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ASYMPTOTIC ANALYSIS OF AN ADVECTION-DOMINATED
CHEMOTAXIS MODEL IN MULTIPLE SPATIAL DIMENSIONS*

MARTIN BURGER', YASMIN DOLAK-STRUSS, AND CHRISTIAN SCHMEISERS

Abstract. This paper is devoted to a study of the asymptotic behavior of solutions of a chemo-
taxis model with logistic terms in multiple spatial dimensions. Of particular interest is the practi-
cally relevant case of small diffusivity, where (as in the one-dimensional case) the cell densities form
plateau-like solutions for large time.

The major difference from the one-dimensional case is the motion of these plateau-like solutions.
with respect to the plateau boundaries separating zero density regions from maximum density regions.
This interface motion appears on a non-logarithmic time scale and can be interpreted as a surface
diffusion law. The biological interpretation of the surface diffusion is that a packed region of cells
can change its shape mainly if cells diffuse along its boundary.

The theoretical results on the asymptotic behavior are supplemented by several numerical sim-
ulations on two- and three-dimensional domains.
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1. Introduction
In this paper, we will be concerned with the long-time behavior of the nonlinear
chemotaxis model

910+ V.- (0(1-0)V,5—€V,0) =0, (1.1)
AS=S—p. (1.2)

In particular, we consider system (1.1), (1.2) for z € cR? d>1, and ¢t >0, subject
to the initial condition

o(x,0) = os(x) (1.3)
and homogeneous Neumann boundary conditions
0,0=0 and 0,5=0 on 09, (1.4)

where v is the unit outer normal on 92, which we assume to be smooth. Equa-
tion (1.1) describes the evolution of the cell density o(x,t) under the influence of the
chemoattractant S(z,t), when cell motion is governed by chemotaxis, i.e., the directed
migration of cells along chemical gradients, and diffusion, described by Fick’s law. In
the following, we will always assume that the effect of the cells’ random movement is
small compared to their chemotactic orientation, and choose 0 <e < 1. In Equation
(1.2), the chemoattractant concentration S is subject to diffusion as well as (linear)
production by the cells and degradation. In contrast to the so-called classical model
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for chemotaxis, derived by Patlak [25] and Keller and Segel [19, 20], we assume here
that diffusion of the chemoattractant is fast compared to the characteristic time scales
of the problem, which leads to an elliptic instead of a parabolic equation for S. More
importantly, the chemotactic flux in Equation (1.1) decreases to zero as the cell den-
sity approaches a maximal value (here normalized to 1). In the classical model, the
chemotactic flux is typically of the form oV, S, allowing for concentration phenomena
where the cell density becomes unbounded in finite time. A detailed review on results
for the classical model can be found in [16] and [17]. A chemotaxis model of the type
considered here (but with a parabolic equation for S) was first introduced by Hillen
and Painter in [15], where the authors also showed that the additional volume-filling
term in the cell flux leads to the global existence of solutions.

The paper at hand is strongly linked to [11], where model (1.1)—(1.4) is studied
on the interval (0,L), and to [8], where the limit € — 0 has been carried out for weak
solutions globally in time. A discussion of similarities and differences in the behavior
of the system depending on the space dimension will follow below.

Finally, we want to mention [4], where system (1.1), (1.2), (1.3) was investigated
on unbounded domains, and its behavior was compared to that of a similar model
featuring a nonlinear diffusion term. We also refer to this paper for a more extensive
discussion of the literature.

The paper is organized as follows. In the first section, we briefly discuss properties
of the solutions of the parabolic system (1.1)—(1.4) and of the associated hyperbolic
system obtained by setting e=0. In particular, we will show that under suitable
conditions, solutions of the parabolic model converge to solutions of the hyperbolic
system as € — 0. In contrast to the corresponding limit in the one-dimensional case,
however (see [11]), this result is only valid for short times, i.e., before solutions of
the hyperbolic model form shocks. We then complete the results obtained in [11] by
showing the uniqueness of the vanishing viscosity limit for d=1.

Section 3 is dedicated to the asymptotic analysis of the parabolic model. We will
see below that the dynamics of the problem in multiple space dimensions are driven
by geometrical aspects that do not exist in one space dimension. Therefore it is not
surprising that the characteristic time scales differ drastically, depending on d=1 or
d>1. In the first case, typical time scales are of order O(e™ <), making it necessary to
resolve exponentially small terms in the equations. Since matched asymptotic expan-
sions fail here, an asymptotic projection method needs to be applied as was done in
[11]. In contrast to this, typical time scales in the multi-dimensional problem are of
order O(e~1), and the long-time behavior of the system can be recovered by matched
asymptotic expansions, as will be shown in section 3. As it turns out, this long-time
behavior can be described as the motion of the interface between high and low density
regions of p. Properties of this interface motion are discussed in Section 4, and it is
shown that the equation describing the motion of the interface falls into the class of
surface diffusion models. We also discuss the stability of stationary solutions with
respect to small perturbations. In particular, we investigate the question of whether
the one-dimensional case can be attracting under certain conditions. Finally, in Sec-
tion 5, we will illustrate our theoretical results by performing numerical experiments

for d=2 and 3.

2. Solutions properties for ¢ >0 and =0

In this section, we will discuss certain properties of the solutions of (1.1)—(1.4)
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and the related hyperbolic chemotaxis model,

0,0+ V., -(0(1—0)V,S) =0, (2.1)
AS=5-p,
subject to
o(x,0)=p;(x) nQ and §,5=0 on IN. (2.3)

Let us start with some estimates for the parabolic problem.

THEOREM 2.1. Let or € L'(Q), and 0< o7 <1. Then, there exists a unique, smooth
solution of (1.1)—(1.4) that satisfies uniformly in e

(0.8) € L¥((0,00); L* () x H'(2))

and

0<o(x,t),S(xz,t) <1 and /Qd:c:/de:/gIdx. (2.4)
Q Q Q

Proof. Local existence of smooth solutions can be shown by a standard contraction
argument (see [11] for the one-dimensional case, or [4] for the corresponding results
on unbounded domains in ]Rd). The global existence then follows from a comparison
principle. The estimates for S are a direct consequence of (1.2). ]

For d=1, the existence of solutions of (2.1)—(2.3) follows from the convergence of
solutions of the parabolic system in the limit of vanishing viscosity € —0 (see [11]).
In multiple space dimensions, proving the existence of hyperbolic solutions is by no
means straightforward. The technical difficulties stem from the fact that no regularity
estimates for the cell density are known in this case. Parallel to this work, a weak limit
€ — 0 has been carried out globally in time in [8], by employing a kinetic formulation
of the problem. In the following, we prove a short time result of strong convergence
of solutions of the parabolic problem to (smooth) solutions of (2.1)-(2.3).

THEOREM 2.2. Let QCRY, and let (0,5) be the solution of (1.1)-(1.4) with initial
condition or € H*(Q), k>d/2+1, and 0< o; <1, uniformly in . Then, as € —0,

0— 0 in C(0,T); H*"1(Q)) and S—S in C((0,T);C*()) (2.5)

for every T <T™, with T* :%ln (M), (9,5) solves (2.1)-(2.3).

”QI HHk(Q)

Proof. We apply V¥, with |a| <k to equation (1.1) and take the L?-scalar product
with V& to obtain

d a \2
at Q(VE 0) dx

—c [ Veagvrods [ V2oVE(1-20)9.0 V.54 o1~ 0)(S - 0) d,
Q Q
Integration by parts of the first term and an application of Leibniz’s formula

V& (uv)= Z CapVPuvePy,
Bl
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where <« means §; <«;, i=1,...,d, yields

d
G [eerar <~ [ VoS canVP((1-20)V.0) V2 V.St
Q Q B<a

- / VoY cas VP [o(1 - )] V(S — o)
Q p<a
= 11 —|—IQ

We split the integral I; into two parts, thus separating the term with the highest
derivative of p from the rest:

=1, +11,2:7/ caa V70V [(1-20)V. 0]V, Sdx
Q

- / VoY as V2 [(1-20)V.0] VA0V, S,
Q B<a

where we sum over all 3 <a satisfying |3| < |«|. Similarly, we split up I ; by writing

I1,1=—/Caavfg ZV?(l—2g)Vf‘ﬁV1p -V, Sdx
@ | 6<a
:—/cwv;;g (1-20)VoV,0- V. 5+ 3 VI(1-20) V2PV, 0.V, 5| da
Q

BLa

=l11+1i1,2,

summing over all 5 with |3] >0 in I ; 2. Since
11,1,1:—%/ﬂcmvz(vggﬁ(l—%).szdm,
we can integrate by parts to obtain
B =3 | can(VE0P (1=20)(S = 0) ~2V.0 V. ) do < cllelfu o) (1+ lellneca).-

Here we used the compact embedding of H*(Q2) in W*(Q2). Employing the inequality
(see [28], Proposition 3.6, p. 9)

IV2 Ve P gl 2y < (1f e @ gl et @) + Il i1 @191 e ) » (2.6)
we can estimate I 12 by
L2 <ellVEollzz @) (IVaoll o @ ol mx ) <cllollfn gy
Analogously,
Lo <[Vl L2 (o) (IVaell L @IS e @) + el e @ IVES | L= @) <cllellEn gy,

using again the embedding of H*(£2) and the fact that solutions of the elliptic Equation
(1.2) fulfill the estimate |[.S|| gr+2(q) <cllol|gr(q). Similarly, we can estimate I by

L <cllolFr -
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Finally, adding over all multi-indices |a| <k, we obtain

d
o loll (o) < clloll arr )y (L4 ol (a)) »

and hence, o€ L>((0,T);H*(Q)) for every T<T*. This, together with the
fact that 0;0€ L2((0,T)xQ), implies that o lies in a compact set in the space
C((0,T); H*=1(Q)) (see [27]). From the uniform estimates for p, it can be eas-
ily shown that 9,V,S € L?((0,T)x ) and V2S€ L>®((0,T)xQ) for T <T*. Then,
it follows from an anisotropic generalization of the Sobolev embedding of W7 in
CO1=n/P p>n (see [14]) that V,S is uniformly bounded in the space C%?([0,T] x Q),
0<4<1/3, implying the assertion. O

In [8] it has been shown that (2.1)—(2.3) possesses global entropy solutions satis-
fying the following conditions:

(i) o€ L>((0,00) x Q) and, consequently, S € L>((0,00), W2P?(Q)) for all p < cc.

(ii) For all convex entropies 1 and entropy fluxes ¢ such that ¢’'(0) = (1—20)7'(0),

oim(0)+ V.- (q(e)V.S) +(0—5)(q(e) —o(1—0)n'(0)) >0, (2.7)

in the sense of distributions with initial data n(oy).
We will now complete the results in [11] by proving the uniqueness of entropy solutions
of (2.1)—(2.3) in one space dimension. To this end, we will apply results from the
theory of nonlinear degenerate parabolic problems, of which the model can be seen
as a special case:

THEOREM 2.3. Let QCIR, and let p(x,t) be an entropy solution of (2.1)-(2.3) with
initial condition por € BV (), 0<p; <1. Then, this entropy solution is unique in the
space L>((0,T),BV ().

Proof. The proof can be carried out analogously to the proof of Theorem 3.20 in
[4]: let o', @2 be two different entropy solutions of (2.1), (2.2) with initial data g} and
02. Then, it follows from [18], Theorem 1.3 that these solutions satisfy the estimate

18" (1) = (- t) | o) < llot — 0F ) +
cit]|S; — Si”Loo((o,T);BV(Q)) + ot S — Sa%”L‘”((O,T)XQ)a

with S and S? satisfying (2.2) with ' and g?, respectively. Since there exists a
constant ¢ >0 such that

155 — 821 L 0,18V (@) < cll@' — &%l @) (2.8)
and
153 = 21 L= 0,1y x () <cllg" = 2%l Ly, (2.9)

we can estimate the right hand side only in terms of ||g' — 22| L1(q), eventually leading
to the conclusion that if g} = p? a.e., then also p' = ° a.e. for 0<t<T. ]

Next, we give an explicit expression for the convergence rate as € — 0:
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THEOREM 2.4. Let QCIR, and let o(x,t) and o(z,t) be the unique (entropy) solutions
of (1.1)-(1.4) and (2.1)-(2.3), respectively. Then, there exist constants c1,co >0 such
that for time t < cfl, the following estimate holds:

_ C
lloC,t) =l Ol < 5 e,
76115

Proof. The proof can be carried out analogously to the proof of Theorem 1.1 of
[13], where the continuous dependence of entropy solutions of nonlinear, degenerate
parabolic equations on the flux and the diffusion function is proven. In particular, it
follows from the results in [13] that the solutions ¢ and g satisfy the estimate

lo(-t) = o)l Loy <llor(-) = or() L1 () +
et (198 = 52| L (0,1 x ) + 198 = 82l o< (0,1): BV (@) ) +E2 Ve

Choosing initial conditions o; = g; a.e. and again using estimates (2.8) and (2.9), the
assertion follows for ¢ <c . o

As was shown in [11] for one space dimension, the long-time behavior of the
hyperbolic system (2.1)—(2.3) differs significantly from that of the parabolic system
(1.1)—(1.4), so that an estimate that is non-uniform in time is actually the best result
to be expected. As we will see, the asymptotic behavior depends also in multiple
space dimensions strongly on whether e=0 or € >0. While we will investigate the
latter case in the next chapter, we conclude this section with a short discussion of
stationary solutions for e =0.

Looking at the stationary version of (2.1), (2.2), it can be anticipated that non-
constant stationary solutions consist of patches where g is either zero or one. Indeed,
we can define a whole manifold of stationary entropy solutions (s, S ) of (2.1)-(2.3),
given by

@oo(x):{l in €2 and  AS = o0 — Sec, (2.10)
0 else,

together with Neumann boundary conditions (2.3) for S. Each of these solutions is
characterized by the shape of the domain Q C Q and subject to the entropy condition
(2.7). An alternative formulation of the entropy condition for solutions of type (2.10)
is given by

LEMMA 2.5. Let (000,Sx) be a stationary entropy solution of system (2.1)-(2.3)
satisfying (2.10) with a Lipschitz domain QLC ). Then, we have that 0,S- <0 on
O\ 0Q, n being the unit outer normal on OS).

Proof. Fixing a constant « € (0,1) and splitting the integral into the regions where
000 =0 and where g =1, we can write (2.7) as

*/ L[Q(I*Q)Vmgm'Vm50+a(1fa)Agoo<p]dxdt
0 Q

—|—/ / [a(1—-a)V, 5. V.o+a(l—a)AS, ¢ldrdt >0,
o Joa
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where the time derivatives in (2.7) vanish due to the fact that (o0, 5 ) is a stationary
solution. Arranging terms differently, we obtain

a(l—a) [/OOO/QV(@VmSOO)dxdt/OOO/Q\QVJC-(chmSOO)dxdt} <0,

yielding, after an application of the divergence theorem,

oz(l—oz)/ / ©OnSoododt <0.
0o Jomon

Since this inequality holds for arbitrary test functions ¢(z,t), the assertion follows. O
3. Asymptotic behavior of the parabolic problem

1q 1q

0.8 0.8

0.8 0.8

r r
0.4 0.4

0.2 2 0.2

o

(d) t=84

Fic. 3.1. Numerical solution of the parabolic system (1.1)-(1.4) with random initial data
01 €[0.1,0.11] and e=10"1%.

Let us motivate our analysis on the long-time behavior of system (1.1)—(1.4) for
d>1 by a numerical study. Figure 3.1 shows a typical evolution of the system in two
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space dimensions, where we chose a random perturbation of a spatially homogeneous
background as initial condition. It can be observed that by the attracting effect of the
chemical, the random perturbations of the cell density are amplified and aggregations
start to form. Since more chemical is produced where cells have already crowded,
the regions between the aggregations start to empty, and a distinct pattern of high
density and vacuum regions emerges. Due to the density control in the chemotactic
flux the cell density remains bounded, and the system evolves to a pattern where o is
either almost zero or almost one, with a sharp but smooth transition between the two
phases. Once this state has been reached it remains by no means stationary. Regions
of high cell density attract each other and move slowly towards each other or towards
the boundary (see also the numerical experiments in Section 5). This behavior has
also been observed in models with a parabolic equation for S [26, 15].

The movement of high-density regions takes place on a time scale that is much
larger than the ‘hyperbolic’ time scale on which the formation and merging of peaks
can be observed. Hence, we rescale time t—t/e in Equation (1.1), leading to the
rescaled system

edo=V, (eV,0—0(1—p)V,S) (3.1)
AS=5-op.

Our aim is to investigate the slow dynamics of a solution that is, for every moment
in time, close to one of the stationary entropy solutions defined by (2.10). Therefore,
we look for solutions whose limit (g, Sp) as € — 0 satisfies

Go(,t) = { Lom8l g ASo=g0— S, (3.3)
0 else,

with Neumann boundary conditions for Sy. For the cell density the limit has to be

understood away from a boundary layer around the free boundary I'(¢):=0%(t) \ 09,

which we assume to be smooth. We also assume that the entropy condition from

Lemma 2.5 is satisfied in the strict sense, i.e.,

OnSo<0 for xzel(t). (3.4)

The asymptotics below will provide a description of the dynamics of T'(¢).

We introduce a new, local coordinate system defined by the normal and the
tangential directions on the interface: let n be the unit outward normal on I'(t),
and let 7; be a set of locally orthogonal unit vectors tangential to I'(¢t). We define
z=2z(z,t) €R as the signed distance to the interface oriented along n (i.e., 2<0 in
Q(t) and z>0 in Q\Q(t)). Moreover, we define o =0 (x,t) € R as a vector whose
components o; are the arc lengths of curves oriented according to the 7;. Denoting
points on the interface by I'(t) ={X(0,¢)}, we can express every point x €} that is
sufficiently close to the interface as a function of z and o, i.e., x =X (o,t)+2n(o,t).
The Jacobian of the inverse map is given by (see for instance [1]; for a more detailed
derivation for this particular case see also [6])

B 00, X
C 14+2(05n05,X)

V.z=n, V.0; (3.5)
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Writing ¢ as a function of the new variables ¢ and z, equation (3.1) transforms into

e(atg+§awgata,» +0.00,2) + (df V.0:05, +V.20. )
=1 =1

d—1 d—1
x g(lfg)(szajaajMvzzazs)fs(szajagjﬁv,zazg) —0. (3.6)

Jj=1 j=1
As a next step, we introduce the layer variable £ =2z/¢ and make the ansatz
0=00(0,&,t) +e01(0,&,1) +O(£?).
The boundary layer terms have to satisfy the matching conditions
oo(0,00,t)=1, o0(0,—00,t) =0, 01(0,£00,t)=0.

The boundary layer terms in the cell density are expected to only contribute terms of
order O(£?) to the chemical density, i.e., we make the ansatz

S(U,Z,t) :SO(Uazat)+O(62)7

with Sp as given in (3.3). Since the chemical density S varies only slowly across the
interface, we obtain

S(0,2,t) = So(0,e€,t) +O(e%)
= S(0,0,t) +££0,50(0,0,t) +O(£?).

Here the notation 0,,Sy was used instead of 0,5, for consistency.

We continue by solving the layer equations. To this end, we must determine
V.o as a function of £ and compute the dot products between V,o;, V,z and their
derivatives with respect to o; and £. From (3.5), it follows that

V.0 =0, X(1+e£(0p,n-0,,X))""
=05, X(1—£(05,n- 09, X) +626%(05,m- 05, X)> +O(?)).

Thus,

vmgi'aaivmo'i:O(s)v vzai'aoivmajzoa vmai'aﬁivaZann'aU¢X+O(5)a
V,2:0:V,0;=0, V.z2-0:V,z=0.

Now using the expansion for g, Equation (3.6) becomes

d—1
€0100+E Y 0o, 00040+ 0 000y 2 +£0¢ 0102
i=1
d—1 d—1

+ (vama@ + évzzag)- (@0(1 — o) +ean(1 72@0)) (Z V.0;(Ds, S0+ 00, 0 So)
i=1 =1

d—1
1
+v1z(anso+sga§so)) fe(szajagj @0+gvzza§@0+v,zaggl) —0@), (3.7

Jj=1
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where S is always evaluated at (0,0,t). Comparing terms of the order O(¢~1) in (3.7)
gives

O¢(00(1— 00)0nSo — ¢ 00) =0,
and, by integration and the matching conditions,
0¢ 00 = 00(1 — 00)0nSo. (3.8)

The solution of (3.8) can only be determined up to a shift in &, which is fixed uniquely
by éo(O‘,O,t) = %
Proceeding to the O(1)-terms in (3.7), we obtain

-1
000012+ Y _ 0, (00(1 = 00)0er, S0) + (0,11 0y, X ) (00(1 = 00) 9 S0 — De o)
1=1

+0¢(00(1— 00)€02 S0 + 61 (1 —200)9nSo — ¢ 61) =0. (3.9)

Thanks to (3.8), the third term vanishes. Integrating (3.9) with respect to ¢ from
—00 to +00 and using the fact that

= . [T 0o . 1
/_on(1 go)dé“—/_oo g

yields the solvability condition for g1, i.e.,

d—1

9550\
atz+;agi <an50 > =0. (3.10)

Since V,, = —0;z is the normal velocity of I'(¢), this is the desired description of the
dynamics of Q(t). We collect the results of this section:

LEMMA 3.1. Assume there is a solution of (5.1), (3.2), whose limit as € — 0 satisfies
(3.3) away from the smooth free boundary T'(t)=00(t)\0Q. Assume further that
in a neighborhood of the free boundary the cell density has an asymptotic expansion
of the form o= go(0,2/e,t)+ep1(0,2/e,t)+O(e?), where o and z are tangential and
orthogonal coordinates as introduced above, and 9oy and o1 are e-independent, smooth,
and bounded. Then the dynamics of the free boundary is determined by

V=V, (a"%vgs) on T(t) = 99(t) \ 9,

(3.11)
—AS+S:X§(t) inQ, 0,5=0 on 0.

4. Properties of the interface motion

In this section we investigate some of the formal properties of the geometric
flow model (3.11) for the interface. We start with a geometric property. Consider
a situation where the interface I'(¢) meets a straight part of the domain boundary
0f). Since S satisfies homogeneous Neumann boundary conditions, a local reflection
of the solution with respect to 92 extends the solution to the exterior of 2. Assuming
that the interface dynamics has a smoothing effect on I'(¢) (see below for arguments
supporting this assumption), we conclude that T'(¢) meets 9Q orthogonally. Actually,
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the argument can also be applied to curved parts of 0f) after an appropriate coordinate
transformation straightening out the boundary. Thus, we conclude that

I(t)Lo, ie, n-v=0,

at points of intersection. These points constitute the boundary OT'(t) of the interface,
and by the Neumann boundary conditions for S, the normal component 9,.5/9,S of
the surface diffusion flux in (3.11) vanishes along 0T'(t). As a consequence, the mass
conservation property of the original model carries over to (3.11), where it takes the
form of conservation of the volume of Q(#):

d
- dz:/ Vi, do=0, (4.1)
dt Ja T(t)

where the identity for the time derivative of the volume follows from Theorem 4.2
in [10, p. 352]. Actually, a stronger conservation property holds. Introducing
the splitting T'(¢) :UZN:1 T;(t) of the free boundary into its connected components
Ty(¢),...,I'n(t), the integral of V,, over each I';(¢) vanishes, implying that the volume
of each connected component of Q(t) (and of Q\Q(t)) is preserved as long as the

topology of Q(t) does not change.

4.1. Gradient flow structure. The interface motion problem possesses a
gradient flow structure with respect to the energy

B = —%/ﬁsm de, (4.2)

where S[Q] € H(€) is the unique solution of

/(VS-V<p+Sg0) da::/igo de YV oecHY(Q). (4.3)
Q Q
Note that the choice ¢ =5 leads to an alternative representation of the energy:

P 1 — —

)= —§/Q(|VS[Q]|2+S[Q]2) dz. (4.4)

In the following we take a closer look on shape sensitivities of the energy functional.
However, since the dynamics operates on families of splittings of 2 into subdomains
with fixed volume, a parametrization of such families is needed. The shape sensi-
tivities are then computed as derivatives of the energy with respect to the param-
eters. We shall derive such a parametrization in the neighborhood of a shape €
whose free boundary is given by I'g =09\ 0Q = Uf\il I'g; with connected components
To1,...,Lon written as I'g; ={X(0): o€ P;}. The free boundary of a neighbouring
shape Q) can then be written as

N
T=JI: with T;={X(0)+n(o)V(e): c€P;}.

=1

The signed volume between I'g; and fz can be computed as

2
/ <v+”v>da, i=1,...,N, (4.5)
Toi 2
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where x denotes the signed mean curvature along I'g; (oriented such that x<0 on
convex and k>0 on concave parts). The shapes 2y and Q belong to the same family
if all the integrals in (4.5) vanish. The family will be parametrized by functions
W (o) with [Wdo; =0, i=1,...,N, where here and in the following do; denotes the
restriction of the surface measure do to I'g;. For the construction, fixed functions

Woi(o) will be needed, which satisfy

/Wol'd(fi: 1.

Setting V[W]=W + A;[W]Wy; on I'y;, the constant
7fI€W2 dO’i

1+f/<6W()ZWdO'Z+\/(1+II<LW(]ZWCZUZ) —fﬁWOZidO'ifﬁW2dUi

is chosen such that it solves
A?/fsW@idoi+2Ai <1+/I$W0in0i> +/RW2dai:0,

which is equivalent to the requirement that the integrals in (4.5) vanish. Note that,
for small values of W,

W2
AW =~ [ 55 doi oW,
and, in particular, the linearization of V[W] at W =0 is the identity.

The energy is now evaluated for all shapes Q[W] which are determined by their
free boundaries

N

E[W]:= E[Q[W] = —% [ s (4.6)

with the abbreviation S[Q[W]]— S[W]. For computing variations of E, the Frechet
derivative S’[W] will be needed. From the weak formulation of the problem for S[WW]

/(VS-V@—J—S@)dz:/i pdx, (4.7)
Q QW]
the problem

/Q(VS’-Vgo—&-S’(p)dx:/ap(X—&—nV[W])(l+mV[W])V’[W](W)da (4.8)

for S'[W](W) is easily computed. A similar computation is needed for the first vari-
ation of the energy:

E’[W](W):—% /ﬁ . S'TW](W)da

—%/S[W](X+nV[W])(1+mV[W])V’[W}(W)da.
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Setting ¢ =95" in (4.7) and ¢ =5 in (4.8) shows that the two terms on the right hand
side are equal, and thus,

E'[W](W)= —/S[W] (X +nV[W)A+sV[W)V'[W](W)do. (4.9)
In particular, the first variation evaluated at the reference shape Q[0] is given by
E0)(W)=— / S[0]W do, (4.10)

since V'[0](W) =W, as mentioned above.

From the form (4.10) of the shape derivative one observes that the shape gradient
(in the L2-metric on the surface) can be identified with —S. On the other hand, for
fixed 9,5<0 and for We H YT) with [Wdo; =0, i=1,...,N, we define g(W)e
HYT) by

v, (%vag(m) —Ww

The map g is positive definite, and a weighted H ~*(I")-scalar product can be defined
by

(W, Wa) = / V”g(Wig;"g(Wg)da.

The following result follows immediately by comparison with (4.10).

LEMMA 4.1. The linearized geometric flow model (3.11) (with frozen 0,5) can be
interpreted as a weighted H~'-gradient flow (with weight —1/0,S) for the energy
functional E defined in (4.6).

Gradient flows in H~! are usually called surface diffusion flows; such flows arise
in various materials science applications (cf. [5, 9, 12, 21]). The energy in such ap-
plications always contains a surface energy term, whose shape gradient includes a
mean curvature term. Consequently, the well-known surface diffusion flows include
a surface Laplacian of curvature and therefore correspond to fourth-order parabolic
differential equations. In the case of the limiting model (3.11), the energy is composed
of bulk terms only, so that the resulting surface diffusion flow is only of second order.
Consequently it makes sense to ask for a comparison principle at least if S is fixed,
i.e., the surface diffusion appears along a given potential. We shall see below that
such a comparison principle indeed holds for the geometric flow, which seems slightly
surprising for a surface diffusion model.

4.2. Stationary solutions and their stability. @ We start by showing that
the energy is dissipated during the evolution. We can use again the form of the shape
derivative to obtain

2
iE[ﬁ(t)]:— SV,do=— SV, - (VUS)dOZ/ Mdago, (4.11)
dt r(t) I'(t) oS L) “n

since 0,5 <0 due to condition (3.4). Moreover, the equality sign in (4.11) only holds
if V,5=0; hence a stationary state can only be reached if S is constant along the
connected components of the interface. Note that this property also characterizes
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stationary points of the energy functional. If S is constant along I';[W]={X (o) +
n(o)V[W](c): o€ P;}, the right hand side of (4.9) vanishes, since the integrals [(1+
KV[W])V'[W](W)do; are the first variations of [(V[W]+xV[W]?/2)do; which have
been chosen to be zero for all W.

Since the steady state solutions are exactly the stationary points of the energy
functional, their stability can be studied via the second variation

B0](W, 1) = lim - (B'EW)() - B 0] (1))

e—0¢

of the energy functional. We assume a steady state Q[0] (with S[0] constant along
I'[0]), and we shall need the expansions

SEW(X +nV[eW]) = S[0](X) +&(S'[0}(W)(X) 4+, S[0}(X)W) +O(?)
and
V/[EW](W) =W —eW, / KWW do,
leading to
(14+KV[EW)V [EW](W) =W +e(sWW — WO/RWWdJ) +0(?).
Using these in (4.9), we obtain

E”[o}(W,W)z—/F[O] (S"(W)+0,SW)W do.

In order to understand the stability of stationary surfaces, we inspect E"[0](W,W).
By using p=5"(W) as a test function in the variational equation for S’ we obtain
that

/ S'(WHYW do:/(|vs/(W)|2+(S’(W))2) da.
r'[0] Q

Note that the right-hand side can be interpreted as the square of an equivalent norm
in H~'/2('[0]), and in particular the norm

[Wilg-172:= \//Q(IVS’(W)ZHS’(W))Q) dx

is weaker than the L?-norm. Hence, the quadratic form corresponding to the second
variation can be written as the sum of a positive and a negative term:

LEMMA 4.2. The second variation of the energy functional defined in (4.6) is given
by

E”[O](W,W):—/F[O]c’)nSW2 do— W |31z, (4.12)

with the norm ||-||g-1/2 defined above.
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Since the positive term is a weighted L?-norm, the interface is stable with respect
to high-frequency perturbations and possibly unstable with respect to low-frequency
perturbations. This supports our assumption above that the dynamics has a regular-
izing effect on the interface. Examples of both stable and unstable steady states will
be presented in the following section.

We finally mention that the same stability result can be derived equivalently (but
with more involved arguments on constrained shape optimization) by incorporating
the volume constraints via a Lagrange functional. We demonstrate this procedure for
the simplest case of a connected free boundary of one connected plateau Q with fixed
volume m. The Lagrangian is then given by

L[Q;)\]:E[}Jr)\(/ﬂdxm),

where A€ R is a Lagrange parameter to be determined. By general results on shape
variations (cf. [10]) one obtains (with I'=0Q\9Q) for a perturbation with normal
velocity V,,

LAV, = — / S[OVado + A / Vdo.
I T

Stationary solutions are characterized by L'[Q;A]V,, =0 for all possible velocities V;,,
ie, S[Q]=Xon I'. Stability is equivalently obtained by the positivity of the second
variation (for normal velocities with constant extension in normal direction away from

T'), which is given by
L”[ﬁ;)\](VmVn):—/(8nS[§]+S[§]/s)Vn2 da—||vn||§q,1/2+A/n V2 do,
I I

where x denotes the mean curvature of the interface I One observes that for sta-
tionary shapes the curvature terms cancel, and the stability of 2 with respect to
perturbations V,, again reduces to the condition

/8nS[§]Vn2 do+ ||V ll3;-1/2 <O0.
I

4.3. Linear stability of quasi-1D surfaces. From the asymptotic interface
motion (3.11) obtained above we see that the plateaus move differently in multiple
dimensions than in the one-dimensional case analyzed with exponential asymptotics
n [11]. If the interface has a quasi-1D shape, i.e., if Q and (0) are rectangles with
common facets, then the multidimensional problem can still be formulated as an
equivalent one-dimensional problem using symmetry reductions. It is an interesting
questions how small symmetry-breaking perturbations of such a quasi-1D surface
behave, i.e., whether the quasi-1D shape is stable or not. In order to gain insight into
this issue, we consider the stability of the stationary shape

Q:={(r1,22)€Q | 0<z2<a}, with Q2=(0,1)x(0,b) and a € (0,b), (4.13)

under normal perturbations V[W]| with W =W ((z;), such that fol W (z1)dz, =0.
These perturbations can be decomposed into the Fourier modes W}, =cos(krz;) with
positive integers k. Obviously, it is sufficient to investigate their stability.
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In order to calculate the second variation of the energy (4.12), we must first
determine S and S’. Thanks to (4.3), S is the weak solution of

1 b 1 a
/ / (VS -Vo+Sy) deg day :/ / o(x1,22) drg dxy Y pe HY(Q).
o Jo o Jo

Due to the symmetries of the problem we can look for a solution S=.5(z2), which
satisfies

_d275+ _Jlifaz<a
dx? 1 0 else,

subject to % =0 at 2 =0,b. Hence, the equation can be solved to obtain

S(s) = 14+ acoshzy if z9<a
T2)= Bcosh(b—x2) else.

for constants «, B to be determined from the continuity of S and its first derivative
at r9=a, implying

1+acosha=Bcosh(b—a), asinha=—gsinh(b—a)
and hence,

5= sinha a__ﬁsinh(b—a)
~ cosh(b—a)sinha +sinh(b—a)cosha’ sinha

On the other hand, it follows from (4.8) that S’ solves

1 b 1
/ / (VS -Vo+S'p) duy dmlz/ Weo(a,xy1) dzy YV pe HY(Q).
o Jo 0
This equation is equivalent to
—AS'+5"=0  for x5 €(0,a)U(a,b),
with %—‘Z =0 on Jf2 and the interface condition

05’ 05’
pr (xl,a_)fa—@(xl,aJr)—W

This problem can be solved by separation of variables. Inserting W =cos(kmz1), we
can compute S’(z1,22) =u(xz)coskrry, with u satisfying

2
_%+(1+k2ﬂ2)u20 for z2 €(0,a)U(a,b).
2

To simplify notations, set 9 :=+/1+k272; then

(22) = ~veosh(Ixs) if zo<a
W2} = neosh(dg(b—x2)) else.

The coefficients v and 7 can be obtained from the interface conditions as

~vcosh(9xa) =ncosh(Iy(b—a)) Iysinh(Iga) +ndgsinh(Vg(b—a)) =1,
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which can be solved to obtain

_ 1 cosh(dx(b—a)) 1 cosh(Jya)
T sinh(9xb) e sinh(9xb)

Now we are ready to calculate the terms in (4.12).  Since ||I/VH12LI,1/2 =
fol S’ (xz1,a)W dzy and 0,5 =—fFsinh(b—a) on BQ, we have that

1
E"(Q)(W,W) = (Bsinh(b—a) —u(a)) /O cos?(kmray) day

_ % (Bsinh(b— a) —u(a)) (cos(kr)sin(kr) + k). (4.14)

LEMMA 4.3. The quasi-one dimensional solution (4.13) of the interface motion (3.11)
is linearized stable if, for all k>1,

sinhasinh(b—a) - cosh(¥a)cosh(¥g(b—a)) (4.15)
cosh(b—a)sinha+sinh(b—a)cosha I sinh(9;,b) ' '

Note that the formula (4.15) stays the same if one exchanges a and (b—a), im-
plying that quasi one-dimensional plateaus and holes will behave the same way. This
property reflects the fact that the original equations (1.1) and (1.2) are invariant
under the change of variables p— (1—p) and S — (1—.5).

In order to understand the stability of these quasi-1D solutions qualitatively, it is
instructive to study some limiting cases of (4.15):

COSh(ﬁk;zlil‘)(f;lkggk(bfa)) — 1. Thus, the right hand side of

(4.15) converges to zero for k sufficiently large, and therefore E”(€2)(W, W) >0 for all
choices of a and b. Hence, the quasi one-dimensional state is stable with respect to
high frequency perturbations, as we could already infer directly from (4.12).

For fixed k=F, the stability of the solutions depends on the parameters. If we
let a— 0, the left hand side of (4.15) converges to zero, whereas the right hand side
converges to 19]51 coth(9zb). Keeping also b fixed, we can consequently always choose
an a small enough such that (4.15) does not hold and the solution becomes unstable.
In particular, the same then applies to all perturbations with a lower frequency than
the chosen one, i.e., for all ¥ <dz. Due to the above mentioned symmetry in a and
(b—a) of (4.15), the same argument applies if we let a— b.

To see what happens if a is neither very small nor large compared to b, we set

a="b/2, yielding
b Igb
I tanh <2) tanh (;) >1. (4.16)

Since ¥ > 1, this inequality holds for all ¥ if b is large enough. On the other hand,
(4.16) is violated in the limit b— 0. Consequently, solutions loose their stability if b
is below a minimal value.

For k — oo we obtain that

4.4. Level set formulation and comparison principle. In order to gain
some insight into the basic properties of the interface motion, we consider the motion
in a given potential S, i.e.,

Von=V¢- (aiSVUS> on I'(t) x (0,7). (4.17)
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From the derivation of the model it is not obvious whether there is a comparison

principle between two interfaces, i.e., if the property Q(t) Cﬁ(t) is conserved in time.
The study of a comparison principle can be performed in a nice way via a level set
approach (cf. [23, 22]), i.e., we look for a function ¢:Q x[0,7] — IR, such that

Qt)={zeQ | p(z,t) <0}, Tt)={zeQ | ¢(x,t)=0}.

It is well-known that the normal and normal velocity in terms of the level set function
are given by
ne Y __ O
Vel’ Vel

The differential operator on the surface can be rewritten as (cf. [3])

1 1 IVl Ve _ Vo
i — - — V. P P=1- % g Y%
Ve (ansv“s) 2N (ans VS)’ ?

Hence,

Vel [Ve|?
=V |—PVS|=-V.- | —L__VS|+V- (Vo 4.1
Orp (v@.vs 5 Vo -VS 5 (Veo), (4.18)

so that we end up with a fully nonlinear second-order parabolic evolution equation,
which can be analyzed using the theory of viscosity solutions for equations of the form

(ct. [7])
Orp=F(x,1,Vip,D*p).

The main condition needed for the analysis (besides regularity) is monotonicity of the
right-hand side F with respect to the Hessian D?¢. Note that in the case of (4.18)

(AVS(z.1) | [pl*(VS(2,t)) (AVS(2,t))
p~VS(x,t) (p~VS(x,t))2

Hence, with the notation ¢=V.S(z,t) we have for A>B

2
F(z,t.p,A)=tr(A) — L

+G(x,t,p).

Fir.top,A) - FatpB) =tr(A - B) - 2 UABI) 'p'Qq'(;ffz)gB)q)
p-(A—B)p)
mE

d d—1
> A =AY A >0,
j=1 j=1

where 0 <\ <--- < )\4 are the eigenvalues of the positive semidefinite matrix A — B.

The monotone dependence of F implies that for solutions ¢ of (4.18) satisfying the
entropy condition V- V.S <0 a comparison principle holds. Now let ¢ be the solution
of (4.18) with zero level set I'(t) and ¢ be the solution with zero level set I'(t). If
€ o, this means that we can choose initial level set functions with ¢(.,0) > @(.,0).

Then by the comparison principle for level set equation we obtain that ¢(.,t) > @(.,t)
for all ¢ >0, and thus

>tr(A—B)—

QO = QB cQE), Vio. (4.19)
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The comparison principle (4.19) seems to be the first known for a surface diffusion
model; it is obviously not true for the previously studied fourth-order models. In the
general case of a coupling with S via an elliptic differential equation, the comparison
principle will be violated due to the nonlocal interaction, but for a small time step one
could always think of approximating the geometric motion with given .S, so that one
expects a rather well-behaved geometric motion without effects like pinch-off (which
is also found in numerical experiments).

5. Numerical experiments

In the following we present several numerical experiments illustrating the asymp-
totic behavior of the Keller-Segel model with small diffusivity, and the theoretical
results found above.

5 =
087 Lol
- NN
0.6 3.5 I S
0 f .
041 : .
t \
Yy 3 R
0.29 L .
R B ¥
2.5 > e
~ -7
B, S
. A
2] ST
3 3.5 a 4.5 5
6 x
(a) Density o (b) Density flux o(1—0)VS—eVp

F1G. 5.1. Numerical solution of (1.1)-(1.4) showing a plateau moving in positive x-direction
and the corresponding density fluz.

5.1. Formation of plateaus and coarsening. The formation of plateaus
from a random initial distribution of cells is illustrated in Figure 3.1, where system
(1.1)—(1.4) was solved numerically using a finite difference scheme. The computational
domain is Q=(0,2)?, the diffusivity e=10"%. As initial value we choose pointwise
independent uniformly distributed random variables in [0.1,0.11], i.e., o7 can be in-
terpreted as a small random perturbation of the constant density 0.105. As predicted
by the asymptotic analysis, plateaus form after some time (see (a)—(d)), and then a
coarsening of the plateaus starts (see change from (d) to (e)).

5.2. Surface diffusion. Figure 5.1 shows a high density-region of ¢ on the
domain Q= (0,6)? moving in the positive z-direction and the corresponding density
flux o(1—0)V.S —eVp. We can see that inside the plateau, the flux is practically zero.
The biological interpretation of this observation is that due to the dense packing of
cells in the interior regions of the plateau, cell movement can only occur along the
plateau boundary. This type of behavior is actually observed around aggregates of
Dictyostelium discoideum.

5.3. Stability of quasi-1D surfaces. = We investigate the stability of quasi-1D
surfaces numerically by choosing quasi-one dimensional initial conditions according
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o5 EN 1is

N

o’s £ 1S

(b) t=0.01

N

o5 ER 1's

(c) t=0.03

N

o5 EN 1is

(d) t=0.28

N

Fic. 5.2. Numerical solution of (1.1)—(1.4) with e =10~% and the quasi-one dimensional initial
condition (5.1) with a=0.05. Regions with a high density of o are colored white, low density regions
dark grey. Note that all plots in this section have been rotated by 90 degrees.

to Subsection 4.3, i.e.,

1 if 29 <a+random perturbation

0 else, (5.1)

or(onn)={
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a2

o5 ES 1’5 =

(b) t=0.22

(c) t=0.44

Fic. 5.3. Numerical solution of (1.1)—(1.4) with parameters and initial condition as above and
a=0.2.

where the amplitude of the random perturbation equals the grid size.

The results in Section 4.3 imply that while letting a — 0 and keeping b fixed, the
stability condition (4.15) is violated for larger and larger wavenumbers k. Hence, if
we add a small, random perturbation to two sets of initial data with the same value
for b but different values for a, we expect the evolution of higher frequency patterns
for the initial data with the smaller a, as illustrated in the following two figures:

Figure 5.2 shows the cell density ¢ in the domain 2=(0,1) x (0,2) for different
points in time. Since we describe phenomena that occur on the diffusive time scale, the
time given in the figure captions in this and the following sections is already rescaled
accordingly. We can see how a pattern starts to grow, evolving into two plateaus at
the domain boundary. Eventually, these plateaus merge and the stationary state of a
single plateau in the corner is approached.

For Figure 5.3, we chose similar initial conditions, but a larger parameter a than
in the last figure. Now, a pattern of lower frequency evolves, gradually forming one
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o
0
|

(b) t=0.05

= ST se o ewm o %

(c) t=0.08

(d) t=0.4

Fic. 5.4. Numerical solution of (1.1)-(1.4) on Q=(0,1) x (0,0.3) with parameters and initial
condition as above and a=0.05.

single plateau in the corner.

Finally, Figure 5.4 illustrates the instability of solutions with a=5/2 if b does not
fulfill (4.16).

5.4. Long-time behavior on a rectangular domain.  Our first example of
long-time behavior is carried out on the rectangular domain = (0,4) x (0,1). Figure
5.5 shows the cell density at two different points in time, as well as isolines of the
corresponding chemical concentration S. Starting from initial conditions consisting of
a small strip of mass in the left and a larger strip in the right corner, the cell density
evolves into a planar plateau on the right and a small plateau in the left corner.
Whereas the value of the chemical density along the boundary of the large plateau is
already practically constant in the first picture 5.5(a), the smaller plateau approaches
its stationary shape much later, see 5.5(b).

In Figure 5.6, we start with random initial conditions g;(x) €[0.7,0.71] and com-
pute the evolution of the cell density on the long but narrow rectangular domain
2=1(0,2) x (0,0.4). This simulation turns out to show an especially interesting dy-
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(a) t=0.22
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(b) t=11

F1G. 5.5. Numerical solution of (1.1)—(1.4) with e =1073 and initial conditions consisting of a
small strip of mass in the left and a larger strip in the right corner. Regions with a high density of o
are colored white, low density regions are grey. Black lines are isolines of the chemical concentration

S.

ozi\\

070 o5 1 1.5 =
(a) t=0.02

0,4:

o (=] Lo =1 1 1.5 2
(b) t=110

FIG. 5.6. Numerical solution of (1.1)-(1.4) with e=5x10"% and random initial conditions
or(x) €[0.7,0.71]. Black lines are isolines of the chemical concentration S.

namical behavior: after a fast transition from the initial data to a solution with two
plateaus in 5.6(a), the cell density assumes a quasi-one dimensional shape in 5.6(b),
instead of converging to stationary shapes in the corner like above. Although the
chemical S is now practically constant along the boundary, and thus the stationary
state of the dynamics described by equation (3.11) has almost been reached, we know
from the analysis of the one-dimensional problem that this is not a stationary state
of the full system. Hence, we expect that for this set of initial conditions, dynamics
cannot be only described on the fast hyperbolic and the slow diffusive time scale,
but that there is a third, exponentially slow time scale as described in [11] for the
one-dimensional system. Consequently, exponentially slow movement of the plateaus
towards each other or the domain boundary can be anticipated.
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(e) Level set {o(.,t)=0.5}, t=0.08

the level set {o(.,t)=0.5}.

5.5. Long-time behavior on a 2D cone.
the geometry of Q on the long-time dynamics, we display the results of a simulation
on a cone. The following example is solved numerically using a finite element method

(f) Level set {o(.,t)=0.5}, t=0.16

Fic. 5.7. Numerical simulation of a plateau moving to the corner of a cone. The shape displays

and semi-implicit time stepping. The initial value is

which corresponds to a peak close to (0.2,0.4). The diffusion coefficient is 2 x 1073
and the time step used for the simulation is 2.5 x 10~2. We illustrate the dynamics
of the interface, i.e., the level set {p= %}, in Figure 5.7. The interface has nonempty
intersection with 9€) for all times in this case, and moves into the corner of the cone.

or(z,y)=e"

(25(2—0.2)*+(y—0.4))

7

From (f) one observes more clearly the symmetry of the stationary shape.

In order to illustrate the effect of
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(a) Level set {o(.,t)=0.5}, t=0.01  (b) Level set {o(.,t)=0.5}, t=0.02

Isclevel; tho, Colou: S, at time t = 6.00 Isclevel; tho, Colou: S, at fime = 10.00

o1

(c) Level set {o(.,t)=0.5}, t=0.03  (d) Level set {o(.,t)=0.5}, t=0.05

Isclevel: tho, Colour: S, atfime t = 14.00 Isclevet: tho, Colour: S, atfime t = 1.0

(e) Level set {o(.,t)=0.5}, t=0.07  (f) Level set {o(.,t)=0.5}, t=0.06

Fic. 5.8. Numerical simulation of three-dimensional plateaus on a cube. The shape displays
the level set {o(.,t)=0.5}.

5.6. Long-time behavior in 3D. Finally, we illustrate the results of three-
dimensional simulations of the long-time behavior. In this case, we choose the domain
Q= (-1,1)3, £=0.005, and time step 7=0.02. We start with two plateaus close to
opposite corners of the cube, namely the initial value

0.95 if /(2 —0.5)2+(2—0.5)2+ (y—0.6)2< 0.4
or(x,y,2) =1 0.95if \/(z+0.7)2+ (z+0.7)2 + (y+0.6)2 < 0.25
0.05 else.

Six different time steps of the evolution are illustrated in Figure 5.8 via contour plots
of the level sets {o(.,t) =0.5} (other level sets of p look very similar due to the plateau
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(a) Level set {o(.,t)=0.5}, t=0.002

Isclevel: tho, Colou: S, at time = 20.00
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Isclevel: tho, Colour: S, at fimet = 6.00

012

(b) Level set {o(.,t)=0.5}, t=0.03

Isclevel; tho, Colou: S, at fime = 30.00

(c) Level set {o(.,t)=0.5}, t=0.1 (d) Level set {o(.,t)=0.5}, t=0.15

Isclevet tho, Colour: S, atfime t = 40.00 Isclevet tho, Colour: S, atime t = 80.00
018
0175
017

0.165

F o

0.155

015

(e) Level set {o(.,t)=0.5}, t=0.2 (f) Level set {o(.,t)=0.5}, t=0.4

Fic. 5.9. Numerical simulation of three-dimensional plateaus on a cube. The shape displays

the level set {o(.,t)=0.5}.

structure of solutions). One observes that both plateaus move to the closest corner
of the cube and the interfaces form local stationary shapes.

The behavior changes if the initial value consists of two plateaus in neighbouring
corners of the cube: we choose
0.95 if /(z—0.5)2+ (2 —0.5)2+ (y—0.6)2 < 0.4
0.95 if \/(z—0.7)24 (2 —0.7)2+ (y+0.6)2<0.25
0.05 else.

or(x,y,z) =

Again, the analogous contour plots as above are shown for six different time steps of
the evolution in Figure 5.9. In this case one observes that the larger plateau grows
at the expense of the smaller one, and finally the smaller one disappears before the
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interface tends to a different equilibrium shape than above.
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