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A HIERARCHY OF MODELS FOR TURBULENT DISPERSED
TWO-PHASE FLOWS DERIVED FROM A KINETIC EQUATION

FOR THE JOINT PARTICLE-GAS PDF∗

KOMLA DOMELEVO† AND PHILIPPE VILLEDIEU‡

Abstract. This paper deals with the statistical modeling of turbulent two-phase flows consisting
of particles or droplets immersed in a gas. The problem of gaseous turbulence alone being very
complex, we concentrate here on the simpler case of an a priori given forced isotropic homogeneous
turbulence acting on the particles, whose mean square velocity and integral Lagrangian time-scale
are given constants. Our main objective is to derive a hierarchy of reduced models from the joint
particle-gas pdf (probability density function). The latter equation may therefore be regarded as a
master equation for our problem. The reduced models describe the dispersion of a cloud of particles
observed at different time scales compared to the dynamic response time of the particles and the
characteristic time scale of the turbulence along their trajectories. These derivations rely on very
classical Chapman-Enskog expansions. We recover in particular the result of Tchen [C. M. Tchen,
Mean value and correlation problems connected with the motion of small particles suspended in a
turbulent fluid, PhD thesis, Delft, The Hague, Martinus Nijhoff, 1947] stating that the diffusion rate
is the same for small or large particles in homogeneous turbulence, under the assumption that the
lagrangian statistical properties along their paths are the same. Moreover, our approach allows us
to prove that the long-time limit of the joint particle-gas distribution function is a bi-maxwellian
distribution, whatever the size of the particles. This is consistent with some usual assumptions
made in the literature for the derivation of particle collision models [J. Laviéville, E. Deutsch and
O. Simonin, Large eddy simulation of interactions between colliding particles and a homogeneous
isotropic turbulence field, Gas-Solid Flows, ASME, 228, 347-358, 1995], [Leonid I. Zaichik, Olivier
Simonin and Vladimir M. Alipchenkov, Two statistical models for predicting collision rates of inertial
particles in homogeneous isotropic turbulence, Phys. Fluids, 15(10), 2995-3005, 2003].
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Notations

Ug Eulerian velocity field for the gas Ug :=Ug(t,x)
Ūg Eulerian statistical mean velocity of the gas Ūg := Ūg(t,x)
U ′

g Eulerian turbulent component of the gas velocity U ′
g :=U ′

g(t,x)
xp(t) Position of a particle at time t, xp(t) :=(xp,i(t))i=1,2,3

vp(t) Velocity of a particle at time t, vp(t) :=(vp,i(t))i=1,2,3

up(t) Turbulent velocity of the gas along a particle’s trajectory,
i.e. up(t) :=U ′

g(t,xp(t))
τp Stokes repones time of the particles
τg Autocorrelation turbulence time–scale along particles trajectories
S Stokes number, by definition S = τp/τg

kg Turbulent kinetic energy of the gas along particles’ trajectories
σg Turbulent gas mean square velocity along particles’ trajectories
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N Number of space dimensions
x Space variable x∈RN

x

v Velocity variable v∈RN
v

u Turbulent gas velocity variable u∈RN
u

E Phase space E=RN
x ×RN

v ×RN
u

fpg Joint particle–gas probability density function fpg :=fpg(t,x,v,u)
M1(v;σ) Gaussian distribution M1(v;σv) :=(1/2πσ2

v)N/2 exp(−v2/2σ2
v)

M2(v,u;Σ) M2(v,u;Σ)=1/
[
(2π)N |Σ|1/2

]
exp(−[v;u]T Σ−1 [v;u]

]
/2)

where Σ :=Σ(σ,S) is the 2N×2N covariance matrix:

Σ :=Σ(σg,S) :=
[
Eωv2

p Eωvpup

Eωvpup Eωu2
p

]

1. Introduction
Dispersed two-phase flows in the form of solid particles or droplets suspended in

a gas are common features in many industrial and natural processes such as nuclear
and combustion engineering, vulcanology, atmospheric dispersion and meteorology,
amongst other areas. Almost without exception, the motion of the suspended particles
is turbulent, driven by random aerodynamic forces exerted by the (high Reynolds)
carrier gas flow. An important question, for all applications, is then to estimate
the rate of spread of the cloud of particles in terms of the mean characteristics of
the turbulence of the carrier flow. If the spreading can be modeled by a diffusion
equation, then the problem reduces to finding the value of a diffusion tensor. This
raises the theoretical question of deriving this diffusion equation together with the
explicit expression of its coefficients, starting from the constitutive laws of motion
of individual particles. This is a classical problem that has already been studied by
many contributors.

Before going further in the presentation of these results, let us introduce a few
notations. In the modeling of turbulent flows, it is classical to decompose the eulerian
velocity field Ug(t,x) of the turbulent gas flow into a statistical mean component
Ug(t,x) and a deviation U ′

g(t,x), namely for all (t,x), Ug(t,x)=Ug(t,x)+U ′
g(t,x).

Here the statistical mean should be understood as an ensemble average over all pos-
sible realisations of the gas flow Ug(·,·;ω) that where ω denotes a particular reali-
sation of the flow. Hence, we have more precisely that for all (t,x;ω), Ug(t,x,ω) :=
Ug(t,x)+U ′

g(t,x;ω) with Ug(t,x) :=EωUg(t,x,ω) :=
∫

ω
Ug(t,x,ω)dp(w). In the fol-

lowing, we will often omit the parameter ω. Finally U ′
g(t,x) is called the turbulent

velocity component of the flow.
In his pioneering work, Tchen [30] started from the basic expression of the time-

dependent diffusion tensor Dij(t) given by Taylor [29] in his theory of “diffusion by
continuous movements”. Here, if vp(t) denote the random velocity of a particle, then
for a stationary homogeneous field, the diffusion tensor Dij(t) writes

Dij(t) :=
∫ t

0

Eω [vp,i(0)vp,j(s)]ds, (1.1)

where vp,i(t) is the ith spatial component of vp(t). Notice that the diffusion tensor
does not depend on the initial position xp(0) of the fluid particle because we assumed a
stationary homogeneous turbulent velocity field. This expression applies for any type
of particles, e.g. fluid particles or inertial particles. In the case of inertial particles,
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Tchen proved that the diffusion tensor (1.1) of inertial particles can be written
directly in terms of the turbulence statistics provided that (i) the turbulence seen by
the droplets up(t) :=U ′

g(t,xp(t)) is a stationary homogeneous gaussian process, (ii)
the force acting on the particles is a linear drag force, and (iii) we only seek for the
diffusion coefficient of the particles for large times. Namely, Tchen proved that

Dij(∞) :=
∫ ∞

0

Eω [vp,i(0)vp,j(s)]ds=
∫ ∞

0

Eω [up,i(0)up,j(s)]ds. (1.2)

This means that the long-time limit of Dij is nothing but the lagrangian auto-
correlation tensor of the turbulent velocity seen along particles’ trajectories. The
main consequence of that result is that in a stationary homogeneous turbulent flow,
the asymptotic limit of the diffusion tensor is independent of the size of the parti-
cle provided that the properties of the turbulence along the particle trajectories are
size-independent. The validity of this last assumption has been widely studied in
subsequent works, especially by Yudine [31] and Csanady [5] who analysed the influ-
ence of a constant external force and by Reeks [24] who also considered the effect,
due to the difference between the lagrangian and eulerian integral time scales, of the
turbulence on the statistics along particle paths. We come back to these difficulties
in the conclusion and we refer the reader to the review paper [16] on the subject.

A more general approach based on the kinetic theory framework has been intro-
duced by Reeks in [25] for homogeneous flows. It has been generalised to the case
of nonuniform flows by several authors [26, 11, 33, 34] and fully justified in some
particular cases on the basis of a rigorous mathematical derivation [4, 9]. This fun-
damental approach consists of using a transport equation of Liouville type for the
random instantaneous phase density function of the particles.

For that, consider an ensemble of particles characterized by their position and
velocity (xp(t),vp(t)) and obeying the system of ordinary differential equations





dxp

dt
(t)=vp(t)

dvp

dt
(t)=F(t,xp(t),vp(t);ω) :=F(t,xp(t),vp(t))+F ′(t,xp(t),vp(t);ω),

where Fω :=F(·,·,·;ω) denotes the acceleration of a particle located at time t at posi-
tion (x,v) in the phase space RN

x ×RN
v for a given realisation ω of the problem. Indeed,

we assume here that the acceleration has a random component F ′(t,xp(t),vp(t);ω).
Then, the conservation of the number of particles in phase space writes in terms of
its density fω

p (t,x,v) as the Liouville equation

∂tf
ω
p +∇x ·(vfω

p )+∇v ·(Fωfω
p )=0.

The probabilty density function fp (in short “the pdf fp”) is by definition the
statistical average of the previous random density, that is

fp(t,x,v) :=Eωfω
p (t,x,v).

The pdf fp obviously solves

∂tfp +∇x ·(vfp)+∇v ·(Ffp +Eω(F ′ωfω
p ))=0, (1.3)

and it leads to an equation in closed form only if we can express the correlation term
Eω(F ′ωfω

p ) in terms of the pdf fp alone. In the case of inertial particles submitted to
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a linear drag force, we have an acceleration of the form

F(t,x,v;ω) :=
1
τp

(Ug(t,x;ω)−v) :=
1
τp

(
Ug(t,x)−v

)

︸ ︷︷ ︸
+

1
τp

U ′
g(t,x;ω)

︸ ︷︷ ︸

F(t,x,v) F ′(t,x,v;ω)

where τp is the response time of the particles, that is the typical time needed for the
velocity of the particles to relax to the velocity of the surrounding gas. It follows from
(1.3) that the kinetic equation satisfied by fp reads

∂tfp +∇x.(vfp)+∇v.

(
Ug(t,x)−v

τp
fp +Eω

[
U ′ω

g fω
p

τp

])
=0.

In this pdf framework, assuming that (i) the turbulence seen by the droplets
up(t) :=U ′

g(t,xp(t)) is a stationary homogeneous gaussian process (same hypothesis
as Tchen’s) and (ii) assuming a linear drag force, Reeks [25] proved that the term to
estimate has the form:

j(t,x,v) :=Eω

[
U ′ω

g fω
p

τp

]
=−(A∇vfp +B∇xfp), (1.4)

in which

Aij(t)=
1
τp
Eω(up,i(t)vp,j(t))=

1
τ2
p

∫ t

0

exp
(
− t−s

τp

)
Rij(t,s)ds,

Bij(t)=
1
τp
Eω(up,i(t)xp,j(t))=

1
τp

∫ t

0

[
1−exp

(
− t−s

τp

)]
Rij(t,s)ds, (1.5)

and where Rij(t,s)=Ew(up,i(t)up,j(s)) is the so-called lagrangian auto-correlation
tensor of the turbulent velocity field (i.e. the autocorrelation tensor computed along
the particles’ trajectories). It is worth noticing that the expression of Rij(t,s) is
known only if the statistics of up(t) :=U ′

g(t,xp(t)) can be explicitly computed. This
is only possible for simple flows.

In this paper, we propose to revisit the traditional approach based on the kinetic
theory by using a transport equation for the joint particle-gas probability density
function fpg(t,x,v,u), where the extra variable u refers to the carrier flow turbulent
velocity encountered by a particle along its path. Hence by definition, the classical
pdf fp :=fp(t,x,v) and the extended one fpg :=fpg(t,x,v,u) are related to each other
by

fp(t,x,v)=
∫

RN
u

fpg(t,x,v,u)du.

To obtain the equation satisfied by fpg, an extra equation is required for u(t) in
addition to the particle equations of motion (please see next section). In the case
of a general nonuniform fluid flow, the extra equation can be based on the model
proposed by Simonin et al. [28], being a derivative of the generalized Langevin equa-
tion introduced by Pope as a stochastic lagrangian model of Navier-Stokes equations
[19, 20, 21]. The main interest of this new approach is that all the turbulence
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statistics along particle trajectories have not to be prescribed a priori but are now
implicitly contained in the set of the particle equations of motion.

In the present work, we derive a hierarchy of reduced models starting from the
joint particle–gas pdf equation which may be regarded as a master equation for our
problem. Each of these models describes the dispersion of the cloud of particles
observed at a given time scale T that has to be compared to the particle dynamic
response time τp and to the characteristic time scale τg of the turbulence. In each
case, the derivation relies on a classical Chapman-Enskog expansion which allows
to eliminate one of the variables of the problem depending on which asymptotic is
considered. Under suitable hypotheses, we recover the main results of Tchen’s theory
and also some results of Reeks, namely the expression of the diffusion tensors Aij and
Bij in the relevant cases. As a by-product of this approach, we also obtain that in a
uniform homogeneous isotropic fluid flow (under our modelling assumptions) the long-
time limit of the joint pdf is bi-maxwellian whatever the size of the particles. This is
consistent with some hypotheses made in the literature for the derivation of particle
collision models [15, 32]. The extension of this work to more general situations (simple
shear flow, presence of an external force, nonlinear drag model) will be addressed in
a forthcoming paper.

The paper is organized as follows. Section 2 is devoted to the derivation of the
master equation for the joint particle-gas pdf, the presentation of the main results
(written in dimensional variables) and finally the derivation of the nondimensional
form of the problem. Then, sections 3, 4 and 5 are devoted to the derivations (in
nondimensional variables) of the reduced models in the case of large, small or inter-
mediate size particles respectively. We conclude the paper with an appendix where
the equilibrium distributions for the bi-maxwellian are investigated thanks to entropy
estimates.

2. Modeling and main results

2.1. Modeling assumptions and equations of motion of a single droplet.
In this work, we shall assume for the sake of simplicity the following hypotheses

on the gas velocity field:
(i) The statistical mean gas velocity Ug is a constant vector field. This is an

important assumption because it ensures that the turbulent velocity of the
gas along the particles’ trajectories is not correlated the mean velocity or
mean gradients, contrast for example to shear flows (see e.g. [27]). But,
thanks to galilean invariance, we can assume without loss of generality that
the mean velocity Ug of the gas is equal to 0.

(ii) The turbulence velicity field U ′
g(t,x) are stationary, isotropic and homoge-

neous. Therefore, the statistical properties of the stochastic process up(t)=
U ′

g(t,xp(t)) (corresponding to the fluid velocity along a given particle path)
is stationary, isotropic and do not depend on the initial particle position. Fi-
nally, the turbulent kinetic energy kg and the autocorrelation time-scale τg

of the turbulence (both along particles trajectories) write as:

kg :=Eω
[
u2

p(t)/2
]
, τg :=

1
2kg

∫ ∞

0

Eω [up(t)up(0)]dt

Under these hypotheses, the equations of motion for a given droplet may be written
as

dxp

dt
(t)=vp(t),

dvp

dt
(t)=

up(t)−vp(t)
τp

, (2.1)
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where up(t) is as usual the turbulent gas velocity seen by the droplet and τp stands
for the particle response time. Now, in the case of homogeneous isotropic turbu-
lence, by analogy with the work of Pope et al. [19, 20] on lagrangian turbulence
modeling, Pozorsky, Minier and Simonin [17, 23, 18] have proposed to use the follow-
ing stochastic differential equation in order to describe the fluctuating gas velocity
up(t)=U ′

g(t,xp(t)) seen by a droplet, when observed at time scales falling in the
inertial range of the fluid turbulence:

dup(t)=−up(t)
τg

dt+

√
2σ2

g

τg
dW t. (2.2)

This is a so-called Ornstein-Uhlenbeck process where W t is the Wiener process on
RN (with Eω(dWt,idWt,j)= δijdt), where σg =

√
2kg/N is the turbulent mean square

velocity, and where τg stands for the autocorrelation time of the turbulence along the
particle path. Note that the probability distribution φ(t,u) of the values of up(t)
tends to a gaussian distribution only after a typical time greater than τg. If φ(0,u)
is gaussian at time t=0, then it remains gaussian for all subsequent times, with a
variance that tends to σ2

g .
In order to obtain a model representing the dynamics of the whole cloud of parti-

cles, it is necessary to adopt a statistical point of view and to introduce the one-particle
joint particle-gas density function fpg, representing the density of probability for a
particle to be at time t at position x, with velocity v and seeing a fluctuating gas veloc-
ity equal to u. The corresponding phase space is therefore E=RN

x ×RN
v ×RN

u . Using
the Feynman-Kac representation theorem (see [14]) it follows from system (2.1)-(2.2)
that fpg must satisfy the following deterministic Fokker-Planck equation:

∂tfpg +divx (vfpg)+divv

(
u−v

τp
fpg

)
−divu

(
u

τg
fpg

)
− σ2

g

τg
∆ufpg =0 (2.3)

2.2. Main results. Starting from the master-equation (2.3) for fpg, if T
denotes the typical time at which the system is observed, then we derive formally a
series of reduced models corresponding respectively to the following scalings:

intermediate time-scale macroscopic time-scale

large particles
τg¿ τp∼T , fpg 7→fp

Eqs. (2.4)-(2.5)
τg¿ τp¿T , fp 7→n

Eqs. (2.8)-(2.9)
intermediate-size

particles
max(τp,τg)¿T , fpg 7→n

Eqs. (2.8)-(2.10)

small particles
τp¿ τg∼T , fpg 7→fg

Eqs. (2.6)-(2.7)
τp¿ τg¿T , fg 7→n
Eqs. (2.8)-(2.11)

These different scalings are defined thanks to the following considerations: on the
one hand, the response time τp of a particle is a decreasing function of the size of
the particle which tends to 0 for infinitely small particles and to infinity for infinitely
large particles. Hence, for given characteristics of the turbulent flow, in particu-
lar for a given lagrangian autocorrelation time τg of the turbulence, we denote by
“small particles” the case where τp¿ τg, “large particles” the case where τpÀ τg,
and “intermediate-size particles” the remaining case τp∼ τg. On the other hand, we
call “intermediate time–scale” the case where the observation time T is chosen to be
T ∼max(τp,τg) and we call “macroscopic time–scale” the case where the observation
time T is chosen to be T Àmax(τp,τg). Finally, the notation “f 7→g” in the table
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above means that in the asymptotic regime considered, the original unknown f of the
initial problem is replaced by the unknown g, solution to the asymptotic model.

We show that these asymptotic limits can be derived formally by using a
Chapman-Enskog expansion starting with the above-mentioned master–equation (2.3)
for the joint particle–gas pdf fpg. Such derivations can be found in classical textbooks
[2, 3] for example. We also want to mention here reference [1] where these techniques
are used to derive a hierarchy of models in the context of semiconductors as well as
reference [6] which deals with a similar Fokker-Planck equation similar to Eq. (2.3)
above and also provides a nice introduction to the algebra of the Chapman-Enskog
expansion.

Coming back to our problem, the first three limiting problems obtained starting
from (2.3) respectively allow us to rewrite the joint particle-gas pdf fpg :=fpg(t,x,v,u)
in terms of (i) a gaussian distribution involving the variables that vary rapidly at
the scale of the observation time-scale T , multiplied by (ii) a contribution involving
the reduced distribution fp :=fp(t,x,v), or fg :=fg(t,x,u), or n=n(t,x) depending
on which of the three cases we consider. These new functions obey kinetic (2.5),
(2.7) or macroscopic (2.8) diffusion equations. The two probability density functions
fp and fg obtained at intermediate time-scale, are themselves asymptotically close,
when observed at macroscopic time-scales, to distributions involving the macroscopic
density number n(t,x) of particles in physical space. The three manners of deriving
an equation for the macroscopic density n all lead to the same diffusion equation
(2.8) as predicted by Tchen [30]. Finally, these equations are valid only after a short-
time boundary-layer. A rigorous mathematical analysis would show that the relevant
initial conditions for the solutions to the reduced models are projections onto suitable
equilibrium distributions, but this is beyond the scope of the present paper. These
results are summarized below.

intermediate time-scale, i.e. T ∼max(τp,τg) large particles, i.e. τpÀ τg

fpg(t,x,v,u)=M1(u;σg)
(

fp(t,x,v)+
τg

τp
u ·∇vfp(t,x,v)

)
+o

(
τg

τp

)
(2.4)

with fp the solution of

∂fp

∂t
+divx (fpv)+divv

(
− 1

τp
fpv−

σ2
gτg

τ2
p

∇vfp

)
=0 (2.5)

intermediate time-scale, i.e. T ∼max(τp,τg) small particles, i.e. τp¿ τg

fpg(t,x,v,u)=M1(v−u;σg

√
τp/τg)(fg(t,x,u))+O(τp/τg) (2.6)

with fg the solution of

∂fg

∂t
+divx(fgu)+divu

(
− 1

τg
fgu−

σ2
g

τg
∇ufg

)
=0 (2.7)

macroscopic time-scale, i.e. T Àmax(τp,τg)

∂n

∂t
−σ2

gτg∆xn=0 (2.8)
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large particles, i.e. τpÀ τg

fp(t,x,v)=M1(v;σg

√
τp/τg) (n(t,x)−τpv ·∇xn(t,x))+o(τp/T ) (2.9)

intermediate-size particles, i.e. τp∼ τg

fpg(t,x,v,u)=M2(u,v;σg,τp/τg)
(

n(t,x)−τg

(
u

τp/τg
+(2+τg/τp)v

)
·∇xn(t,x)

)

+o(max(τg,τp)/T )
(2.10)

small particles, i.e. τp¿ τg

fg(t,x,u)=M1(u;σg) (n(t,x)−τgu ·∇xn(t,x))+o(τg/T ) (2.11)

where M1 (resp. M2) denotes a suitable centered gaussian (resp. bi-gaussian) dis-
tribution, whose precise definition is given later.

2.3. Dimensionless pdf equation for a cloud of particles. Let us in-
troduce now a macroscopic length scale L, a velocity scale U , the corresponding
time-scale T =L/U , and the nondimensional parameters:

Kp =
τp

T
, Kg =

τg

T
, K =max(Kp,Kg), S =

τp

τg
.

The Stokes number S indicates whether we are in the presence of small or large par-
ticles. By definition, we call “small particles” those for which τp¿ τg, or equivalently
S¿1. In this limiting case, the particles tend to behave like fluid particles. Con-
versely, “large particles” are by definition those for which τpÀ τg, or equivalently
SÀ1, that is, nearly ballistic particles. In this work, our aim is to study the dynam-
ics of the joint particle-gas pdf fpg observed at intermediate or large time-scale T ,
for either small or large particles, and to derive reduced models (i.e. involving fewer
variables than the kinetic equation (2.3) for the joint particle-gas pdf). For that, we
use asymptotic analysis involving large or small non-dimensional parameters.

Indeed, the macroscopic scales introduced above lead to the following definition
for the non-dimensional rescaled variables

t̃=
t

T
, x̃=

x

L
, ṽ =

v

U
, ũ=

u

U
, σ̃g =

σg

U
, Ũg =

Ug

U

and for the corresponding joint density function

f̃pg(t̃,x̃,ṽ,ũ)=LNU2Nfpg(T t̃,Lx̃,U ṽ,U ũ)

We note that, by definition of K and S, one has:

Kp =
K

max(1,1/S)
=

SK

max(1,S)
, and Kg =

K

max(1,S)
.
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From this, it follows that the dimensionless joint particle-gas pdf equation writes:

∂t̃f̃pg +divex
(
f̃pgṽ

)
+

max(1,S)
SK

divev
[
(ũ− ṽ)f̃pg

]

−max(1,S)
K

diveu
[
f̃pgũ+ σ̃g

2∇euf̃pg

]
=0. (2.12)

In the rest of the paper, where only nondimensional variables are considered, the
tildes will be systematically omitted for the sake of simplicity.

3. Asymptotic models for large particles
In this part, we consider the case of large particles observed at intermediate time-

scales. By intermediate time-scales, we mean that the ratio of the macroscopic obser-
vation time T to the response time of the particles τp is supposed to be fixed, and we
study the asymptotic behavior of the joint density fpg when the Stokes number S goes
to infinity, or equivalently when τp is assumed to be much greater than the turbulence
auto-correlation time τg. In that case, we show by using a formal Chapman-Enskog
expansion that the dependence of fpg with respect on the gas turbulent velocity u
can be explicitly computed (up to some terms of order o(1/S)), which allows one to
replace the original kinetic equation (2.3) by a drift-diffusion equation on the reduced
phase space RN

x ×RN
v . More precisely, we have for the problem in nondimensional

form:

Proposition 3.1 (Large particles at intermediate time-scale). Let K fixed be
given. For large values of S, the solution fpg of Eq. (2.12) satisfies:

fpg(t,x,v,u)=
1

(2πσ2
g)N/2

exp

(
−u2

2σ2
g

)(
fp(t,x,v)− 1

S
u ·∇vfp(t,x,v)

)
+o

(
1
S

)
,

where fp depends only on (t,x,v) and satisfies the Fokker-Planck equation

∂tfp +divx

(
vfp

)
+

1
K

divv

[
−vfp−

σ2
g

S
∇vfp

]
=0. (3.1)

Remark 3.2.
1 Coming back to the primitive dimensional variables, the result of Proposition

3.1 writes formally (for S large enough):

fpg =
1

(2πσ2
g)N/2

exp
(−u2

2σ2
g

)(
fp− 1

S
u ·∇vfp

)
+o(1/S),

with fp satisfies the Fokker-Planck equation

∂tfp +divx (vfp)+divv

[
− v

τp
fp−

σ2
gτg

τ2
p

∇vfp

]
=0.

2 This last equation is closely related to the one obtained by Reeks [25] or by
Clouet and Domelevo in [4] and Goudon and Poupaud in [9] in the case of
the so-called white-noise limit, which corresponds to the assumption (with
the notation of the present paper): τg→0, σ2

g→+∞ with σ2
gτg constant.

Note that in [4], the authors found the diffusion coefficient (with respect to
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the variable v) to be Dv =
σ2

gτg

2τ2
p

instead of Dv =
σ2

gτg

τ2
p

as in the present work.

This is in full agreement with the fact that, in their case, the stochastic
process used to sample the turbulent gas velocity along the particle path is
not the Langevin equation (2.2) but the so-called eddy-life-time model [7],
whose integral auto-correlation time is not τg but

τg

2
.

3 We note that the leading term in the formal expansion of fpg writes:

f0
pg(t,x,v,u)=

1
(2πσ2

g)N/2
exp

(−u2

2σ2
g

)
fp(t,x,v).

This relation shows that, up to a term of order 1/S, the particle and the
gas velocity at the same point are uncorrelated, which is quite evident from a
physical point of view since, in this limit, the turbulent time-scale is supposed
to be very small compared to the particle response time. Note that, if we
take into account the first order term in the expansion of fpg, we obtain
the following expression for the correlation tensor between gas and particle
velocities:

1
Np

∫

E
u⊗vfpg(t,x,v,u)dxdvdu=

σ2
g

S
I +o(1/S),

where Np is the total number of particles, which is in agreement with Tchen’s
formula (see [30])

1
Np

∫

E
u⊗vfpg(t,x,v,u)dxdvdu=

σ2
g

1+S
I

in the limit S→+∞.

Proof of Proposition 3.1. Introductory remarks. Recall briefly the general
procedure for the derivation of the reduced model of Proposition 3.1 (see e.g. [2, 3,
1, 6]). In the case S >1, the nondimensional equation (2.12) writes as

∂tf
S
pg +divx(vfS

pg)+
1
K

divv

[
(u−v)fS

pg

]− S

K
Au(fS

pg)=0 (3.2)

where the operator Au is defined as

Au(f) :=divu

(
uf +σ2

g∇uf
)
. (3.3)

In particular, when SÀ1, the equation for fpg above reduces formally to Au(fS
pg)=

O(1/S). Hence, when S→+∞, we formally get that fS
pg→f0

pg where f0
pg is solution

of Au(f0
pg)=0. It can be easily checked that the unique bounded positive solution to

the latter equation that has the same zeroth order moment w.r.t. u as f0
pg writes as

f0
pg(t,x,v,u)=

1
(2πσ2

g)N/2
exp

(
−u2

2σ2
g

)
f0

p (t,x,v),

where f0
p (t,x,v) is defined as

f0
p (t,x,v) def=

∫

u

f0
pg(t,x,v,u)du.
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This suggests to look for an evolution equation for the zeroth order moment of fS
pg

with respect to u, that is for fS
p (t,x,v) :=

∫
u

fS
pg(t,x,v,u)du. Notice here that this

moment is still a probability density but defined on the reduced phase space RN
x ×RN

v .
Namely, integrating the equation (3.2) for fS

pg against the variable u gives, for any
S >1,

∂tf
S
p +divx(vfS

p )+
1
K

divv

[
−vfS

p +
∫

u

ufS
pgdu

]
=0 (3.4)

where the contribution of the operator Au disappears, and where we defined

fS
p (t,x,v) def=

∫

u

fS
pg(t,x,v,u)du.

Equation (3.4) is in closed form in the limit 1/S =0. Indeed, since formally fS
pg =

f0
pg +O(1/S), we have for all S >0 that

∂tf
S
p +divx(vfS

p )+
1
K

divv

(−vfS
p

)
=O(1/S),

because the first order moment w.r.t. u of f0
pg vanishes. Omitting the error term in the

right-hand-side, we are facing a transport equation where no diffusion phenomenon is
present. At the light of the preceding remarks, the Chapman-Enskog procedure allows
one to estimate the error term in the equation above and to obtain a convection-
diffusion equation for the problem at hand.

Chapman-Enskog expansion.
Here, we want to estimate fpg in terms of a first order expansion. For that, for

all S >0, let us introduce the functions fS
p and gS

pg such that, by definition:

fS
pg =

1
(2πσ2

g)N/2
exp

(−u2

2σ2
g

)
fS

p +
1
S

gS
pg, (3.5)

with

fS
p (t,x,v)=

∫

RN

fS
pgdu,

∫

RN

gS
pgdu=0.

Injecting the ansatz (3.5) in Eq. (2.12) yields:

Au(gS
pg)=

K

(2πσ2
g)N/2

exp

(
−u2

2σ2
g

)[
∂tf

S
p +divx

(
vfS

p

)
+divv

(
u−v

K
fS

p

)]

+
1
S

[
∂tg

S
pg +divx

(
vgS

pg

)
+divv

(
u−v

K
gS
pg

)]
.

By construction, we know that fS
p →f0

p when S→+∞. Therefore, thanks to the fact
that f0

p satisfies (3.3), it follows that gS
pg tends formally to g0

pg when S→+∞, where
g0
pg is a solution to:

Au(g0
pg)=

1
(2πσ2

g)N/2
exp

(
−u2

2σ2
g

)
u ·∇vf0

p ,

∫

RN

g0
pgdu=0.
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The unique solution of this problem writes:

g0
pg =

−1
(2πσ2

g)N/2
exp

(
−u2

2σ2
g

)
u ·∇vf0

p .

Since f0
p (respectively g0

pg) is the limit of fS
p (respectively gS

pg), when S→+∞, it
follows that there exists (at least formally) a function ε defined on [0,+∞[2×E ; such
that ∀t>0,∀ξ∈E , limz→0ε(z,t,ξ)=0 and such that for all S large enough:

gS
pg =

−1
(2πσ2

g)N/2
exp

(
−u2

2σ2
g

)
u ·∇vfS

p +ε

(
1
S

)
.

Inserting this expression into (3.5), we get:

fpg =
1

(2πσ2
g)N/2

exp

(
−u2

2σ2
g

)(
fS

p −
1
S

u ·∇vfS
p

)
+o

(
1
S

)
. (3.6)

Also, a short calculation yields:

∫

RN

ufpgdu=
−σ2

g

S
∇vfS

p +o

(
1
S

)
.

Hence, using fS
p =

∫
RN fpgdu, we find that fS

p satisfies:

∂tf
S
p +divx

(
vfS

p

)
+

1
K

divv

[
−vfS

p −
σ2

g

S
∇vfS

p

]
=o

(
1
S

)
.

Finally, let fp be the solution of (3.1):

∂tfp +divx (vfp)+
1
K

divv

[
−vfp−

σ2
g

S
∇vfp

]
=0.

Formally, it follows that fS
p =fp +o

(
1
S

)
and

1
S
∇fS

p =
1
S
∇fp +o

(
1
S

)
. Hence, in-

serting these relations in (3.6), we obtain:

fpg =
1

(2πσ2
g)N/2

exp

(
−u2

2σ2
g

)(
fp− 1

S
u.∇vfp

)
+o

(
1
S

)
,

which is the desired result. 2

We now consider the asymptotic behaviour of the solutions of equation (2.12)
when the observation time T is much greater than the particle response time τp. We
have the following result:

Proposition 3.3 (Large particles at large time-scale). Let fp be given as in
Proposition 3.1 above. For small values of K, the solution fp of Eq. (3.1) satisfies:

fp(t,x,v)=
SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
[np(t,x)−Kv ·∇xnp(t,x)]+o(K) ,
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where np depends only on (t,x) and satisfies the diffusion equation

∂tnp−divx

(
Kσ2

g

S
∇xnp

)
=0. (3.7)

Remark 3.4. Coming back to the primitive dimensional variables, the result of propo-
sition 3.3 writes formally (for K small enough):

fp(t,x,v)=
SN/2

(2πσ2
g)N/2

exp
(−Sv2

2σ2
g

)
(np(t,x)−τpv ·∇xnp(t,x))+o(K), (3.8)

with np satisfies the diffusion equation

∂tnp−divx(σ2
gτg∇xnp

)
=0. (3.9)

Proof of Proposition 3.3. The proof follows exactly the same lines as the proof of
proposition 3.1. For the sake of completeness, we provide the details in Appendix B.

2

4. Asymptotic models for small particles
We consider now the case where the particles are very small, that is when τp¿ τg,

or equivalently S¿1. Small particles therefore tend to behave like fluid particles, i.e.
passive tracers. We are interested here in reduced models of the joint pdf fpg in two
situtations. First, as done before, we derive an asymptotic model in the case where
we observe the system at time-scales of order τg. In that first limit, the turbulent
gas flow is not at equilibrium, in contrast with the particles, which reach a partial
equilibrium thanks to the drag force. We obtain here an asymptotic model for the
distribution of the velocity of the gas along the paths of the particles. As a second step,
we consider the limit where the observation time is much larger than the turbulent
correlation time, and we obtain the same diffusion equation as in the previous section.
This shows again that the macroscopic rate of diffusion of particles in a prescribed
turbulence seen by the particles is independent of the size of the particles (see [30, 10]).

Proposition 4.1 (Small particles at intermediate time-scale). Let K fixed be
given. For S small enough, we have:

fpg(t,x,v,u)=
1

(2πSσ2
g)N/2

exp

(
−(v−u)2

2Sσ2
g

)
fg(t,x,u)+O(

√
S),

where fg depends only on (t,x,u) and obeys the Fokker-Planck equation

∂tfg +divx(ufg)+
1
K

divu(−ufg−σ2
g∇ufg)=0.

The reader is invited to check that the corresponding dimensional form is indeed
that stated in section 2, namely Eq. (2.6)-(2.7).

Proof. We start again with the nondimensional equation for the joint pdf fS
pg in

the case S≤1:

∂tf
S

pg +divx

(
vf

S

pg

)
+

1
SK

divv

[
(u−v)f

S

pg

]
− 1

K
divu

[
uf

S

pg +σ2
g∇uf

S

pg

]
=0.
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One should notice here that the limiting model obtained for S¿1 is singular in the
sense that the distribution of particles’ velocities tends to a Dirac measure centered
around the gas velocity u. In order to tackle this difficulty, the proof of Proposition
4.1 consists of the following steps:
1. find a new formulation of the problem where no singular limiting equilibrium dis-

tributions are present,
2. seek for a reduced model in the frame of this new formulation.
3. recast the problem in terms of the original unknowns and variables.
We will see that Step 2 is simpler than in the previous cases.

Step 1: getting rid of the singularity. For any small but positive values of
S, we can perform the change of variables:

fS
pg(t,x,v,u) :=

1
√

S
N

fS
1

(
t,x,

v−u√
S

,u

)
:=

1
√

S
N

fS
1 (t,x,v1,u1)

where v1 =
v−u√

S
, and u1 =u, (4.1)

which amounts to zooming on the singularity at a scale where the drag force and the
turbulent dispersion effects are of the same order. Indeed, straightforward calculations
show that the new unknown fS

1 solves:

∂tf
S
1 +divx(u1f

S
1 )+

1
K

divu1(−u1f
S
1 −σ2

g∇u1f
S
1 )+

√
Sdivx(v1f

S
1 )

+
1

K
√

S
divv1(u1f

S
1 +2σ2

g∇u1f
S
1 )+

1
SK

divv1(−v1f
S
1 −σ2

g∇v1f
S
1 )=0, (4.2)

where the last term is of leading order. The scaling used here in (4.1) is similar to
the scaling used in the papers of Jabin [12, 13] as well as the paper of Goudon, Jabin
and Vasseur [8].

Step 2: reduced model. The important feature of the analysis is that a relevant
reduced model involving the diffusion phenomenon is easily obtained as a 0-th order
approximation of Eq. (4.2) above. Indeed, observe first that defining as usual

fS
1 (t,x,v1,u1)=

1
(2πσ2

g)N/2
exp

(
− v2

1

2σg

)
fS
1g(t,x,u1)+

√
SgS

1 (t,x,v1,u1),

wherefS
1g(t,x,u1) :=

∫

v1

fS
1 (t,x,v1,u1)dv1, andconsequently

∫

v1

gS
1 dv1 =0.

(4.3)

A direct integration of Eq. (4.2) with respect to the variable v1 together with the
definition of gS

1 yields formally the diffusion equation for fS
1g:

∂tf
S
1g +divx(u1f

S
1g)+

1
K

divu1(−u1f
S
1g−σ2

g∇u1f
S
1g)=−

√
Sdivx

(∫

v1

v1f
S
1 dv1

)

=−
√

Sdivx

(∫

v1

v1

√
SgS

1 dv1

)
=O(S). (4.4)

Hence formally fS
1g =f1g +O(S), where f1g is solution to

∂tf1g +divx(u1f1g)+
1
K

divu(−u1f1g−σ2
g∇uf1g)=0. (4.5)
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Step 3: coming back to the original unknowns and variables. Coming
back to the original unknowns and variables, that is successively fS

1 →fS
pg, fS

1g→fS
g ,

f1g→fg, and (v1,u1)→ (v,u), yields the result of the proposition.

Remark 4.2. It is important to understand that though the variable v for the
velocity of the particles does not appear any longer in the problem, the pdf fg still
describes the motion of the inertial particles. Recall indeed that the variable u stands
for the velocity of the gas seen by a particle along its trajectory. In the case
of asymptotically small particles, the drag force is so strong that the particles are
expected to behave as passive scalars moving at the velocity of the gas, which is
indeed the case as seen from the transport term divx(ufg). In other words, the
equation for the pdf fg(t,x,u) is a shorthand for the system of ODEs dxp/dt=up

and dup =−up/τgdt+
√

2σ2
g/τgdWt.

Then, notice that in our approach the probable turbulent velocity up(t) seen by
the particles is not necessarily gaussian for all time. It is only after a time T À τg

that one expects such a property (hence Proposition 4.3 below). Conversely, for an
observation time T ∼ τg as in Proposition 4.1 above, we have to consider the transient
regime towards gaussianity with respect to the variable u. In particular it is not
possible to apply in this regime Reeks’ formula (1.5) as an alternative means for
computing the value of the diffusion coefficient of the reduced model.

Now, for large values of the time T of observation, one has the result:

Proposition 4.3 (Small particles at large time-scale). Let fg be the solution of
proposition 4.1 above. Then, when K goes to zero, we have:

fg(t,x,u)=
1

(2πσ2
g)N/2

exp

(
−u2

σ2
g

)
[np(t,x)−Ku.∇xnp(t,x)]+ε(K),

where np depends only on (t,x) and satisfies the diffusion equation

∂tnp−divx

(
Kσ2

g∇xnp

)
=0.

Proof. The proof follows exactly the same lines as the corresponding results in
the previous two sections. The corresponding dimensional form is Eq. (2.8).

5. Asymptotic model for particles with finite inertia
In this part, we now consider the case of particles with finite inertia, corresponding

to the hypothesis that S is a fixed constant. Assuming that the observation time-scale
is much greater than both τp and τg, we first show that the asymptotic limit of the
joint particle-gas velocity pdf is a correlated normal law. Taking into account the first
order corrective term, we also prove formally that the particle concentration np =∫
R2N fpgdvdu satisfies the diffusion equation (3.7) already obtained above for both

large and light particles. This paradoxical property can be explained qualitatively by
the fact that large particles have a lower mean square velocity than light ones but a
larger auto-correlation time-scale and therefore follow less erratic trajectories.

Proposition 5.1 (particles of finite inertia at large time-scale). Let S fixed be
given. When K goes to zero, we have:

fpg(t,x,v,u)=Mpg(v,u;σg,S)
(

np(t,x)− K

max(1,S)

(u

S
+(2+1/S)v

)
.∇xnp(t,x)

)

+o(K),
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where Mpg is defined as the correlated normal law:

Mpg(v,u)=

[
(1+S)

2πσ2
g

√
S

]N

exp

[
− 1+S

2σ2
gS

(u2 +(1+S)v2−2u ·v)

]
,

and where np depends only on (t,x) and satisfies the diffusion equation

∂tnp−divx

(
Kσ2

g

max(1,S)
∇xnp

)
=0. (5.1)

Notice that the covariance matrix of Mpg(v,u) is

Σ :=Σ(σg,S) :=

[
Eω

[
v2

p

]
Eω [vpup]

Eω [vpup] Eω
[
u2

p

]
]

=




σ2
g

1+S

σ2
g

1+S

σ2
g

1+S
σ2

g


.

Remark 5.2. Coming back to the primitive dimensional variables, the result of
proposition 5.1 writes formally:

fpg(t,x,v,u)=M(v,u)
(

np(t,x)−τg

(
u

S
+(

2
S

+1)v
)

.∇xnp(t,x)
)

+o(K),

where np satisfies the drift-diffusion equation (see Eq. (2.8)):

∂tnp−divx

(
σ2

gτg∇xnp

)
=0. (5.2)

We note that this equation is exactly the same as (3.9) for large particles or (3.7)
for small particles, both observed at large time-scale. In particular, the diffusion
coefficient Dx =σ2

gτg does not depend on the particle response time τp but is equal
to the dispersion coefficient of the gas particles. As already mentioned above, this
result was first obtained by Tchen [30] and Hinze [10] by applying spectral analysis
techniques to the particle motion equations and using the correspondance between
the dispersion coefficient and the particle velocity autocorrelation function R(t)=
Eω [vp(0)vp(t)].

Proof of Proposition 5.1. Since the method of proof is the same as for proposition
3.1, we only indicate the main steps and skip all the details. First, we note that (2.12)
yields:

Avu(fpg)=
K

max(1,S)
[∂tfpg +divx (fpgv)],

where the operator Avu is defined as:

Avu(f)=
1
S

divv [(u−v)f ]−divu

[
uf +σ2

g∇uf
]
.

Hence, when K→0+, we formally get that fpg→f0
pg where f0

pg satisfies:




(i) Avu(f0
pg)=0,

(ii)
∫

R2N

f0
pgdvdu=n0

p,

(iii) ∂tn
0
p +divx

(∫

R2N

vf0
pgdvdu

)
=0.
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It can be checked that:

Lemma 5.3. The unique bounded positive solution of (i), under the constraint (ii),
writes:

f0
pg =n0

pMpg, (5.3)

where Mpg is a correlated normal law defined as:

Mpg(u,v)=
1

(2πσgσp)N (1−ξ2
uv)N/2

exp

[
−1

(1−ξ2
uv)

(
u2

2σ2
g

+
v2

2σ2
p

−2ξuv
u ·v
σgσp

)]
,

with ξuv =
1√

1+S
and σp =

σg√
1+S

.

Proof. The important part of the Lemma consists in proving uniqueness, since
the second order operator Avu is not strongly elliptic. (There are no second order
derivatives with respect to the variable v.) Here, the uniqueness property is obtained
through the expression of the dissipation rate (see the appendix):

∫

R2N

Avu(fpg)ln(fpg)dvdu

=
∫

R2N

4Mpg

(
∇u

√
fpg

Mpg
.∇u

√
fpg

Mpg

)
dvdu

+
1+S

S

[
N

∫

R2N

fpgdvdu−
∫

R2N

1+S

S

|v−u|2
σ2

g

fpgdvdu

]
. (5.4)

This kind of entropy estimate is rather classical in the mathematical theory of kinetic
equations. Let f be any positive solution of the problem (i)−(ii). Let us prove that
f =n0Mpg. First, it follows from equation (i) and equality (5.4) that f must satisfy:

∫

R2N

4Mpg

(
∇u

√
f

Mpg
.∇u

√
f

Mpg

)
dvdu

+
1+S

S

[
N

∫

R2N

fdvdu−
∫

R2N

1+S

S

|v−u|2
σ2

g

fdvdu

]
=0. (5.5)

Moreover, integrating (i) with respect to u and v and using (ii), we easily obtain that
∫

R2N

|u|2fdvdu=Nn0σ2
g,

∫

R2N

|v|2fdvdu=
∫

R2N

v ·ufdvdu=
N

1+S
n0σ2

g,

so that

N

∫

R2N

fdvdu−
∫

R2N

1+S

S

|v−u|2
σ2

g

fdvdu=0.
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Combining this last equality with (5.5), it follows that there exists a function h :=h(v),
which does not depend on u, such that f =hMpg. Using again that f solves equation
(i), a straightforward calculation yields:

∀(u,v)∈R2N ,(v−u) ·∇vh=0,

which, combined with (ii), gives h=n0. This concludes the proof of the Lemma.

Let us come back now to the proof of Proposition 5.1. The relation (iii) and (5.3)
show that n0

p must solve:

∂tn
0
p =0. (5.6)

Now, let nK
p and gK

p be such that:

nK
p =

∫

R2N

fpgdvdu,

∫

R2N

gK
p dudv =0,

and

fpg =Mpgn
K
p +KgK

p . (5.7)

Inserting this expression in equation (2.12) and using that nK
p →n0

p, a solution of
(5.6), when K→0+, it follows that gK

p →g0
p with g0

p a solution of:

Auv(g0
p)=−Mpg(u,v)v ·∇xn0

p,
∫
R2N g0

pdvdu=0.

After some algebra, we find that the solution of this problem writes:

g0
p(t,x,u,v)=

(u

S
+(2+S)

v

S

)
·∇xn0

p(t,x).

The end of the proof is now straightforward. 2

6. Conclusion
In this paper1, we have proposed a hierarchy of simplified models for turbulent

sprays, in the frame or forced homogeneous turbulence. The originality of the pro-
posed analysis relies on the use of the joint particle-gas probability density function
fpg, which accounts for the particle velocity supplemented with the gas-fluctuating
velocity along particle path.

The starting point of our approach is the Fokker-Planck type equation satisfied
by fpg, which models at the same time the motion of the particles and the turbulence
seen by the particle, at time scales falling in the inertial range of the turbulence.
When the system is observed at time scales much larger than either the dynamical
response time of the particles, τp, or the integral time scale of the turbulence, τg, we
have proved that it is possible to derive reduced models by using Chapman-Enskog
type expansions. In this way, we recover classical results from Tchen, Hinze, Zaichik,
and Reeks, concerning the modeling of particle diffusion by fluid turbulence. An
important by-product of our proposed methodology is the determination of an explicit
approximation formula for the joint probability function, in each asymptotic case
considered in this paper.

1This document has been produced using TEXmacs(see http://www.texmacs.org)
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We are presently investigating different generalizations of this work. On the one
hand, in more realistic models, the drag force is a nonlinear function of the difference
(vp−Ug(t,xp(t)). It is only for small values of this “slipping” velocity that the
the linear Stokes drag force is valid. Hence, considering such forces would provide
nongaussian equilibrium distributions, especially for heavy particles. On the other
hand, there are many models aimed at improving the description of the turbulent
velocity up(t) :=U ′

g(t,xp(t)). See for example the work [16] and the references therein
for a review. Here, one may consider two distinct cases.

The first case deals with flows in which the mean velocity of the career flow and
the mean velocity of the particles are the same. This is a typical situation when
the mean velocity of the gas is a constant, say zero. In that case, possibly after a
transient, the mean velocity of the particles equals that of the gas, so that very heavy
particles will mostly not move and therefore will “see” the eulerian properties of
the turbulent flow, whereas the small particles will behave like fluid particles and
therefore “see” the lagrangian properties of the turbulent flow. Estimating for a
given size of particles which properties to consider is the so-called problem of the
crossing-trajectory effect (see [23]).

The second case deals with flows where the mean velocity of the career flow and
the mean velocity of the particles are significatively different, as is typical in gravita-
tional settling of particles where the mean velocity of the carrier flow equals zero and
the mean velocity of the particles equals the falling velocity. In that case, the auto-
correlation time of the turbulence seen by the particles precisely depends on the ratio
between the velocity of the particles and the eulerian spatial autocorrelation of the
turbulent velocity. A similar difficulty arises when a particle moves in a nonuniform
mean flow (see [26, 27, 22]).

We believe that the strategy and formalism adopted in the present paper can be
of great help for tackling these difficulties. This is a work in progress.

Appendix A. Expression of the dissipation rate (see Eq.(5.4)).
For the sake of simplicity, we set M :=Mpg and f :=fpg. Using integration by

parts, a straightforward calculation yields:
∫

R2N

A(f)ln(f)dvdu

=
∫

R2N

[
(v−u)

S
·∇vf +u ·∇uf +σ2

g

∇uf ·∇uf

f

]
dvdu

=
∫

R2N

[
−N

1+S

S
f +σ2

g

∇uf ·∇uf

f

]
dvdu. (A.1)

We have easily:

4M∇u

√
f

M ·∇u

√
f

M =
∇uf ·∇uf

f
+f

∇uM·∇uM
M2

−2
∇uf ·∇uM

M .

Hence, using the relation

∇uM=
1+S

Sσ2
g

(v−u)M,

we obtain

4M∇u

√
f

M ·∇u

√
f

M =
∇uf ·∇uf

f
+

(1+S)2

S2σ4
g

|v−u|2−2
1+S

Sσ2
g

(v−u) ·∇uf.
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Inserting this relation in ( A.1), it finally follows that:

∫

R2N

A(f)ln(f)dvdu=
∫

R2N

4M
(
∇u

√
f

M ·∇u

√
f

M

)
dvdu

+
1+S

S

[
N

∫

R2N

fdvdu−
∫

R2N

1+S

S

|v−u|2
σ2

g

fdvdu

]
.

2

Appendix B. Proof of Proposition 3.3.
First, we note that (3.1) yields:

Av(fp)=K (∂tfp +divx (vfp)),

where the operator Av is defined as:

Av(f)=divv

[
−vf− σ2

g

S
∇vf

]
.

Hence, when K→0+, we formally get that fp→f0
p where f0

p , satisfies the system:





(i) Av(f0
p )=0

(ii)
∫

RN

f0
p dv =n0

p

(iii) ∂tn
0
p +divx

(∫

RN

vf0
p dv

)
=0.

It can easily be checked that the unique positive solution of (i), under the constraint
(ii), writes:

f0
p =

SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
n0

p,

and it results from (iii) that n0
p must solve:

∂tn
0
p =0. (B.1)

We must now compute the first order term in the series expansion of fp in powers of
K. For all K >0, let us introduce the functions nK

p and gK
p such that by definition:

nK
p =

∫

RN

fpdv,

∫

RN

gK
p dv =0,

and

fp =
SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
nK

p +KgK
p . (B.2)

Equation (3.1) yields:

Av(gK
p )=

SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
(
∂tn

K
p +divx

(
vnK

p

))
+K

(
∂tg

K
p +divx

(
vgK

p

))
.
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By construction, we know that nK
p →n0

p when K→0+. Therefore, thanks to the
fact that n0

p the ( B.1), it follows that, when K→0+, gK
p tends formally towards g0

p

solution of:

Av(g0
p)=

SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
v ·∇xn0

p,

∫

RN

g0
pdv =0.

The unique solution of this problem writes:

g0
pg =− SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
v ·∇xn0

p.

Since n0
p (respectively g0

p), is the limit of nK
p (respectively gK

p ) when K→0+, it follows
that there exists (at least formally) a function ε defined on [0,+∞[2×R2N such that
∀t>0,∀(x,v)∈R2N , limK→0ε(K,t,x,v)=0 and such that for all K small enough:

gK
p =− SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
v·∇xnK

p +ε(K).

Inserting this last expression in ( B.2), we get:

fp =
SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
(
nK

p −Kv ·∇xnK
p

)
+o(K). (B.3)

A short calculation gives:
∫

RN

vfpdv =−Kσ2
g

S
∇xnK

p +o(K).

Hence, using that nK
p =

∫
RN fpdv, we find that nK

p :

∂tn
K
p +divx

(
−Kσ2

g

S
∇xnK

p

)
=o(K);

finally, let np be the solution of (3.7):

∂tnp−divx

(
Kσ2

g

S
∇xnp

)
=0.

Formally, it follows that np =nK
p +o(K) and K∇np =K∇nK

p +o(K). Hence, inserting
these relations in ( B.3), we finally obtain:

fp =
SN/2

(2πσ2
g)N/2

exp

(
−Sv2

2σ2
g

)
[np−Kv ·∇xnp]+o(K),

which is the result announced. 2
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