θ+s,e−λnsv(s)) ds

+

∫ t

−∞

e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds.
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It can be easily observed that F is well defined and that

|F (v,p,θ)−F (v̄,p,θ)|X− ≤C1

(
1

η
+

1

β−η

)
|v− v̄|X−

≤
4C1

β
|v− v̄|X− .

The assumption on the spectral gaps insures that F is a contraction with respect to
the function v, thus for fixed p∈PnH and θ∈ IR F possesses a unique fixed point
v(·,p,θ)∈ X−. We now define

Φ(θ) :PnH →QnH

p 7→Qnv(0,p,θ)=

∫ 0

−∞

esAQnN(θ+s,e−λnsv(s)) ds.

The function Φ is T -periodic in θ and Lipschitz continuous in p. To see that, let
v =F (v,p,θ) and v̄ =F (v̄, p̄,θ) for p and p̄∈PnH. Then

|v(·,p,θ)− v̄(·, p̄,θ)|X− = |F (v,p,θ)−F (v̄, p̄,θ)|X−

≤
4C1

β
|v(·,p,θ)− v̄(·, p̄,θ)|X− + |p− p̄|

so

|v(·,p,θ)− v̄(·, p̄,θ)|X− ≤
β

β−4C1
|p− p̄|

and

|Φ(θ)(p)−Φ(θ)(p̄)|≤
4C1

β−4C1
|p− p̄|.

2

One of the advantages of having an inertial form for the system is that, at least
theoretically, we can preform an asymptotic study of the original system via nonlin-
ear Floquet theory. The following theorem can be proven exactly like for its linear
counterpart.

Theorem A.2. Let F0,t be the the flow map generated by the inertial form (A.2),
and let Ψ=F0,T be the corresponding monodromy map. If the monodromy map has a
logarithm, i.e., if there exists an autonomous vector field Z such that Ψ=exp(TZ),
then there exists T -periodic P so that

F0,t =P (t)◦exp(Zt).

The mapping P is called the Floquet mapping and the eigenvalues of Z are called
the Floquet exponents. Finding the monodromy matrix is a nontrivial task, if at all
possible. In the chronological calculus formalism we can write

Z(p)=−Ap+
1

T
ln−→exp

(∫ T

0

PnN(τ,p+Φ(τ,p) dτ

)
.
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