
COMMUN. MATH. SCI. c© 2008 International Press

Vol. 6, No. 4, pp. 845–868

S-ROCK METHODS FOR STIFF ITÔ SDES
∗

ASSYR ABDULLE† AND TIEJUN LI‡

Abstract. In this paper, we present a class of explicit numerical methods for stiff Itô stochastic
differential equations (SDEs). These methods are as simple to program and to use as the well-known
Euler-Maruyama method, but much more efficient for stiff SDEs. For such problems, it is well
known that standard explicit methods face step-size reduction. While semi-implicit methods can
avoid these problems at the cost of solving (possibly large) nonlinear systems, we show that the step-
size reduction phenomena can be reduced significantly for explicit methods by using stabilization
techniques. Stabilized explicit numerical methods called S-ROCK (for stochastic orthogonal Runge-
Kutta Chebyshev) have been introduced in [C. R. Acad. Sci. Paris, 345(10), 2007] as an alternative
to (semi-) implicit methods for the solution of stiff stochastic systems. In this paper we discuss a
genuine Itô version of the S-ROCK methods which avoid the use of transformation formulas from
Stratonovich to Itô calculus. This is important for many applications. We present two families
of methods for one-dimensional and multi-dimensional Wiener processes. We show that for stiff
problems, significant improvement over classical explicit methods can be obtained. Convergence and
stability properties of the methods are discussed and numerical examples as well as applications to
the simulation of stiff chemical Langevin equations are presented.

Key words. Stiff stochastic differential equations; Multiscale Systems; Explicit stochastic meth-
ods; Runge-Kutta Chebyshev methods; Stiff chemical Langevin equation
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1. Introduction
For the numerical solution of many biological, chemical, physical and economical

systems modeled by differential equations, the use of explicit methods is often expen-
sive because of time step reduction due to stability issues. Such systems are called
stiff. Stiffness is concerned with (local) properties of a differential equation which can
affect the stability of a numerical method [10, 14]. The stability concept under con-
sideration in this paper is mean-square stability. Stiff stochastic systems are usually
solved numerically by (semi-)implicit methods, since classical explicit methods, for ex-
ample the well-known Euler-Maruyama method, face severe time step reduction. This
comes at the cost of solving linear algebra systems at each step. It can be expensive
for large systems and complicated to implement for complex problems. Furthermore,
one faces issues with the convergence of numerical methods for nonlinear systems.
Of course for many problems, stiff solvers can be efficient. We show in this paper
that whenever implicit computations are to be avoided, one can handle stiff problems
much more efficiently than with the classical explicit methods proposed so far in the
literature.

We propose a new family of explicit methods for stiff Itô stochastic differential
equations (SDEs) with extended stability properties based on the recently developed
S-ROCK methods for Stratonovich SDEs [4, 3]. We consider a stiff system of SDEs

dY =f(t,Y )dt+

M
∑

l=1

gl(t,Y )dWl(t), Y (0)=Y0, (1.1)
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where Y (t) is a random variable with value in R
d, f : [0,T ]×R

d →R
d is the drift term,

g : [0,T ]×R
d →R

d is the diffusion term and Wl(t) are independent Wiener processes.
We will assume usual conditions on f and g (continuity, uniform Lipschitz continuity
with respect to the second variable and a linear growth condition) and on Y0 (inde-
pendence of the Wiener processes and finite second order moment) to ensure existence
and uniqueness of a (mean square bounded) strong solution of (1.1) (see for example
[20, Chapter 5.2] for details). For the numerical solution of (1.1), we consider one-step
linear methods of the form

Yn+1 =Φ(Yn,h,In1
,... ,InM

), (1.2)

where Inl
=Wl(tn+1)−Wl(tn) are independent Wiener increments drawn from the

normal distributions with zero mean and variance h= tn+1− tn. In this paper, we are
interested in mean-square stable stiff SDEs. We notice, as observed in [16], that stiff
solvers can perform poorly for fast/slow stochastic systems with nontrivial invariant
measure for the fast system. These problems are not mean-square stable and other
approaches are needed for their numerical solution as, for example, the multiscale
methods developed in [25] and [7].

Clearly any Itô stochastic differential equation can be converted into Stratonovich
form. Thus, the numerical methods proposed in [4] apply to general SDEs. This
conversion, however, requires to differentiate the diffusion terms, which can be cum-
bersome. For many problems modeled by Itô SDEs, for example chemical reactions,
dynamical systems used in finance, or stochastic partial differential equations (SPDEs)
discretized by the method of lines, it is preferable to have a scheme available directly
in the Itô form. It is thus of interest to develop the S-ROCK methods directly for the
Itô calculus. We emphasize that the Itô S-ROCK methods are not a straightforward
adaptation of the Stratonovich S-ROCK methods [4, 3] and new family of schemes
need to be derived and analyzed.

This paper is organized as follows. In section 2 we recall the needed convergence
and stability concepts. We then discuss briefly the (deterministic) Chebyshev methods
in section 3. In section 4 we introduce the Itô S-ROCK methods, and study their
convergence and stability properties. Finally, we present a numerical study of the
new methods and applications to the simulation of stiff chemical Langevin equations
to illustrate their performance.

2. Classical methods for SDEs
In this section we recall briefly basic concepts about numerical methods for SDEs,

important for the derivation of our new methods.

2.1. Convergence. A method is said to have a strong order ρ, respectively
weak order of ρ, if there exists a constant C such that

E(|YN −Y (τ)|)≤Chρ,
∣

∣E(G(YN ))−E(G(Y (τ)))
∣

∣≤Chρ (2.1)

for any fixed τ =Nh∈ [0,T ], with h sufficiently small and for all functions G :Rd →
R, that are 2ρ+1 times continuously differentiable with partial derivatives with
polynomial growth.

The following two fundamental theorems derived by Milstein set the relation
between local and global order of convergence.

Theorem 2.1. [19, Chapter 1.1] Suppose that f and g, the drift and diffusion of the
SDEs (1.1), are continuous on [0,T ]×R

d, sufficiently smooth, and satisfy a uniform
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Lipschitz condition

|f(t,y)−f(t,z)|+ |g(t,y)−g(t,z)|≤L|y−z|, ∀t∈ [0,T ], y,z∈R
d. (2.2)

Suppose further that the one-step method (1.2) satisfies the following strong and mean
local order conditions

E(|Y1−Y (h)|)≤Chρ+1/2, (2.3)

|E(Y1)−E(Y (h))|≤Chρ+1. (2.4)

Then the method converges with a strong global order ρ.

We note that this theorem has also been discussed in [6] in the framework of tree
theory and B-series, originally developed for ODEs [10] .

Theorem 2.2. [19, Chapter 2.2] Suppose that f and g, the drift and diffusion of
the SDEs (1.1), are continuous on [0,T ]×R

d, satisfy the uniform Lipschitz condition
(2.2), and have uniformly bounded moments E(‖Yn‖2r), 1≤n≤N with respect to N
for suficiently large r. Suppose further that f and g have partial derivatives with
respect to y of order 2(ρ+1) with a polynomial growth and that for all functions
G :Rd →R, that are 2ρ+1 times continuously differentiable with partial derivatives
with polynomial growth we have

|E(G(Y1))−E(G(Y (h)))|≤C(Y0)h
ρ+1, (2.5)

where C(y) has a polynomial growth. Then the method converges with a weak global
order ρ.

2.2. Stability. Stability analysis for numerical methods is motivated by the
question of the choice of the stepsize h for (1.2) in order to reproduce the characteristic
dynamics of the true solution. In order to investigate such a question for numerical
schemes, we consider a linear test problem with multiplicative noise [23]

dY =λY dt+µY dW (t), Y (0)=Y0, (2.6)

where λ,µ∈C. The solution of (2.6), Y (t)=Y0exp((λ− 1
2µ2)t+µW (t)),

is mean-square stable if and only if

lim
t→∞

E
(

|Y (t)|2
)

=0 ⇐⇒ (λ,µ)∈SSDE :={(λ,µ)∈C
2;Re(λ)+

1

2
|µ|2 <0}, (2.7)

where the right-hand side of (2.7) will be referred as the stability domain of the test
equation (2.6). This test problem gives insight of the behavior of (1.1) by linearization
around fixed points. Applying the numerical scheme (1.2) to the test problem (2.6),
squaring the result, and taking the expectation, we obtain

E(|Yn+1|2)=R(p,q)E(|Yn|2), (2.8)

where p=hλ,q =
√

hµ and where R(p,q) is a polynomial in Re(p), Im(p), Re(q), Im(q).
The numerical method is mean-square stable for this test problem if and only if

lim
n→∞

E
(

|Yn|2
)

=0 ⇐⇒ (hλ,
√

hµ)∈S :={p,q∈C;R(p,q)<1}. (2.9)
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Examples. A well-known method for the solution of (1.1) is the Euler-Maruyama
scheme, given by

Yn+1 =Yn +hf(t,Yn)+

M
∑

l=1

Inl
gl(t,Yn), (2.10)

where Inl
=Wl(tn+1)−Wl(tn) are independent Wiener increments. This method

has strong order 1/2 and weak order 1 [14]. Applied to the test problem (2.7), we
obtain

R(p,q)= |1+p|2 +q2 (2.11)

and thus it is mean-square stable if and only if

(hλ,
√

hµ)∈SEM :={p,q∈C;|1+p|2 +q2 <1}.

The domain SEM is plotted in Figure 2.1 in the (p,q)=(hλ,
√

hµ) plane (for λ,µ∈R).
The left part of the parabola with a boundary given by a dotted curve represents the
stability region of the test equation (2.6). We observe that for |λ|,|µ|≫1 (stiffness),
severe stepsize reduction occurs for these methods to be stable. For SDEs with a
one-dimensional Wiener process, higher (strong) order methods can be obtained as,
for example the Platen method [14] which has strong order 1 and is given by

Kn =Yn +hf(t,Yn)+
√

hg(t,Yn)

Yn+1 =Yn +hf(t,Yn)+Ing(t,Yn)+
1

2
√

h
(g(Kn)−g(Yn))(I2

n−h). (2.12)

We note that higher weak order methods in the framework of the Runge-Kutta meth-
ods have been studied in [22].

Applying the method (2.12) to the test problem (2.7) we obtain its stability
domain SPL similarly as explained above for the Euler-Maruyama method. We see
again in Figure 2.1 that the stability region covers only a small part of the stability
region of the test equation.
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Fig. 2.1. Mean-square stability domains for the Euler-Maruyama method (left figure) and the
Platen method (right figure).

Remark 2.3. We notice that some other authors use the representation (p,q)=
(hλ,hµ2) for plotting stability domains. With this scaling, the stability region for
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the test problem becomes a wedge. For the class of methods we are constructing
this scaling has some drawback: the stability domains of our new methods increase
quadratically along the p axis (see Figure 4.1) and this remarkable property is somehow
hidden (in the plots) with stability domains scaled as (p,q)=(hλ,hµ2) instead of
(p,q)=(hλ,

√
hµ).

To describe more precisely the mean square stability region of a numerical method,
we define a “portion” of the stability domain (2.7) by

SSDE,r ={(p,q)∈ [−r,0]×R;|q|≤√−p}, (2.13)

where r>0. We then consider two parameters l and d related to a numerical stability
domain S by

l=max{|p|;p<0, [p,0]⊂S}, d=max{r>0;SSDE,r ⊂S}. (2.14)

Clearly, d≤ l. We notice that l is a parameter of the stability which corresponds to
the noise-free behavior. For SDEs, the parameter d is thus the relevant quantity to
optimize. For the Euler-Maruyama and the Platen methods we have lEM =2,lPL =
2,dEM≃1/4,dPL≃1/4. The goal is to construct a family of numerical methods with
d much larger than the above values, typical for any “traditional” explicit methods.

3. Chebyshev and ROCK methods
The stochastic methods proposed in this paper are special families of (1.2) based

on Chebyshev methods. In this section we briefly review Chebyshev methods, origi-
nally proposed for stiff ordinary differential equations.

Chebyshev methods. The idea behind our stochastic methods is to extend a class
of stabilized numerical methods introduced by Saul’ev, Franklin and Guillou & Lago
(see [10, Section IV.2] and the references therein) for the numerical solution of ODEs

Y ′ =f(t,Y ), Y (0)=Y0

with a Jacobian matrix having negative eigenvalues with large magnitude. Such meth-
ods, further developed in [1, 2, 15, 24] have proved to be very efficient for large stiff
systems of deterministic differential equations. They rely on stability functions given
by shifted Chebyshev-like polynomials Rm(z)=Tm(1+z/m2), where Tm(z) is the
Chebyshev polynomial of degree m. The polynomials Rm(z) equi-oscillate between
−1 and 1 and have the property that |Rm(z)|≤1 for z∈ [0,2m2]. The related sta-
bility domains are therefore extended along the negative real axis and they increase
quadratically with the degree m of Rm(z). The degree m of the stability functions in-
dicates the stage number of the associated Runge-Kutta method, while the property
Rm(z)=1+z+O(z2) ensures the first order convergence of the numerical method.
These methods have been originally developed for problems with eigenvalues along
the negative real axis. A typical stability domain Sm is sketched in Figure 3.1, where

Sm :={z∈C;|Rm(z)|<1}.

It can be seen in Figure 3.1 that the boundary of the stability domain along the
negative real axis is 200, for m=10. However, there are regions in [0,200], precisely
when T (1+z/m2)=1, with no stability on the imaginary axis.

To overcome the aforementioned issue, it has been suggested by Guillou and
Lago to replace the requirement |Rm(z)|≤1 by |Rm(z)|≤η <1. This can be achieved



850 ITÔ S-ROCK METHODS

x (Re)

y (Im)

−200 −150 −100 −50 0

−20

−15

−10

−5

0

5

10

15

20

Fig. 3.1. Stability domain of first order Chebyshev method (degree m=10).

for the polynomials Tm(1+z/m2) by dividing it by the quantity Tm(ω0)>1, where
ω0 =1+η/m2. To obtain the correct order with this modified stability function, one

does a change of variables and obtains Rm,η(z)= Tm(ω0+ω1z)
Tm(ω0)

, where ω1 = Tm(ω0)
T ′

m(ω0)
(see

[10, Section IV.2]). By increasing the paramter η the strip around the negative real
axis included in the stability domain can be enlarged as can be seen in Figure 3.1.
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Fig. 3.2. Stability domain of first order Chebyshev methods (degree m=10) with variable
damping η =0.1 (left figure), η =1 (right figure).

Higher order quasi-optimal Chebyshev methods: the ROCK methods.
Higher order methods, called ROCK, for orthogonal Runge-Kutta Chebyshev meth-
ods, based on orthogonal polynomials have been developed in [1, 2]. The stability
functions are given by polynomials Rm(z)=1+z+ ...+zp/p!+O(zp+1) of order p and
degree m with quasi-optimal stability domains along the negative real axis. These
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polynomials can be decomposed as

Rm(z)=wp(z)Pm−p(z),

where Pm−p(z) is a member of a family of polynomials {Pj(z)}j≥0 which are orthog-

onal with respect to the weight function
wp(z)2√

1−z2
. The idea for the construction of a

numerical method is then as follows: the 3-term recurrence relation of the orthogonal
polynomials {Pj(z)}j≥0

Pj(z)=(αjz−βj)Pj−1(z)−γjPj−2(z),

is used to define the internal stages of the method

Kj = hαjf(Kj−1)−βjKj−1−γjKj−2, j =2,... ,m−p.

This ensures the good stability properties of the method. A p-stage finishing procedure
with the polynomial wp(z) as underlying stability function, ensures the right order of
the method.

4. The Itô S-ROCK methods
In this section we construct and analyze the Itô S-ROCK methods. Inspired by

the above ROCK methods and the Stratonovich S-ROCK methods developed in [4],
we consider methods based on

• deterministic Chebyshev-like internal stages to ensure good stability proper-
ties,

• a finishing stochastic procedure to incorporate the diffusion part and obtain
the desired stochastic convergence properties.

As for deterministic methods, the use of damping plays a crucial role and allows to
enlarge the width of the stability domains.

4.1. Weak order 1, strong order 1/2 Itô S-ROCK methods. We
consider a family of stochastic methods for general multi-dimensional stiff Itô SDEs.
We define a m-stage method by

K0 =Yn,

K1 =Yn +h
ω1

ω0
f(K0),

Kj =2hω1
Tj−1(ω0)

Tj(ω0)
f(Kj−1)+2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1−

Tj−2(ω0)

Tj(ω0)
Kj−2,

j =2,... ,m−1,

Km =2hω1
Tm−1(ω0)

Tm(ω0)
f(Km−1)+2ω0

Tm−1(ω0)

Tm(ω0)
Km−1−

Tm−2(ω0)

Tm(ω0)
Km−2

+
M
∑

l=1

Inl
gl(Km−1), (4.1)

where ω0 =1+ η
m2 , ω1 = Tm(ω0)

T ′

m(ω0)
. The approximation at step n+1 is then defined

by Yn+1 :=Km. The following two theorems give the convergence properties of the
methods (4.1).

Theorem 4.1. For m≥2, the methods (4.1) have strong global order 1/2.
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Fig. 4.1. Stability domains of Itô S-ROCK methods (4.1) for m=3 (upper left picture), m=10
(upper right picture), m=50 (lower left picture) and m=100 (lower right picture).

Proof. The proof is obtained by expanding (4.1) in Taylor series and estimating
the local truncation errors. We first obtain for the deterministic stages (1≤ j≤m−1)

Kj =Yn +hω1

T ′
j(ω0)

Tj(ω0)
f(Yn)+O(h2), (4.2)

using the recurrence relation of the Chebyshev polynomials. For the last stage we
have

Km =Yn +hω1
T ′

m(ω0)

Tm(ω0)
f(Yn)+

M
∑

l=1

Inl

(

gl(Yn)+hω1
T ′

m−1(ω0)

Tm−1(ω0)
g′l(Yn)f(Yn)

)

+O(Inl
h2)+O(h2)

=Yn +hf(Yn)+

M
∑

l=1

Inl
gl(Yn)+O(Inl

h), (4.3)

where g′l(Yn) represent a Jacobian matrix and where we used that ω1
T ′

m(ω0)
Tm(ω0)

=1.

We compare now the expression for Km =Yn+1 with the Itô Taylor-Platen expan-
sion of the exact solution of (1.1) after one step with initial condition Y (tn)=Yn

Y (tn+1)=Yn +hf(Yn)+
M
∑

l=1

gl(Yn)

∫ tn+1

tn

dWl +Re, (4.4)
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Fig. 4.2. The above four figures show the stability domains study for the Itô S-ROCK methods

(4.1). They are shown as optimal values dη
∗

m for 3≤m≤200 defined in (4.11) (upper left plot),

and corresponding lη
∗

defined in (2.14) (upper right plot), the ratio dη
∗

m /m representing the stability
versus work (lower left plot) and optimal values of η for m≤200 (lower right plot).

where E|Re|=O(h) and |E(Re)|=O(h2).

Defining Y (tn+1)−Yn+1 =e, a simple calculation shows that

E|e|=O(h) and |E(e)|=O(h2).

Using Theorem 2.1 completes the proof.

We next study the weak order of the S-ROCK methods.

Theorem 4.2. For m≥2, the methods (4.1) have weak global order 1.

Proof. Let Y1 be the approximation of a given S-ROCK method (4.1) and Y (h) be
the exact solution at time h. Comparing (4.3) and (4.4) (for n=0) and using Taylor
expansion, assuming suitable smoothness of the function G (see 2.1), gives

|E(f(Y1))−E(f(Y (h))|≤C(Y0)h
2,

where the lower order terms either vanish because they cancel each other or become
zero after taking the expectation (any expression containing an even number of Wiener
increments vanishes after taking the expectation).

To conclude the proof, one needs the uniform bound of E‖Yn‖2r for any r∈N.
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Here we follow the lines in [19] (Lemma 2.2, pp. 102). What we need is

|E(Yn+1−Yn|Yn)|≤C1(1+ |Yn|)h, (4.5)

|Yn+1−Yn|≤M(ξn)(1+ |Yn|)h
1
2 (4.6)

for a positive constant C1. Here ξn denotes random variables related to the Wiener
increments In and M(ξn) must have moments of all orders, i.e., E(M(ξn))i ≤C2 for
i∈N. To prove (4.5), we only need to consider the scheme (4.1) without the diffusion
terms, which vanish after taking the expectation. A straightforward mathematical
induction implies the following bounds

|Kj −Yn|≤Cjh(1+ |Yn|), j =0,... ,m−1 (4.7)

by utilizing the linear growth condition of f(y). The last step in the induction gives
(4.5). Note that the only difference between (4.5) and (4.6) for the scheme (4.1) is
the diffusion part, so we obtain (4.6) through direct calculation defining ξn = In/

√
h

and using the linear growth condition of g(y). The above choice for ξn ensures that
M(ξn) has moments of all orders (for a given h0 and h≤h0). Finally we complete the
proof by applying Theorem 2.2.

Study of the mean-square stability. We apply the method (4.1) to the linear test
problem (2.6) and obtain

Kj =
Tj(ω0 +ω1p)

Tj(ω0)
Yn j =0,1,... ,m−1

for the internal stages and

Yn+1 =Km =
(Tm(ω0 +ω1p)

Tm(ω0)
+Vnq

Tm−1(ω0 +ω1p)

Tm−1(ω0)

)

Yn, (4.8)

after one step, where Vn is a N(0,1) Gaussian random variable and where we used
the notation In =

√
hVn and q =

√
hµ.

Squaring and taking the expectation gives a mean-square stability function

Rm(p,q)=
T 2

m(ω0 +ω1p)

T 2
m(ω0)

+q2 T 2
m−1(ω0 +ω1p)

T 2
m−1(ω0)

. (4.9)

For a given m (stage number) we denote by Sη
m the stability domain (2.9) of the

related method (4.1), where we add an index η since the method depends on the
parameter η (damping) through ω0 and ω1. SSDE,dm(η) is then the largest portion of
the true stability domain included in Sη

m as defined in (2.13). Notice that d defined
in (2.14) depends now on η. The parameter l defined in (2.14) related to the stability
region along the p axis will depend on m and η, and we will denote it by lm(η).

The following lemmas characterize the stability domains of our methods. Their
proofs can be obtained following the lines of [4].

Lemma 4.3. Let η≥0. For all m, the m-stage numerical method (4.1) has a mean
square stability region Sη

m with lm(η)≥ c(η)m2, where c(η) depends only on η.

Lemma 4.4.

lm(η)→2m for η→∞. (4.10)
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In view of the above two lemmas we make the following important observation:
for any fixed η, the stability domain along the p axis increases quadratically (Lemma
4.3), but for a given method, i.e., a fixed m, increasing the damping to infinity reduces
the quadratic growth along the p axis into a linear growth (Lemma 4.4). Since dm(η)≤
lm(η) no gain compared to classical methods can be obtained in this limit case.

Optimized methods. Our goal is now for a given method to find the value of η,
denoted η∗ which maximize dm(η), i.e.,

η∗ =argmax{dm(η);η∈ [0,∞)}. (4.11)

The corresponding optimal values dm(η∗) for m≤200 have been computed numerically
and are reported in Figure 4.2 (upper right plot). We also report in the same figure
the values of lm(η∗) (upper left plot) and η∗ (lower right plot). We see that for η =η∗,
dm(η∗)≃ lm(η∗). In the third picture of Figure 4.2 (lower left plot) we study the
efficiency of the method.

Since a large number of stages is allowed, the Itô S-ROCK methods will be efficient
only if the ratio dm(η∗)/m (stability versus work) is larger than the corresponding
value for classical methods. We see that this is indeed the case. A comparison with the
two “classical” methods discussed in the beginning of the paper, the Euler-Maruyama
and the Platen methods, for which dEM/m=1/4,dPL/m=1/8 (with m=2), shows
that the S-ROCK methods have a work/stability ratio up to 272, respectively 543
times larger.

4.2. Weak order 1, strong order 1 Itô S-ROCK methods for SDEs with
commutativity properties. If M =1 (one-dimensional Wiener process), for
diagonal or commutative noise, it is possible to modify the methods (4.1) in order to
obtain a strong order 1 Itô S-ROCK methods. In what follows we give the formulas
for the case M =1 and will comment on the diagonal and commutative cases.

The higher strong order m-stage S-ROCK methods are defined for m≥3 as follows

K0 =Yn,

K1 =Yn +h
ω1

ω0
f(K0),

Kj =2hω1
Tj−1(ω0)

Tj(ω0)
f(Kj−1)+2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1−

Tj−2(ω0)

Tj(ω0)
Kj−2,

j =2,... ,m−1,

K∗
m−1 =Km−1 +

√
hg(Km−1),

Km =2hω1
Tm−1(ω0)

Tm(ω0)
f(Km−1)+2ω0

Tm−1(ω0)

Tm(ω0)
Km−1−

Tm−2(ω0)

Tm(ω0)
Km−2

+Ing(Km−1)+
1

2
√

h
(g(K∗

m−1)−g(Km−1))(I
2
n−h). (4.12)

The approximation at the step n+1 is then defined by Yn+1 :=Km.

The case of diagonal noise. We recall that diagonal noise denotes the situation
when the dimension d of Y (t) equals M (the number of independent Wiener processes),
each component Yk(t) of the Itô process is only disturbed by the corresponding com-
ponent Wk of the Wiener process W and gk(t,Y ) depends only on Yk (see [14, Chapter
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10.3] for details). In this case the last term should be understood componentwise,

1

2
√

h
(gk(K∗

m−1)−gk(Km−1))
(

I2
nk

−h
)

, (4.13)

where gk represents the k-th component of the vector g and Ink
=Wk(tn+1)−Wk(tn).

The case of commutative noise. Define the operator

Ll =

d
∑

k=1

gk
l

∂

∂yk
, l=1,2,... ,M. (4.14)

For abitrary M , if the commutativity condition [14]

Llgk
r =Lrgk

l ∀l,r=1,... ,M ; k =1,... ,d (4.15)

holds for the diffusion functions, then using

Inl,nr
+Inr,nl

= Inl
Inr

(l 6= r) and Inl,nl
=

1

2
(I2

nl
−h), (4.16)

where Inl,nr
=

∫ tn+1

tn

∫ θ

tn
dWl(θ1)dWr(θ), one replaces two last stages of the methods

(4.12) by

K∗
m−1 =Km−1 +

M
∑

r=1

gr(Km−1)Inr
,

K∗∗,l
m−1 =Km−1 +

√
hgl(Km−1), l=1,2,... ,M,

Yn+1 =Km =2hω1
Tm−1(ω0)

Tm(ω0)
f(Km−1)+2ω0

Tm−1(ω0)

Tm(ω0)
Km−1−

Tm−2(ω0)

Tm(ω0)
Km−2

+

M
∑

l=1

Inl
gl(Km−1)+

1

2

M
∑

l=1

(gl(K
∗
m−1)−gl(Km−1))Inl

−1

2

M
∑

l=1

(

gl(K
∗∗,l
m−1)−gl(Km−1)

)√
h. (4.17)

Note that we have more intermediate steps here to avoid the computation of the
derivatives of functions gl(y). We next discuss the convergence properties of these
methods.

Theorem 4.5. If M =1 or for diagonal or commutative noise, the methods (4.12)
have strong global order 1.

Proof. Let us first consider the M =1 case. As for Theorem 4.1, we expand the
method (4.12) in Taylor series and estimate the strong and weak local truncation
errors. Using (4.2) for the first m−1 deterministic stages, expanding K∗

m−1 and Km

in Taylor series we get

Km =Yn +h(f(Yn)+O(h))+In (g(Yn)+O(h))

+
1

2
(g′g(Yn)+O(h))

(

(In)2−h
)

. (4.18)
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We compare now the expression for Yn+1 =Km with the Itô Taylor-Platen expansion
of the exact solution of (1.1) after one step with initial condition Y (tn)=Yn.

Y (tn+1)=Yn +hf(Yn)+g(Yn)

∫ tn+1

tn

dW (θ)

+g′(Yn)g(Yn)

∫ tn+1

tn

∫ θ

tn

dW (θ1)dW (θ)+Re, (4.19)

where E|Re|=O(h3/2) and |E(Re)|=O(h2). Using the property of the Itô integral,

∫ tn+1

tn

∫ θ

tn

dW (θ1)dW (θ)=
1

2

(

I2
n−h

)

.

A comparison of the numerical and exact Taylor-Platen series shows that

E|e|=O(h3/2) and |E(e)|=O(h2).

Using Theorem 2.1 completes the proof for the one dimensional case. Exactly the
same proof can be done for the diagonal noise case. For the commutative case, one
observes that a Taylor expansion of the last stage gives

Yn+1 =Yn +hf(Yn)+

M
∑

l=1

Inl
gl(Yn)+

1

2

M
∑

l,r=1

Llgr(Yn)Inl
Inr

− 1

2

M
∑

l=1

Llglh+Re, (4.20)

where E|Re|=O(h3/2) and |E(Re)|=O(h2). Using the commutativity conditions
(4.15) and (4.16) we see that the above expression can be written as

Yn+1 =Yn +hf(Yn)+

M
∑

l=1

Inl
gl(Yn)

+

M
∑

l,r=1

Llgr(Yn)

∫ tn+1

tn

∫ θ

tn

dWl(θ1)dWr(θ)+Re. (4.21)

A comparison of the numerical and exact Taylor-Platen series shows that

E|e|=O(h3/2) and |E(e)|=O(h2),

and we can conclude as for the case M =1 by invoking Theorem 2.1.

Theorem 4.6. For m≥2, the methods (4.12) have weak global order 1.

Proof. This can be proved by comparing the expansions (4.18) or (4.20) with the
expansion (4.19) of the exact solution, and by following the lines of Theorem 4.2 using
the Lipschitz condition and the linear growth conditions of f and g. The details are
omitted here.

Remark 4.7. In general, the methods (4.12) cannot be of higher weak order since
(4.18) shows that already in the deterministic case they do not enjoy second order
accuracy.



858 ITÔ S-ROCK METHODS

The study of the mean-square stability can be done in the same manner as for
the methods (4.1). We apply the method (4.12) to the linear test problem (2.6) and
we obtain

Yn+1 =
(Tm(ω0 +ω1p)

Tm(ω0)
+Vnq

Tm−1(ω0 +ω1p)

Tm−1(ω0)
+(V 2

n −1)
q2

2

Tm−1(ω0 +ω1p)

Tm−1(ω0)

)

Yn,

(4.22)
where we used In =

√
hVn and q =

√
hµ as before. Squaring and taking the expectation

gives a mean-square stability function

Rm(p,q)=
T 2

m(ω0 +ω1p)

T 2
m(ω0)

+q2 T 2
m−1(ω0 +ω1p)

T 2
m−1(ω0)

+
q4

2

T 2
m−1(ω0 +ω1p)

T 2
m−1(ω0)

. (4.23)

In Figure 4.3 we sketch stability domains for selected stage number m. We note that
lemmas 4.3 and 4.4 remain true for the stability domains given by (4.23). As for the
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Fig. 4.3. Stability domains of Itô S-ROCK methods (4.12) for m=3 (left plot) and m=10
(right plot).

methods (4.1) we compute the optimal values dm(η∗) for m≤200 numerically. These
values are reported in Figure 4.4. (upper right plot). We again also report in the
same figure the corresponding values of lm(η∗) (upper left plot) and η∗ (lower right
plot). In the lower left plot of Figure 4.4 we study the efficiency of the method. We
wee that the stability domains are shorter than for the methods (4.1) (compare also
Figure 4.3 with Figure 4.1). We notice that the values of dm(η∗) are of the same size
as the corresponding values obtained for the Stratonovich S-ROCK methods of strong
order 1 [3]. We still have a substantial improvement compared to classical explicit
methods, since the order 1 Itô S-ROCK methods have a work stability ratio up to
160 and 320 times larger when compared with the Platen and the Euler-Maruyama
methods, respectively.

4.3. Error constants. In this section we briefly study the error constant of
the S-ROCK methods. Following the theory for deterministic problems, we apply the
S-ROCK methods (4.1) or (4.12) to the linear test problem (2.6) (with Y0 =1) and
estimate the constant in front of the leading error terms. As previously, we will use
the notation p=λh,q =µ

√
h. For the exact solution we obtain

Y (h)=1+p+
1

2
p2 +O(p3)

+µI1 +µ2I11 +λµI0I1 +µ3I111 +R, (4.24)
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Fig. 4.4. The above four figures show the stability domains study for the Itô S-ROCK methods

(4.12). They are shown as optimal values dη
∗

m for 3≤m≤200 defined in (4.11) (upper left plot),

and corresponding lη
∗

defined in (2.14) (upper right plot), the ratio dη
∗

m /m representing the stability
versus work (lower left plot) and optimal values of η for m≤200 (lower right plot).

where we used the notation

I10 =

∫ h

0

∫ θ

0

dW (θ1)dθ, I10 =

∫ h

0

∫ θ

0

dθ1dW (θ),

I111 =

∫ h

0

∫ θ

0

∫ θ1

0

dW (θ2)dW (θ1)dW (θ).

We also used the relation I10 +I01 = I0I1 (see [14] for details). We note that E(|R|)=
O(h2) and E(R)=0.

We observe that the S-ROCK methods applied to the linear test problem (2.6)
gives (4.8) and (4.22) for the methods (4.1) and (4.12), respectively. We expand these
expressions in Taylor series around ω0 and further consider the leading terms in the
regime η→∞, since we are interested in the parameter range of large damping. We
obtain

Y1 =1+p+
1

2

(

1− 1

m

)

p2 +O(p3)

+µI1

(

1+

(

1− 1

m

)

p+O(p2)

)

(4.25)
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for method (4.1) and

Y1 =1+p+
1

2

(

1− 1

m

)

p2 +O(p3)+µI1

(

1+

(

1− 1

m

)

p+O(p2)

)

+µ2I11

(

1+
(

1− 1

m

)

p+O(p2)

)

(4.26)

for method (4.12). We now compute the leading error terms for the local weak and
strong truncation errors. For the weak error, we take G(y)=y. For the local strong
error, we will use (E(|Y (h)−Y1|2))1/2 as a measure of the error, since this expression
is easier to handle for the computations which follows.1 Comparing (4.24) with (4.25)
we get for methods (4.1)

|E(Y (h))−E(Y1)|=
(hλ)2

2m
+O(h3) (4.27)

(

E(|Y (h)−Y1|2)
)1/2

=
hµ2

2
+O(h3/2) (4.28)

and comparing (4.24) with (4.26) we get for methods (4.12)

|E(Y (h))−E(Y1)|=
(hλ)2

2m
+O(h3) (4.29)

(

E(|Y (h)−Y1|2)
)

1
2

=h
3
2

(

(λµ

m

)2

+µ6

)
1
2

+O(h2). (4.30)

We observe that changing the stage number of the S-ROCK methods does decrease
the error constant in the weak local error, for both methods (4.1) and (4.12). For
the strong local error, the error constant decreases for method (4.12) and is bounded
independently of the stage number for method (4.1). These observations are impor-
tant, since they indicate that the error growth is stable with respect to stage order
changes. Numerical experiments in section 5 confirm these findings.

5. Numerical examples and applications
We first test numerically the convergence results obtained for the S-ROCK meth-

ods. We then present a simulation of a chemical reaction, involving multi-dimensional
stiff Itô-SDEs.

5.1. Numerical study of S-ROCK methods. To study the convergence
properties of the S-ROCK methods, we consider the linear test problem (2.6) for which
we have a known solution (see section 2.2). We numerically solve the test problem
with the S-ROCK methods (4.1) (strong order 1/2) and (4.12) (strong order 1) for
various stage numbers (m=3,10,200).

Strong error. We choose λ=2,µ=1. To estimate the error in the strong sense at
time T =1 for various stepsizes h. We choose N such that Nh=1 and approximate

estrong
h :=E|YN −Y (T )| (5.1)

by averaging the endpoint error over N =5 ·104 numerically generated paths. The
sampling error, which is known to decay as 1/

√
N, is negligible here. We see in

1We notice that a strong local error of order ρ in this norm implies a strong local error of order
ρ for (2.3) because of the Chebyshev inequality.
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figures 5.1 and 5.2 that we obtain the expected rate of convergence. Furthermore,
the precision is independent of the stage number for the methods (4.1) and increases
as we increase the number of stages for the methods (4.12). This is due to the de-
crease of the error constants as studied in section 4.3 (see estimates (4.28) and (4.30)).

Weak error. The next test is with respect to weak convergence. We choose G(y)=y
in (2.5) and estimate the weak error at time T =1 for various stepsizes h. We choose
N such that Nh=1 and approximate

eweak
h := |E(YN )−E(Y (T ))|, (5.2)

where E(Y (T ))=Y0 exp(λT ) for the problem (2.6). We average over N =5 ·104 sam-
ples. Here we choose the parameters λ=2,µ=0.1. We see in figures 5.1 and 5.2 that
we obtain the expected convergence. We also see that, as we increase the number of
stages, we obtain better accuracy. This is due to the behavior of the error constants
studied in section 4.3 (see estimates (4.27) and (4.29)).
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Fig. 5.1. Strong and weak error plots for the strong order 1/2 S-ROCK methods with various
stage numbers. The dashed line is the reference straight line with slope 1/2 (left plot) and slope 1
(right plot).
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Remark 5.1. In this paper, we have restricted ourselves to S-ROCK methods with
m≤200. A higher stage number would improve the efficiency discussed above for stiff
problems. However, some care should be taken since accumulation of round-off error
and so-called internal stability issues can arise in the m−1 deterministic steps for
m≫200 [24].

5.2. A nonlinear stiff problem. To highlight the necessity to include a whole
“portion” of the stability domain of the linear test problem in the stability domain of
a numerical method (see (2.13)), we consider the following nonlinear problem

dY =−λY (1−Y )dt−µY (1−Y )dWt, Y (0)=Y0, (5.3)

which is a normalized version of a population dynamics model (see [8, Chap. 6.2]).
A linearization about the stationary solution Y (t)≡1 leads to the linear test prob-
lem (2.6) considered in the previous example. We plot in Figure 5.3 a typical tra-
jectory (computed with the Euler-Maruyama method) over the time interval [0,1]
with starting value Y0 =0.9 and parameters λ=−4,µ=−

√

−2(λ+1). In what fol-
lows, we will increase the value of |λ| which in turn will increase the stiffness of the
problem. We note that the chosen pair (λ,µ) is close to the boundary of the sta-
bility region of the linear test problem. At the same time, this choice ensures that
λ+µ2/2=−1<0 which is required by (2.7). We next take a collection of parameters

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

t

Y
t

Fig. 5.3. Sample of the process given by (5.3) computed with the Euler-Maruyama method

(Y0 =0.9,λ=−4,µ=−
p

−2(λ+1)).

(λ,−
√

−2(λ+1)) and, as mentioned above, increase the stiffness by selecting succes-
sively λ=−10,−102,−103,−104. We numerically solve the problem (5.3) for these
sets of parameters with the Euler-Maruyama and the S-ROCK methods. To study
the mean square stability, we choose a starting value Y0 =0.9 at t=0, close to the sta-
tionary solution Y (t)≡1 and estimate the deviation to this solution at time T =1. As
a measure of the error, we compute the strong error (5.1) by averaging the endpoint
error over N =105 numerically generated paths. The sampling error, which is known
to decay as 1/

√
N is negligible here. In all the experiments, we ask that estrong

h ≤ tol
and we choose the stepsize as h=2−n (the precise value of tol is not important as we
want only to check stability; the value of tol=10−3 was chosen in the experiments).
For the Euler-Maruyama method, this requirement can only be achieved upon reduc-
ing the stepsize in view of its small stability domain. For the S-ROCK method, we fix
the stepsize for all the values of λ and µ and vary the stage number to achieve a stable
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integration. The choice of h=2−3 ensures estrong
h ≤ tol for all the experiments. We

collect the results in Table 5.1. As a measure of the numerical work, we monitor the
function evaluations. The quantity ♯f represents the number of drift evaluations (for
one sample path) while ♯g represents the number of diffusion evaluations (again for
one sample path). Note that for both methods, we have for each diffusion evaluation
also to generate a random number, thus ♯g counts as well the number of generated
normal random variables.

Table 5.1. Work versus stiffness for Euler-Maruyama (EM) and the S-ROCK methods

λ=−10 λ=−102

EM ♯f =128, ♯g =128 ♯f =4096, ♯g =4096
stepsize h=2−7 h=2−12

S-ROCK ♯f =24, ♯g =8 ♯f =40, ♯g =8
stepsize (stage nb.) h=2−3 (m=3) h=2−3 (m=5)

λ=−103 λ=−104

EM ♯f =16384, ♯g =16384 ♯f =262144, ♯g =262144
stepsize h=2−14 h=2−18

S-ROCK ♯f =160, ♯g =8 ♯f =520, ♯g =8
stepsize (stage nb.) h=2−3 (m=20) h=2−3 (m=65)

We see in Table 5.1 the tremendous improvement of the efficiency when switch-
ing from the Euler-Maruyama to the S-ROCK methods. Note that for the actual
cost of the experiments, these results have to be multiplied by the number of sam-
ples (here 105) which leads to a significant difference in computing time for the two
methods. Note also that the time-step restriction in this example arising for the
Euler-Maruyama method is much more severe than the restriction corresponding to
the noise-free behavior. In the latter situation, we would have a maximum stepsize
of h=2 ·10−1,2 ·10−2,2 ·10−3,2 ·10−4 for λ=−10,−102,−103,−104, several orders of
magnitude larger than for the above experiments. This illustrates the necessity of
including a whole “portion” of the stability domain of the linear test problem and the
necessity of the damping strategy in the S-ROCK method as discussed in section 4.

5.3. A “non mean-square stable” fast slow system. The following ex-
ample illustrates that some care should be taken when adding noise to a deterministic
stiff system. This example also shows that the stability concept considered in this
paper, namely the mean-square stability, does not cover some classes of interesting
multiscale stochastic systems. Consider the singular perturbed problem

dx=f(x,y)dt, x(t0)=x0, (5.4)

dy =
1

ε
g(x,y)dt, y(t0)=y0, (5.5)

where ε>0 is a small parameter. This equation represents a fast-slow system (y being
the fast variable and x the slow one). Assuming a suitable dissipative condition for
the fast system, it is well-known that the dynamics for the fast system (with the
slow variable frozen) has a (Dirac) invariant measure and converges exponentially
fast to a fixed point (invariant manifold) [10, Chap. 6]. The slow variable is well-
approximated by a reduced problem with an effective force f̄ (usually not available
in explicit form) obtained by averaging f with respect to the invariant measure of
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the fast system. From a numerical point of view, a standard numerical solver will
have a stepsize restriction governed by stability issues in solving the fast system. This
is a typical stiff system and stiff solvers such as implicit solvers or Chebyshev (e.g.
ROCK) methods can overcome the aforementioned stepsize restriction [1, 2, 10]. In
this situation, a stable integration leads also to an accurate solution.

If one includes a fast random perturbation in the above system, stable integration
does no longer guarantee an accurate solution if the fast dynamics is not mean-square
stable and has a non-trivial invariant dynamics. This issue has been discussed in [16]
for implicit solvers and we illustrate it briefly for the S-ROCK methods. We add
a suitably scaled additive white noise to the fast variable of the system (5.4) and
consider

dx=f(x,y)dt, x(t0)=x0, (5.6)

dy =
1

ε
g(x,y)dt+

√

2

ε
dW (t), y(t0)=y0. (5.7)

In what follows, we choose f(x,y)=−y2 +5sin(2πt) and g(x,y)=x−y. The fast
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Fig. 5.4. Solution for the slow variable of the system (5.6) integrated with the S-ROCK methods.

system with the slow variable fixed is an Ornstein-Uhlenbeck process and the invariant
distribution (for t→∞) is a stationary Gaussian process with mean x and variance
1. The effective forces can easily be computed (see [16] for details) and read f̄(x)=
∫

R
f(x,y)µx(dy)=−x2 +5sin(2πt)−1. To illustrate the numerical behavior of the S-

ROCK methods applied to this problem, we fix ε=10−4 and integrate the system
(5.6-5.7) over the time interval [0,0.5] with x(0)=2 and y(0)=1. We choose various
time steps h=10−3,10−4,10−5. In each case, we adjust the number of stages to
achieve a stable integration. Of course, an integration with a standard explicit solver
would not be possible for time steps h≥ε.

We see in Figure 5.4 that the integration is stable for all stepsizes, but accurate
(i.e. close to the effective solution) only when h<ε, i.e., when the fast variable is
resolved. An explanation of this behavior can be obtained following the procedure
described in [16] for implicit solvers by computing an invariant numerical solution for
the S-ROCK methods applied to the fast system (5.7) with the slow variable fixed.
Note that this invariant solution involves the stability functions (4.9) of the S-ROCK
methods. A similar behavior was observed for implicit methods in [16], but while
there is not enough dissipation for the numerical invariant measure of the S-ROCK
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methods, there is too much dissipation for implicit solvers. We close this discussion
by recalling that the above problem is not mean-square stable and the behavior of
the S-ROCK method is thus not in contradiction with the favorable properties of
these methods (as constructed in this paper) for stiff mean-square stable problems.
Drawing an analogy to ODEs, systems such as (5.6-5.7) exhibit a behavior closer to
oscillatory problems which are not considered as stiff and which are usually poorly
integrated with classical stiff solvers. The multiscale methods developed in [25] and
[7] which rely on averaging theorems instead of stability concepts can handle such
fast-slow systems as considered in this example. These methods compute the average
forces of the slow system on the fly, relying on a resolved computation of the fast
system over a short period of time.

5.4. Application: simulation of stiff chemical systems. We illustrate
the use of the Itô S-ROCK methods on an important application: the simulation of
a stiff system of chemical reactions given by the Chemical Langevin Equation (CLE).
We consider a system of reactions, the so-called Michaelis-Menten system, describing
the kinetics of many enzymes. The reactions involve four species: S1 (a substrate), S2

(an enzyme), S3 (an enzyme substrate complex), and S4 (a product). The reactions
can be described as follows: the enzyme binds to the substrate to form an enzyme-
substrate complex which is then transformed into the product, i.e.,

S1 +S2
c1−→S3 (5.8)

S3
c2−→S1 +S2 (5.9)

S3
c3−→S2 +S4. (5.10)

The mathematical description of this kinetic process can be found in [13]. The
state-change vectors corresponding to these reactions are ν1 =(−1,−1,1,0)T , ν2 =
(1,1,−1,0)T ,ν3 =(0,1,−1,1)T . For the simulation of this set of reactions we use the
CLE model

dY (t)=
3

∑

j=1

νjaj(Y (t))dt+
3

∑

j=1

νj

√

aj(Y (t))dWj(t), (5.11)

where aj(Y (t)) are the so-called propensity functions given by

a1(Y (t))= c1Y1Y2, a2(Y (t))= c2Y3, a3(Y (t))= c3Y3.

We set the initial amount of species as

Y1(0)= [5×10−7nAvol],Y2(0)= [5×10−7nAvol],Y3(0)=0,Y4(0)=0,

where [·] denotes the rounding to the next integer and nA =6.023×1023 is Avagadro’s
constant (number of molecules per mole) and vol is the volume of the system. The
parameters of the system are borrowed from [26, Section 7.3]. A computational study
of this problem with various simulation techniques (from Monte-Carlo methods, SDE
and ODE solvers) is reported in [11]. In the following numerical experiments, the
focus is on the behavior of the S-ROCK methods when the parameters of the problem
lead to increasingly stiff systems. We compare the S-ROCK methods with the Euler-
Maruyama method, widely used for such problems. While the S-ROCK methods are
as simple to use and implement as the Euler-Maruyama method, we see below that
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the former methods are significantly more efficient as the stiffness of the problem
increases.

We integrate the CLE on the time interval [0,50]. For this problem with multidi-
mensional Wiener processes, we use the S-ROCK methods (4.1). We see in Figure 5.5
that for a set of reaction rates leading to a nonstiff system we have the same behavior
for the Euler-Maruyama and the S-ROCK methods. We next increase the rate of the
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Fig. 5.5. Shown above is one trajectory of the Michaelis-Menten system solved with the
Euler-Maruyama method (left plot) and the S-ROCK method (right plot) for c1 =1.66×10−3,c2 =
10−4,c3 =0.10. The stepsize is h=0.25 for both methods, m=3 for S-ROCK. The same Brownian
path is used for both methods.

third reaction in (5.8)–(5.10), c3 =102,103,104 corresponding to an increasingly fast
production. The resulting CLE become stiff and the Euler-Maruyama method is in-
efficient. In Figure 5.6 we report the stepsize and the number of function evaluations
needed for the Euler-Maruyama and the S-ROCK methods. By number of function
evaluations we mean here the total number of drift and diffusion evaluations. Writing
(5.11) as dY =f(Y )dt+g(Y )dW (t) where f and W are vectors and g is a matrix,
each evaluation of f(Y ) or g(Y )dW (t) are counted as one function evaluation. For
both methods, one evaluation of g(Y )dW (t) is needed per time-step. Thus, by keep-
ing a fixed time step, the number of generated random variables remains constant as
the stiffness increases for the S-ROCK methods, while this number increases with the
stepsize reduction of the Euler-Maruyama method.

The Euler-Maruyama method faces step-size reduction as can be seen in Fig-
ure 5.6. Starting from h=0.25 the stepsize is progressively decreased to 1.85×10−4

in order to have a stable integration and the number of function evaluations grows
accordingly.

For the S-ROCK method, we can fix h=0.25 for all the simulations and vary
the number of stages (from m=3 to m=81) in order to handle the stiffness. Taking
advantage of the quadratic growth of the stability domains, we see that the number
of function evaluations needed is reduced by several orders of magnitude compared to
the Euler-Maruyama method.

Finally we should remark that negative populations may appear during the com-
putation. In this case, the computation of the diffusion term is not possible. To
circumvent this issue, we take absolute value in the square root as usually done in the
literature (see for example [11]). Though in the continuous case, negative populations
do not appear, it is a common problem in the numerical discretization of chemical
reaction processes, even for the reaction rate equation (RRE) without noise [10]. For
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Fig. 5.6. The Michaelis-Menten system solved with the Euler-Maruyama and the S-ROCK
methods with increasing rate constant c3. The stepsize is chosen as h=0.25 for the S-ROCK meth-
ods. For the Euler-Maruyama we select for each value of c3 the maximum stepsize which leads to a
stable integration. For the Euler-Maruyama method, stability is achieved by reducing the step-size,
for the S-ROCK method by increasing the stage number (m=3,7,28,81).

our chemical reaction problem, we may argue that we actually solve a modified equa-
tion with an absolute value for aj(Y ) in the diffusion term. But more systematic
strategy for solving this type of problem avoiding negative populations need to be
explored. This is the subject of an ongoing research project.
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