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SHALLOW WATER VISCOUS FLOWS FOR ARBITRARY

TOPOGRAPHY∗

MARC BOUTOUNET† , LAURENT CHUPIN‡ , PASCAL NOBLE§ , AND JEAN PAUL VILA¶

Abstract. In this paper, we obtain new models for gravity driven shallow water laminar flows
in several space dimensions over a general topography. These models are derived from the incom-
pressible Navier-Stokes equations with no-slip condition at the bottom and include capillary effects.
No particular assumption is made on the size of the viscosity and on the variations of the slope. The
equations are written for an arbitrary parametrization of the bottom, and an explicit formulation is
given in the orthogonal courvilinear coordinates setting and for a particular parametrization so-called
“steepest descent” curvilinear coordinates.
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1. Introduction

Mathematical models and numerical simulations for the flow of a relatively thin
layer of fluid under the influence of gravity over a complex relief have important
applications in natural processes such as ocean modeling, flows in rivers and coastal
areas, debris avalanches or industrial processes such as coating flows with applications
ranging from a single decorative layer on packaging to multiple-layer coatings on
photographic film. See the review paper on thin fluid dynamics by Oron, Davis and
Bankoff [8] and bibliography therein for further references.

Herein, we consider the slow motion of a thin liquid layer over an arbitrary to-
pography. The fluid is assumed to be incompressible and Newtonian. It is submitted
to capillary forces at the free surface and a no-slip condition is assumed at the bottom
surface. Our particular interest is to take into account as much as possible the influ-
ence of the topography in the flow equations. The dynamics are now well understood
in the flat case. For completeness, let us summarize recent results obtained in the
modeling of flows down a flat bottom. Given the fact that three dimensional Navier-
Stokes equations are difficult to treat both analytically and numerically, in particular
if the boundary is free, it is important to obtain reduced models that are able to
capture the relevant features, but are mathematically more manageable. Modeling
thin film flows down an inclined plane leads to a hierarchy of models. The first stage
of approximation is the lubrication model: under a suitable scaling, the fluid speed
and pressure are determined by the local fluid height and its dervatives. In that case
we obtain a model for the local fluid height in the form

∂th=G(h, ∂xmh), (1.1)
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§Université de Lyon, Université Lyon 1, CNRS, UMR 5208, Institut Camille Jordan, Batiment

du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F - 69622 Villeurbanne Cedex, France
(noble@math.univ-lyon1.fr).
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where G involves various algebraic powers and differentiation orders of h. This type of
equation is obtained by means of asymptotic expansions in power of ε, usually called
the film parameter or aspect ratio between the width of the layer and the typical
length of the phenomena in the streamwise direction. The simplest model obtained in
this way is Benney’s Equation [12]. The simplification brought by this reduction has
permitted a first study of the nonlinear development of waves using dynamical system
theory [13]. Unfortunately, Benney’s equation exhibits finite time singularities and is
only valid for small amplitude waves.

In order to obtain models valid for thicker flows, one considers shallow-water-type
flows: a specific shape for the velocity profile is assumed together with a hydrostatic
field assumption. Averaging the streamwise momentum equation and the divergence-
free condition, one obtains an evolution system for the local fluid height h and the

local flow rate q =
∫ h

0
u(z)dz. As a first approximation, one can assume that the

velocity is constant along the fluid height: this approach is justified for shallow water
flows of incompressible Newtonian fluids with negligible viscosity: see Perthame and
co-authors [7] for a formal derivation from the Navier Stokes equations and numerical
simulations of the resulting shallow water equations, Bouchut and co-authors [1, 2] for
the case of non-flat bottoms. When the viscosity is not small and a no-slip condition
at the bottom is assumed, we are in a regime where the fluid layer is entirely a
boundary layer: for inclined planes, the stationary solutions are of Nusselt type with
a parabolic profile of velocity and constant height. In that case, the first integral
boundary layer model was derived by Shkadov [11], assuming that the flow remains
close to the Nusselt flow. More recently, Ruyer-Quil and Manneville [5, 6] generalized
this approach and even derived second order models by introducing a third variable
τ that measures the departure of the wall shear from the shear predicted by the
parabolic velocity profile. Up to order one, this variable is determined by the local
fluid height h and the local discharge rate q; this yields a refined version of the
shallow water equations. The method of derivation is the following: the Navier-Stokes
solutions are expanded along a basis of polynomials in the cross-stream variable with
slowly varying coefficients, these coefficients being determined under specific rules
of projections (collocation methods or Galerkin methods): this leads to a family of
models that differs one from the other through different coefficients. In fact, this
method generates a family of models, all accurate to the same order; the coefficients
only depend on the basis chosen to expand the solutions and the projection rules.
J.-P. Vila [14] has unified the formulation of the different models into a family of
shallow-water-type models parametrized by free constants: under the shallow water
scaling, Navier-Stokes solutions close to the Nusslet flow are expanded with respect
to ε, the film parameter, and different characteristic numbers of the fluid (Reynolds,
Froude, Weber numbers). The expansion is inserted into the exact average equations

for the fluid height h and the discharge rate hv =
∫ h

0
u, u being the component of the

fluid velocity in the streamwise direction. Dropping small terms to a fixed order in
ε, a family of shallow water models in a closed form is obtained. A linear stability
analysis of constant solutions is carried out and compared to the Orr-Sommerfeld
stability equations for the full Navier-Stokes system in the limit of large wavelength
in order to check the accuracy of the shallow water models.

When the topography is arbitrary, this approach has been generalized using the
center manifold framework [9, 10]: in that case the computations are carried out in
the neighborhood of the Nusselt parabolic flow. Using the center manifold reduction,
Roberts and co-workers formally obtained lubrication models [9] and shallow water
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type models [10] under the hypothesis that the curvature of the underlying bottom
surface is small. The models are formulated in a particular system of curvilinear
coordinates, namely the Darboux coordinates, the two basis vectors tangent to the
surface being pointed in the direction of maximal and minimal curvature. The Dar-
boux system of coordinates has the disadvantage not to be defined at umbilic points,
i.e., points where the principal curvatures coincide.

Whereas the situation is now well understood for the flat and almost flat case
from the modeling point of view, and the mathematical theory has become settled
now [3, 4], the situation is different for arbitrary topography: let us mention here the
recent papers of Bouchut and co-authors [1, 2] on the derivation of one dimensional
and multidimensional shallow water models from incompressible Euler equations (or
Navier-Stokes equations with small viscous term) without any restriction on the to-
pography and in the presence of a Coulomb friction term. One interesting aspect of
the approach proposed by Bouchut and co-authors is that the derivation is valid for
arbitrary topography and the formulation does not depend on the parametrization of
the surface where the fluid flows. In this present paper, we consider the slow motion of
a relatively thin layer of fluid over an arbitrary topography. The fluid is incompress-
ible, Newtonian and the viscosity is not negligible. A no-slip condition is assumed at
the bottom surface. For completeness, we also assume that it is submitted to capillary
forces at the free surface. In this paper, we derive shallow water equations from the
incompressible Navier-Stokes equations: as a byproduct of the analysis, we will also
obtain lubrication models.

The paper is organized as follows. In Section 2, we formulate the Navier-Stokes
equations and boundary conditions in a system of coordinates adapted to the geometry
of the bottom surface; during this step, we do not make precise the parametrization
of the underlying surface where the fluid flows. We also compute an exact evolution
system for the physical height of the fluid h and the average velocity, along the fluid
height, parallel to the surface. This evolution system is not in a closed form and some
modeling assumptions are necessary: classically, the pressure is supposed to be hydro-
static and the flow is quasi-stationary. In this paper, we follow the ideas introduced
by J.-P. Vila in [14], and these assumptions will be a result of a dimensional analysis
of the Navier Stokes system. In Section 3, we rescale the equations: the characteristic
height of the fluid H is supposed to be small compared to the characteristic wave-
length L of the flow variable in the streamwise direction. We introduce the “aspect
ratio” ε= H

L
≪1. In the asymptotic regime ε→0, we compute an expansion, with

respect to ε, of the Navier-Stokes solutions close to a basic Nusselt type flow. As a
byproduct of the dimensional analysis, we recover the classical modeling assumptions
of the shallow water equations. Inserting the asymptotic expansions of Navier-Stokes

solutions in the evolution system for the fluid height h and the discharge rate
∫ h

0
u

and dropping “small terms”, we obtain a shallow water system in a closed form.

In the scaling chosen, the fluid speed direction is mainly supported by the “steep-
est descent” direction. Thus it is natural to introduce a specific parametrization of
the surface where the fluid flows, so called “steepest descent” curvilinear coordinates.
The first vector of the basis is tangent to the surface and has the steepest descent
direction, the third one is the upward normal to the surface and the second one is
deduced from the others through a direct wedge product. In Section 4, we write
the shallow water system in the “steepest descent” curvilinear coordinates and in a
standard set of orthogonal curvilinear coordinates. Finally, we compute lubrication
models from the shallow water system by eliminating the average velocity from the
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Fig. 2.1. Curvilinear coordinates

equations.

2. Navier-Stokes equations with free surface in curvilinear coordinates

In this section, we write the Navier-Stokes equations in a system of coordinates
adapted to the geometry of the fluid layer. We first describe the change of vari-
ables from cartesian coordinates to a system of coordinates adapted to the bottom
surface geometry and show how the principal differential operators are transformed.
We decompose the fluid speed in this new reference frame and reformulate both the
boundary conditions and the Navier-Stokes equations with these new coordinates and
variables.

2.1. Curvilinear coordinates. Let y =z(x), x∈R
n,n=1,2 be the graph of

the function describing the bottom surface S. The normal n to S is given by

n=(1+‖∇xz‖2)−
1

2

(
−∇xz

1

)
=

(
−s

c

)
, (2.1)

where ‖.‖ is the classical euclidian norm in R
n. The scalar c is the cosine of the angle

θ between n and the vertical (see Fig. 2.1). From this definition and c2 +‖s‖2 =1, we
notice that

∂x c=−1

c
st∂xs, ∂xs= c(1−sst)∂2

xxz, ∂2
xxz =

c2 Id+sst

c3
∂xs. (2.2)

Here, Hb = c∂2
xxz denotes the curvature tensor of the bottom surface and ∂xs=(1−

sst)Hb. It is sometimes convenient not to work in cartesian coordinates, but in a
coordinate system adapted to the topography. This is the point of view adopted here.
In view of the fact that the models must be solved numerically, it is important to have
some flexibility in the choice of coordinates in which our models are written. In what
follows, we assume that a parametrization of the bottom surface ξ∈R

n 7→ x(ξ)∈R
n

is given.
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Define ~ξ =(ξ,ξ), a new system of coordinates, where ξ∈R
n is a curvilinear abscissa

along the bottom and ξ∈R the signed distance in the direction of the normal. The
horizontal coordinate x is given by the parametrization ξ 7→ x(ξ). Denote by ∂ξ x the
Jacobian matrix of the transformation. We assume for convenience that det(∂ξ x)>0.
In what follows, the fluid domain Ωt is defined as

~X ∈Ωt ⇔ ~X(ξ,ξ)=

(
x(ξ)

z(x(ξ))

)
+ξ

(
−s(x(ξ))
c(x(ξ))

)
, 0≤ ξ≤h(ξ,t), (2.3)

where h is the fluid height. In the following, we shall use the same notations introduced
in [2].

It is natural to define new velocity components using a decomposition of the
velocity ~U by Jacobian matrix:

~U =
(
∂~ξ

~X
)

~V ⇐⇒
{

U =(∂ξX)V −V s,
U = 1

c
st (∂ξX)V +cV ,

(2.4)

with ∂ξX =(Id−ξ∂xs)∂ξ x, U,V ∈R
n, U,V ∈R. There are other possible choices of

decomposition: see [2] for further details.
Let us define the matrix A∈ Mn+1(R) as

A=
(
∂~ξ

~X
)−1

=

(
(∂ξX)

−1
0

0 1

)(
Id−sst cs
−st c

)
. (2.5)

For further reference, we compute M̃ =AAt ∈ Mn+1(R):

M̃ =

(
M 0
0 1

)
, M =(∂ξ X)−1(Id−sst)(∂ξ X)−t ∈ Mn(R). (2.6)

The Jacobian J of the transformation is given by

J =det(∂~ξ
~X)=

1

c
det(∂ξ X)=det(M)−

1

2 .

Let us describe how the principal differential operators used in the Navier-Stokes
equations are transformed through this change of variables.

Lemma 2.1. For any vector field ~Z and any symmetric tensor σ =σt, the differential

operators transform according to

J∇ ~X
. ~Z =∇~ξ

.(J A ~Z), ~U.∇ ~X
= ~V .∇~ξ

, ∇ ~X
=At∇~ξ

,

J A−t∇ ~X
.σ =∇~ξ

.(JPAAt)+
J

2
P :∇~ξ

(AAt),
(2.7)

with P =A−tσA−1.

For the proof of this lemma, see [2].

2.2. Reformulation of the Navier-Stokes equations. The Navier-Stokes
equations for the fluid velocity ~U and the pressure p in the domain Ωt read

∂t
~U + ~U.∇ ~X

~U +∇ ~X
p=−~g+µ∇ ~X

.σ,

∇ ~X
. ~U =0.

(2.8)
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Here σ =∂ ~X
~U +(∂ ~X

~U)t is the deformation tensor, µ measures the fluid viscosity and
the vector ~g represents the gravity forces. The density of the fluid is supposed to
be constant and set to 1. These equations come with boundary conditions. We aim
to write the Navier-Stokes equations (2.8) and boundary conditions in the reference
frame introduced in the previous section with the Jacobian decomposition of the
velocity.

2.2.1. Boundary conditions. The Navier-Stokes equations (2.8) come with
boundary conditions at the bottom ξ =0 and at the free surface ξ =h(ξ,t). More
precisely, we assume a no-slip condition at the bottom

V (ξ,0)=0, V (ξ,0)=0, ∀ξ∈R
n. (2.9)

At the free surface ξ =h(ξ,t), we write that the fluid layer Ωt is advected by the fluid

speed ~V : this yields the mass conservation condition (or equivalently an imperme-
ability condition):

ht +V (.,h).∇ξ h=V (.,h). (2.10)

The other boundary condition at the free surface ξ =h(ξ,t) is the continuity of fluid
stress at that interface. For completeness, we take into account the capillary effects.
The atmospheric pressure patm is constant and set to zero. Then the continuity of
fluid stress reads

(σ−pId) ~N =κH ~N, ∀ξ =h(ξ,t). (2.11)

The scalar H is the mean curvature of the free surface, κ measures the capillary effects
and ~N is the normal to the free surface. We are going to describe more precisely the
continuity of fluid stress with the help of the new variables and the Jacobian speed
~V . Let us first compute ~N .

Lemma 2.2. The unitary normal to the free surface ξ =h(ξ,t) is given by

~N =αAt

(
−∇ξ h

1

)
, (2.12)

where α−1 =‖At

(
−∇ξ h

1

)
‖.

The proof of this lemma is straightforward and can be found in [2]. Now associated
to the deformation tensor σ, introduce P as

P =A−tσA−1 =

(
P Z
Zt f

)
. (2.13)

Lemma 2.3. The terms P,Z,f of the tensor P =A−tσA−1 with

σ =∂ ~X
~U +(∂ ~X

~U)t

are given by

Z =∂ξ(M
−1V )+∇ξ V +2∂xs

t(Id+
sst

c2
)(∂ξ X)V,

f =2∂ξ V , P =Q+Qt,
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where

Q=∂ξ(M
−1V )+∂ξ

(
(∂ξ X)t

)
.
(
(∂ξ X)V −V s

)

+
(st

c
(∂ξ X)V +cV

)
∂ξ(

(∂ξ X)t

c
s).

In the new system of coordinates, the continuity of the fluid stress (2.11) at the free
surface ξ =h(ξ,t) can be written

PhM̃h

(
−∇ξ h

1

)
−ph

(
−∇ξ h

1

)
=κH

(
−∇ξ h

1

)
, (2.14)

where the subscript ph (resp. Ph,M̃h) is the value of p (resp. P,M̃) at the free surface.
In the following, we shall note the value of flow unknowns at the free surface with a
similar subscript. Finally we can write the system (2.14) in the form

µPhMh∇ξ h+µZh +phMh∇ξ h=−κH∇ξ h,
−µ(MhZh)t∇ξ h+µfh−ph =κH.

(2.15)

2.2.2. Free divergence equation and momentum equation. In this sec-
tion, we write the Navier-Stokes equations using the curvilinear coordinates and the
Jacobian decomposition of the velocity. Using chain rules (2.7), the divergence-free
condition yields

J∇ ~X
. ~U =∇~ξ

.(J ~V )=∇ξ.(J V )+∂ξV =0. (2.16)

Multiplying the momentum equation in (2.8) by the matrix A, one finds

∂t
~V +A(~V .∇~ξ

)(A−1~V )+M̃∇~ξ
p=−A~g

+
µ

J
M̃

(
∇~ξ

.(JPM̃)+
J

2
P :∇~ξ

M̃
)
. (2.17)

We decompose the advection term A(~V .∇~ξ
)(A−1~V ) in the form

A(~V .∇~ξ
)(A−1~V )= ~V .∇~ξ

~V −~Γ(~V ), (2.18)

with

~Γ(~V )=

(
Γ(~V )

Γ(~V )

)
=

(
(∂ξ X)−1

(
−(∂2

ξξX).V.V +2V (∂ξs)V +Γ(~V )s
)

−cV t(∂ξ x)t(∂2
xxz)(∂ξ X)V

)
.

The momentum equation (2.17) can be written

∂t
~V + ~V .∇~ξ

~V +M̃∇~ξ
p=−A~g+~Γ(~V )

+
µ

J
M̃

(
∇~ξ

.(JPM̃)+
J

2
P :∇~ξ

M̃
)
. (2.19)

Note that the vector ~Γ(~V ) has a physical interpretation: it represents the centrifugal
forces experienced by the fluid and associated to the change of reference frame.

We aim to write a shallow water model for the fluid layer: it consists essentially of
an equation of mass conservation and an equation for the streamwise velocity averaged
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along the fluid height. For this purpose, we separate the equation for the horizontal
velocity V and vertical velocity V , and obtain the system

∂tV + ~V .∇~ξ
V +M∇ξ p=−gc(∂ξ X)−1s+Γ(~V )

+
µ

J
M

(
∇ξ.(JPM)+∂ξ(JZ)+

J

2
P :∇ξM

)
, (2.20)

∂tV + ~V .∇~ξ
V +∂ξ p=−gc+Γ(~V )

+
µ

J

(
∇ξ.(JMZ)+∂ξ(J f)+

J

2
P :∂ξM

)
. (2.21)

2.3. Averaged equations. In what follows, we obtain exact evolution equa-
tions for the fluid height h and the streamwise velocity averaged along the fluid height.
This system is composed of an equation of mass conservation and a momentum equa-
tion. Let us first write the equation of mass conservation with average quantities. In
the following, all the integrals computed are integrals of functions with respect to the
cross-stream variable ξ: for a function f(ξ,ξ), we shall write

∫
f =

∫
f(ξ,ξ)dξ, (2.22)

and the bounds of integration are specified for each calculation.
Integrating the divergence free condition (2.16) over (0,h) yields

JhV h +

∫ h

0

∇ξ.(JV )=JhV h +∇ξ.

(∫ h

0

J V

)
−JhVh.∇ξ h=0. (2.23)

Here and in the following, the subscripted quantity Jh (resp. Vh, V h, ph,etc.) de-
notes the value of J (resp. V , V , p) at the free surface ξ =h(ξ,t). Using the mass
conservation condition (2.10), one finds

Jh∂th+∇ξ.

(∫ h

0

J V

)
=0. (2.24)

Since J is time-independent, Equation (2.24) can also be written

∂t

(∫ h

0

J

)
+∇ξ.

(∫ h

0

J V

)
=0. (2.25)

In order to write the mass conservation equation in a simple form, we introduce the
average quantities

h̃=

∫ h

0

J, h̃ṽ =

∫ h

0

J V,

and the mass conservation equation (2.25) reads

h̃t +∇ξ.
(
h̃ ṽ

)
=0. (2.26)

In the following, we shall write an evolution system for the more natural quantities

(h̃,h̃ṽ). We will see later that under suitable hypothesis, we can deduce h and
∫ h

0
V
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from h̃ and h̃ṽ. Integrating the left hand side of Equation (2.20) over the interval
(0,h) yields

∫ h

0

J(∂tV + ~V .∇~ξ
V +M∇ξ p)=∂t

(∫ h

0

JV

)
+∇ξ.

(∫ h

0

JV ⊗V

)

+∇ξ.

(∫ h

0

JM p

)
−

∫ h

0

p∇ξ.(JM)

+Jh(ht +Vh.∇ξ h−V h)Vh−JhphMh∇ξh.

(2.27)

Furthermore, we integrate the right hand side of (2.20) and use the boundary condi-
tions (2.15). We find

∂t

(∫ h

0

J V
)

+∇ξ.
(∫ h

0

JV ⊗V + JpM
)

=−gc

∫ h

0

J(∂ξ X)−1s−µJ0M0Z0 +

∫ h

0

J Γ(~V )+

∫ h

0

p∇ξ.(JM)

+
µ

2

∫ h

0

JM(P :∇ξM)−µ

∫ h

0

J (∂ξM)Z

+µ∇ξ.

∫ h

0

JMPM −µ

∫ h

0

JPM ::∂ξ M

+µJhMhZh−µJhMhPhMh∇ξ h+JhphMh∇ξh, (2.28)

where (A ::∂ξB) is the operator defined by (A ::∂ξB)i =tr(A∂ξB
i), Bi being the i-th

column of B. The continuity of the fluid stress at the free surface yields

µJhMhZh−µJhMhPhMh∇ξ h+JhphMh∇ξh=−κHJhMh∇ξh.

As a consequence, the equation for the average momentum
∫ h

0
J V = h̃ṽ reads

∂t

(∫ h

0

J V
)
+∇ξ.

(∫ h

0

JV ⊗V + JpM
)

+κHJhMh∇ξh

=−gc

∫ h

0

J(∂ξ X)−1s−µJ0M0Z0 +

∫ h

0

J Γ(~V )

+

∫ h

0

p∇ξ.(JM)+
µ

2

∫ h

0

JM(P :∇ξM)−µ

∫ h

0

J (∂ξM)Z

+µ∇ξ.

∫ h

0

JMPM −µ

∫ h

0

JPM ::∂ξ M. (2.29)

This equation is exact and no approximation has been done for the moment in order
to obtain an evolution system for (h̃,h̃ṽ) in a closed form: this shall be done in the
forthcoming section.

3. Shallow water asymptotics

In the following, we derive the shallow water equations from the Navier-Stokes
system (2.16, 2.17) and boundary conditions (2.9, 2.10, 2.15); scaling these equations,
we shall specify in which parameter regime the classical assumptions made for the



38 SHALLOW WATER VISCOUS FLOWS FOR ARBITRARY TOPOGRAPHY

derivation of the shallow water equations (hydrostatic pressure, quasi-stationary flow)
hold true. Then we compute an asymptotic expansion of the Navier-Stokes equations
with respect to the aspect ratio, ε= H

L
≪1, between the characteristic height of the

fluid, and L, the characteristic wavelength of the solutions; inserting these approxi-
mations into the averaged equation (2.29) and dropping “small” terms, we deduce an

evolution system for h̃ and h̃ṽ =
∫ h

0
J V in a closed form.

3.1. Scaling of the equations. Let U0 and H be respectively the character-
istic velocity and height of a flow. We define classically some dimensionless numbers,
respectively the Froude number F, the Reynolds number Re and the Weber number
We:

F=
U0√
gH

, Re=
HU0

µ
, We=

HU2
0

κ
. (3.1)

We do not make precise here the characteristic speed U0; nevertheless, several choices
are possible. As an example, for an inclined plane with a non-zero slope φ, the
stationary Nusselt solution is given by

h=H, V =0, V =
g sin(φ)

µ

(
Hξ− ξ

2

2

)
.

Thus, in this case a typical choice of speed U0 could be U0 =
gH2

2µ
sin(φ), and F2 =

Re

2
.

In the following, we consider functions with a characteristic wavelength L such
that the aspect ratio ε=H/L≪1. We introduce the scaling

x=Lx̃, ξ =Lξ̃, h=Hh̃, ξ =Hξ̃, t=
L

U0
t̃

V =U0Ṽ , V =
H

L
U0Ṽ , p=gHp̃.

(3.2)

Let us describe the bottom surface in this scaling. In order to deal with arbitrary
topography, we will suppose that s=O(1). This means that ∇xz =O(1) and imposes
the scaling on z =Lz̃. Let us describe the curvature of the bottom surface. Here, we
want to separate the long wavelength assumption on the free surface and the curvature
of the bottom surface. For that purpose, we assume that the curvature of the surface
is of order O(1/R) where R is the characteristic radius of curvature of the bottom
surface and is not necessarily of order O(L). Then, the derivatives ∂xs and ∂2

xxz are
O(1/R). Let us introduce θR = L

R
, the ratio between the characteristic wavelength of

flow variables, and R, the characteristic curvature of the bottom surface, and define
the rescaled bottom curvature Hb = θR

L
H̃b. We shall see later that choosing different

values for θR yields different type of models, in particular the influence of capillarity.
Here we have introduced the parameter θR coherent with the scaling, which de-

scribes the typical curvature of the bottom surface. It is important to note that we
have made no restriction on the amplitude of the inclination and curvature of the
bottom: the size of these parameters with respect to ε, especially the characteristic
curvature θR, will be discussed at the end of the paper to distinguish different models.

For the other quantities Γ,H,P,Z,f , we choose the natural scaling:

Γ=
U2

L
Γ̃, H=

1

L
H̃, P =

U

L
P̃ , f =

U

L
f̃, Z =

U

H
Z̃.
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Now we write the Navier-Stokes equations in a non-dimensional form. Dropping the
∼ from the equations (2.20), (2.21), we find:

∂tV + ~V .∇~ξ
V +

M

F2
∇ξ p=− 1

εF2
c(∂ξ X)−1s

+(∂ξ X)−1
(
θRΓ(~V )s−(∂2

ξξX).V.V +2εθRV (∂ξs)V
)

+
1

JεRe

(
∂ξ(JZ)+ε2

(
∇ξ.(JPM)+

J

2
P :∇ξ M

))
,

(3.3)

∂tV + ~V .∇~ξ
V +

1

ε2F2
∂ξp=− 1

ε2F2
c+

θR

ε
Γ(~V )

+
1

JεRe

(
∇ξ.(JMZ)+∂ξ(Jf)+

J

2
P :∂ξM

)
. (3.4)

Note that, in these equations, the rescaled quantities related to the change of
reference frame are given by

J =
det(∂ξ x)

c
det

(
Id−εθRξ(∂xs)

)
, ∂ξ X =

(
Id−εθRξ(∂xs)

)
∂ξ x,

M =(∂ξ x)−1
(
Id−εθRξ(∂xs)

)
(Id−sst)

(
Id−εθRξ(∂xs)

t
)
(∂ξ x)−t,

(3.5)

whereas the rescaled quantites associated to the flow variables read:

Z =∂ξ(M
−1V )+2εθR(∂ξs)

t

(
Id+

sst

c

)
∂ξ XV +ε2∇ξV ,

f =2∂ξV , P =Q+Q
t
,

(3.6)

with Q defined as

Q=∂ξ(M
−1V )+∂ξ

(
(∂ξ X)t

)
.
(
(∂ξ X)V −εV s

)

+
(st

c
(∂ξ X)V +εcV

) (∂ξ X)ts

c
. (3.7)

The particular choice of characteristic velocity for the vertical velocity V implies
that the divergence-free condition (2.16) is preserved under the shallow water scaling

∇ξ.V +∂ξV =0. (3.8)

We write the rescaled boundary conditions at the bottom ξ =0 and at the free
surface ξ =h(ξ,t). On the one hand, the no-slip conditions at the bottom and the
impermeability condition (see (2.9) and (2.10)) are unchanged under the shallow water
scaling:

V (.,ξ =0)=0, V (.,ξ =0)=0,
∂th+Vh.∇ξ h=V h.

(3.9)

On the other hand, the continuity of fluid stress (2.15) at the free surface reads

ε

F2
phMh∇ξ h+

1

Re
MhZh−

ε2

Re
MhPhMh∇ξ h=−ε2H

We
Mh∇ξ h,

ε

Re

(
fh−(MhZh)t∇ξ h

)
− 1

F2
ph =

εH
We

.
(3.10)
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Finally, we write the nondimensional counterpart of the averaged equations (2.25)
and (2.29); this yields exact evolution equation for

h̃=

∫ h

0

J, h̃ṽ =

∫ h

0

J V, (3.11)

where h,J,V are the rescaled flow variables. The dimensionless continuity equation
reads

∂t

(∫ h

0

J

)
+∇ξ.

(∫ h

0

J V

)
=0. (3.12)

Integrating Equation (3.3) over the interval (0,h) and using the rescaled boundary
conditions yields the averaged momentum equation:

∂t

(∫ h

0

JV

)
+∇ξ.

(∫ h

0

JV ⊗V

)
+

1

F2
∇ξ.

(∫ h

0

JpM

)
+

εH
We

JhMh∇ξ h

=− 1

εF2
c

∫ h

0

J(∂ξ X)−1s− 1

εRe
J0∂ξV0

+

∫ h

0

J(∂ξ X)−1
(
θRΓ(~V )s−(∂2

ξξX).V.V +2εθRV (∂xs)V
)

(3.13)

+
1

F2

∫ h

0

p∇ξ.(JM)− 1

εRe

∫ h

0

J(∂ξ M)Z

+
ε

Re

(
∇ξ.

∫ h

0

JMPM +

∫ h

0

J

2
M(P :∇ξ M)−JPM ::∂ξM

)
.

3.2. Asymptotics. In the following, we write an evolution system for h̃=
∫ h

0
J

and h̃ṽ =
∫ h

0
JV . Recall the continuity equation (3.12)

∂t h̃+∇ξ.(h̃ṽ)=0. (3.14)

We shall write an approximate evolution equation for h̃ṽ using (3.13). For that pur-
pose, we assume that the aspect ratio ε= H

L
≪1 and we introduce the dimensionless

parameters

α=
εF2

Re
, β =εRe, δ =

εRe

F2
, λ=

Re

F2
, κ=

εF2

We
. (3.15)

From the assumption ε≪1 and considering the Reynolds number Re and the Froude
number F to be of order one, we deduce that α,β,δ≪1 and λ=O(1). In fact, we shall
see later that the expansions carried out in what follows remain valid provided that
α,β,δ≪1; thus, the range of validity of the models obtained here is not restricted to
Reynolds and Froude numbers of order one. In particular, we can choose Re→∞ as
ε→0. To see the influence of the capillary effects, we shall assume that κ=O(1).

We now study the influence of the shallow water scaling on the Navier-Stokes
equations. Using Equation (3.4), a straightforward computation yields an equation
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for the pressure:

∂ξp+c=
α

J

(
∇ξ.(JMZ)+∂ξ(Jf)+

J

2
P :∂ξM

)

+
θRβ

λ
Γ(~V )−αβ(∂tV + ~V .∇~ξ

V )=:Ψp(~V ,~ξ,t). (3.16)

In the asymptotic regime α,β≪1, θR,λ=O(1), we clearly recover the classical as-
sumption of hydrostatic pressure made in the derivation of shallow water equations.
Moreover, the continuity of the fluid stress at the free boundary ξ =h implies that
the pressure at the free surface is given by (see Equation (3.9)):

ph =−κH+α
(
fh−(MhZh)t∇ξ h

)
:=Πp(~Vh,ξ,t). (3.17)

Integrating (3.16) with the boundary condition (3.17), one finds

p= c(h−ξ)+Πh(~Vh,ξ,t)−
∫ h

ξ

Ψp(~V ,~ξ,t). (3.18)

If we consider that the derivatives of h,V,V are bounded and O(1), one can see
that p is determined up to order one and that

p= c
(
h−ξ

)
−κH+O

(
α+

θR

λ
β
)
=p(0) +O

(
α+

θR

λ
β
)
. (3.19)

Let us now see the influence of the scaling assumption ε,α,β,δ≪1 on the velocity
profile. Expanding rescaled quantities in (3.5), (3.6) with respect to ε,α,β,δ≪1 and
λ,κ=O(1), we find for the rescaled quantities associated to the change of reference
frame that

J =J
(
1−εθR ξ tr(∂xs)

)
+O(ε2θ2

R),

∂ξ X =∂ξ x−εθR ξ (∂ξs)+O(ε2θ2
R),

M =M +2εθR ξ (∂ξ x)−1
(
(Id−sst)Hb(Id−sst)

)
(∂ξ x)−t +O(ε2θ2

R),

with J =
det(∂ξ x)

c
and M =(∂ξx)−1(Id−sst)(∂ξx)−t. The rescaled quantities related

to the flow unknows have the expansion

h̃=Jh−εθRJtr(∂xs)
h2

2
+O(ε2θ2

R)

Z =M
−1

∂ξV −2εθR (∂ξ x)tHb(∂ξ x)ξ (∂ξV )+O(ε2θ2
R +ε2), (3.20)

Note that from the expansion of h̃, we can easily obtain an expansion of the
physical fluid height h:

Jh= h̃+εθRtr(∂xs)
h̃2

2J
+O(ε2θ2

R).
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Now we insert the previous expansions into Equation (3.3) and find that

∂2
ξξ

(JV )−λcJ(∂ξ x)−1s=βJ(∂tV + ~V .∇ξ V −Γ(~V ))+δJ M∇ξ p

−δθRξcJ(∂ξ x)−1
(
tr(∂xs)Id+∂xs

)
s

+εθRJ
(
tr(∂xs)∂ξ(ξ∂ξV )−2(∂ξ x)−1(∂xs)(∂ξ x)∂ξV

)

+2εθRJ(∂ξ x)−1 (∂xs)(∂ξ x)∂2
ξξ

(V )+O(ε2 +ε2θ2
R).

(3.21)

In order to simplify the notation, we shall define the right hand side of (3.21) as

ΨV (~V ,p,~ξ,t), and (3.21) reads

∂2
ξξ

(JV )−λcJ(∂ξ x)−1s=ΨV (~V ,p,~ξ,t). (3.22)

The continuity of the fluid stress at the free boundary ξ =h implies (see Equation
(3.9)):

Zh =αδ
(
PhMh−

(
fh−(MhZh)t∇ξ h

)
Id

)
∇ξ h=O(ε2),

∂ξVh =2εθR(∂ξ x)−1(∂xs)(∂ξ x)h∂ξVh +O(ε2 +ε2θ2
R)=Πv(~Vh,ξ,t). (3.23)

The no-slip condition yields

V0 =0. (3.24)

Integrating (3.22) with respect to the cross-stream variable ξ with the boundary
conditions (3.23, 3.24), one obtains

V =−λc

(
hξ− ξ

2

2

)
(∂ξ x)−1s− 1

J

∫ ξ

0

∫ h

z

ΨV (~V ,p,~ξ,t)+ξΠv(~Vh,ξ,t). (3.25)

It is easily seen that up to order one in ε,α,β,δ, the streamwise speed V is uniquely
defined by

V =−λc

(
hξ− ξ

2

2

)
(∂ξ x)−1s+O(εθR +β+δ)=V (0) +O(εθR +β+δ). (3.26)

Up to order one, the profile of the streamwise speed V is parabolic with respect to the
variable ξ; when the bottom surface is an inclined plane, this corresponds exactly to a
Nusselt stationary flow. In the present case, the flow is locally close to a Nusslet type
flow which is a local equilibrium. Thus, the scaling assumption ε≪1 implies that
at each time, the solution is close to a local equilibrium; this is the other classical
assumption made in the derivation of shallow water equations.

Finally, we obtain an asymptotic expansion for V by integration of the divergence-
free condition ∇ξ .V +∂ξV =0 with the no-slip condition V (ξ,0)=0. One easily ob-
tains

V =−
∫ ξ

0

∇ξ.V =V
(0)

+O(β+δ+εθR), (3.27)
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with V
(0)

=−
∫ ξ

0
∇ξ.V

(0).

We describe now the method to derive shallow water equations from the in-
compressible Navier-Stokes equations in the parameter regime described above; the
method is mainly based on an iterative scheme. First, based on equations (3.18, 3.25,

3.27), we define the sequence of functions (V (n),V
(n)

,p(n))n∈N by

V (0) =−λc

(
hξ− ξ

2

2

)
(∂ξ x)−1s,

V
(0)

=

∫ ξ

0

∇ξ.V
(0)dz,

p(0) = c
(
h−ξ

)
−κH. (3.28)

Then at the (n+1)-step, the functions (V (n+1),V
(n+1)

,p(n+1)) are defined as

V (n+1) =V (0)− 1

J

∫ ξ

0

∫ h

z

ΨV (~V (n),p(n),~ξ,t)dsdz+ξΠv(~V
(n)
h ,ξ,t),

V
(n+1)

=−
∫ ξ

0

∇ξ.V
(n+1)dz,

p(n+1) = c(h−ξ)+Πh(~V
(n+1)
h ,ξ,t)−

∫ h

ξ

Ψp(~V
(n+1),~ξ,t)dz. (3.29)

Then, this sequence of functions converges formally to (V,V ,p) a solution of the
Navier-Stokes equations. More precisely, denote the operator F so that the iterative
scheme define previously reads

(
V (n+1),V

(n+1)
,p(n+1)

)
=F

(
V (n),V

(n)
,p(n)

)
. (3.30)

Then any solution
(
V,V ,p

)
of the Navier Stokes equations with boundary conditions

is a fixed point of F . Moreover, this operator is O(α+β+δ+ε+εθR)-Lipschitz on

any bounded set. As a consequence, and provided that the sequence (V (n),V
(n)

,p(n))
and the derivatives of the Navier-Stokes solutions remain uniformly bounded with
respect to α, β, δ, ε,εθR, one can prove by induction the following estimate

max(|V −V (n)|,|V −V
(n)|,|p−p(n)|)=O

(
(α+β+δ+ε+εθR)n+1

)
. (3.31)

As a consequence, we obtain an asymptotic expansion of V, V , p with respect to
ε,α, β, δ to any order in ε,α, β, δ. This step of the computation can be implemented
using a formal computation software. Using this expansion, we easily deduce an
expansion of ṽ and compute an expansion of the different terms in the average equation
(3.13). Dropping terms in this equation of a fixed order, we obtain a hierarchy of
models. In what follows, we compute the shallow water model obtained by dropping
all small terms in the average equation. We shall see that an approximation of V,p
up to order one is needed to carry out such a computation. Let us first compute the
zeroth order approximation of V,p and see which terms we keep in (3.13).
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3.2.1. Asymptotic to order 0. In this section, we compute the zeroth
order approximation of V, p and check which terms we keep in (3.13). Recall that
V =V (0) +O(β+δ+ǫθR) with

V (0) =−λc

(
hξ− ξ

2

2

)
(∂ξ x)−1s. (3.32)

We can compute an approximation of ṽ:

h̃ṽ =

∫ h

0

J V =

∫ h

0

J V (0) +O(εθR +β+δ)

=−λcJ(∂ξ x)−1s

∫ h

0

(hξ− ξ
2

2
)+O(εθR +β+δ)

=−λcJ
h3

3
(∂ξ x)−1s+O(εθR +β+δ). (3.33)

Then up to zeroth order, we find that

ṽ =−λc(∂ξ x)−1s
h̃2

3J
2 .

We calculate the zeroth order approximation of the other terms in the left hand side
of (3.13) as functions of h̃, ṽ.

The advection term
∫ h

0
J V ⊗V reads:

∫ h

0

J V ⊗V =J

∫ h

0

V (0)⊗ V (0) +O(εθR +β+δ),

=λ2c2J(∂ξ x)−1s⊗(∂ξ x)−1s

∫ h

0

(
hξ− ξ

2

2

)2

+O(εθR +β+δ),

=
2λ2c2

15

h̃5

J
4 (∂ξ x)−1s⊗(∂ξ x)−1s+O(εθR +β+δ),

=
6

5
h̃ṽ⊗ ṽ+O(εθR +β+δ). (3.34)

Integrating the pressure equation (3.16) with the boundary condition (3.17), one
proves that the pressure p is given by

p=−κH+c(h−ξ)+O(εθR +α). (3.35)

Up to zeroth order, the average terms containing the pressure are given by:

∫ h

0

J pM =J M

(
c
h2

2
−κHh

)
,

∫ h

0

p∇ξ.(J M)=∇ξ.(J M)
(
c
h2

2
−κHh

)
.

(3.36)



M. BOUTOUNET, L. CHUPIN, P. NOBLE AND J.P. VILA 45

As a consequence, the average equation (3.13) reads:

∂t (h̃ ṽ)+
6

5
∇ξ.(h̃ṽ⊗ ṽ)+

δ

β
J M∇ξ

(
c
h̃2

2J

)
−κ

δ

β
h̃M∇ξH

=− 1

β

(
λc

∫ h

0

J(∂ξX)−1s+J∂ξV (0)
)

+

∫ h

0

J(∂ξX)−1
(
θRΓ(~V )s−(∂2

ξξX).V.V
)

− 1

β

∫ h

0

J(∂ξM)Z +O
(
(εθR +α)

δ

β
+β+δ+εθR

)
. (3.37)

It is a straightforward computation to prove that the zeroth order terms in the right
hand side of (3.37) read

∫ h

0

J(∂ξ X)−1(θRΓ(~V )s−(∂2
ξξ X).V.V )

=− 2h̃5

15J
4 λ2c2(∂ξ x)−1

(
(∂2

ξξx).(∂ξ x)−1s.(∂ξ x)−1s+θR (stHbs)s
)
+O(εθR +β+δ),

1

β

∫ h

0

J(∂ξ M)Z =− δ

β
c(∂ξ x)−1 (∂xs)s

h̃2

J
+O

(εθR

β
(δ+δθR +β+εθR)

)
.

Due to the presence of the factor − 1
β

in front of λc
∫ h

0
J(∂ξ X)−1s+J∂ξV (0), we need

an expansion of the wall shear ∂ξV (0) and the average velocity ṽ up to order 1 in
order to eliminate ∂ξV (0) from (3.37). This is done in the next section.

3.2.2. Asymptotic to order 1. This section is devoted to the computation
of an asymptotic expansion of V up to order one: this enables us to compute ṽ and
∂ξV (0) as a function of h̃,ξ and ε,α,β,δ up to order one. We can then insert the
resulting expressions in (3.37); dropping small terms, we find a shallow water model
for arbitrary topography.

We first prove that

λc

∫ h

0

J(∂ξ X)−1s=λch̃(∂ξ x)−1s+δθR c
h̃2

2J
(∂ξ x)−1(∂xs)s+O(ε2θ2

R).

Using the iterative scheme described in the previous section, we find after an integra-
tion on (ξ,h) and up to order one:

∂ξ(JV )+λcJ(∂ξ x)−1s(h−ξ)

=J

∫ h

ξ

β
(
Γ(~V (0))−∂tV

(0)− ~V (0).∇~ξ
V (0)

)

−δM∇ξ p(0) +δθRcJ(∂ξ x)−1(tr(∂xs)Id+∂xs)s

∫ h

ξ

zdz

+εθRJtr(∂xs)ξ(∂ξV )(0) +2εθRJ(∂ξ x)−1(∂xs)(∂ξ x)V (0)

+2εθRJ(∂ξ x)−1(∂xs)(∂ξ x)∂ξ(ξV
(0))

+O
(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
. (3.38)
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Setting ξ =0 in (3.38), one obtains an expansion for ∂ξV (0):

J∂ξV (0)+λch̃(∂ξ x)−1s= δP1 +βλP2 +P3, (3.39)

with Pi defined by

P1 =θR c(∂ξ x)−1 (∂xs)s
h̃2

2J
−J M

(
∇ξ(ch−κH)h−∇ξ c

h2

2

)
,

P2 =Jc(∂ξ x)−1sht

h2

2
−λc∇ξ.(Jc(∂ξ x)−1s)

h5

120
+λc∇ξ.(Jch(∂ξ x)−1s)

h4

120

−Jλc2(∂ξ x)−1
(
(∂2

ξξx).(∂ξ x)−1s.(∂ξ x)−1s+θR(stHbs)s
)2h5

15

−λcJ(∂ξ x)−1s.∇ξ(ch(∂ξ x)−1s)
5h4

24
+λcJ(∂ξ x)−1s.∇ξ(c(∂ξ x)−1s)

3h5

40
,

P3 =O
(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
. (3.40)

Let us now compute an asymptotic expansion for h̃ṽ up to order one.
Integrating twice Equation (3.38) on ∂ξV , we can prove that

∫ h

0

JV +λcJ(∂ξ x)−1s
h3

3
= δQ1 +βλQ2 +Q3, (3.41)

with Qi given by

Q1 =θR cJ(∂ξ x)−1(∂xs)s
h4

4
−θR cJ(∂ξ x)−1(∂xs)s

5h4

12

+θRJc(∂ξ x)−1
(
tr(∂xs)Id+(∂xs)

)
s
5h4

24
−θRcJtr(∂xs)(∂ξ x)−1s

h4

12

−J M
(
∇ξ(ch−κH)

h3

3
−∇ξ c

5h4

24

)
,

Q2 = cJ(∂ξ x)−1sht

5h4

24

−Jλc2(∂ξ x)
(
(∂2

ξξx).(∂ξ x)−1s.(∂ξ x)−1s+θR(stHbs)s
)2h7

35

−λcJ(∂ξ x)−1s.∇ξ(ch∂ξ x−1s)
11h6

120
+λcJ(∂ξ x)−1s.∇ξ(c(∂ξ x)−1s)

29h7

840

+λc∇ξ.(Jch(∂ξ x)−1s)(∂ξ x)−1s
h6

60
−λc∇ξ.(Jc(∂ξ x)−1s)(∂ξ x)−1s

3h7

840
,

Q3 =O
(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
. (3.42)

Moreover, it is easily seen that we can deduce h̃ṽ from
∫ h

0
JV dξ with the equation:

h̃ṽ =

∫ h

0

JV −εθR

∫ h

0

tr(∂xs)ξV
(0) +O

(
εθR(β+δ+ǫθR)

)
. (3.43)

Finally we have

λcJ(∂ξ x)−1s
h3

3
=λc(∂ξ x)−1s

h̃3

3J
2 +δθR ctr(∂xs)(∂ξ x)−1s

h̃4

2J
2 +O(ε2θ2

R). (3.44)
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Using equations (3.41), (3.43) and (3.44), one finds an expansion for h̃ṽ up to order

one as a function of h̃,ξ and (ε,α,δβ). Similarly, Equation (3.39) gives an expansion of
∂ξV (0) up to order one; thus we can eliminate ∂ξV (0) from Equation (3.37) to obtain
a shallow water model. We shall see later that there are different ways of eliminating
∂ξV (0), which gives a family of models. More precisely, from (3.41), (3.43), (3.44)
and (3.39), we define R1 and R2 to be the terms of order one such that

J∂ξV (0)=−λch̃(∂ξ x)−1s−R1(h̃,ξ)

+O
(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
,

h̃ṽ =λc
h̃3

3J
2 (∂ξ x)−1s−R2(h̃,ξ)

+O
(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
. (3.45)

From (3.45), we compute an expansion of ∂ξV (0) up to order one involving the average

quantities h̃, ṽ, the variable ξ and the parameters α, β, δ, ε:

−J∂ξV (0)=−3J
2

h̃
ṽ+R1(h̃,ξ)− 3J

2

h̃2
R2(h̃,ξ)

+O
(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
, (3.46)

Inserting (3.46) into (3.37), one finds

∂th̃+∇ξ.(h̃ṽ)=0,

∂t(h̃ṽ)+
6

5
∇ξ.(h̃ṽ⊗ ṽ)+

δ

β
JM∇ξ (c

h̃2

2J
)−κ

δ

β
h̃M∇ξH

=− 1

β

(
λch̃(∂ξ x)−1s+

3J
2

h̃
ṽ
)

+T1 +R, (3.47)

with

R=O
( 1

β

(
ε2θ2

R +δ(α+εθR

)
+β+δ+εθR

)
.

The function T1 depends on ξ and h̃ and reads:

T1 =
δ

β
T (1)

1 +λ2T (2)
1 ,
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with

T (1)
1 =

(M

8
∇ξ c+

3

4
c(∂ξ x)−1(∂xs)s−

5

8
c(∂ξ x)−1(∂xs)s−

c

2
tr(∂xs)(∂ξ x)−1s

) h̃2

J

T (2)
1 = c(∂ξ x)−1s.∇ξ(c(∂ξ x)−1s)

h̃5

35J
4 −c(∂ξ x)−1s.∇ξ

(
c
h̃

J
(∂ξ x)−1s

)
h̃4

15J
4

+
(
∇ξ.(c

h̃3

J
3 (∂ξ x)−1s)

h̃2

24J
2 +∇ξ.(ch̃(∂ξx)−1s)

h̃4

120J
4

)
c(∂ξ x)−1s

−∇ξ.(Jc(∂ξ x)−1s)
h̃5

420J
5 c(∂ξ x)−1s

− 6

35
c2(∂ξ x)−1

(
∂2

ξξx.(∂ξ x)−1s.(∂ξ x)−1s+θR(stHbs)s
) h̃5

J
4 . (3.48)

We easily see that provided that the dimensionless numbers Re,F,κ are of order one,
the higher order term R is O(ε) and it is negligible in the scaling limit ε≪1. Then

dropping these high order terms, one finds a shallow water model for h̃,h̃ṽ in a closed
form. Furthermore, we clearly see that the conclusion of the expansion remains true

if we only suppose that α,β,δ,εθR ≪1 and
ε2θ2

R

β
, δ

β
α, δ

β
εθR ≪1. As a consequence, the

model remains vallid not only for Reynolds and Froude numbers of order one but also
for Re,F→∞ as ε→0 provided that we choose a suitable dependence of Re,F with
respect to ε.

This formulation has the advantage of being independent of the parametrization
of the bottom surface S, but it is quite hard to work with that formulation. In order
to carry out numerical simulations, we have to specify curvilinear coordinates. In the
following, we are going to choose particular parametrizations of the bottom surface
S. Moreover, we shall be more precise on the asymptotic expansion of the mean
curvature of the free surface H with respect to ε,ξ and h̃,Hb; this will be done in the
next section for a particular parametrization.

4. Shallow water models for particular parametrizations

In this section, we parametrize the bottom surface with two systems of coordi-
nates: the “steepest descent” curvilinear coordinates and the classical orthonormal
coordinates. We write the shallow water equations in this framework for n-dimensional
flows (n=2 or n=3), which gives (n−1)-dimensional shallow water equations.

4.1. Shallow water equations in the steepest descent parametrization.

In what follows, we describe the “steepest descent” curvilinear coordinates and write
the shallow water equations in that setting. First, we define θ,φ such that the normal
n to the surface S is given by (see part 2.1):

n=



− ∇xz√

1+‖∇xz‖2

1√
1+‖∇xz‖2


 ⇐⇒ n=




sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)


 . (4.1)
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Here θ represents the local inclination of the bottom surface. We are going to use the
“steepest descent” curvilinear coordinates ξ1,ξ2 so that we have

∂x

∂ξ1
=cos(θ)cos(φ),

∂x

∂ξ2
=−sin(φ),

∂y

∂ξ1
=cos(θ)sin(φ),

∂y

∂ξ2
=cos(φ),

or equivalently

∂ξ x=

(
cos(θ)cos(φ) −sin(φ)
cos(θ)sin(φ) cos(φ)

)
.

This system of coordinates is uniquely defined provided that a “steepest descent”
direction exists; this condition is satisfied if s 6=0. This direction is at the intersection
of the tangent plane to the bottom surface and the plane spanned by the normal to
the surface and the gravity vector; we shall see later that it is the principal direction
where the fluid flows. As a consequence of this definition, we see that this system of
coordinates is designed for gravity-driven flows but is not relevant for fluids driven
by other external forces. In this system of coordinates, the rescaled quantities J,M
associated to the change of reference frame are particularly simple. It is easily proved
that

J =1, M =Id, c(∂ξ x)−1s=−sin(θ)e1,

with e1 =(1,0)t.
Let us now compute an asymptotic expansion for the rescaled curvature of the

free surface. Using Lem. 2.2, the rescaled unitary normal ~N to the free surface reads

~N =
~n

‖~n‖ with

~n=

(−s−ε(Id−sst)(∂ξx)−t∇ξh

c−ε
(
c(∂ξx)−1s

)t∇ξh

)
+O

(
ε2θR

)
. (4.2)

Then the rescaled mean curvature is given by

(n−1)H=divx

(
(sε(Id−sst)(∂ξx)−t∇ξh)/‖~n‖

)
,

=θRtr
(
(∂ξx)−1∂ξs

)
+εtr

(
(∂ξx)−1∂ξ

(
(∂ξx)∇ξh

))
+O(ε2). (4.3)

As a consequence, the expansion of H with respect to ε is given by

H=θRHb +
ε

n−1

(
∆ξ h̃+θR∇ξh̃.Vθ,φ

)
+O(ε2), (4.4)

with Vθ,φ =

(
cos(θ)sin(2φ)∂2φ−tan(θ)∂1θ,− ∂1φ

cos(θ)

)t

.

Here, θRHb represents the mean curvature of the bottom surface. At this stage,
two situations occur. Either θR =O(1) or θR = ′(ε): in the first case the mean curva-
ture of the free surface is, up to order one, given by the mean curvature of the bottom
surface:

H=−1

2

( ∂θ

∂ξ1
+sin(θ)

∂φ

∂ξ2

)
+O(ε).
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In this particular case, the shallow water equations (3.47) have the more explicit form:

∂th̃+∇ξ.(h̃ṽ)=0,

∂t(h̃ṽ)+∇ξ.
(6

5
h̃ṽ⊗ ṽ− λ2 sin2(θ)h̃5

75
e1⊗e1

)
+

δ

2β
∇ξ(cos(θ)h̃2)

=−κδθR

2β
h̃∇ξ.(∂1θ+sin(θ)∂2φ)+

1

β

(
λh̃sin(θ)e1−

3ṽ

h̃

)

+
δ

β
h̃2 sin(θ)

(
− θR

2 (∂1θ+sin(θ)∂2φ)+ θR−1
8 ∂1φ

− 1
8 (∂2θ−θR sin(θ)∂1φ)

)

− 6

35
λ2h̃5 sin2(θ)

(
(θR−1)tan(θ)∂1θ

cos(θ)φ1

)

− 3

175
λ2h̃5 sin(θ)cos(θ)∂1θe1. (4.5)

If we restrict our attention to a 2-dimensional flow for the Navier-Stokes system and
θR =1, we easily get the one dimensional shallow water model

∂th̃+∂ξ(h̃ṽ)=0,

∂t(h̃ṽ)+∂ξ

(6

5
h̃ṽ2− λ2 sin2(θ)h̃5

75
+

δ cos(θ)h̃2

2β

)
+κ

δ

β
h̃∂2

ξξ θ

=
1

β

(
λh̃sin(θ)− 3ṽ

h̃

)
−

( δ

2β
+

3λ2h̃3

175
cos(θ)

)
sin(θ)∂ξθ. (4.6)

Here the ξ variable is the classical curvilinear coordinate. We clearly see that no
contribution including third order derivatives of h̃ appears in the capillary term. In
this case, the capillary effects are essentially supported by the curvature of the bottom
surface which is assumed to be not small: capillarity is not dispersive in this case
and acts as a classical friction or damping term −κh̃∇ξ Hb, depending on the mean
curvature sign of the bottom surface.

In order to recover the classical “dispersive” capillary term involving third order
derivatives of h̃, let us assume that the curvature of the bottom is small: more precisely
we consider θR =εθ̃R. In this particular case, we find:

H=εθ̃RHb +
ε

n−1
∆ξ h̃+O(ε2). (4.7)

Then, the contribution of the capillarity term in (3.47) is negligible if κ=O(1): we
only see the influence of the capillary terms provided that εκ=O(1). Denoting κ̃=εκ,
the capillary term in (3.47) reads:

−κ
δ

β
h∇ξH=−κ̃

δ

β
h̃∇ξ

(
θ̃RHb +

1

n−1
∆ξ h̃

)
+O(ε). (4.8)

In the case of shallow water flows over a flat and horizontal bottom, we clearly recover
the classical form of the capillary term −κ̃ δ

β
h̃∇∆h̃ found in the literature; see [3, 4]

for a mathematical analysis of shallow water models with this kind of capillary term
and references therein.

4.2. Shallow water equation in orthogonal coordinates. In the literature,
the shallow water equations or lubrication model over varying topographies are usually
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written using orthogonal curvilinear coordinates. In order to compare our results
with several shallow water equations obtained previously [9, 10], we write the shallow
water equations using orthogonal coordinates. In this setting, the basis vectors of the
tangent plane to the bottom surface are directed along the directions of maximal and
minimal curvatures.

Define mi =‖∂x(ξ)
∂ξi

‖ and hi =mi(1−εθRkiξ), where ki is the mean curva-
ture of the bottom in the direction ξi. In order to simplify the discussion,
let us choose an orthogonal system so that mi =1. Then, if we denote n=(
sin(θ)cos(φ), sin(θ)cos(φ), cos(θ)

)
, we easily establish that

M = Id, J =1, c(∂ξ x)−1s=−sin(θ)

(
cos(φ)
sin(φ)

)
=−sin(θ)ι, (4.9)

where ι=(cos(φ), sin(φ))t. In this particular case, the shallow water equations (3.47)
have the more explicit form:

∂th̃+∇ξ.(h̃ṽ)=0,

∂t(h̃ṽ)+∇ξ.
(6

5
h̃ṽ⊗ ṽ

)
+

δ

2β
∇ξ(cos(θ)h̃2)=κ

δ

β
h̃∇ξ.H+

1

β

(
λh̃sin(θ)ι− 3ṽ

h̃

)

+
δ

β
(
1

4
∇ξ cos(θ)+θR sin(θ)(k1 +k2)ι−

3

2
θR sin(θ)diag(k1,k2)ι)

h̃2

2

+λ2 sin2(θ)(ι.∇ξ h̃)ι
h̃4

15

−λ2
(4

5
sin(θ)(ι.∇ξ)(ιsin(θ))−∇ξ.(ιsin(θ))ιsin(θ)

) h̃5

21
. (4.10)

An important remark is that the direction ι and the derivatives in that direction
are important in denoting the first terms, which describe the influence of a varying
topography; this is precisely the steepest descent direction, which is in the intersection
of the tangent plane to the surface and the plane spanned by the gravity vector ~g and
the normal to the bottom surface ~n. The other quantities depend only on θ, the
angle between the normal to the bottom surface with the vertical and the principal
curvatures of the surface. All these quantities are intrinsic and do not depend on the
parametrization of the surface.

4.3. A family of models. In the following, we show that we can obtain
a family of models from (3.47) which has the same accuracy. In order to simplify
the discussion, we work with the shallow water equations in the steepest descent
coordinates (3.47). First let us note that inserting the equation

ṽ =λsin(θ)
h̃2

3
e1 +O(εθR +β+δ)
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into the momentum equation of (4.5) yields, with the same accuracy and for any
constant A,

∂t(h̃ṽ)+∇ξ.

((
6

5

)
h̃ṽ⊗ ṽ−

(
1

75
+

A

9

)
λ2 sin2(θ)h̃5e1⊗e1

)

+
δ

β
∇ξ

(
cos(θ)h̃2

2

)
−κ

δ

β
h∇ξH=

1

β

((
λh̃sin(θ)e1−

3ṽ

h̃

))

+
δ

β
h̃2 sin(θ)

(
− θR

2 (∂1θ+sin(θ)∂2φ)+ θR−1
8 ∂1φ

− 1
8 (∂2θ−θR sin(θ)∂1φ)

)

− 6

35
λ2h̃5 sin2(θ)

(
(θR−1)tan(θ)∂1θ

cos(θ)φ1

)

− 3

175
λ2h̃5 sin(θ)cos(θ)∂1θe1. (4.11)

Using the same argument and the equation

h̃ṽ =λ sin(θ)
h̃3

3
e1−R2(h̃,ξ)+O

(
ε2θ2

R +β(β+δ+εθR)+δ(α+εθR)
)
,

one can split the term 1
β
(λh̃sin(θ)e1− 3ev

eh
) in two parts for any constant B:

1

β

(
λh̃sin(θ)e1−

3ṽ

h̃

)
=

B

β

(
λh̃sin(θ)e1−

3ṽ

h̃

)
+

1−B

β

(
λh̃sin(θ)e1−

3ṽ

h̃

)

=
B

β

(
λh̃sin(θ)e1−

3ṽ

h̃

)
+

3(1−B)

βh̃2
R2(h̃,ξ)+O(ε). (4.12)

The term 3(1−B)

βh̃2
R2(h̃,ξ) is O(1) since R2(h̃,ξ) is O(ε). If we choose B =0, we can

completely eliminate the stiff source term from (4.5), but in that case, we lose the

information that ṽ =λ sin(θ)
eh2

3 e1 +(h.o.t) and the fact that this asymptotic analysis
was done in a quasi-stationary regime.

4.4. Lubrication models. In this section, we propose a family of models with
a single equation for the variable h̃, the velocity ṽ being determined by h̃. This kind
of model is frequently used in lubrication theory, such as Benney’s equation or the
Kuramoto-Sivashinky equation obtained in the limit of small amplitude waves (see
[5, 6] for more details). The validity of these equations is limited because of the limit
on the amplitude of waves. Nevertheless, they are quite useful as a first approximation
of the shallow water equations and are more manageable from the numerical point of
view. In the literature, they are directly derived from the Navier-Stokes equations or
appear as a by-product of the derivation of shallow water equations: see [11], [5, 6]
for more details. We proceed here in a similar way to obtain a hierarchy of models
for the fluid height h.

The first model equation, valid up to a first order term in ε, is obtained by
inserting the equation

ṽ =−λcos(θ)
h̃2

3
(∂ξ x)−1s+O(εθR +β+δ)

into the “exact” mass conservation law

∂t h̃+∇ξ.(h̃ṽ)=0.
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Dropping small terms, one finds the conservation law

∂t h̃−∇ξ.

(
λcos(θ)

h̃3

3
(∂ξ x)−1s

)
=0. (4.13)

In the “steepest descent” coordinate system, Equation (4.13) reads:

∂t h̃+∂1

(
λsin(θ)

h̃3

3

)
=0. (4.14)

An important remark is that, in the steepest descent coordinates, the flow is al-
most one dimensional; this makes easier the numerical simulations of the flow in that
setting. The equation obtained is nothing but a Burgers equation which exhibits sin-
gularities in finite time; in order to get a more accurate model, let us replace ṽ by its
asymptotic expansion up to order one. For the sake of simplicity, we write the model
in the “steepest descent” coordinate system. From the momentum equation (3.47)
and (4.13), we deduce the order-one lubrication model

∂th̃+∇ξ.(h̃ṽ)=0, with

h̃ṽ =
λh̃3

3
sin(θ)e1 +

δh̃4

3
sin(θ)




θR−1

8
∂1θ−

θR

2
(∂1θ+sin(θ)∂2φ)

θR

8
sin(θ)∂1φ−

1

8
∂2θ




−δh̃2

6
∇ξ(cos(θ)h̃2)+κδ

h̃3

3
∇ξH− 2βλ2h̃7

35
sin2(θ)

(
(θR−1)tan(θ)∂1θ

cos(θ)∂1φ

)

+
2βλ2h̃6

15

(2h̃

21
sin(2θ)∂1θ+sin2(θ)∂1h̃

)
e1. (4.15)

It is hard to see the effects of the curvature of the topography and those of the
capillarity in this case; let us consider two cases where the lubrication equation has
a simpler form. In the one dimensional case and for θR =1, one finds the lubrication
model

∂th̃+∂ξ

(
λh̃3 sin(θ)

3
− κδh̃3

3
∂2

ξξθ+
4λ2h̃7

315
sin(2θ)∂ξθ

)

=∂ξ

( h̃3

3

(
δcos(θ)− 2βλ2

5
sin2(θ)h̃3

)
∂ξh̃

)
. (4.16)

In that case and up to order one, the main effects of capillarity and the curvature of the
topography is to introduce a corrective term in the advection term of the equation.
The dissipative term is completely similar to the dissipative term in the Benney’s
equation obtained for flat bottom.

When the curvature of the bottom surface is O(ε), let θR =εθ̃R; the lubrication
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model reads

∂th̃+∂1

(
λh̃3

3
sin(θ)

)

= δ∇ξ.
( h̃4

8
∇ξ

(
cos(θ)

)
+

h̃3

3
cos(θ)∇ξh̃

)

−κ̃δ∇ξ.
( h̃3

3
∇ξ

(
θ̃RHb +

1

2
∆ξh̃

))

−2βλ2

15
∂1

(
2h̃7

21
sin(2θ)∂1θ+sin2(θ)h̃6∂1h̃+

6h̃7

35
sin2(θ)tan(θ)∂1θ

)

+
2βλ2

35
∂2

(
h̃7 sin2(θ)cos(θ)∂1φ

)
. (4.17)

In this case the dispersive effects of the capillarity appear through the term

−κ̃δ∇ξ.
( h̃3

6
∇ξ ∆ξh̃

)
. (4.18)

5. Conclusion

In this paper, we have investigated systematically the slow motion of a relatively
thin layer of fluid over an arbitrary topography. From the Navier-Stokes equations to
Benney’s equation, there is a wide range of models for shallow water flows. Numerical
simulation of the full Navier-Stokes equations is cumbersome owing to the presence of
the free boundary and does not give good insight into the dynamic of the fluid layer.
On the other hand, Benney’s equation is an oversimplified model for this kind of
flow, only valid for small amplitude waves and it exhibits finite time singularities. We
achieved a subsequent level of modeling by considering the time evolution of h and the

local flow rate hv =
∫ h

0
v; this yields the shallow water equations. We have obtained

an evolution system for h and hv =
∫ h

0
V , where V is the component of the fluid

speed parallel to the bottom surface in a closed form obtained through an asymptotic
expansion, with respect to ε, of solutions of the full Navier-Stokes equations.

The existing models were derived from the full Navier-Stokes equations only for
small curvatures of the bottom surface [5, 6], [9, 10] or for a vanishing viscosity
[1, 2] with or without capillarity. In this paper, the viscosity is not negligible and
the curvature of the bottom is not necessarily small; the layer of fluid is entirely a
boundary layer and in a first approximation, the velocity profile is parabolic provided
that the bed slope never vanishes. Under an appropriate scaling of the equations,
we justify (formally) the classical modeling assumptions made to derive shallow water
equations: the dynamic of the layer is close to a local equilibrium (here a Nusselt flow)
and the pressure is hydrostatic. We derived a family of new shallow water systems all
equivalent and accurate to order one in ε, the film parameter.

We followed the approach of Bouchut et al. in order to give models independent
of the parametrization of the bottom surface. The shallow water system obtained
is written in conservative form; it has a hyperbolic part, and a stiff source term
involving viscosity effects and gravity forces. The terms in front of κ represent the
capillary effects, whereas the terms in front of θR are due to the curvature of the
bottom surface and take into account centrifugal forces. The term involving h̃4,h̃5

are correction terms coming from the interaction between the global boundary layer
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and the model of friction at the bottom (here a no-slip condition). The stiff source
term relaxes the system to the quasi-stationary Nusselt type flow.

As a first approximation the local average speed points in the steepest descent
direction. Hence it is natural to write the shallow water equations for a particular
parametrization of the bottom surface, the so called “steepest descent” curvilinear
coordinates. As a by-product of the analysis, we obtain lubrication models valid for
arbitrary topographies. Depending on the characteristic size of the bottom curvature,
the capillary terms have different effects; in the case of a large curvature, the capillary
force has the form −κ∇ξHbh: it is a classical forcing term linear in h: it has no
dispersive effects. In order to recover the classical dispersive effects of the capillary
forces, one has to assume that the bottom curvature is small; this yields capillary
terms with third spatial derivative of h.

To finish, let us outline some prospects for this work: first we need to make some
numerical simulations for the models obtained and compare the results to the one
obtained with a direct simulation of the full Navier-Stokes equations. The approach
proposed in this paper is only formal. It seems important that this approach should be
justified mathematically even in simple situations: for that purpose, uniform estimates
with respect to ε of the solutions of the Navier-Stokes equations in the neighborhood
of Nusselt flows are needed. Finally a mathematical analysis of the nonlinear waves
for the shallow water equations obtained in this paper should give good insight into
the slow dynamics of shallow water flows.
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