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A BEALE-KATO-MAJDA BREAKDOWN CRITERION FOR AN

OLDROYD-B FLUID IN THE CREEPING FLOW REGIME∗

RAZ KUPFERMAN† , CLAUDE MANGOUBI‡ , AND EDRISS S. TITI§

Abstract. We derive a criterion for the breakdown of solutions to the Oldroyd-B model in R
3

in the limit of zero Reynolds number (creeping flow). If the initial stress field is in the Sobolev space
Hm(R3), m>5/2, then either a unique solution exists within this space indefinitely, or, at the time
where the solution breaks down, the time integral of the L∞-norm of the stress tensor must diverge.
This result is analogous to the celebrated Beale-Kato-Majda breakdown criterion for the inviscid
Euler equations of incompressible fluids.
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1. Introduction

The Oldroyd-B model is a classical model for dilute solutions of polymers sus-
pended in a viscous incompressible solvent [1]. Although it suffers, as a physical model
derived from microscopic dynamics, from numerous shortcomings (e.g., polymers are
allowed to stretch indefinitely), it is often considered as a prototypical model for vis-
coelastic fluids, and has therefore been the focus of both analytical and numerical
studies.

At present, there is no global-in-time existence theory for the Oldroyd-B model.
The notable difference between the Oldroyd-B model and its Newtonian counterpart,
the incompressible Navier-Stokes equations, is that in the viscoelastic case, global-in-
time existence has not even been established in two dimensions nor in the creeping
flow regime, i.e., when the momentum equation is a Stokes system. The reason for
this difference can be understood by observing structural similarities between the
inertialess Oldroyd-B model and the Euler equations (in three dimensions), or the 2D
quasi-geostrophic flow equations (in two dimensions) [2].

Since the early 1970s, numerical simulations of the Oldroyd-B model (as well as
other viscoelastic models) have been infested by stability and accuracy problems that
arise at frustratingly low values of the elasticity parameter (the Weissenberg number)
[3, 4]. While some of these difficulties have been elucidated [5], it is to a large extent
still a mystery why computations break down in the low-Reynolds-high-Weissenberg
regime. As is often the case in such situations, numerical data are by themselves
not sufficient to explain the reasons for this breakdown. In the absence of a well-
posedness theory, it is not even clear in what spaces solutions have to be sought.
Thus, the development of such a theory is of major importance for both theoretical
and practical purposes.

This situation is analogous to that of incompressible Newtonian fluids at high
Reynolds number, where global-in-time existence has not yet been established. For a
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Newtonian fluid (in three dimensions), however, there is a prominent observation due
to Beale, Kato and Majda (BKM) [6], which states a necessary and sufficient condition
for the breakdown of solutions in finite time. Specifically, the Euler equations of
incompressible inviscid fluids in vorticity formulation take the form

∂ω

∂t
+(u ·∇)ω =(∇u)T ω, (1.1)

with initial condition ω(·,0)=ω0. Here ω =∇×u is the vorticity and u is the velocity
field. The BKM theorem states that if ω0 belongs to the Sobolev space Hm(R3),
m> 3

2 , then either there exists a solution ω(·,t)∈Hm(R3) for all times, or, if T ∗ is
the maximal time of existence of a solution in Hm(R3), then

lim
tրT∗

∫ t

0

‖ω(·,s)‖L∞ ds=∞,

and in particular,

limsup
tրT∗

‖ω(·,t)‖L∞ =∞.

That is, the breakup of solutions in any Sobolev norm necessitates the divergence
of the L∞-norm of the vorticity. The practical implication of this theorem is that
breakdown cannot be attributed, say, to the failure of some high derivative. The
blowup of the vorticity itself, in the supremum norm, is the signature of any finite-
time breakdown. For another criterion of singularity formation see [7]; for up-to-date
surveys see [8, 9].

The goal of this paper is to establish a similar result for the three-dimensional
Oldroyd-B model, in the zero-Reynolds-number regime. In this regime, a closed equa-
tion can be written for the polymeric stress field σ =σ(x,t); this equation is similar
to the vorticity equation (1.1). We start by establishing the local-in-time existence
of solutions in any Sobolev space Hm(R3), m>5/2. Following then the approach of
BKM, we prove that if the initial stress is in Hm(R3), then either a solution exists
for all time, or, if T ∗ is the maximum existence time, then

lim
tրT∗

∫ t

0

‖σ(·,s)‖L∞ ds=∞.

This result is independent of the Weissenberg number, and in fact holds even if one
sets the Weissenberg number to be infinite. From a theoretical point of view, this
breakdown condition implies that global-in-time well-posedness hinges on an a priori
bound for the supremum norm of the stress.

Recent work along these lines comprises a BKM-type analysis by Chemin and
Masmoudi [10]. The notable difference between their analysis and the present work
is that they treat the Oldroyd-B model including inertia; however, their analysis is
restricted to two-dimensional flows. Lin et al. [11] analyze the inertial Oldroyd-
B model without the relaxation term (infinite Weissenberg number) and establish
global-in-time existence for small initial data. Finally, Constantin [12] studies a class
of kinetic models in the form of a Stokes equation coupled to a nonlinear Fokker-
Planck equation, for which he proves global-in-time existence. The extension to a
two-dimensional Navier-Stokes system coupled to a nonlinear Fokker-Planck equation
appears in Constantin et al. [13] and Constantin and Masmoudi [14]. In both cases
the analysis benefits from the fact that the polymeric stress remains bounded by
construction, which as our analysis shows, is the key to well-posedness.
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2. The model

The Oldroyd-B model describes a fluid in which polymer molecules are suspended
in a viscous incompressible solvent. The equations of motion in the creeping flow
regime are

0=−∇p+νs∆u+divσ,

divu=0,

∂σ

∂t
+(u ·∇)σ−(∇u)T σ−σ(∇u)=−

1

λ
σ+

νp

λ

[

∇u+(∇u)T
]

, (2.1)

where u is the velocity of the fluid, p is the hydrostatic pressure, σ is the extra-stress
tensor due to the polymer molecules, νs is the solvent viscosity, νp is the polymeric
viscosity, and λ is the elastic relaxation time. The velocity gradient is defined with
components (∇u)ij =∂uj/∂xi.

The first two equations in (2.1) are a Stokes system for an incompressible fluid,
whereas the third equation is the Maxwell constitutive equation for the extra-stress
[1]. The flow is assumed to take place in the unbounded three-dimensional space R

3.
Initial data need only be prescribed for the stress, σ(x,0)=σ0(x).

The system (2.1) can be turned into a closed equation for σ, by solving the
Stokes system and expressing the flow field in terms of the stress field. Specifically,
the induced velocity field is given by

uj(x)=
1

8πνs

∫

R3

M
(0)
jl (y)∂kσkl(x−y)dy,

where

M
(0)
jl (y)=−

δjl

|y|
+

yjyl

|y|3

is the Stokes kernel (see Galdi [15], pp 189–195). Using integration by parts, it can
be rewritten as

uj(x)=
1

8πνs

∫

R3

M
(1)
jkl(y)σkl(x−y)dy, (2.2)

where

M
(1)
jkl(y)=−

yjδkl

|y|3
+

3yjykyl

|y|5
.

Here and below we adopt the Einstein summation convention, whereby repeated in-
dexes imply a summation unless otherwise specified. In tensor notation we write (2.2)
as

u(x)=
1

8πνs

∫

R3

M (1)(y) :σ(x−y)dy, (2.3)

where for 2-tensors a,b, the : product is defined by a :b=tr(aT b). We then rewrite
the constitutive equation as a closed evolution equation for the stress field,

dσ

dt
=F (σ), σ(·,0)=σ0, (2.4)
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where

F (σ)=−(u ·∇)σ+(∇u)T σ+σ(∇u)−
1

λ
σ+

νp

λ

[

∇u+(∇u)T
]

, (2.5)

and u is given by (2.3). Equation (2.4) is viewed as an evolution equation or an
ordinary differential equation (ODE) in an infinite-dimensional function space. We
observe that the solution σ is a symmetric tensor whenever σ0 is symmetric.

For later use, we derive the linear relation between the stress field σ and the
velocity gradient ∇u, obtained by differentiating (2.3) and integrating by parts. This
yields a singular integral (the integrand is a homogeneous function of degree −3 that
averages to zero on the unit sphere), from which one has to extract the singular part,

∂iuj(x)=−
1

5νs

(

σij(x)−
1

3
δij trσ(x)

)

+
1

8πνs
(P.V.)

∫

R3

M
(2)
ijkl(y)σkl(x−y)dy,

where

M
(2)
ijkl(y)=

δijδkl

|y|3
−3

yiyjδkl +2yjylδki +δijykyl

|y|5
+

15yiyjykyl

|y|7
,

and (P.V.) stands for the principal value of a singular integral. In tensor notation,

∇u(x)=−
1

5νs

(

σ(x)−
I

3
trσ(x)

)

+
1

8πνs
(P.V.)

∫

R3

M (2)(y) :σ(x−y)dy. (2.6)

3. Local-in-time existence

In this section we prove the local existence and uniqueness of solutions to the
Oldroyd-B model (2.1). The proof is based on energy methods, and closely follows
the existence proof for the Euler and Navier-Stokes equations in Majda and Bertozzi
[16]. Differences between the two cases are highlighted along the treatment. For other
results concerning short-time existence or global existence for small initial data see
for example [17, 11, 18, 19, 20, 21] and references therein.

We denote by Hm(R3) the Sobolev spaces of scalar, vector and tensor fields in
R

3. The corresponding norms are denoted by ‖·‖m and are defined by

‖f‖m =





∑

|α|≤m

‖Dαf‖2
0





1/2

,

where here f denotes either a scalar, a vector or a tensor field and α=(α1,α2,α3) is a
multi-index of derivatives; the norm ‖·‖0 is the L2(R3)-norm. For example, if f =f

is a tensor field with components fij , then

‖Dαf‖2
0 =

3
∑

i,j=1

∫

R3

[

∂|α|

∂xα1

1 ∂xα2

2 ∂xα3

3

fij(x)

]2

dx.

We denote by ‖·‖Lq and ‖·‖L∞ the Lq(R3) and L∞(R3) norms, respectively.
Throughout this section and the next one, we use the symbols C, K, to denote
either positive constants, or, depending on the context, bounded functions of their
arguments.

Our local-in-time existence theorem is:
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Theorem 3.1. Let σ0∈Hm(R3) for m>5/2. Then there exists a time T >0 depend-
ing on ‖σ0‖m only, so that the Oldroyd-B system (2.1), or equivalently the Hilbert
space-valued ODE (2.4), has a solution σ in the class

σ∈C([0,T ];Hm(R3))∩C1([0,T ];Hm−1(R3)). (3.1)

Observe that system (2.1) is time-reversible, hence Theorem 3.1 is also valid
backward in time.

Since the proof is long and technical, we describe here its outline, and prove each
step in a separate subsection. Standard definitions and inequalities are grouped in
Appendix A.

Subsec. 3.1. We start by constructing smooth approximations to σ. We
consider a mollified version of (2.4),

dσε

dt
=F ε(σε), σε(·,0)=σ0, (3.2)

where ε>0 is the mollification parameter,

F ε(σε)=−Jε[uε ·∇(Jεσε)]+(∇uε)
T σε +σε∇(uε)

−
1

λ
σε +

νp

λ

[

∇uε +(∇uε)
T
]

,

uε is given by the integral (2.3) with σ replaced by σε, and the mollification operator
Jε is defined by (A.1). We then prove

Proposition 3.2. Let σ0∈Hm(R3) for m>3/2. Then there exists a time Tε >0
depending on ‖σ0‖m only, so that (3.2) has a unique solution

σε ∈C1([0,Tε);H
m(R3)).

The main reason for introducing the mollified equation is to enable us to use the
classical theory of evolution equations (ODEs) in Banach spaces to prove short time
existence of unique solutions. Most importantly, the solutions of the mollified equation
are regular enough, which enables us to use classical tools for deriving estimates
without a need for additional justification.

Finally, we also observe that by the uniqueness of the solution of (3.2), the tensor
σε is symmetric whenever σ0 is symmetric. We will be using this fact later in our
estimates.

Subsec. 3.2. Using the continuation theorem for autonomous ODEs, and an a
priori estimate of the form

sup
0≤t≤T

‖σε‖m ≤K(‖σ0‖m,T ), (3.3)

where T =T (‖σ0‖m) is independent of ε, we show that the family of mollified solutions
σε can be continued uniformly up to a common time T . Here we need a slightly higher
degree of regularity:

Proposition 3.3. Let σ0∈Hm(R3) for m>5/2. Then there exists a time T =
T (‖σ0‖m)>0 independent of ε, such that the mollified equation (3.2) has a unique
solution σε ∈C1([0,T ],Hm(R3)), satisfying the uniform bound (3.3).
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Subsec. 3.3. We show that the family of mollified solutions, σε, forms
a Cauchy sequence in C([0,T ],L2(R3)), hence strongly converges to a function
σ∈C([0,T ],L2(R3)).

Proposition 3.4. Let σ0∈Hm(R3) for m>5/2. Then the family of mollified solu-
tions σε ∈C1([0,T ],Hm(R3)) forms, as ε→0, a Cauchy sequence in C([0,T ],L2(R3)),
hence converges to a function, which we denote by σ. Moreover, for every 0≤ t≤T ,
we have σ(·,t)∈Hm(R3), and σ satisfies the same bound,

sup
0≤t≤T

‖σ‖m ≤K(‖σ0‖m,T ),

as the family of mollified solutions.

Subsec. 3.4. Using the technique of interpolation we show that σε strongly
converges to σ in all intermediate norms C([0,T ],Hm′

(R3)), 0<m′ <m. We then
proceed to prove continuity of the limit in the highest norm, σ∈C([0,T ],Hm(R3)).

Proposition 3.5. Let σ0∈Hm(R3) for m>5/2. Then the C([0,T ],Hm′

(R3)) limit
σ of σε, for every m′∈ (0,m), is continuous in σ∈C([0,T ],Hm(R3)).

Subsec. 3.5. We finally show that σ, the limit of σε, is a solution of (2.4) in
the space

σ∈C([0,T ],Hm(R3))∩C1([0,T ],Hm−1(R3)).

3.1. Local-in-time existence of mollified solutions. In this subsection we
prove Proposition 3.2. We approximate the Oldroyd-B system (2.1), or equivalently,
the Hilbert space–valued ODE (evolution equation) (2.4) by a mollified equation for
a smooth approximation σε of σ,

dσε

dt
=F ε(σε), σε(·,0)=σ0, (3.4)

where

F ε(σε)=−Jε[uε ·∇(Jεσε)]+(∇uε)
T σε +σε(∇uε)

−
1

λ
σε +

νp

λ

[

∇uε +(∇uε)
T
]

;
(3.5)

uε is given by (2.3) with σ replaced by σε, and the mollification operator Jε is
defined by (A.1) in the appendix. Comparing with (2.5), we note that mollification is
only used in the advection term. As will be shown, the gradient of uε has the same
degree of regularity, with respect to the Hm(R3)-norms, as σε, hence no additional
mollification is needed.

To prove that (3.4) has a local-in-time solution we use Picard’s theorem over
Banach spaces. Specifically, we work within the Banach space Hm(R3) with m>3/2.
Picard’s theorem for functional evolution differential equations states that if there
exists an open subset O⊂Hm(R3) such that

1. F ε :O→Hm(R3), and

2. F ε is locally Lipschitz continuous, i.e., for any σ∈O there exists an open
neighborhood of σ, U ⊂O, and a constant L>0 such that for every τ 1,τ 2∈U

‖F ε(τ 1)−F ε(τ 2)‖m ≤L‖τ 1−τ 2‖m,
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then there exists, for every σ0∈O, a time Tε >0 and a unique solution σε ∈
C1([0,Tε);O) of (3.4).

Two properties that are being used extensively throughout this section are:

(i) the Calderón-Zygmund (CZ) inequality (A.11) (see Appendix), from which it fol-
lows that σε ∈Hm(R3) implies that the velocity gradient ∇uε, and a fortiori the
velocity uε itself, are in Hm(R3) as well,

‖uε‖m ≤
cm

νs
‖σε‖m , ‖∇uε‖m ≤

c̃m

νs
‖σε‖m. (3.6)

(ii) For m>3/2, Hm(R3) forms a Banach algebra, i.e.,

‖fg‖m ≤ c‖f‖m‖g‖m.

Combining these two properties with the smoothing properties (A.3)–(A.4) of Jε

(see Appendix), it follows at once that F ε is a mapping Hm(R3)→Hm(R3). We set

O=
{

σ∈Hm(R3) : ‖σ‖m <r
}

,

where r is sufficiently large such that σ0∈O. It remains to show that there exists a
positive constant L=L(r), such that F ε is Lipschitz continuous in O with constant
L.

To avoid lengthy expressions, we split F ε into a sum of four terms,

F ε =F 1 +F 2 +F 3 +F 4,

where

F 1(σε) =−Jε[uε ·∇(Jεσε)], F 2(σε)= (∇uε)
T σε +σε(∇uε),

F 3(σε) =−
1

λ
σε, F 4(σε)=

νp

λ

[

∇uε +(∇uε)
T
]

,

and show that each of these four terms is Lipschitz continuous. That is, let τ 1,τ 2∈O
and let u1,u2 be their corresponding velocity fields satisfying the Stokes system (2.3);
we show that each of the F j verifies a bound of the type

‖F j(τ 1)−F j(τ 2)‖m ≤L(ε,‖τ 1‖m,‖τ 2‖m)‖τ 1−τ 2‖m,

where L is a monotonic function of its last two arguments, and hence it is bounded
by L(ε,r,r).

The Lipschitz continuity of the linear function F 3 is trivial. The Lipschitz conti-
nuity of F 4 follows from the CZ inequality (A.11), which implies

‖∇u2−∇u1‖m ≤
C

νs
‖τ 2−τ 1‖m.

For the advection term F 1 we have

‖F 1(τ 2)−F 1(τ 1)‖m =‖Jε[u2 ·∇(Jετ 2)]−Jε[u1 ·∇(Jετ 1)]‖m

≤C ‖u2 ·∇(Jετ 2)−u1 ·∇(Jετ 1)‖m

≤C ‖u2 ·∇(Jε(τ 2−τ 1))‖m +C ‖(u2−u1) ·∇(Jετ 1)‖m,
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where in the passage from the first to the second line we used (A.3) with k =0, and
in the passage from the second to the third line we added and subtracted equal terms
and used the triangle inequality. Using the Sobolev calculus inequality (A.6),

‖F 1(τ 2)−F 1(τ 1)‖m ≤C
[

‖u2‖L∞ ‖∇(Jε(τ 2−τ 1))‖m

+‖∇(Jε(τ 2−τ 1))‖L∞ ‖u2‖m +‖u2−u1‖L∞ ‖∇(Jετ 1)‖m

+‖∇(Jετ 1)‖L∞ ‖u2−u1‖m

]

.

Using then property (A.3) of the mollification operator and the Sobolev embedding
(A.9), we obtain:

‖F 1(τ 2)−F 1(τ 1)‖m ≤
C

ε
(‖u2‖m‖τ 2−τ 1‖m +‖τ 1‖m‖u2−u1‖m) .

Finally, using CZ inequality,

‖F 1(τ 2)−F 1(τ 1)‖m ≤C(ε,‖τ 1‖m,‖τ 2‖m)‖τ 2−τ 1‖m.

The deformation term F 2 remains. Using the Banach algebra property (A.5),

‖F 2(τ 2)−F 2(τ 1)‖m =‖(∇u1)
T τ 1 +τ 1(∇u1)−(∇u2)

T τ 2−τ 2(∇u2)‖m

≤2‖τ 1(∇u1)−τ 2(∇u2)‖m

≤2‖∇u1‖m‖τ 2−τ 1‖m +2‖τ 2‖m‖∇u2−∇u1‖m.

One more application of the CZ inequality gives,

‖F 2(τ 2)−F 2(τ 1)‖m ≤C (‖τ 1‖m +‖τ 2‖m)‖τ 2−τ 1‖m.

This shows that F ε is locally Lipschitz in O, giving local existence for the mollified
Equation (3.4).

3.2. Energy estimates for the mollified solutions. In this subsection we
prove Proposition 3.3, i.e., that the mollified solutions can be continued uniformly
up to a time T >0 that does not depend on ε. To do so, we first obtain an a priori
estimate, whereby if the solution σε exists up to time T , then

sup
0≤t≤T

‖σε(·,t)‖m ≤C(T,‖σ0‖m)≡K,

where all the σε have the same initial condition. The existence of the solution up
to that time follows from the continuation theorem for autonomous ODEs in Banach
spaces. Taking for domain

O=
{

σ∈Hm(R3) : ‖σ‖m ≤K
}

,

the solution either exists up to time T , or leaves the set O before that time, which we
would have ruled out by the above estimate.

To obtain an a priori uniform bound on ‖σε(·,t)‖m, we use an energy estimate.
Starting from the mollified equation (3.4), we take its α-th derivative (|α|≤m), and
then an inner product with Dασε. This yields an “energy” equation,

1

2

d

dt
‖Dασε‖

2
0 +

1

λ
‖Dασε‖

2
0 =−(Dασε,D

αJε[uε ·∇(Jεσε)])

+2(Dασε,D
α[σε(∇uε)])+

2νp

λ
(Dασε,D

α(∇uε))

≡I1+I2 +I3, (3.7)
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where we used the symmetry of σε in the last two terms. We observe that σε is
as smooth as the initial data σ0∈Hm(R3), and Jεσε ∈C∞(R3); therefore the above
estimates should be interpreted in the strong sense. In particular, the time derivative
is classical and we do not require additional justification. Since we need a bound
that does not depend on ε, we cannot use the smoothing properties of Jε. On the
other hand, we are not concerned with finite-time blowup as long as the time horizon is
independent of ε. We start with the advection term. Using the fact that Jε commutes
with weak derivatives and is symmetric, we write

−I1 =(Dα(Jεσε),D
α[uε ·∇(Jεσε)]) .

We then add and subtract from the second argument of the inner product

uε ·D
α
∇(Jεσε),

whose inner product with Dα(Jεσε) vanishes due to the incompressibility of the flow,
i.e., due to uε being divergence-free. Using the Cauchy-Schwarz inequality and (A.3)
for k =0, we obtain

I1≤C‖Dασε‖0‖D
α[uε ·∇(Jεσε)]−uε ·D

α
∇(Jεσε)‖0.

We then invoke the Sobolev calculus inequality (A.7) to get

I1≤C‖Dασε‖0 [‖∇uε‖L∞‖∇(Jεσε)‖m−1 +‖uε‖m‖∇(Jεσε)‖L∞ ].

Using repeatedly the property (A.3) of Jε, the Sobolev embedding Theorem (A.9),
and the CZ inequality, we get the bound

I1≤
C

νs
‖σε‖

3
m. (3.8)

Note that in order to bound ‖∇σε‖L∞ by ‖σε‖m we need m>5/2.
We turn to I2, where we use the Cauchy-Schwarz inequality, the Banach algebra

property of Hk(R3) for k >3/2, and the CZ inequality,

I2 =2(Dασε,D
α[σε(∇uε)])≤2‖σε‖m‖σε(∇uε)‖m

≤C ‖σε‖
2
m‖∇uε‖m ≤

C

νs
‖σε‖

3
m.

(3.9)

There remains I3, which we estimate using the Cauchy-Schwarz inequality followed
by the CZ inequality,

I3 =
2νp

λ
(Dασε,D

α
∇uε)≤C

νp

λ
‖Dασε‖0‖D

α
∇uε‖0≤C

νp

λνs
‖σε‖

2
m. (3.10)

Combining the three estimates (3.8), (3.9) and (3.10) we obtain an energy in-
equality

d

dt
‖σε‖m +

1

λ
‖σε‖m ≤ c1

νp

λνs
‖σε‖m +

c2

νs
‖σε‖

2
m,

from which we conclude the existence of a time T =T (‖σ0‖m), independent of ε, for
which all the σε exist and have a common bound in Hm(R3),

sup
0≤t≤T

‖σε‖m ≤
c3e

c3T ‖σ0‖m

c3 +c4(1−ec3T )‖σ0‖m
≡K(‖σ0‖m,T ), (3.11)
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where c3 =λ−1(c1νp/νs−1), c4 = c2/νs and T < 1
|c3|

log(1+ |c3|/c4‖σ0‖m). This con-

cludes the proof of Proposition 3.3.

Remark 3.6. Substituting back the dimensional parameters, our expression for the
uniform existence time is

T <
λ

|c1νp/νs−1|
log

(

1+
νs|c1νp/νs−1|

c2λ‖σ0‖m

)

.

First, it follows that this time remains finite in the λ→∞ limit (i.e., infinite Weis-
senberg number), in which case T <νs/c2‖σ0‖m. Second, this time is unbounded
(hence, global-in-time existence follows) if νs/νp >c2 and the initial data are suffi-
ciently small, namely ‖σ0‖m < |c3|/c4.

3.3. Convergence of σε in C([0,T ],L2(R3)). We proceed to prove Propo-
sition 3.4, whereby the sequence σε forms, as ε→0, a Cauchy sequence in the space
C([0,T ];L2(R3)). Here, T is the uniform existence time established in the previous
subsection. Specifically, we show that for σε,σε′ ∈Hm(R3) solutions of (3.4) with the
same initial condition σ0, the following holds:

sup
0≤t≤T

‖σε−σε′‖0≤C(‖σ0‖m ,T )max(ε,ε′).

Hence follows the existence of σ∈C([0,T ],L2(R3)), such that

lim
ε→0

sup
0≤t≤T

‖σε(·,t)−σ(·,t)‖0 =0.

As in the previous subsection, we start with an energy equation, this time for the
difference σε−σε′ :

1

2

d

dt
‖σε−σε′‖2

0 +
1

λ
‖σε−σε′‖2

0

=−(Jε[uε ·∇(Jεσε)]−Jε′ [uε′ ·∇(Jε′σε′)],σε−σε′)

+2(σε∇uε−σε′∇uε′ ,σε−σε′)

+
2νp

λ
(∇uε−∇uε′ ,σε−σε′)≡ I1 +I2 +I3. (3.12)

I2 and I3 are easily estimated by the same manipulations as in the previous
subsection,

I2≤2‖σε∇uε−σε′∇uε′‖0‖σε−σε′‖0

=2‖(σε−σε′)∇uε−σε′(∇uε′ −∇uε)‖0‖σε−σε′‖0

≤2[‖σε−σε′‖0‖∇uε‖L∞ +‖σε′‖L∞‖∇uε′ −∇uε‖0]‖σε−σε′‖0

≤C (‖∇uε‖L∞ +‖σε′‖L∞)‖σε−σε′‖2
0

≤C(‖σε‖m +‖σε′‖m)‖σε−σε′‖2
0, (3.13)

and similarly,

I3≤
2νp

λ
‖∇uε−∇uε′‖0‖σε−σε′‖0≤C‖σε−σε′‖2

0. (3.14)

There remains the advection term I1, which we first split as follows:

−I1 =((Jε−Jε′)[uε ·∇(Jεσε)],σε−σε′)+(Jε′ [(uε−uε′) ·∇(Jεσε)],σε−σε′)

+(Jε′ [uε′ ·∇(Jε−Jε′)σε],σε−σε′)+(Jε′ [uε ·∇Jε′(σε−σε′)],σε−σε′) .
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The last term vanishes because uε is divergence-free. For the first three terms we use
the Cauchy-Schwarz inequality, obtaining thus

|I1|

‖σε−σε′‖0
≤‖(Jε−Jε′)[uε ·∇(Jεσε)]‖0 +‖Jε′ [(uε−uε′) ·∇Jεσε]‖0

+‖Jε′ [uε′ ·∇(Jε−Jε′)σε]‖0≡A1 +A2 +A3.

(3.15)

By (A.3) the outer Jε′ can be replaced in A2,A3 by a constant prefactor. A2 is
easily estimated by

A2≤C‖uε−uε′‖0‖∇(Jεσε)‖L∞ ≤C‖σε−σε′‖0‖σε‖m , (3.16)

where we have used the CZ inequality and the Sobolev embedding theorem, with
m>5/2 (see Appendix).

Note that the two remaining terms have the factor (Jε−Jε′), which is “small” in
the following sense. By (A.2) it follows that

‖(Jε−Jε′)f‖0≤‖(Jε−I)f‖0 +‖(Jε′ −I)f‖0≤C‖f‖1 max(ε,ε′).

Thus, A1 can be estimated by

A1≤C‖uε ·∇(Jεσε)‖1 max(ε,ε′)≤C‖σε‖
2
m max(ε,ε′), (3.17)

where the last inequality follows from the very rough estimate of the H1-norm by the
Hm−1 norm, and the Banach algebra property of Hk(R3) for k >3/2.

A3 verifies an estimate similar to A1. Gathering the expressions for A1, A2, A3,
I2, I3, and substituting into the energy equation (3.12),

1

2

d

dt
‖σε−σε′‖2

0≤C‖σε‖
2
mmax(ε,ε′)‖σε−σε′‖0 +C(‖σε′‖m +‖σε‖m)‖σε−σε′‖2

0.

(3.18)
We now use the uniform bound (3.11) to obtain

d

dt
‖σε−σε′‖0≤C(‖σ0‖m)[max(ε,ε′)+‖σε−σε′‖0],

which upon integrating yields

sup
0≤t≤T

‖σε−σε′‖0≤eC(‖σ0‖m)T max(ε,ε′), (3.19)

and we used here the fact that σε and σε′ satisfy the same initial conditions. There-
fore, σε is a Cauchy sequence in the Banach space C([0,T ];L2(R3)), and hence it has
a limit σ∈C([0,T ];L2(R3)). In particular, (3.19) implies that for the limit σ we have

sup
0≤t≤T

‖σε−σ‖0≤eC(‖σ0‖m)T ε.

The uniform boundedness (3.11) of the σε implies by the Banach-Alaoglu theorem
that for every t≤T the sequence σε(·,t) has a subsequence that converges weakly in
Hm(R3). This limit must however coincide with the L2 limit, σ(·,t). Moreover, the
Banach-Alaoglu theorem also implies that

‖σ(·,t)‖m ≤ liminf
ε→0

‖σε(·,t)‖m ,

thus it follows from (3.11) that for every t∈ [0,T ],

sup
0≤t≤T

‖σ(·,t)‖m ≤K(‖σ0‖m,T ). (3.20)

Note, however, that we do not yet know that σ is a continuous function from [0,T ] into
Hm(R3). It is the task of the next subsection to show that σ is in C([0,T ],Hm(R3)).
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3.4. Continuity in Hm(R3). In this section we prove Proposition 3.5,
whereby σ∈C([0,T ],Hm(R3)). We do it in several steps.

We start by showing that the mollified solutions σε converge to σ in all “interme-
diate” norms, C([0,T ],Hm′

(R3)), for all 0<m′ <m. For that we invoke the following
interpolation lemma in Sobolev space:

‖τ‖m′ ≤Cm‖τ‖
1−m′/m
0 ‖τ‖m′/m

m ,

valid for all τ ∈Hm(R3) and 0≤m′≤m. Substituting τ =σε−σ,

‖σε−σ‖m′ ≤Cm‖σε−σ‖
1−m′/m
0 ‖σε−σ‖m′/m

m .

Using the uniform boundedness (3.11) of σε and (3.20),

‖σε−σ‖m′/m
m ≤ (‖σε‖m +‖σ‖m)

m′/m
≤ [2K(‖σ0‖m,T )]m

′/m;

thus we obtain

sup
0≤t≤T

‖σε(·,t)−σ(·,t)‖m′ ≤ [2K(‖σ0‖m,T )]m
′/m sup

0≤t≤T
‖σε(·,t)−σ(·,t)‖

1−m′/m
0 ;

i.e., uniform convergence σε →σ in all intermediate norms.
To show that σ is time-continuous in the highest norm, we first show that σ is

time-continuous in the weak topology of Hm(R3). That is, we claim that for every
φ∈H−m(R3),

g(t)= 〈φ,σ(·,t)〉

is continuous in time, where 〈·,·〉 is the dual pairing between Hm(R3) and H−m(R3).
Since σ is time-continuous in the strong topologies of all the intermediate norms, it
follows that 〈φ,σ(·,t)〉 is time-continuous for all φ∈H−m′

(R3), but since the latter is
dense in H−m(R3) and σ satisfies the uniform bound (3.20) in Hm, the continuity of
g(t) follows.

As is well known, continuity in the weak topology of a Hilbert space supplemented
by the continuity of the norm yields continuity in the strong topology. Thus, it remains
to show that ‖σ(·,t)‖m is time-continuous.

We start by showing continuity at the initial time t=0. For h>0 we have

‖σ(·,h)−σ0‖
2
m =‖σ(·,h)‖2

m−‖σ0‖
2
m−2(σ(·,h)−σ0,σ0)m ,

where (·,·)m denotes the inner product in Hm(R3). As h→0+, the last term vanishes
by the time-continuity of σ in the weak topology in Hm(R3). This yields

‖σ0‖m ≤ liminf
hց0

‖σ(·,h)‖m. (3.21)

To obtain the reverse inequality we observe that by following similar steps as in
the above proof one can obtain the following modification of (3.20),

sup
0≤t≤τ

‖σ(·,t)‖m ≤K(‖σ0‖m,τ),

for all τ ∈ (0,T ], where K is given by (3.20). Therefore, by taking τ =h and assuming
h is small enough, the above inequality and (3.20) yields

‖σ(·,h)‖m ≤‖σ0‖m +Ch‖σ0‖m (1+‖σ0‖m) .
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Since ‖σ(·,h)‖m is bounded we may let h→0+, obtaining

limsup
hց0

‖σ(·,h)‖m ≤‖σ0‖m,

which together with (3.21) implies right-continuity at t=0; left-continuity at t=0
follows from the fact that the Oldroyd-B system can be time reversed (unlike parabolic
equations such as the viscous Navier-Stokes equations).

It remains to show that σ is time continuous at any arbitrary time s∈ [0,T ]. We
use the fact that σ(·,s)∈Hm(R3) to construct a new set of mollified solutions with
initial data at t=s, σ̃ε(·,s)=σ(·,s). By the same line of reasoning as before, these
solutions converge in C([0,T ],L2(R3)) to a solution σ̃ which belongs, at all times, to
Hm(R3) and is continuous at the initial time t=s. Let σε(·,t) be as before. Now,
one can follow the same steps as in Sec. 3.3 to show that

1

2

d

dt
‖σε− σ̃ε‖

2
0≤C(‖σ̃ε‖m +‖σε‖m)‖σε‖mε‖σε− σ̃ε‖0

+C(‖σ̃ε‖m +‖σε‖m)‖σε− σ̃ε‖
2
0

(cf. (3.18)). Similar steps show that around t=s

‖σ̃ε‖m ≤K(‖σε(·,s)‖m).

Therefore, we have

d

dt
‖σε− σ̃ε‖0≤C(‖σε(·,s)‖m) (ε+‖σε− σ̃ε‖0) .

Integrating, we obtain

‖σε(·,t)− σ̃ε(·,t)‖0≤eC(‖σε(·,s)‖m)(t−s)‖σε(·,s)− σ̃ε(·,s)‖0 +eC(‖σε(·,s)‖m)(t−s)ε.

Now, as we let ε→0, we know that σε(·,s)→σ(·,s), and we know that σ̃ε(·,s)=
σ(·,s); thus we conclude that

‖σ(·,t)− σ̃(·,t)‖0 =0.

Since σ̃ is continuous at t=s, so is σ.

3.5. σ is a solution of (2.4). Having shown that σ∈C([0,T ],Hm(R3)), it
remains to show that σ is indeed a solution of (2.4) and that

σ∈C([0,T ],Hm(R3))∩C1([0,T ],Hm−1(R3)).

To show that, we refer once more to the mollified solutions, whose evolution
satifies the integral equation,

σε(·,t)=σ0 +

∫ t

0

F ε(σε(·,s))ds.

We now exploit the convergence of σε to σ in all the intermediate norms. Specifically,
we set 5/2<m′ <m, and claim that

σε →σ in C([0,T ],Hm′

(R3))
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implies that

Jε[uε ·∇(Jεσε)]→u ·∇σ,

σε(∇uε)→σ(∇u),

∇uε →∇u

in C([0,T ],Hm′−1(R3)). The last two identities follow from the CZ inequality (A.11)
and the Banach algebra property of Hk(R3) for k >3/2. The convergence of the
advection term follows from the same considerations, up to the loss of one order of
regularity due to the gradient of σε. Thus,

σ(·,t)=σ0 +

∫ t

0

F (σ(·,s))ds,

which proves that σ∈C1([0,T ],Hm−1(R3)), and satisfies the differential equation
(2.4).

Remark 3.7. Based on the previous remark, this also proves global-in-time existence
for small initial data.

4. A Beale-Kato-Majda breakdown condition

Having proved the local-in-time existence of solutions to the Oldroyd-B Equation
(2.1), or its ODE representation (2.4), we turn to the main purpose of this paper,
which is the characterization of the breakdown of such solutions at finite time. By
the continuation theorem for autonomous ODEs, if T ∗ <∞ and [0,T ∗) is the maximal
time of existence of the solution σ, then

limsup
tրT∗

‖σ‖m =∞. (4.1)

Such a breakdown criterion is not informative enough, as it roughly says that “a
solution exists as long as it exists”. Our main theorem below provides a more concise
breakdown condition, which is only associated with the stress itself, and does not
involve any of its derivatives:

Theorem 4.1. Let σ be a local-in-time solution to (2.1) in the class

C([0,T );Hm(R3))∩C1([0,T );Hm−1(R3)),

with m≥3. Suppose that [0,T ∗) is the maximal time of existence, with T ∗ <∞; then

lim
tրT∗

∫ t

0

‖σ(·,s)‖L∞ ds=∞. (4.2)

The proof is similar in essence to the proof of the Beale-Kato-Majda theorem for
the Euler equations [6]. All that is needed is an a priori estimate of the form,

‖σ(·,t)‖m ≤C

(

t,

∫ t

0

‖σ(·,s)‖L∞ ds

)

, (4.3)

where C is a continuous function of its arguments, hence (4.1) occurs only if (4.2)
occurs. The estimate (4.3) is derived in two steps, detailed in the next two subsections.
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4.1. A priori estimates for the Hm(R3) norm. Our estimates rely on the
following version of the Gagliardo-Nirenberg inequality,

‖Dkf‖Lq ≤C‖f‖
1−k/m
L∞ ‖Dmf‖

k/m

Lkq/m ,

where 1≤k≤m and 1<p<∞, with p= kq
m . With this, we prove the following lemma:

Lemma 4.2. For f,g,h∈Hm(R3) the following triple-product inequality holds,

∫

R3

|Dαh||Dβf ||Dα−βg|dx≤C‖h‖|α|‖f‖
|β|/|α|
|α| ‖g‖

|α−β|/|α|
|α| ‖f‖

1−|β|/|α|
L∞ ‖g‖

1−|α−β|/|α|
L∞ ,

(4.4)
where β <α.

Proof. We start with the triple product inequality
∫

R3

|Dαh||Dβf ||Dα−βg|dx≤‖Dαh‖0‖D
βf‖Lq‖Dα−βg‖Lp ,

where 1/p+1/q =1/2. We then use twice the Gagliardo-Nirenberg inequality,

‖Dβf‖Lq ≤C‖f‖
1−|β|/|α|
L∞ ‖Dαf‖

|β|/|α|

L|β|q/|α|

and

‖Dα−βg‖Lp ≤C‖g‖
1−|α−β|/|α|
L∞ ‖Dαg‖

|α−β|/|α|

L|α−β|p/|α| .

If we choose

q =
2|α|

|β|
and p=

2|α|

|α−β|
,

then (4.4) is obtained.

We are going to make an extensive use of inequality (4.4) for the case where
f =σ, g =∇u and h=σ (more precisely, f,g,h are components of these tensors).
Then, combined with the CZ inequality (A.11), we get

(

Dασ,(Dβσ)[Dα−β(∇u)]
)

≤C‖σ‖2
|α|‖σ‖

1−|β|/|α|
L∞ ‖∇u‖

1−|α−β|/|α|
L∞ ,

which combined with Young’s inequality finally gives:

(

Dασ,(Dβσ)[Dα−β(∇u)]
)

≤C‖σ‖2
|α| (‖σ‖L∞ +‖∇u‖L∞) . (4.5)

For every |α|≤m the L2-norm of the α-th derivative of σ satisfies the energy
equation

1

2

d

dt
‖Dασ‖2

0 +
1

λ
‖Dασ‖2

0 =−(Dασ,Dα(uk ·∂kσ))

+2(Dασ,Dα[(σ(∇u)])+
2νp

λ
(Dασ,Dα(∇u)). (4.6)

The last term is easily estimated using the Cauchy-Schwarz inequality and the CZ
inequality (A.11),

(Dασ,Dα(∇u))≤C‖Dασ‖2
0.
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The middle term can be written as

(Dασ,Dα[(σ(∇u)])=
∑

β≤α

(

Dασ,(Dβσ)(Dα−β
∇u)

)

,

which is a finite sum of terms, each of which can be bounded using (4.5).
There remains the advection term. Because u is incompressible, the term

uk∂k(Dασ) vanishes, which means that u is differentiated at least once, and we can
use (4.5) once again. Thus, we obtain the inequality,

1

2

d

dt
‖Dασ‖2

0 +
1

λ
‖Dασ‖2

0≤C [1+‖σ‖L∞ +‖∇u‖L∞ ]‖Dασ‖2
0,

and summing up over all |α|≤m,

d

dt
‖σ‖m +

1

λ
‖σ‖m ≤C (1+‖σ‖L∞ +‖∇u‖L∞)‖σ‖m.

A simple integration yields:

‖σ‖m ≤ exp

[

C

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds

]

‖σ0‖m. (4.7)

A comment: the energy inequality (4.6) is only formal since we have not shown
that the Hm(R3) norm of σ was differentiable. To rectify this delicacy, one has
to carry all estimates with the mollified solutions σε, which are differentiable in all
Sobolev spaces, and take the limit ε→0, only once we have obtained a final estimate
for ‖σε‖m in the integrated form.

We will need one more estimate. For all indices i,j,k we have

∂

∂t
∂kσij +

1

λ
∂kσij =−∂k (ul∂lσij)+∂k (σil(∂luj)+(∂lui)σlj)+

νp

λ
∂k (∂iuj +∂jui).

Multiplying by (∂kσij)
3 (with summation over all indexes) and integrating over R

3

we get

1

4

d

dt
‖∇σ‖4

L4 +
1

λ
‖∇σ‖4

L4

=−

∫

R3

(∂kσij)
3
∂k (ul∂lσij) dx

+2

∫

R3

(∂kσij)
3
∂k [σil(∂luj)] dx+

2νp

λ

∫

R3

(∂kσij)
3
∂k (∂iuj) dx.

Using for the first two terms the triple product inequality, and the Hölder inequality
for the third, we get

1

4

d

dt
‖∇σ‖4

L4 +
1

λ
‖∇σ‖4

L4 ≤C
[

‖∇σ‖4
L4‖∇u‖L∞ +‖σ‖L∞‖∇∇u‖L4‖∇σ‖3

L4

+‖∇σ‖3
L4‖∇∇u‖L4

]

,

and after applying once again the CZ inequality (A.11),

d

dt
‖∇σ‖L4 ≤C [1+‖∇u‖L∞ +‖σ‖L∞ ]‖∇σ‖L4 ,

from which we get

‖∇σ‖L4 ≤ exp

[

C

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds

]

‖∇σ0‖L4 . (4.8)
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4.2. L∞ estimate of ∇u. So far we have shown in (4.7) that if the solution
σ breaks down at time T ∗ then,

lim
tրT∗

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds=∞.

To complete the proof of Theorem 4.1 it is sufficient to show that

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds≤C

(

t,

∫ t

0

‖σ‖L∞ ds

)

.

Thus, we need to estimate ‖∇u‖L∞ in terms of ‖σ‖L∞ . Note that the CZ inequality
provides a bound for ‖∇u‖Lp in terms of ‖σ‖Lp for all p (such a bound exists within
any of the Sobolev Wm,p norms), but the prefactor is linear in p, hence p cannot be
taken to be infinite. Instead, one has to perform a more delicate analysis.

Consider the integral relation (2.6) between σ and ∇u. We split the domain of
integration into an “outer domain” |y|>R, a “middle annulus” ε< |y|<R, and an
“inner disc”, |y|<ε, namely,

∇u=−
1

5νs

(

σ−
I

3
trσ

)

+
1

8πνs
(I1 +I2 +I3),

where

I1(x)=

∫

R<|y|

M (2)(y) :σ(x−y)dy,

I2(x)=

∫

ε<|y|<R

M (2)(y) :σ(x−y)dy,

I3(x)=(P.V.)

∫

|y|<ε

M (2)(y) :σ(x−y)dy.

Recall that M (2) is homogeneous of degree −3 and averages to zero on the unit sphere.
The “outer” integral is estimated using the Cauchy-Schwarz inequality,

|I1(x)|≤
C

R3/2
‖σ‖0.

The “middle” integral is estimated by taking out the infinity norm of the stress:

|I2(x)|≤C‖σ‖L∞ log
R

ε
.

For the “inner” integral, we exploit the fact that M (2) averages to zero on the unit
sphere to subtract

(P.V.)

∫

|y|<ε

M (2)(y) :σ(x)dy =0,

so that

I3 =(P.V.)

∫

|y|<ε

M (2)(y) : [σ(x−y)−σ(x)] dy.
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By the mean-value theorem (this assumes that σ∈C1(R3), which is the case since
m>5/2), we obtain

|I3(x)≤

∫

|y|<ε

∣

∣

∣M
(2)(y) : [(y ·∇)σ(ξ)]

∣

∣

∣ dy≤C

(

∫

|y|<ε

|M (2)(y)y|p

)1/p

‖∇σ‖Lq ,

where we used Hölder’s inequality, and ξ represents an intermediate point. Since M (2)

is homogeneous of degree −3, this Lp-norm is finite provided that 2−2p>−1, i.e.,
p<3/2, and consequently q >3. Setting q =4 and combining all three contributions,
we get

∣

∣

∣

∣

(P.V.)

∫

R3

M (2)(y) :σ(x−y)dy

∣

∣

∣

∣

≤C

(

1

R3/2
‖σ‖0 +‖∇σ‖L4ε1/4 +‖σ‖L∞ log

R

ε

)

.

It remains to choose R,ε such as to minimize the bound. Taking

R=

( 3
2‖σ‖0

‖σ‖L∞

)2/3

and ε=

(

4‖σ‖L∞

‖∇σ‖L4

)1/4

,

we finally obtain

‖∇u‖L∞ ≤C ‖σ‖L∞

(

1+log+‖σ‖0 +log+‖∇σ‖L4

)

, (4.9)

where log+x=max(logx,0).
The estimate (4.7) with m=0 gives:

‖σ‖0≤ exp

[

C

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds

]

‖σ0‖0

and similarly, from (4.8),

‖∇σ‖L4 ≤ exp

[

C

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds

]

‖∇σ0‖L4 .

Substituting into (4.9) we get

‖∇u‖L∞ ≤C‖σ‖L∞

[

1+

∫ t

0

(1+‖σ‖L∞ +‖∇u‖L∞) ds

]

.

If we define

M(t)=

∫ t

0

[1+‖σ‖L∞ +‖∇u‖L∞ ] ds and N(t)=

∫ t

0

‖σ‖L∞ ds,

then we have an integral inequality of the form

M ′(t)≤CN ′(t)[1+M(t)],

which we readily integrate:

∫ t

0

[1+‖σ‖L∞ +‖∇u‖L∞ ] ds≤ exp

(

C

∫ t

0

‖σ‖L∞ ds

)

. (4.10)
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Combining with (4.7) we have proved Theorem 4.1.
Note that (4.7) together with (4.10) yield a doubly-exponential bound,

‖σ‖m ≤ exp

[

C exp

(

C

∫ t

0

‖σ‖L∞ ds

)]

‖σ0‖m.

In this context, it is noteworthy that a similar doubly-exponential bound was derived
in BKM for the Euler equation. Ponce in [22] derives a singly-exponential bound
using as control parameter the L∞ norm of the deformation tensor, rather than the
vorticity as in the original BKM paper.

5. Discussion

In this paper we derived a breakdown condition for solutions of the Oldroyd-B
model in R

3 in the limit of zero Reynolds number. This condition is analogous to
the breakdown condition of Beale-Kato-Majda for Newtonian fluids. It is noteworthy
that the elastic relaxation time, λ (which in non-dimensional formulations is the
Weissenberg number), plays no role in our analysis. In fact, nothing changes if we
set λ=∞, or, alternatively, if we set λ=∞ but retain the ratio νpλ constant (which
corresponds to the Kelvin-Voigt model for a viscoelastic solid).

The main implication of our result is that the efforts toward a global-in-time
well-posedness theory should focus on the control of the L∞ norm of the stress.

In a more physically realistic setting, one should consider the same problem in
a bounded domain Ω. Let us assume for simplicity homogeneous Dirichlet boundary
conditions for u, and a sufficiently smooth boundary ∂Ω. The Calderoń-Zygmund
inequality holds in this case (see e.g. [23, 15]), so that local-in-time existence can
be proved as for the infinite domain. Differences arise in the proof of the BKM
criterion, where we need an L∞ estimate for ∇u. For a bounded domain, the integral
representation (2.6) can be rewritten with the same kernel integrated over Ω, plus
a boundary-term contribution, exactly as in the Poisson representation formula (see
[15]). Another alternative is to use the following Green representation formula,

∇u(x)=

∫

Ω

GΩ(y) ·divσ(x−y)dy,

where GΩ is a singular kernel that depends on Ω. The existence of GΩ along with
pointwise estimates has to be proved using elliptic regularity theory (see Ferrari [24]
for details).

Appendix A. Some inequalities. In this appendix we list a number of inequal-
ities used repeatedly in Secs. 3 and 4. We recall that Hm(R3) denotes the Sobolev
spaces of scalar, vector and multi-dimensional tensor fields, with the corresponding
norm ‖·‖m. The L2-norm, which coincides with the H0-norm, is denoted by ‖·‖0.
The L∞ norm is denoted by ‖·‖L∞ . Weak derivatives are denoted by Dα, where
α=(α1,α2,α3) is a multi-index.

Mollifiers. For f ∈Lp(R3), 1≤p≤∞, the mollification operator, Jε, is defined
by

(Jεf)(x)=
1

ε3

∫

R3

φ

(

x−y

ε

)

f(y)dy, (A.1)

where φ :R3→R is a radially symmetric, positive, compactly supported C∞ function,
satisfying

∫

R3 φ(x)dx=1. The important properties satisfied by Jε are:
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• Jε commutes with (distributional) derivatives.
• Jε is symmetric with respect to the L2(R3) inner product.
• Jε :Hm(R3)→Hm(R3)∩C∞(R3).
• There exists a C >0 such that for every f ∈Hm(R3),

‖Jεf −f‖m−1≤Cε‖f‖m. (A.2)

• For every f ∈Hm(R3) and k≥0,

‖Jεf‖m+k ≤
cmk

εk
‖f‖m. (A.3)

• For every f ∈Hm(R3) and multi-index α,

‖JεD
αf‖L∞ ≤

c|α|

ε3/2+|α|
‖f‖0. (A.4)

Banach algebra property of Sobolev spaces. For m>3/2 the Sobolev space
Hm(R3) is a Banach algebra, i.e., there exists a constant C >0 such that for all
f,g∈Hm(R3),

‖fg‖m ≤C‖f‖m‖g‖m. (A.5)

Sobolev calculus inequalities. For all m∈{0,1,2,...} there exists a constant
C >0 such that for all f,g∈L∞(R3)∩Hm(R3),

‖fg‖m ≤C (‖f‖L∞‖g‖m +‖f‖m‖g‖L∞) . (A.6)

For m>3/2 the Sobolev embedding Hm(R3)⊂L∞(R3) implies that this inequality is
valid for all f,g∈Hm(R3). Moreover, for f ∈Hm(R3), g∈Hm−1(Rn), and |α|≤m,

‖Dα(fg)−fDαg‖0≤C [‖∇f‖L∞‖g‖m−1 +‖f‖m‖g‖L∞ ]. (A.7)

This inequality holds even if each of the two subtracted terms on the left hand side
is not in L2(R3) [6].

Gagliardo-Nirenberg inequalities. The classical Gagliardo-Nirenberg inequality
is

‖Dkf‖Lq ≤C‖f‖1−θ
Lr ‖Dmf‖θ

Lp ,

where θ =k/m∈ (0,1), 1≤p,r≤∞, and

1

q
=

θ

p
+

1−θ

r
.

For the particular case r=∞, we have

‖Dkf‖Lq ≤C‖f‖
1−k/m
L∞ ‖Dmf‖

k/m

Lkq/m , (A.8)

where 1<p<∞ and 1≤m≤k.
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Sobolev embedding theorems ([25] Ch. 5, [26] p. 168). Let m≥1 be an integer
and 1≤p<∞. Then:

If 1
p −

m
n >0 then Wm,p(Rn)⊂Lq(Rn) with 1

q = 1
p −

m
n ;

If 1
p −

m
n =0 then Wm,p(Rn)⊂Lq(Rn) , ∀q∈ [p,+∞);

If 1
p −

m
n <0 then Wm,p(Rn)⊂L∞(Rn).

In this paper we use extensively the third embedding for p=2 and n=3, i.e.,

Hm(R3)⊂L∞(R3) if m>
3

2
.

In fact, this is a continuous embedding, i.e.,

‖f‖L∞ ≤C ‖f‖m. (A.9)

The Calderón-Zygmund inequality. Let K :R3→R be a homogeneous function
of degree −3 that averages to zero on the unit sphere, and for f ∈Lq(R3), q≥2, define

g(x)=(P.V.)

∫

R3

K(y)f(x−y)dy.

Then g∈Lq(R3), and

‖g‖Lq ≤Cq‖f‖Lq . (A.10)

Because the constant grows unbounded with q, this inequality does not carry to the
L∞-norm; see, for example, Stein [27] for a proof. In particular, since the same kernel
relates Dαf and Dαg, it follows that f ∈Hm(R3) implies g∈Hm(R3) with

‖g‖m ≤C ‖f‖m. (A.11)
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