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GLOBAL SOLUTIONS TO THE EINSTEIN EQUATIONS WITH
COSMOLOGICAL CONSTANT ON THE
FRIEDMAN-ROBERTSON-WALKER SPACE TIMES WITH PLANE,
HYPERBOLIC, AND SPHERICAL SYMMETRIES*
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Abstract. Global existence of solutions is proved, in the case of a positive cosmological constant
and positive initial velocity of the cosmological expansion factor on the three types of Friedman-
Robertson-Walker space-time, and asymptotic behavior is investigated.
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1. Introduction

Global dynamics of relativistic kinetic matter remain an open research domain
in general relativity. The Friedman-Robertson-Walker space-time is considered to be
the basic space-time in cosmology, where homogeneous phenomena such as the one we
consider here are relevant. Notice that the whole universe is modelled and what we
call “particles” in the kinetic description may be galaxies or even clusters of galaxies,
for which only the evolution in time is really significant. Most works encountered in
the area rely on the flat Friedman-Robertson-Walker space-time background, which
has plane symmetry. In the present paper, we also investigate the two other types of
symmetry, namely, hyperbolic and spherical symmetries. The Einstein theory stipu-
lates that the gravitational field, which in our case depends on a single real-valued
function of time called the cosmological expansion factor, is determined, through the
Einstein equations coupled to the conservation laws, by the material and energetic
content of space-time. The present work investigates the case of an uncharged perfect
fluid of pure radiation type, whose massive particles evolve with very high velocities,
under the action of their common gravitational field.

We have one reason to consider the Einstein equations with the cosmological con-
stant. Astrophysical observations based on luminosity via red shift plots of supernova
explosions have determined that the universe is accelerating. Now, a mathematical
“fudge factor” used by theorists to model this acceleration is the cosmological constant
A. Such models are studied for instance in [3] and [4], which show an exponential
growth of the cosmological expansion factor for A > 0; in [2] it is shown that the mean
curvature of the space-time admits a strictly positive limit at late times, confirm-
ing the accelerated expansion of the universe. Also see [5] for more details on the
cosmological constant. In the present work we prove that, in the case where A <0,
no global solution can exist for the Einstein equations. We prove that, in the case
where A >0, a change of variables, a suitable choice of the initial data, and positive
initial velocity of the expansion factor, provides the existence of global solutions to
the Einstein equations. Moreover, by studying the asymptotic behavior, we show that
space-time goes to vacuum at late times, regardless to the size of the initial data. We
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596 GLOBAL SOLUTIONS TO THE EINSTEIN EQUATIONS WITH COSMOLOGICAL CONSTANT

also show that, even in the case A >0, if the initial velocity of expansion is negative
a global solution cannot exist to the Einstein equations. We also observe that the
flat Friedman-Robertson-Walker space-time is by far the easiest case to study, since
in this case it is possible to give an explicit expression of the solutions, whereas in
the hyperbolic and the elliptic symmetry cases this was not possible; we need to in-
troduce new variables in order to obtain a differential system of first order, to which
the standard theory applies. This work is organized as follows:

In section 1, we present equations and we give some preliminary results.

In section 2, we study the case of plane symmetry.

In section 3, we study the case of hyperbolic symmetry.

In section 4, we study the case of spherical symmetry.

In section 5, we study the asymptotic behavior.

2. Equations and preliminary results

2.1. Presentation of the Einstein equations. Unless otherwise specified,
Greek indices «,3,7,... range from 0 to 3, and Latin indices i, j, k, ... range from 1
to 3. We adopt the Einstein summation convention: A*B, =) A“B,. We consider

[e3

the Friedman-Robertson-Walker space-time (R*,g) and we denote by 2@ = (2°,2%) the
usual coordinates in (R*). g denotes the metric tensor of signature (—,+,+,+) which
can be written in Schwarzschild coordinates (¢,7,0,¢):

dr?

22
g=—dt"+a*(t) 72

+r2(d? +sin?0dp?) |, (2.1)

where k€ {—1,0,1},teR, r>0, 0 €[0,7], p €[0,27], and @ >0 is an unknown function
of the single variable ¢ (time), called the cosmological expansion factor. We will make
the following correspondences between the coordinates (t,7,60,p) and (x%): t« 2%;
rexly 0 2% pe 3. Note that the values k=—1, k=0, k=1 correspond respec-
tively to the hyperbolic, plane and spherical symmetries. The Einstein equations with
cosmological constant can be written, following [1], as

1
Ra5—§Rgaﬁ +Agag=87TTa,@, (2.2)

where
e R.p is the Ricci tensor, contracted of the curvature tensor;
e A €R is a constant called the cosmological constant;
o R=RY is the scalar curvature, contracted of the Ricci tensor;
® gop is the unknown metric tensor of signature (—,+,4,4);
o T},3 is a symmetric second order tensor called the stress matter-energy tensor, which
represents the energetic and material content of space-time (R*, g). We will specify
this tensor later.
Notice that the metric tensor g defines the line-segment and its components g,z called
the gravitational potentials, stand for the gravitational field, which is identified with
the curvature of the space-time. Hence, the Einstein Equations (2.2) are a link between
the geometry and the mechanics of the space-time. Solving the Einstein Equations
(2.2) consists of determining both the metric tensor gos and the stress-matter-energy
tensor T3, which acts as the source of the gravitational field.

As we said above, the Ricci tensor R,gs is the contracted of the curvature (or
the Rieman-Christoffel) tensor Ra,ﬁﬁ, which expresses itself through the Christoffel
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symbols Fg‘éﬁ of g, defined by:

1
Faﬁ 29 [8119#,6’ +6,6’gozu - 8ugaﬂ] ) (23)
where (g”) stands for the inverse matrix of (go). Note that ]."(’;B:Fga. Now
expression (2.1) of g=gas shows that:
900:_1; gll 1— kr2’ 922_a ’I" 933_0427' sin 9 Jap = 0 if 0[75,8 (2 4)
00:_1. _1- k?“ _L. 33 _ 1‘ ﬁ_o if 5 :
g ; gt 9P =32 0P = g g it a#p.

A straightforward calculation then gives, adopting the following useful presenta-
tion,

aa

Y, = 12’ 9, =r%ad; 9= r2adsin29; 1“35 =0 otherwise. (2.5)
— RT
kr
Lo = Pt Fh T Fp2 [y =—r(1—kr?);

[i3=—r Sm2 0(1—kr®); Thg=0 otherwise.  (2.6)

‘ 1
[ty = % 3= —sinfcos; I'i,= o I2;=0 otherwise. (2.7)

a cosf 1 .

ng = a; F§3 = @? F‘;'g = ;; Fiﬁ =0 otherwise. (2.8)

where the dot (*) stands for the derivative with respect to ¢.

2.2. Expression of the Einstein equations.
ProroSITION 2.1.

a ai+2(a)?+2k . .
R00=—3a; RH:W; Ros =17 (ai+2(a)* +2k);
Ras=1r?sin’0 (ai+2(a)*+2k); Rap=0 if a#p; (2.9)
. . 2
R:6<aa+(a2)+k>.
a

Proof. Rap :R();,Aﬁ is given in terms of Fgﬂ by:
Rap= (0230 —95T3) + (T T 0 — T3 %a) - (2.10)

For symmetry reasons, the only non vanishing components R, are the Roo. We
compute R, by setting =« in (2.10). We then obtain the proposed expressions of
Roo, Ri1, Ro2 Rss in (2.9) by a straightforward calculation, using expressions (2.5)
to (2.8) of T3 5. So
Roo (a/\SFOO - 8OFS‘%\) + (FQVFSO - F())\VFS)\) = *30F(A),\ - Féurg,\
i i\2 a a2 i
=—2 %l 3 (T:)"==300(3) —3(5)"=-3%,
Ru =[\Th -0 TR+ IL TG DAY,
= [BOF%)l —Or (F? +F31)]2+ [F,\orlé_ ISVRNT
=— 09,0, +T1, 1%, + 3,05, +17,T%, ],
and, using (2.5) to (2.8), we obtain the proposed expression of Ry in (2.9).
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Ray = [8>\F92 - (99F§2] + [F§VF52 - F%VI‘K2] )
and, using (2.5) to (2.8), we obtain the proposed expression of Rj; in (2.9).
Ryz = [02T'35 — 9,T33]+ [T, T3 — 13,055,
and, using (2.5) to (2.8), we obtain the proposed expression of Ry; in (2.9).

Finally, we have:
R=R%=g¢""R,5=0g" Roo+g" Ri1 +¢** Raz + g** Ra3

and the proposed expression of R in (2.9) follows directly from the expressions of g**
given in (2.4) and the expression of R, given in (2.9). This completes the proof of

Proposition 1.1. 0
PROPOSITION 2.2. The Einstein equations (2.2) reduce to the following four equa-
tions:
N
a k TOO A
- —=81—+ = 2.11
<a> TE T 3 * 3 (211)
i (a\? k .
2—+ <) —A+—=-8ng"Ty; i=1,2,3, (2.12)
a a a

where k€ {—1,0,1} and i€{1,2,3} is fized in (2.11).

Proof. Since by (2.4) and (2.9) gog=0if a# 5 and R,3=0 if a# 3, the Einstein
equations (2.2) impose that T3 must also satisfy T, =0 if a# 3, so (2.2) reduces to
the following four equations:

Roo — %Rgoo+A900:87TToo7 (2.13)
Rn*%Rgn +Agy1 =8nT11, (2.14)
Roo — %R922+A922:87TT227 (2.15)
Rgs — %R933+A933 =8m133. (2.16)

Now, since ggo = —1, the expressions of Ryy and R in (2.9) show that (2.13) directly
gives (2.11). Next, the expressions of g11, g22, g33 in (2.4) and the expressions of Ry1,
Rs2, Rz in (2.9) show by a direct calculation that (2.14), (2.15), (2.16) can be written
as

2ai+ (a)* + k — Aa® = =871y (1 — kr?), (2.17)
T
2ad+d2+k‘—Aa2:—87;222, (2.18)
. 8133
2aa+a2+k71\a2:fr28m26. (2.19)

Now, dividing each equation by a? and using the expressions of g'!, g2, and ¢33
given by (2.4) in (2.17), (2.18), and (2.19) respectively, yields (2.12), where i=1,2,3.
]

Now observe that the three equations (2.12) for i=1,2,3 have exactly the same
left hand side. This implies that 7,3 must satisfy the relations:

gllTll =g22T22 :g33T33. (220)
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An example of stress-matter-energy tensor T, satisfying (2.20) is the stress-matter-
energy tensor of a relativistic perfect fluid of the type pure radiation, which can be
written as, in the chosen signature of g,

4
Ta5:§puauﬂ+§gaﬂ. (2.21)
This tensor is the particular case of the stress-matter-energy tensor for a relativistic
perfect fluid, given by

Tap=(P+p)tats+ pgas, (2.22)

in which p >0 and p >0 are functions of the single variable ¢, standing respectively for
the matter density and the pressure of the fluid, and u= (u®) is a unit vector tangent
to the geodesic flow in (R*,g).

Equation (2.21) is the particular case of (2.22) corresponding to the equation of
state (middle of page 5) p=£.

In order to simplify this, we consider a comoving frame in which the fluid is
spatially at rest, which means that u!=u; =0, i=1,2,3. Then, since g("ﬁuau,g =—1,
we have that (ug)?=(u’)2=1. We observe that in this case, we have, for each i€
{1,2,3},

9" Tii=(9"gii) ,  since  ggi=1,

wlD
wlD

so that g'' Ty, = ¢2? Ty = ¢33 a3 = %. For convenience, we will consider the tensor T, 3
given by (2.21), which is convenient, which models a well-known medium, which
satisfies, as required above, T,3=0 if a# 3. The Einstein equations to study can
then be written, using Proposition 1.2 and Tyo = p,

L\ 2

a k. 8mp A

a4y LLr o A 2.2

<a> TeET 3 Ty (2:23)
i (a\’ ko 8mp
2=+ (=) —A+—==—"L ke{-1,0,1}. 2.24
a+<a) tp=—— ke{-101} (224)

Now the conservation laws Vo7 =0 show that p satisfies the ordinary differential
equation

50p+4gp:0. (2.25)

So that we have:
PROPOSITION 2.3.

(1) = p(0) ((0)) (2.26)
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2.3. The Cauchy problem. Notice that (2.24) is a second order differential
equation in a and that (2.25) is a first order differential equation in p. We suppose
that ag >0, pg>0 and by are given real numbers. We look for solutions a and p of
the Einstein equations satisfying:

a(0)=ag; a(0)=by; p(0)=po. (2.27)

Our aim is to prove global existence of the solutions a, p on [0,4+00] for the above
Cauchy problem, i.e., to look for global solutions a, p satisfying the initial conditions
(2.27). The values ag, by, po prescribed at t=0 are called initial data; (2.26) shows
that the matter density p will be determined by

an 4

p=n (), (2.28)
a

which shows that p is known once a is known.

2.4. Constraints.
PROPOSITION 2.4. The Einstein Equation (2.23), called the Hamiltonian constraint
is satisfied over the entire domain of the solutions a, p if and only if the initial data
ap, bo, po, and the cosmological constant A satisfy the initial constraint

bo 2 k 8’/Tp0 A
— — = —. 2.29
(ao) Jra% 3 3 (2:29)

Proof. Set Hf = Sg +Agas— 8Ty, where Sog=Rag— %Rgag is the Einstein
tensor. We use the property V5§ =0 which, together with V,(Agg) =0 and V, T =
0, implies that Vo H3 =0. Then, we have in particular that

V.Hgy =0. (2.30)
Now since R} = gi =T¢ =0, the expression of HE gives
Hi=0. (2.31)

Equation (2.30) then gives, after applying the usual formula and, next, expanding the
summation in «, using (2.31) and expressions (2.5) to (2.8) of Fgﬁ,
VoHY =0,H§+TIS Hy —TY HY

= (0:H +T0, Hy =T HY) + (0, Hg + T, Hy — T Hy) +
+ (0o H3 +T5, Hy —T5H7) + (0, Hg + T3, Hy —T5H7)
=0, HY + [Tio Hy —TioHi + T3 H) — T35, H3 + T3, Hy — T3, H3)|
. =0, HY + (T + T30 +T50) HY — (Do H{ + T3, H3 + T3, H3)
and,

vangatH8+3gHg—g(H}+H§+H§), (2.32)

but Hf = ¢"*H;» = g"* H;; (where i is fixed). Then, using the definition of Hg we have:
H}=g"Hi; = g" (Sii + Agii — 87T;;) but

2

H =g¢" (Rii — iRgii +Agi; —87TT“‘> =0; =1,2,3, (2.33)
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since the Einstein Equations (2.2) with o=/ =14 are supposed to be satisfied. Equa-
tion (2.31) then becomes, using (2.32) and (2.33),

80H8+3%H8:0, (2.34)

which, considered as first o.d.e in HJ solves over [0,#] to give:

3
HY(t)= (Zg) HY(0). (2.35)
Now (2.35) shows that
(HJ(0)=0)< (HJ(t)=0, t>0), (2.36)

but
HY =g" Hoyo=—Hoo=— (Roo — 3 Rgoo + Agoo — 87Thp), so that,

1
(Hg 20) = <R00 - §RQOO +Agoo = 87TT00> . (2.37)

We also know by Proposition 1.2 that equation (2.37) can be written as

N 2
a k 8rm A
) 2 = 9.
(a) +a2 3 00+3 (2:38)

We then conclude, using (2.36) and (2.37) that (2.38) holds if and only if (2.38) holds
for t=0, i.e., using (2.27) if and only if (2.29) holds. d

REMARK 2.5. Equation (2.24) is called the Einstein evolution equation. In what
follows, we suppose that (2.29) holds. We will then study equation (2.24) using the
Hamiltonian constraint (2.23) as a property of the solutions. Also note that in (2.29),
if ag, po, and A are given, then there are two possible choices of by, namely, by >0 and
by <0. As we will see, the choice of the sign of by =a(0), which is called the initial
velocity of the expansion, will imply the global existence or the no global existence
of the solutions to the Einstein equations. Now since by (2.28) p is known once a is
known, we can eliminate p between (2.23) and (2.24) by adding these equations to
obtain the following equation for a:

.. .\ 2
a a k 2A
— — —-=—. 2.39
P <a) T 3 (2:39)
In the next sections, we study equation (2.39) for k=0, k=—1, k=1 respectively.
We end this section with the following well-known result:

LEMMA 2.6. Let u and v be two real-valued functions of t of class C*, satisfying the
following relations, in which a#0 is a constant:

< —a’u?, (2.40)
v =—a’v? (2.41)
’u(to) Z’U(to). (242)

Then u(t) <wv(t) for t>tp.



602 GLOBAL SOLUTIONS TO THE EINSTEIN EQUATIONS WITH COSMOLOGICAL CONSTANT

3. Global existence of solutions on the Friedman-Robertson-Walker
space-time with plane symmetry (case k=0)

In this section, we study the global existence of solutions a >0 of equation (2.39)
in the case k=0, which is written as

L (E) -2 -

We will use the Hamiltonian constraint (2.23) which for k=0 is written as

(2) -5 a2

We suppose that the initial data ag >0, po >0, and by € R satisfy (2.29) for k=0, i.e.,

A
bR —a? [87”’%*} . (3.3)

Note that, since b2 >0, if ag>0 and pg >0 are given, (3.3) requires that
Ae[—8mpg,+o0]. (3.4)

We study the global existence of solutions a, p on [0,+0c0[. We prove:

THEOREM 3.1. Let ag >0 and pg>0 be given.
1. If pg=0, the problem has a global solution.
2. If po>0, A>0 and by >0 the problem has the global solution:

a(t)=ag (ao+2bot)?, >0, if A=0 (3.5)
Cexp (2\/§ t) —exp (—2 % t) ’
a(t) =ag ams] , t>0, if A>0. (3.6)
Where

bo +ag
C=—T—

bo —ao

3. If po >0, the problem has no global solutions if:
(a) A>0 and by <0
(b) A€[—8mpy,0]
Proof. We set u=%, u is called the Hubble variable. Then @=% —u? and (3.1)

can be written, in terms of u as

20
i+ 2u? = 5 (3.7)

We will study equation (3.7) in « with initial data: u(0):=wug= 2.
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1. Let pp=0, then expression (2.28) of p implies p=0. Then (3.1) and (3.2)

directly gives a—

A

3a=0, which is a linear o.d.e of second order in a, with

constant coefficients, which always has a global solution.
2. Let pp>0, A>0 and by >0 be given.

(a)

If A=0, then in this case (3.7) can be written as
U= —2u?. (3.8)

Notice that, since u(0) =g >0, a solution u of (3.8) can never vanish
on [0,400[ because of the uniqueness theorem for first order o.d.es and
the fact that the Cauchy problem for equation (3.8) with initial data
u(tp) =0 for ¢, >0, has the trivial solution u=0 as global solution on
[0,400[. So, one can separate v and ¢ in both sides of (3.8) and integrate

over [0,t] to obtain: u= %= HuT(imﬁ and this integrates at once to give
(3.5).
If A >0, notice that, since p >0, the Hamiltonian constraint (3.2) implies
that

o\ 2

a A

-] >=>0. 3.9

OF o

Now (3.1) shows that a is of class C2, then ¢ is continuous and (3.9)

implies that
a A a A
>4/ = —<—y\/=. 3.10
a V3 or a~ 3 ( )

Since po >0, by >0 and by (3.3), 2(0)=22 > /£ (3.10) implies that

(3.11)

Q| Q-
\Y
=

3

With u=%, we have u(O):uozs—‘;>\/§. Set a:\/g; (3.7) can be
written as

u=2(a—u)(a+u). (3.12)

In equation (3.12) u and ¢ separate on both sides and give

( ! + ! >du:4adt. (3.13)
a—u oa+u

Integrating (3.13) over [0,¢] yields, since a —u <0, and av+u >0,

_a_a(Cexp(dat)+1)  a(Cexp(2at)texp(—2at)) 1w

“a  Cexp(dat)—1 — Ceaxp(20t) —exp(—2at) =~ 2w’
(3.14)

where C'= Zg—fg >1 and w= Cexp(2at) — exp(—2at)
We have w >0; then w(t) >w(0)=C—1>0. Then, we integrate (3.14)
to obtain (3.6).
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(a) Let po >0, A>0 be given and choose by <0 in (3.3).

i. If A=0, we study equation (3.8), but this time with w(0)=wug=
Z—g <0. By (3.8) #<0, and w is decreasing; so u<wug <0, and thus
u never vanishes. Then (3.8) separates and integrates to give: u=
#31025’ ug < 0; hence u(t) — —oo when t - t*  where t* = —ﬁ >0
But, this could never happen if the problem had a global solution a
on [0,+o00], since in this case, u=% would be continuous on [0,+00[
and hence bounded on the line segment [0,¢*], which is compact.
So, we conclude that there is nonglobal existence.

ii. If A>0 we proceed as in 2(b), but this time, using (3.3),

u(0)=ug= Z—g < —\/§: —a, so that, by (3.10), we must have

u:%ﬁ—\/g. Following the same way, we are led to the same

expression (3.14) of u, since this time in (3.13) we have a—u>0

and a+u<0. C'is given by C'= %% but this time, since ug —a <

ug+a <0 and Zg—fg:l—l— 20 1, we have 0< C' < 1.

U —«

Consequently, we have & > 1 and expression (3.14) of u shows that u
becomes infinite after the time: t* = ﬁ In( %) > 0. We then conclude
that there is nonglobal existence of solutions.

(b) Let A€ [—8mpy,0[. Suppose the problem has a global solution. Equation

(3.7) can be written as 1= —2u?+ %, which implies, since A <0, that
< —2u?, (3.15)

and
u< — <0. (3.16)

Integrating (3.16) over [0,#] yields: u(t)<uo+22t. But this implies,
since A <0, that u(t) — —oo when t — 4o00. So we can find ¢y such
that:

u(tg) <0. (3.17)
We then know by Lemma 1.1 that if v satisfies
v=—20v% v(ty) =ulto), (3.18)

then, using (3.15), we have u(t) <wv(t); t > to; Equation (3.18) shows that
<0, so v is decreasing and hence v(t) <wv(tg) <0; t>tg; so v never
vanishes for ¢>t;. Then (3.18) separates and integrates over [t,,t];
t>tp, to give v(t):%, which shows, since u(tg) <0, that:
v(t) — —oo when t — t*. Where t*=1t(— ﬁ > tg, since u(tp) <0. But,
0

since u(t) <w(t), u becomes infinite after the finite time ¢*. But this is
impossible in the case of a global solution. We then conclude that there
is nonglobal existence.

|
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4. Global existence of solutions on the Friedman-Robertson-Walker
space-time with hyperbolic symmetry (Case k=-1)
In this section, we study the global existence of solutions a >0 of equation (2.39),

in the case k= —1, which is written as case:
. N
a a 1 2A
=z - - === 4.1
a * <a) a> 3 (41)
We will use the Hamiltonian constraint (2.23) which for k=—1 is written as
.\ 2
a 1 8mp A
Z) = 4.2
(a) a? 3 * 3 (42)
Now using expression (2.28) for p, (4.2) can be written as
.\ 2 2
a K 1 A
) ===+, 4.3
(a) a* + a? + 3 (43)
where
8 4
K2 = @. (4'4)

Now observe that, since (%)2 >0, the right hand side of (4.3) must always be positive.
Hence, if we set X = % >0, we will always have P(X)=K?X?+ X + £ >0. The study

of the variation of P shows that P admits a minimal value A= 7%7 where A is the
discriminant of the quadratic polynomial P given by:
4K2A
A=1-—. (4.5)

In the case A <0, we have A >0; then, we always have P(X)>0. In the case A >0,

we have A <0 and the equationP(X) =0 has 2 roots X; < Xo= ’12}@. Then we will
have P(X) >0 for X >0, if X5 <0. One can easily check, using (4.5), that both cases
require A>0. We are then led to consider the problem for the case k=—1 only if
A >0. Next, we suppose that the initial data ag >0, po>0, by € R and A satisfy the
initial constraint (2.29) for k=—1, i.e.,

87Tp0+A
3

be =a? +1>0. (4.6)

We study the global existence of solutions on [0,+00[. We prove:

THEOREM 4.1. Let ag>0, pg>0, A>0 be given.
1. If po =0, the problem has a global solution.
2. If po>0 and by >0, the problem has a global solution.
3. If by <0, the problem has no global solution.

Proof. In order to obtain a first order differential system, we set:
u=7%; e= é; then g=u+u2; é=—%x1=_ye. So that (4.1) gives the first order

a a
differential system in (u,e).

2A
1},:72u2+62+?, (4.7)

é=—ue. (4.8)
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We study system (4.7)- (4.8) with the initial data u(0):=uo= Z—g, e(0): :60:%.
We know by the standard theory on first order differential systems, that the Cauchy
problem for system (4.7)- (4.8) has a unique local solution (u,e). Our aim is to prove
if whether or not, this solution is global. We will use the Hamiltonian constraint

(4.3), which can be written in terms of u and e.

A
u2:K264+e2+§. (4.9)
Notice that, substituting (4.9) in (4.7) gives 1= —e?(1+2K?2e?) <0 which shows that
u is always a decreasing function.

1. Let pg =0; then expression (2.28) of p gives p=0; (4.1) and (4.2) then directly

gives 4 — %a: 0, which solves globally in a.

2. Choose in (4.6), by > 0.
To show that the solution is global, also by the standard theory on first
order differential systems, it will be enough if we prove that every solution
of the Cauchy problem remains uniformly bounded. Now (4.9) implies, since
e?= ?12 >0 and A>0, that u?>0. Hence, u never vanishes. But u being
continuous, this means that v does not change sign, i.e., we have u>0 or
u<0. Now since by >0, we have u(O):uoz b“ >0. Hence: u>0; but u is
a decreasing function, so: 0 <u<ug= Next since ©>0 and e>0, (4.8)

implies é=—eu<0. So e is a decreasmg function and 0<e<ey= % The

solution (u,e) then remains bounded and the solution is global.

3. Choose in (4.6) by <0 and suppose the solution to be global. Since by <0,
we have u(0)=up=22<0. So, since u is a decreasing function, we have
u<wug <0; hence: u<0. Now (4.8) implies, since e >0, é=(—u)e>0;s0 e is a
increasing function and e > ey > 0; now we have —u > —ug>0; so é=(—u)e>
(—up)eo: =70>0. Since the solution is supposed to be global, integrating
€>~ >0 over [0,t] where ¢ >0, yields: e(t) >~ot+eg >0, which shows that
e?(t) — 400 as t — +00. Now by (4.9) we have, since A >0: u?>e?, hence
u?(t) — +oo as t —> +oo. Then (4.7) implies, since e? —u? <0, that =
—u?+(e? —u?)+ % <—u?+ % Let us write it on the form:

. u? w2 2A
W<—g g (4.10)
Since u?(t) — 400 as t — +00, we have ——( )+ — —00 as t — +00.

So there exists some ¢y such that —7(t) + ? A <0 for t>t,. We then deduce
from (4.10) since u <0, that:

u2
u<—3 on [tg,+oo. (4.11)

u(to) <0, (4.12)
(4.11)-(4.12) is analogous to (3.15)-(3.17) in the proof of Theorem 3.1. We

then conclude, following the same procedure, that the solution cannot be
global. This completes the proof of Theorem 4.1. ]
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5. Global existence of solutions on the Friedman-Robertson-Walker
space-time with spherical symmetry ( case k=1 )

In this section, we study the global existence of solutions a >0 of equation (2.39)
in the case k=1, which is written as this case:

m(a)Zg:?A, (5.1

a a a 3

We will use the Hamiltonian constraint (2.23) which for k=1 is written as

L\ 2
a 1 8mp A
4y L= 2 2
<a> +a2 3 +3 (5:2)

Now using expression (2.28) for p, (5.2) can be written as

.\ 2 2
a K 1 A
() :7_72+§7 (53)

a a a

where K? is to be given by (5.4). Now observe that, since (%)2 >0, the right hand
side of (5.3) must always be positive. Hence, if we set X = a% >0 we will always have
Q(X)=K?2X? —X2+% >0 for X >0. The study of the variation of @) shows that @
has a minimal value, namely, that

2
4K A_l

QUX)2y: =——, (54

and that this value ~y is reached by @Q for Xy = ﬁ Since Xy >0, we conclude that
Q(X) remains positive for X >0 only if @ —1>0, that is, in the case if py >0, and
using expression (5.4) for K?, if

9
A>ANy:=—. :
=00 T 327 pgal (5:5)
Note that:
(A=Ap)=(y=0) and (A>Ag)=(y>0). (5.6)

We are then led to consider the problem in the case k=1, and py > 0, only if A satisfies
(5.5). In that case, the right hand side of (5.3) is always positive and, evaluated at
t=0, this implies for the initial data a9 >0, po>0, by€R, and using expression
(5.4) of K2, that

A
b2 =a2 {W} ~1>0. (5.7)

Notice that, by (5.6), (A>Ag) = (b2>0).
We study the global existence of solutions a, p on [0,+0o0].
THEOREM 5.1. Let ag >0, po >0, A>0 be given.
1. If pg=0, the problem has a global solution.
2. If po>0, A> Ay and by >0, the problem has a global solution.
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3. If po>0, A> Ay and by <0, the problem has no global solution.
Proof. As in section 3, we set u:%; e= é; then %:u—i—uz; é=—ue. Equation
(5.1) then gives the first order differential system in (u,e):

2A
U= —2u? —e2+? (5.8)
é=—ue. (5.9)
We study system (5.8)—(5.9) with the initial data u(0): =ug= 2—2, e(0): =ep= i
The Cauchy problem for system (5.8) — (5.9) has a unique local solution (u,e). Our
aim is to prove whether or not this solution is global. We will use the Hamiltonian
constraint (5.3), which can be written in terms of u and e as

U2:K264—62+%. (5.10)
1. Let py=0; then expression (2.28) for p gives p=0; Equation (5.1) and (5.2)
then directly give a— %az 0, which solves globally in a.
2. Let po>0, A>Ag be given, and choose by >0 in (5.7). Since by (5.6) v>0,
(5.10) gives, using (5.4), u? = Q(e?) >~ >0. Since u is continuous, this implies
that we have that

u>Cy or u<—Cp; where Cp: =,/7>0. (5.11)

We also have, by evaluating (5.10) at t=0, u3 =Q(e2) >~ >0, that is,
b2
ug=—-3>~>0. (5.12)
ag

But, since by >0, (5.12) gives u(0) =ug= Z—‘; > /7= Cp. Hence (5.11) implies
u>Cy. Now (5.9) gives, since u>0 and e >0, é=—ue <0, so e is a decreasing

function. Then 0<e<ey=-. Next, (5.10) implies that u? < KZe+ % <

ao
K?e+ %, so that 0<u< (KZ%ef+ %) 2. Since (u,e) are uniformly bounded,
the solution is global.

3. Let po>0, A>Ap be given and choose by <0 in (5.7). The study here is
the same as in (2) until (5.12). Since this time by <0, (5.12) implies that
u(0)=up= 2—2 <—y/7=-Cy. Equation (5.11) then implies that u < —Cy, i.e.,
—u>Cy>0. We then deduce from (5.9) that since e >0, é=(—u)e>0. Then
e is an increasing function, and hence e > ey >0, so that

é=(—u)e>Cpep >0. (5.13)

If we had a global solution, integrating (5.13) over [0,t] ¢ >0, would give e(t) >
Coeot +e9 >0, which implies that e?(t) — +o0o as t— +oo and consequently
—e?+ 28 — o0 ast— +o00. We could then find to >0 such that —e?(t) + 28 <
0 for t>tg. From (5.8), since u <0, we deduce that

< —2u® on [tg,+oo], (5.14)

u(to) <0. (5.15)

Expressions (5.14)—(5.15) are similar to (3.15)—(3.17) in the proof of Theorem
3.1. We then conclude, following the same procedure, that the solution cannot

be global. This completes the proof of Theorem 5.1.
|
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6. Asymptotic behavior of the space-times

THEOREM 6.1. Consider the three types of Friedman-Robertson- Walker space-times.
In all the cases where there exist global solutions to the Einstein equations, the space-
time (R4,ga5,Ta5), which exists globally, tends to the vacuum at late times.

Proof. We have to prove that, il all the cases of global existence, we have that

Top(t)—0 as t— +o0. (6.1)

Recall that Tz = %puaulg + ggaﬁ with v’ =u; =0, and Tos=0if a#p.
1. In the case pp =0, the expression (2.28) of p gives p=0, hence T,z =0 and
the problem is trivial in this case.
2. If po>0:

(a)

For the case k=0, global existence is proved for A >0 and by > 0, and the
expression (3.5) and (3.6) of a imply that a(t) — +00 as t —4oo. If A>
0, showing that the cosmological expansion factor a grows exponentially
if A>0 and slowly if A=0. We have, using expression (2.28) for p and

expression (2.4) for gop with k=0, Ky >0 being a constant, that

_ K. _p,2_ K. _p,2.2_ Ko?
Too=p=42; Tnu=5gn=5a"=3%; Too="5ge="5a"r" =2 T33=

sin?@Thy < Tao; hence Tho(t) — 0 as t—s 4oo0. So we have (6.1) in

the case k=0.

For the case k= —1, global existence is proved for A >0, and by > 0.
A= -0, (4 3) gives (%)2 2. But by >0=u=2>0, so that we
have & > e, a>1. Integratlng over [0,t] gives a(t) >t+ ag; hence
a(t) —>+oo as t— 400

i, If A>0, (4.3) implies (£)*>4. But by>0=u=%>0, so that
we have &> \/g Integrating over [0,t] yields a(t) >aoe:vp(\/§ t),
which shows that a(t) — +o0c0 as t— +oco. As in the case k=0,
we have an exponential growth for A >0 and a slow growth for A=0.

We have, using expression (2.28) for p, expression (2.4) of gog with
k=—1 and K, being a Constant

— 5— Ko. — a2=Xo.
Too=p="32; Tuu=%5g91= 31+T2S§ 3,1%,

T22 = 922 = pa2r2 = Ig?f; N T33 =sin 9T22 3 2 ) hence
Taa(t) —0 as t— +o00. So we have (6.1) in the case k=—1.
In the case k=1, global existence is proved for A > A, and by >0 where

Ao is defined by (5.5). Since A>Ag, (5.3) gives, using (5.4) and (5.6)
(£)2=Q(&)>~7>0. Since by>0, (5.12) implies that (£)(0)=u=

a

Z—‘;zﬂ>0. Hence by (5.11) uzgzﬁ and, integrating over [0,¢]
yields: a(t) >agexp (/7 t) which shows that a(t)— 4oc0 as t—
400, an exponential growth. Now note thatx since g is of signature
(=,+,+,4), expression (2.1) of g with k=1 shows that we must have
r? <1. Setting r =sina, dr =cosada, (2.1) shows that in the coordinates
(t,a,0,), we have in the case k=1:

goo=—1; g11 =a?; gas =a*sin’, g3z =sin’ agas. (6.2)

Expression (2.28) of p then gives, using (6.2) and K constant

Kq. P2 _ K ) .
Too=p=25¢; Tu=Lgn="58a"=%L%; Tr="~Lgm="La’sin®a< £Y;
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Tys =sin? 0Ty < 3 29 then Tyo(t) — 0 as t— 4o00. So we have (6.1)
in the case k=1.

This completes the proof of Theorem 6.1.
|
An essential tool for the study of the geometry of space-times in cosmology is the
mean curvature of the space-times. Consider the second fundamental form K;; which
is the symmetric 2-tensor defined in the present case by: Kj; :—%atgij; Then the

mean curvature H is defined by H=-TrK =—¢"Kj;.

THEOREM 6.2. Let pg >0 and A >0 be given. In all the cases of global existence in the
three types of Friedman-Robertson- Walker space-times, the mean curvature remains
strictly positive and admits a strictly positive limit at late times.

Proof. We have, usmg expression (2.4) of gag and g®?, for every k € {—1,0 1} that
Ky = —78,5911 Tz Koa= —7875922 =—aar?;, Ks3=— 8tgg3 = —sin Haar We
then have, in the three cases: TrK =g'' K, +¢?? K, 4—g3 Kas= —3%. Hence H =
—TrK =—g"K;=3%. With py>0 and A >0, we proved global existence for by > 0.
In all the cases, we proved that: by >0= % >0. Hence H >0. Next, we saw that, in
all the cases of global existence with Po> > 0, bp>0, A>0, we had a(t) — +oco ast—
+00. So, Equation (3.2), in which p=5¢, (4. 3) (4.3) show that we have in the three

cases: (%)2—%—>0 as t — +o0, then ( %) —3A= ( 7—\/37A> (3%—1—\/37\)—@

as t— +o00. Since %>0, we have 3%—!—\/ >+/3A, then 3% —V3A as t — 400,
which means that the mean curvature H admits at late times the strictly positive

limit v/3A. O
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