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TWO TYPES OF SOLUTION OVERSHOOTS IN DISCONTINUOUS
GALERKIN DISCRETIZATION SCHEMES∗

N. B. PETROVSKAYA†

Abstract. We consider high order Discontinuous Galerkin (DG) discretization for steady state
problems. It will be demonstrated that using a high order DG scheme to discretize a problem may
result in two types of solution overshoots. The oscillations of the first type are associated with
smooth approximation of solution discontinuities. In addition, the oscillations may appear in steady
state problems as a result of incorrect flux approximation near the flux extremum point.
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1. Introduction
Over last three decades Discontinuous Galerkin (DG) numerical schemes have

been intensively investigated by many authors (see [5] for the review of DG schemes).
The interest to the DG schemes is based on their many advantages, one of which is
that the optimal orders of convergence may be achieved by using high order approxi-
mating spaces. However, the implementation of high order DG schemes for real - life
applications is a complex problem, which usually requires a significant computational
effort. This makes the choice of a numerical strategy a demanding issue, so that a
taken decision should be based on clear understanding of the discretization features.
In consideration of high order DG schemes there are a number of works where the
authors support the following statements.

(i) Oscillations in high order DG schemes are due to solution approximation near
discontinuities and may be cured either by using limiters or by adding some
stabilization terms (e.g. artificial dissipation) to the scheme. This widespread
opinion is supported in [3, 6, 10, 11, 14, 17, 21].

(ii) From a convergence point of view, all numerical fluxes can be equally used
for high order DG schemes. It has been pointed out in the work [4] that
“...numerical experience suggests that as the degree k of the approximate
solution increases, the choice of the numerical flux does not have a significant
impact on the quality of the approximation.” The similar point of view has
been conducted in [19, 21]. Thus, in many cases practitioners use a numerical
flux which choice is based on computational aspects (e.g. computational cost
of the flux, how far the flux definition is complicated to code it, etc.) rather
than the properties of the flux itself (e.g. see [7, 10, 17, 18]).

While the above-mentioned point of view is mainly based on the successful imple-
mentation of DG schemes the for numerical solution of hyperbolic systems of conser-
vation laws [4, 7, 17, 18, 19], in the present paper an attempt has been made to discuss
the issues (i), (ii) for steady state problems. A discretization of steady state prob-
lems is often associated with the numerical solution of conservation laws, as a widely
adopted strategy is to use a time dependent algorithm to approach a steady state.
Alternatively, we address a high order DG scheme coupled with Newton’s method as
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an approach suggesting potential computational benefits in a numerical solution of
steady state problems. Since this approach has not been well studied yet, ordinary
differential equations are considered which provide us with a simple but illustrative
model of a steady state problem.

In our work, we identify a possible origin of solution oscillations arising as a
result of a high order DG discretization of a steady state problem. It will be shown
that the high order DG scheme may result in two types of solution overshoots. The
oscillations of the first type are associated with smooth approximation of solution
discontinuities. The results of the paper confirm the statement (i) by demonstration
that even in the simplest case of a linear ODE one may expect a solution overshoot,
as a discontinuous solution is approximated by smooth functions in a high order DG
scheme. The oscillations of the second type may appear in steady state problems as
a result of incorrect flux approximation near a flux extremum point. We demonstrate
that incorrect flux approximation impacts on the iterative method used in the problem
(e.g. Newton’s method) resulting in oscillations that cannot be eliminated by local
limiters. This result indicates that the choice of a numerical flux should be more
carefully advocated, and the statement (ii) requires a closer look when dealing with
high order DG schemes.

2. The solution approximation for high order DG schemes
In this section we discuss solution oscillations arising as a result of approximation

to a discontinuous solution by smooth functions. We consider an ordinary differential
equation written for a function u(x) as

Fx(x,u)=S(x), x∈Ω=[a,b], (2.1)

where, on the analogy with a conservation law, the function F (x,u(x)) is thought of
as a flux function. An appropriate boundary condition will be further provided for
the equation (2.1) for a given problem under consideration.

In a DG method, a weak formulation of the problem is used to find the approxi-
mate solution uh(x), since the solution u(x) to the problem (2.1) may be a discontinu-

ous function. We introduce a computational grid as G=
N⋃

i=1

ei, ei =[xi,xi+1],1≤ i≤N ,

where xi is a nodal coordinate, and hi =xi+1−xi is a grid step size. The notation
xi−0 and xi +0 is used for the left and right limits at the point xi. The test functions
φk(x) are defined on the grid cell ei for k =0,1, . . . ,K as

φk(x)=
(

x−xi

hi

)k

, x∈ei.

Multiplying the equation (2.1) by test function φk(x) and integrating by parts
over the cell ei gives

F (xi+1,u(xi+1))φk(xi+1)−F (xi,u(xi))φk(xi)−
xi+1∫
xi

F (x,u)
dφk(x)

dx
dx=

xi+1∫
xi

S(x)φk(x)dx, k =0,1, . . . ,K
(2.2)

where the function u(x) should be further replaced by the approximate solution uh(x).
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The approximation uh(x) to the solution u(x) in the DG scheme is a piecewise
polynomial function over the domain Ω,

uh(x)=
K∑

k=0

ukφk(x), k =0,1, . . . ,K, x∈ei. (2.3)

Since uh(x) is discontinuous at grid nodes, the equation (2.2) requires flux approx-
imation at any grid interface. An approximate Riemann solver elaborated in order
to discretize the flux in the equation (2.2) results in a numerical flux F̃ (uh), which
generally depends on the two values of the approximate solution at any grid node xi.
In our work we use the Engquist -Osher definition [8] of the numerical flux

F̃EO(uh)=
ur∫
0

min(F ′(s),0)ds+
ul∫
0

max(F ′(s),0)ds+F (0), (2.4)

where ul =uh(xi−0) and ur =uh(xi +0) are left and right solution values at the grid
node xi, respectively.

After the flux F̃ (uh) is defined for a given problem, the DG discretization scheme
reads

F̃ (uh(xi+1))φk(xi+1)− F̃ (uh(xi))φk(xi)−
xi+1∫
xi

F (x,uh(x))
dφk(x)

dx
dx=

xi+1∫
xi

S(x)φk(x)dx, k =0,1, . . . ,K.
(2.5)

We begin our discussion with consideration of a simple linear boundary - value
problem

ux =S(x), u(0)=U0, x∈Ω=[0,2], (2.6)

with flux function F (x,u)≡u. The appearance of solution overshoots near a disconti-
nuity point is well illustrated by consideration of the linear problem (2.6), as one can
easily obtain analytic expression for the DG approximate solution when a discontinu-
ous solution defined by S(x) is discretized. Thus, a special S(x) will be chosen on the
right-hand side in order to simulate a discontinuous solution to the problem (2.6).

The following numerical test has been considered in [20] to study a high order
DG discretization for the linear problem (2.6). Let a discontinuous solution to the
problem (2.6) be

U(x)=




1.−√0.5−x 0≤x<0.5,
1 0.5<x≤1,

tanh(200(x−1.5)) 1<x≤2.

The solution U(x) is shown as a dashed curve in fig.2.1. The function U(x) is
discontinuous at xsh =1 and has a discontinuous derivative at xd =0.5. It also has a
“boundary layer”, i.e. a steep solution gradient, at the vicinity of the point xb =1.5.

Let us now look at the numerical solution to the problem (2.6). For the model
function U(x) under consideration, the source function S(x) is defined by straightfor-
ward differentiation of the solution. Namely, based on our knowledge of the solution
U(x) we discretize the source function as S(x)≡dU(x)/dx to simulate a discontinuous
solution.
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Fig. 2.1. High order DG solution uh(x) of a linear boundary - value problem (2.6). (a) Solu-
tion oscillations on a coarse grid for the polynomial degree K =2. (b) Solution oscillations near a
discontinuity on a fine grid for the polynomial degree K =1.

A high order (K >0) DG scheme has been used to discretize the problem (2.6).
Since for the advection equation (2.6) we have F (x,u)≡u, the definition of the nu-
merical flux (2.4) applied to the problem results in a well known upwind scheme with
F̃ (uh)=ul. Nonuniform grids have been generated in our numerical tests in order to
prevent a location of the solution singularities at grid nodes.

The results of numerical experiments with the problem are shown in fig.2.1. An
example of the approximate solution on a coarse grid is given by fig.2.1a, where the
number of grid cells is Nc =32 and the polynomial degree of the DG discretization is
K =2. It can be seen from the figure that the numerical solution has an overshoot on
each cell where a singularity is present and it oscillates at the boundary layer as well.
Further, the approximated solution is resolved on fine grids in the boundary layer
region. The oscillations at the shock, however, stay on fine grids for any polynomial
degree K >0. An example of the approximate solution on a fine grid with Nc =512
cells is shown for the polynomial degree K =1 in fig.2.1b.

2.1. High order DG approximation at the shock for a linear problem.
The solution overshoots at the shock can be easily explained by considering the

step function as a solution to the problem (2.6). We now solve (2.6) at the segment
[0,1] and seek for the following discontinuous solution

Ust(x)=
{

U0, 0≤x<xsh,
U1, xsh≤x≤1,

(2.7)

where xsh is a shock position within a grid cell ei, xi <xsh <xi+1. Without loss of
generality, we further consider U0 =0, xi =0, and xi+1 =h. A set of basis functions
on the cell ei is now given by φk(x)=xk, k =0,1,...,K, and the shock position xsh

is parametrized by

xsh =αh, 0<α<1. (2.8)

The source S(x)=dUst(x)/dx can be formally considered as S(x)=Cδ(x−xsh),
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where δ(x) is the Dirac δ-function defined by

ξ2∫
ξ1

δ(ξ−ξ∗)f(ξ)dξ =
{

f(ξ∗), ξ∗∈ [ξ1,ξ2],
0, ξ∗ /∈ [ξ1,ξ2].

The value of the scaling factor C is obtained by integrating over the interval [0,h],

h∫
0

S(x)dx=C

h∫
0

δ(x−xsh)dx=C.

On the other hand, we have

h∫
0

S(x)dx=

h∫
0

dU(x)
dx

dx=U(h)−U(0)=U1−U0,

so that the scaling factor is C =[u], where [u]=U1−U0 is the solution jump amplitude
at the point xsh.

As an example of high order DG discretization we consider a linear reconstruction
(K =1) of the discontinuous solution (2.7) on the cell ei

uh(x)=u0 +u1x. (2.9)

The definition of the numerical flux requires replacing the value uh(0) by the boundary
value U0. Substituting (2.9) into the system (2.5) and taking into account U0 =0 yields
the following system for the expansion coefficients (u0,u1) on the cell where the shock
is present

u0 +u1h=

h∫
0

S(x)dx,

(u0 +u1h)h−
h∫

0

(u0 +u1x)dx=

h∫
0

S(x)xdx.

(2.10)

Taking into account the parametrization (2.8), the right-hand side integrals in
(2.10) are as follows

h∫
0

S(x)dx=[u],

h∫
0

S(x)xdx=αh[u]. (2.11)

Solving the system (2.10) with the right-hand side (2.11) gives us the following
values of the expansion coefficients in (2.9)

u0 =(1−2α)[u], u1 =2α
[u]
h

. (2.12)

It follows from the first equation in (2.10) that the DG solution uh(x) at the right

boundary of the cell is uh(h)=u0 +u1h=

h∫
0

S(x)dx=Ust(h)=U1. Furthermore, the
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linear solution (2.9) is a monotone function over the grid cell. Thus, the only point
where a solution overshoot may occur is the “inflow” boundary x=0 .

The DG solution at the left boundary is uh(0)=u0. It follows from (2.12) that
the value u0 in the expansion (2.9) does not depend on the element size h. The
approximate solution at the left boundary depends only on the shock position relative
to the right boundary, u0 =u0(α). Since the solution error at the left boundary is

|U(0)−uh(0)|= |u0(α)|= |(1−2α)U1| 6=0, ∀α 6=1/2,

the approximate solution obtained as a result of the DG discretization does not con-
verge in the norm L∞ =max

x∈ei

|U(x)−uh(x)| on the interval [0,h].

The parameter α generates the solution field uh(x,α). It is readily seen from
(2.12) that the value α0 =1/2 is the only shock location which provides the solution
uh(x,α0) with no jump at the inflow boundary. For any value α 6=α0, the approximate
solution remains discontinuous at the inflow boundary, as h→0. Hence, the critical
value α0 can be obtained from the continuity requirement u(0,α0)=U0, and a linear
DG discretization of the discontinuous solution can be considered as a shock transfer
from point xsh to the inflow boundary x=0.

The amplitude of a discontinuity at the left boundary generated by the DG
discretization depends on the original shock location. For the shock stationed at
0<α≤α0, no overshoot of the solution occurs at the left boundary, since the value
u0(α) is bounded by 0≤u0(α)<U1. Thus any approximate solution (2.9) generated
by parameter 0<α≤α0 is acceptable in the sense that uh(x) is a monotone function
and uh(x) has a variation within true solution limits. On the contrary, any value
α0 <α<1 generates a solution overshoot at the inflow boundary. This overshoot is
illustrated for the linear DG discretization in fig.2.1b, where the shock is stationed on
the cell in such a way that α=0.83 on a fine grid.

The approach similar to that discussed above can be applied to the solution
approximation with an arbitrary polynomial degree K >0. The system (2.10) now
consists of K +1 equations, and the value u0, obtained as a result of solving (2.10),
provides us with the amplitude of a solution jump at the interface. The solution
jump is a function of the shock location α and it does not depend on a grid step
size. However, the solution field uh(x,α) now has a more complicated structure in
comparison with that obtained in the linear case. Generally, an approximate solution
may have K extremum points in the domain ei. Those extrema should be also taken
into account in consideration of solution overshoots, as they keep the approximate
solution nonmonotone on the cell where a discontinuity is present. Again, the solution
extrema do not disappear on refined grids, since their appearance depends only on
the shock location.

2.2. High order DG approximation at the shock for a nonlinear prob-
lem. For a nonlinear steady state problem it is difficult to derive a general
expression for DG approximation to a discontinuous solution. However, based on the
results obtained for a linear problem, one may expect a solution overshoot near a
discontinuity when the DG solution with a polynomial degree K >0 is considered.

The following example illustrates high order DG approximation for a nonlinear
problem. Consider a boundary-value problem known as the problem of mass flow in
a convergent - divergent nozzle, [1]. Let A(x) be the area of the nozzle, A(x)=1/2+
2(x−1/2)2, 0≤x≤1, and u(x) be the velocity deviation. The mass conservation in
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Fig. 2.2. Numerical solution to nonlinear boundary - value problem (2.13), (2.15). Solution
oscillations near a discontinuity. The true solution to the problem is shown as a dashed line. (a).
A piecewise linear solution reconstruction (K =1) leads to the solution overshoot on the cell where
a discontinuity is present. (b). Solution oscillations on a fine grid for a DG discretization with
polynomial degree K =2.

the nozzle can be modelled as
dF (x,u(x))

dx
≡ d(A(x)m(u))

dx
=0, x∈ [0,1], (2.13)

where the mass flux through the nozzle is given by

m(u)=
1
2
(1−u2). (2.14)

The equation (2.13) is solved due to the boundary condition
1∫

0

u(x)dx=B, (2.15)

where B is a constant which determines the solution type. The choice B =−0.25
allows one to obtain a discontinuous solution

U(x)=
{−√(1−1/2A(x)), 0≤x≤xs, or xsh +0≤x≤1,√

(1−1/2A(x)), xs≤x≤xsh−0,
(2.16)

where xsh is a shock location, and xs : u(xs)=us =0 is stated as xs =1/2. The value
u=0 is a flux extremum point. The solution U(x) is shown in fig.2.2.

Integrating the discontinuous solution U(x) over the domain [0,1] yields the fol-
lowing algebraic equation with respect to the variable xsh

I1 +I2(xsh)+I3(xsh)=B,

where I1 =−
xs∫
0

√
1−1/2A(x)dx, I2(xsh)=

xsh∫
xs

√
1−1/2A(x)dx, and I3(xsh)=

−
1∫

xsh

√
1−1/2A(x)dx. Solving this equation for a given value of B, the shock lo-

cation can be defined. For B =−0.25, the shock will be located at xsh =0.798074.
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We use the definition (2.4) of the numerical flux in the numerical solution of the
problem. Given the left and right state at the interface, the Engquist-Osher numerical
flux is as follows

m̃(ul,ur)=




m(ur), ul <0, ur <0,
m(ul), ul >0, ur >0,
m(0), ul <0, ur >0,
m(ul)+m(ur)−m(0), ul >0, ur <0.

(2.17)

The DG space discretization of the nonlinear problem (2.13) results in the follow-
ing system of nonlinear equations

R(u)=0, (2.18)

where the vector R(u) is the residual of the DG method given by (2.5) and the
discretization of boundary condition (2.15), and u is the solution vector. We use
Newton’s iteration method to solve the nonlinear equations (2.18). Let un and un+1

be the solution vector at n-th and n+1 -th solution iteration, respectively. Then the
linearized system is

J(un)(un+1−un)=−R(un), (2.19)

where the Jacobian matrix J(u)= [∂R/∂u] and residual R(u) are taken from the n-th
iteration. The GMRES algorithm ([16], [2]) is used to solve numerically a system of
linear equations obtained at each Newton’s iteration.

In order to illustrate the approximation of the discontinuous solution by a high
order DG scheme we choose the true solution (2.16) as an initial guess for Newton’s
iterations. The initial guess is discretized by solving

xi+1∫
xi

uh(x)φk(x)dx=

xi+1∫
xi

U(x)φk(x)dx, k =0,1...,K,

where the approximate solution uh(x) is given by (2.3) on each grid cell. A piecewise
polynomial function u0

h(x) obtained as a result of the above discretization coincides
with the exact solution U(x) at any grid node and has no jumps at grid interfaces.
However, the solution approximation does not meet the condition

||R(u)||= max
i=1,...,N

|R(u)|<ε,

which is used as a convergence criterion for Newton’s iterations.
Let us generate a computational grid in such a way that the solution discontinuity

is located at an interior point of the grid cell esh. After a few Newton’s iterations
the residual norm rapidly decreases to a small value ε=1.0e−16, which indicates
the convergence of the method. However, the approximate solution with polynomial
degree K >0 does not coincide with the true solution at the grid nodes anymore, as
it now has an overshoot on a cell where a discontinuity is present. An example of the
approximate solution with polynomial degree K =1 is shown in fig.2.2a on a coarse
grid of Nc =16 cells. Furthermore, as one can expect from the analysis of the linear
problem, the solution overshoots will appear on fine grids as well, if we use the same
approach to obtain a numerical solution. The solution on a fine grid is shown in
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fig.2.2b where the number of grid cells is Nc =256 and a polynomial degree is chosen
K =2.

Solution overshoots arising as a result of the inconsistent approximation of a
discontinuity need to be eliminated, as they may slow down the convergence of the
Newton method by moving a transient solution out of the basin of attraction. Once
the solution overshoot has been detected, a simple way to control the oscillations is
to decrease the solution to a piecewise constant reconstruction at the discontinuity
at the current Newton step. However, our numerical experience with steady state
problems reveals that simple reducing the polynomial degree is not sufficient to obtain
a convergent solution. In addition to the solution overshoots due to the smooth
approximation of a discontinuity, another type of oscillation may occur in numerical
solution of steady state problems. Below we discuss the second type of solution
oscillations which appeared to be dangerous for the Newton method.

3. The numerical flux for high order schemes
For the oscillations of the second type we consider the nonlinear problem (2.13),

(2.15) which is now solved by Newton’s method starting with an arbitrary initial
guess. Namely, we seek a numerical solution to the problem on a sequence of uniform
grids. Each following grid in the sequence is refined by cutting grid cells into halves.
The initial guess on the first grid is chosen as u0(x)= const=−1.0. The initial guess
for the next finer grid is obtained by linear interpolation of the numerical solution
taken from a previous grid.

The above approach is supposed to provide the fast convergence of the Newton
method, as it makes the initial guess close to the solution on each finer grid. Nev-
ertheless, our numerical experiments show that the Newton method fails to obtain a
convergent solution for high order DG discretization. Only a piecewise constant dis-
cretization K =0 reconstructs the discontinuous solution U(x) on a sequence of grids.
Meanwhile, any DG discretization with polynomial degree K >0 yields spurious oscil-
lations on the first grid in the sequence. Those oscillations lead to a divergent solution
on the initial grid so that calculations on finer grids become impossible. The evolution
of solution oscillations on the initial grid is presented in fig.3.1 where transient solu-
tions are shown for several first Newton’s iterations. In the figure, a transient solution
uI is the initial guess for the method, uI = const=−1.0, and the Roman notation is
used to mark the Newton iterations.

On the surface, a reasonable explanation of the spurious oscillations displayed
in the figure is that once a solution overshoot discussed in the previous sections has
appeared near the discontinuity, the oscillations propagate over the domain of com-
putation resulting in a divergent solution. Nevertheless, the nature of oscillations is
different from that considered in section 2. It can be seen from the figure that the
solution overshoots first arise before a shock formation. Actually, let us consider two
transient solutions uII and uIII shown in the figure. Both of them can be consid-
ered as “smooth” functions in the sense that they can be interpolated by a smooth
continuous curve. Using the transient solution uII as the entering data for the third
Newton iteration yields the solution uIII which is a non-oscillating function. However,
entering the next Newton iteration with the smooth solution uIII results in spurious
oscillations in the function uIV .

A difference between the functions uII and uIII is that for the transient so-
lution uII the flux F (u) is a monotone function over the domain of definition
uh(x)∈ [uII

min,uII
max]. It can be seen from the figure that the solution uII lies be-

low the flux extremum u=0. Meanwhile, for the function uIII , we have uIII
min <0,
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Fig. 3.1. Numerical solution of the problem (2.13), (2.15) on the initial grid. Appearance of
oscillations in Newton’s method for a high order DG scheme K >0. Oscillations arise in transient
solution uIV due to the flux approximation at the extremum point u=0 at the previous Newton
iteration where transient solution uIII is involved.

uIII
max >0, so that we need to approximate the flux at the extremum point u=0, as it

is required by the DG formulation in order to obtain the transient solution uIV .
The flux approximation in the DG scheme can be best illustrated by consideration

of the DG equations on a single cell ei. For the sake of the further discussion, let
us suppose that the approximate solution on adjacent cells ei−1 and ei+1 is already
determined. Due to a compact stencil of the DG discretization, this approach can
be considered as the numerical solution of the equation (2.13) in the domain Ω=ei

subject to the boundary conditions required to determine fluxes in the DG scheme.
Let U1 =uh(xi−0) be the left solution state at the interface xi and U2 =uh(xi+1 +

0) be the right solution state at the interface xi+1. The values U1 and U2 are known,
as they are taken from the solution on the adjacent cells. Let us also denote the
solution values at the interfaces of the cell ei as ul =uh(xi +0) and ur =uh(xi+1−0),
respectively. We notice that, unlike the flux definition (2.17), the solution states ul

and ur are now associated with different cell interfaces. The values ul and ur are
related to the unknowns (u0,u1,u2,...,uK) on the cell ei as follows

ul =u0, ur =
K∑

k=0

uk. (3.1)

According to (2.2), the DG equations on the cell ei are as follows

F̃ (uh(xi+1))φk(xi+1)− F̃ (uh(xi+1))φk(xi+1)=0,

F̃ (uh(xi+1))φk(xi+1)− 1
hi

xi+1∫
xi

F (x,uh)dx=0,

...

F̃ (uh(xi+1))φk(xi+1)− K

hK
i

xi+1∫
xi

F (x,uh)(x−xi)K−1dx=0.

(3.2)
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Let the flux F (u) be a monotone function over the domain ei. Then the numerical
flux is given by

F̃ (uh(xi))=F (xi,u
l), F̃ (uh(xi+1))=F (xi+1,U2),

for an increasing flux function, F ′(u)>0, u∈ [U1,U2]. For a decreasing flux function,
F ′(u)<0, u∈ [U1,U2], we have

F̃ (uh(xi))=F (xi,U1), F̃ (uh(xi+1))=F (xi+1,u
r).

Substituting the above numerical flux into (3.2) results in a system of nonlinear alge-
braic equations with respect to variables (u0,u1,...,uK) which define the approximate
solution uh on the cell ei. Let us notice that due to (3.1) each equation in (3.2) in-
volves the variables (u0,u1,...,uK). Hence, for a monotone flux function we have
K +1 unknowns on the cell ei and K +1 equations to be solved.

We now look at a nonmonotone flux on the cell ei. Suppose that the flux extremum
appears at the point x=x∗,u=u∗ within the cell ei, where we have u∗=0 for the
problem (2.13). Let us consider ul >0 and ur <0. Since (x∗,u∗=0) is an interior
point of the cell ei, we also have U1 >0 and U2 <0. Then, according to the flux
definition (2.17), the numerical flux is defined as

F̃ (uh(xi))=F (xi,U1), F̃ (uh(xi+1))=F (xi+1,U2),

and the discrete conservation law, i.e. the first of the DG equations (3.2), reads

F (xi+1,U2)−F (xi,U1)=0. (3.3)

Since the above equation does not contain any of the unknowns (u0,u1,...,uK), the
number of unknowns exceeds the number of equations in (3.2). Hence, the system of
DG equations is underdetermined for a nonmonotone flux function on the cell ei.

Solving the underdetermined system (3.2) presents us with certain difficulties, as
the solution to such a system is not unique. In particular, considering the Newton
method, one may expect a singular Jacobian in the problem. Namely, let us linearize
the DG equations on the cell ei. For the first equation in (3.2), the Jacobian entries
j1k are defined as follows

j1k =
∂R1

∂uk
=

∂

∂uk

(
F̃ (uh(xi+1))φk(xi+1)− F̃ (uh(xi+1))φk(xi+1)

)
,

where the derivatives are

∂F̃ (uh)
∂uk

=

(
∂F̃ (uh)

∂ul

)
∂ul

∂uk
+

(
∂F̃ (uh)

∂ur

)
∂ur

∂uk
, k =0,1,...K.

Since the numerical flux in the equation (3.3) does not depend on ul and ur, we have

∂F (xi,U1)
∂ul

=0,
∂F (xi+1,U2)

∂ul
=0,

∂F (xi,U1)
∂ur

=0,
∂F (xi+1,U2)

∂ur
=0,

so that a row with zero entries appears in the Jacobian matrix.
Consequently, the singularity of the ’local’ Jacobian on the cell ei affects the

Newton method in the case that the linearized system (2.19) is solved as a result
of the DG discretization over the grid. It has been proven in [15] that, due to the
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singular local matrix on the cell ei, a zero column appears in the Jacobian of the
system (2.19). The singular Jacobian in the method leads to an incorrect transient
solution oscillating over the domain. Entering this solution as the initial data for the
next Newton’s iterations will result in the divergence of the method.

It follows from the above consideration that the result of the DG discretization
depends strongly on the choice of the numerical flux in the problem. Generally, the
definition of an upwind flux requires the solution of the Riemann problem at each grid
interface, [12, 13]. It is well known that for a monotone flux function the solution to
the Riemann problem involves just one solution state at the interface. Hence, if the
solution variation δuh =uh(xi+1−0)−uh(xi +0) in a high order DG discretization
generates a flux extremum at the interior point of the cell ei, the flux will remain a
monotone function at both interfaces xi and xi+1, and the ’phantom’ solution on the
cell ei will not be involved in the flux definition in a high order DG scheme.

Meanwhile, space–centered fluxes usually require both solution states at the in-
terface to approximate the flux. For instance, the local Lax - Friedrichs (L-F) flux

F̃LLF (ul,ur)=
1
2
[F (ul)+F (ur)−C(ur−ul)],

C = max
min(ul,ur)≤s≤max(ul,ur)

|F ′(s)|, (3.4)

does not lead to an underdetermined system of the DG equations, as now both solution
states at each interface are involved into the approximation. For the problem (2.13)
considered on the cell ei the discrete conservation law reads

A(xi+1)m̃LLF
i+1 (ur,U2)−A(xi)m̃LLF

i (ul,U1)=0, (3.5)

where m̃LLF
i is the flux (3.4) at the interface xi. It can be seen from the definition (3.4)

that the discrete conservation law (3.5) now involves the unknowns (u0,u1,...,uK) on
the cell ei.

On the other hand, it is well known [9, 13] that the L-F flux is more dissipative
than upwind fluxes, so that the choice of the L-F flux may not be acceptable for a
specific problem under consideration (e.g. see [19]). Besides, as a result of a dissipative
nature of the L-F flux, an artificial boundary condition may be required when a high
order DG scheme is used in the problem. Our numerical experience with the problem
(2.13) has shown that the convergence of the Newton method turned out to be very
sensitive to the choice of the artificial boundary condition. Thus the L-F flux needs
careful study before concluding about its advantage over upwind fluxes which lead to
an undetermined system of equations.

Let us mention again that the nature of oscillations arising as a result of the incon-
sistent flux approximation at the extremum is different from that has been discussed
in the previous section. Our previous results only concerned the approximation of
the solution function and implied a well defined numerical flux over a computational
domain. Now the numerical flux F̃ (u) is not a correct approximation to the flux
function F (u) at the extremum point, although the solution may remain a smooth
monotone function near the flux extremum. Also, it is important to notice that the
oscillations are entirely due to a nonlinear nature of the problem (2.13). A linear
problem (2.6), where the flux F (u)≡u is a monotone function, remains free from that
type of solution overshoots.

We now briefly discuss how to obtain a convergent solution to the problem (2.13),
(2.15). The results of our study demonstrate that a DG discretization with polyno-
mial degree K >0 will yield a solution overshoot on any grid cell where a discontinuity
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Fig. 3.2. Numerical solution to the problem (2.13), (2.15). (a) An example of the DG solution
(polynomial degree K =3) on a coarse and fine grid. Nc is the number of grid cells. (b) Convergence
history for the DG solution with polynomial degree K≥0.

is present. However, simple reduction of the numerical solution to piecewise constant
approximation near the shock to eliminate spurious solution oscillations is not suc-
cessful in the problem and still results in a divergent solution. In addition, one should
also take care of the flux approximation to avoid a singular Jacobian in the Newton
method. Thus the algorithm of numerical solution of the problem (2.13), (2.15) de-
veloped in [15] seeks for nonphysical flux extrema within each grid cell in order to
avoid a “phantom” solution on the cell. Once a “phantom” solution has been detected
on the cell, the polynomial degree of the numerical solution is reduced on the cell to
render the flux approximation correct. Our numerical experience with the problem
shows that the control of each grid cell is absolutely required in the problem, as the
domain of attraction for the Newton method may have a very complicated structure
and nonphysical flux extrema may appear in a transient solution at each Newton
iteration.

The control over the numerical flux to avoid a singular Jacobian and the con-
trol over the solution at the shock to avoid solution overshoots allow one to obtain
convergent solutions for high order DG discretization schemes. The approximate DG
solution with polynomial degree K =3 obtained by the Newton method is shown in
fig.3.2a on a coarse uniform grid of 16 cells and fine grid of 128 cells. It can be seen
from the figure that the shock in the numerical solution has to be smeared over two
adjacent grid cells, as an uncorrected solution has an overshoot at the shock at the
final Newton step. Let us also notice that the reduction to piecewise constant ap-
proximation at two adjacent cells provides a shock at the interface rather than at the
interior point of the cell, so that the flux extremum can be detected and correctly
approximated.

The convergence history on a sequence of uniform grids is plotted in fig.3.2b for
polynomial degree K≥0. The L1 - norm of the solution error,

||err||L1 =

1∫
0

|U(x)−uh(x)|dx,
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is computed in the regions where the solution is smooth. The error norm is shown
in the logarithmic scale. An important feature of the suggested approach is that the
polynomial degree of the approximate solution is only reduced, if necessary, for a
transient solution at the current Newton step. Once the DG solution is correct (i.e.
it is not “phantom” on a given cell), the original polynomial degree will be restored
on the cell at next iteration. This approach allows one to obtain the optimal order of
the convergence for high order DG discretizations.

Finally, let us notice that, while one should distinguish between two types of
the solution overshoots arising in steady state problems, the solution oscillations
due to inconsistent flux approximation at the flux extremum points are certainly
more dangerous from a convergence point of view. It has been shown in the paper
that the incorrect flux approximation impacts on the iterative method used in the
problem (e.g. Newton’s method) resulting in oscillations that cannot be eliminated
by local limiters and a divergent solution. Thus, in our opinion, the methods of flux
approximation originally developed for hyperbolic equations require further revision
when steady state problems are considered.
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