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Abstract: The leafwise complex of a reducible non-negative polarization with val-
ues in the prequantum bundle on a prequantizable symplectic manifold is studied.
The cohomology groups of this complex is shown to vanish in rank less than the
rank of the real part of the non-negative polarization. The Bohr-Sommerfeld set for
a reducible non-negative polarization is defined. A factorization theorem is proved
for these reducible non-negative polarizations. For compact symplectic manifolds, it
is shown that the above complex has finite dimensional cohomology groups, more-
over a Lefschetz fixed point theorem and an index theorem for these non-elliptic
complexes is proved. As a corollary of the index theorem, we deduce that the cardi-
nality of the Bohr-Sommerfeld set for any reducible real polarization on a compact
symplectic manifold is determined by the volume and the dimension of the manifold.
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1. Introduction

Let M be a symplectic manifold. Assume that M is prequantizable, that is there
exists a complex Hermitian line bundle S£ over M with a compatible connection
V, whose curvature is the symplectic form on M. In the program of geometric
quantization one is asked to consider a polarization P on M and to study the coho-
mology groups of the learwise complex with respect to P with values in S£. See e.g.
[5, 6, 8]. Traditionally, Kahler polarizations have received most attention, since the
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powerful theory of elliptic operators between Hilbert spaces is applicable in tin's case,
and one gets the machinery of Hodge theory and the index and Lefschetz theorems.
In this paper we shall try to initiate the study of index and Lefschetz fixed point the-
ory for more general polarizations. The natural complex with values in the prequan-
tum line bundle ££ on the symplectic manifold M with a non-negative polarization

0 - + C°°(&k <g) Sp) ̂  C°°(P* <g) J2* <g> <5jp)

£ •. • £ C°°(AnP* <g> J2* <8> SP) -> 0 (1)

which is non-elliptic, if P is not a Kahler polarization (here Sp is the normal half-
form bundle of P). The study of this complex goes back to the initial study of
geometric quantization. See e.g. [5].

We prove in this paper, using a spectral sequence argument, that if the polariza-
tion is reducible (meaning the leaf spaces M/(P + P) and M/(P n P) are Hausdorff
manifolds and the leaves of the distribution P n P are compact), then some kind of
a factorization result holds. It says that

i / ' (M,Vp) = 0, 0 ^ i < m9

where m is the number of real directions in P, i.e. rk(P fl P) = m, and

[I
besk

Here Sk is the Bohr-Sommerfeld subset of the leaf space M/(P + P), and M'b is the
symplectic reduction at b. (See Sect. 2 for further explanation of the notation.) If M
is compact, we see in particular from this, that the cohomology groups /T(M,VP)
are finite dimensional.

Now suppose we have a symplectomorphism / with simple fixed points of M
that preserves P, and assume moreover we have a lift / * of / to if. Assume
moreover that M is compact. A local analysis of / combines, by the use of the
spectral sequence, with the holomorphic Lefschetz fixed point theorem to prove a
Lefschetz fixed point theorem for the complex (1):

1Y

ipmpyP} | D e t ( l -
where

v ^ S i g n D e t O - < % ( / > ) ) ,
and fs is the induced map on the leaf space M/(P + P).

We can also prove an index theorem for these non-elliptic complexes under a
somewhat technical assumption on the non-negative polarization. This assumption
is trivially satisfied for real polarizations and Kahler polarizations. The proof of
this index theorem is by a combination of a topological argument and the use of
the Hirzebruch-Riemann-Roch formula applied to the Kahler manifolds M'h> b G S*.
This index theorem says that

Index(Vp) = ( - 1 )m f ch(^*) A A(TM) .
M
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Here Index(Vp) is the index of the complex (1), i.e. the alternating sum of the
dimensions of the cohomology groups ff'^V^).

When one applies this index theorem to a reducible real polarization, one gets
the result that the volume and the dimension of M determines the cardinality of the
level k Bohr-Sommerfeld set Sk of P:

We shall end this introduction by giving some examples of symplectic manifolds
which are non-Kahler, but which do admit reducible real polarizations. Let SL(2,Z)
be the semi-direct product of SL(2,Z) and R2. Consider the representation

p : Z 2 - > S Z ( 2 , Z ) ,

given by

The quotient R2/p(Z2) is the 2-torus T2 with its non-standard SL(2,Z) structure,
thought of as an affine manifold. There is a naturally defined lagrangian submanifold
A of T*T2 defined by requiring that

Ap = AnTp*T2cT*T2

is identified with Z2 C R2 in affine SL(2, Z)-coordinates for all pG T2. The quotient
M = Tp*T2/A is a compact symplectic manifold and the vertical polarization of Tp*T2

induces a reducible real polarization of M. One notices that any affine SZ(n,Z)
manifold in the above way gives rise to a compact symplectic manifold of dimension
2n which admits a reducible real polarization.

In the particular case at hand, we notice that the four dimensional manifold M
admits no Kahler structures. It is not even homotopy equivalent to a Kahler mani-
fold, because the first Betti-number is 3. In fact M is diffeomorphic to Thurston's
first example of a non-Kahler compact symplectic manifold (see [7], p. 10). Notice
moreover that Thurston's example also supports a reducible real polarization, which
in the notation of [7] is simply given by projecting onto the pf

ts.
The author wishes to thank Prof. J. Roe and Prof. G. Segal for stimulating

discussions on this project.

2. The Leafwise Complex of a Non-Negative Reducible Polarization

In this section we shall study the differential geometry and the local structure of
smooth polarizations on symplectic manifolds. This study will enable us to describe
the cohomology groups of the leafwise complex with values in the prequantum
bundle, associated to certain kinds of polarizations.

Let us first briefly review the complex Lagrangian Grassmannian of a symplectic
vector space. Let (F,co) be a real 2/*-dimensional symplectic vector space. Extend
co complex linearly to F ® C Consider the complex Lagrangian Grassmannian
L(V <g) C), the space of non-negative Lagrangian subspaces of V ® C Recall, that
a subspace W is non-negative if
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Note that non-negativity is part of our definition of a Lagrangian subspace, since
we will only be interested in such subspaces. There is a function

p : I ( F ® C ) - > { 0 , . . . , * } ,

which counts the number of real directions in a subspace, i.e.

p(W) = dim(W DFfl V\

We use the following notation:

General theory (see [8]) shows that L(V<g)<C) is topologically a closed ball. The
interior of L(V <g> C) is L0(V ® C) and

Suppose now (M2",^) is a symplectic manifold. Denote by L(M) the topological
fibre bundle overM9 whose fibre over p EM isLP(M) = L(TpM<g)C). Now assume
P : M —• Z,(M) is a section of this fibration. Define

These sets give a partition of M for each section P:

/=o

We now make the definition of a non-negative polarization.

Definition 2.1. A non-negative polarization of a symplectic manifold (M9co) is
a section P :M —• L(M) w/*A /Ae properties that P is a smooth subbundle of
TM (8) C, a/iJ P is integrable, meaning that around each point p e M there are
n smooth complex functions, whose Hamiltonian vector fields trivialize P in a
neighbourhood of p.

Notice that p(P(p)) is required to be constant over M. One could allow more
general polarizations where p(P(p)) is allowed to vary. Such will not be considered
here.

On a symplectic manifold one has a natural way to differentiate vector fields
in a coisotropic foliation along the isotropic directions. Since a polarization is both
isotropic and coisotropic, we can differentiate sections of P along directions in P,
by defining _

V : C°°(M,P) -+ C°°(M,P*

according to
= ixd{iY(o) VX,YeC°°(M9P). (2)

We say that V is a P-connection in P. Now V induces a P-connection in AnP*.
Assume a "normal half-form" bundle dp for the polarization P has been chosen.

By definition (see e.g. [8]) a normal half-form bundle for P is a complex line bundle
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with a P connection, such that

AnP* ^

as complex line bundles with P-connection.
Suppose (J&?,V) is a prequantum line bundle over M. That means i f is a

Hermitian line bundle with a compatible connection V, such that the curvature
two form of V is co. Recall (see e.g. [8], Prop. (8.3.1)) that the prequantum line
bundle exists if and only if [co] E / / 2 (M,R) is contained in the image of H2(M,Z)
in / / 2 (M,R) . Moreover, the inequivalent choices of the prequantum line bundle are
parametrized by Hl(M,U(l))9 when this condition is satisfied. By restricting the
connection in S£, we get a P-connection in the bundle S£k <8> Sp. We are interested
in studying the leafwise complex:

o - • c°°{sek ®Sp)^ c°°(p* <g> sek <g> dp) ^ • • • ̂  c°°(Anp* ^ ^ 0 ^ > ) - ^ o .

(3)
We shall describe the cohomology groups of this complex for "special" polariza-

tions. Let us now specify the kinds of polarizations on which we will concentrate.
Consider the two distributions

and _
D = PnPDTM.

By the definition of a polarization both D and E have constant rank, say m and
2n — m respectively.

Definition 2.2. We say a polarization is reducible if E and D are integrable and
reducible, meaning that the leaf spaces B = M/E and Mf — M/D are Hausdorff
manifolds and the leaves of D are compact.

In the rest of this chapter, we shall only consider reducible polarizations. For
such polarizations we have the locally trivial projections

nE : M -> B

and
nD:M -+Mf.

Furthermore we have a projection

nB : M1 -> B

which is a locally trivial fibration, such that

The symplectic form gives us an isomorphism

CO

and so we get an inclusion

T;M ,

T:E(P)B % T;M < TpM,
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the image being Dp. Hence we see that TbB acts infinitesimally on n^l(b). But
since n^l(pf) C % l ( b ) is compact for all p' E n^l(b) and TbB is abelian, the
infinitesimal action exponentiates to an action of TbB on n^l{b). Let us denote
nEl(b)/D = %D(n^x{b)) by Mb. Note that the polarization P induces a Kahler struc-
ture on Mb. Let pf E Mb, then TbB acts locally transitively, and therefore transitively
on Tip1 ( / / ) . (See p. 351 in [3].) This means that

Ab pf = i OL E i/,x> OCL-i/n/\ = Id}

is a discrete lattice of maximal rank in TbB, and we have an identification

Hence nD : iq \b) - • M'b is a Tm fibre bundle.
We note that when we restrict the bundle JSf* 0 dp to n^x{p'\ we get a flat line

bundle on the torus n^l(pf), i.e. an element of the dual torus of TC^1 (/?'). When
we say that J£f* ®dp\n-\P') is trivial, we mean trivial as a flat line bundle with
connection.

Definition 2.3. The level k Bohr-Sommerfeld set for P is defined to be

Sk = {be B\ (JS?* 0 <5JP)IK-V) is trivialfor all p' e M^} .

M fact, if there is a p' e M'b such that (if* ® ̂ )|7C-i(p/) is trivial, then * G 5^.
This follows from the fact that the symplectic annihilator of E is D. Moreover, we
will see later in this section that 5* is a union of isolated points on B. This definition
is a straightforward generalization of the classical definition of the Bohr-Sommerfeld
set for a reducible real polarization (see [8], pp. 201, 241 and 251-53).

Suppose b € Sk. By the definition of 5*, there will exist a holomorphic line bun-

dle over M'h9 which we will denote (&£®K*,db)9 such that ^

is isomorphic to ((JSP* 0 ^p)\n~
l(by^P^ W e

^((JSP* 0 K\ ) 0 (if* 0 ^ )) ̂  JSP2*!,-.^ 0 A*P*

Here ^ is the canonical bundle of Mb. This explains our notation (££b

(Note that &£ and Kg may not exist, but their tensor product J&f£ 0 K% will
exist.)

Locally we have the following identifications. Let b eB9 then there is an open
neighbourhood U of fe, over which the fibrations are trivial, i.e.

and
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Moreover, for each p = (//,&') G n^l(U) there is a neighbourhood V of pf G M'h
such that

n^l(Vx U)^Tm xV xU .

We will denote T £ 1 ( F X £/) = W.
These trivializations show we can find a smooth section

s: V x U -> W

of nD : FF —• F x U. It is clear that ^a>, t; G F is a smooth family of closed forms
on U. Hence we can find a smooth family aV9 v € V of 1-forms, such that

= s*vco.

Now OLV is a section of T*U, and therefore by the fiberwise action gives a diffeo-
morphism

*ap : F
m x {v} x U <r^ .

We define a new section sv : £/ —> W, v G F, by

We then have that
5*0> = 0 , D 6 F .

For each v G F we get a map

X ^ r t f - ^ F F ,

given by

We have the following

Proposition 2.1. %v: T*U -^> M is locally symplectic with respect to the standard
symplectic structure on T*U, i.e. %*co is the standard symplectic structure on T*U.

Proof. The proof is exactly the same as the proof of Theorem 44.2 in [3],
pp. 354-355. •

From this proposition it follows that we can therefore find smooth functions
Xir: F x U —> R, such that (JCJ, . . . ,X^) form coordinates on U for all v G F, and
dx\y...>dxv

m form a basis of AufV. There are uniquely defined smooth functions
yu-.-tym'-W-* R/Z, such that (xf,...,xv

m9x*(j>i),...,lliym)) are canonical sym-
plectic coordinates on T*U/Au,v- Define a 1-form a ; on fF by

It is then clear that for any v G F, we have that

The 1-form a' defines a connection in the trivial complex line bundle over W. Let
us denote this bundle with connection if'.
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The restriction of ££ to W is topologically trivial, so there will be a non-zero
section k of J£? over W. Let a be the connection 1-form defined by k:

Vk = /a (8) A .

Then tfa = to. For i? G F let us normalize the coordinates xv, such that

as elements of Hl(npl(vyb),WL).

Proposition 2.2. JFfrA the given normalization of the coordinates JC, we have that
S£\w ®(JS?')* ^ fnt?«i/ &y a bundle with connection along the fibres of D over
V x U.

Proof When we restrict to the image of Xv> which is n^l({v} x L/̂ ), we see that

By the normalization of x we have that

K-'cWxt/) " a'L-cwxc/)] e # W ( W

is zero. From this we conclude that <& ® (-&')*\n-i(sv\xU\ is trivial. •

For b' £ U consider the bundle S£ <S) (<&")*\n-\b>)nw Since this bundle is trivial
along the fibres of 7C£>, we see that there exists a prequantum bundle «%/ over
V x {b'}, such that

From this, it follows that we can find complex functions z = (z m + i , . . . , z n )onVxU 9

such that
d d d 3
)yi9'"' dym

9 dzm+i'"'9 dzn J '

and a smooth complex function

such that
^ " dK
1=1 ' ^

is a connection form for ̂ \n-
x(b')r\w> x ~ x(b'). This and Proposition 2.1 imply in

particular that there exists smooth functions A^By : W —• C, such that

m

i= l i'=m+l

n n

OXiOZj J

+ E BiJdxiAd2j+ Z t^=-dziAd*J- W
i=m+l
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Since co is closed, we must have that

—^ = 0 .

For any (v,bf) e V x U we can consider the flat bundle

By using the explicit expression for co, one easily verifies that

VJL ( -r— A • • • A -r— A — A • • • A — ) = 0 .
^ \dy\ dym dzm+\ dznj

Hence (AnP)*\n-\,vb,, is trivial for all (v,bf) G V x U. This means that the isomor-

phism class of dp\n-\Vb'y (v*bf) ^ ^ x ^ / must be constant, since (AnPy\n-\,vb,,

is trivial. That means that there exist constants jcf, i = l , . . . , /w, such that

defines a connection in the trivial bundle, say Sf, over fF, such that

is trivial, hence there exists 5̂ / a complex line bundle over V x {£/}, such that

Note that <5' 0 <5; is by construction trivial. We then have that

Here Ky is the canonical bundle of M'h,. From this we conclude that by defines a

square root of K# over V x {fe'}. We shall use the notation K£, = 8b'-
Consider now the bundle & <8> dp with its P connection Vp. We then have that

and

Vp = dD + ijrxidy; + nl(8b>) • (5)

We have here changed the coordinates (JC,) to (JC, +xf), and dy is the 3-operator in

v o v e r v x {*'}• W e w*11 u s e * e station
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It is clear from the expression for /? that 5* is a discrete subset of B.
On the basis of this local analysis we can now prove the following factorization

property.

Theorem 2.1. Suppose M is a symplectic manifold and (JSP, V) is a prequantum
line bundle over M. For any reducible non-negative polarization P on M, we have
that

H\M9V
p) = 0,

for 0 ^ i < m, and there is a natural isomorphism

for m ^ / ^ n.

Since S£k ® dp is trivial along the fibres of no : n^l{b) —> M'h for b £ Sk, we
get a well defined map

by restriction to

followed by integration along the fibres of

: U *Il(b) -> \J M'b .
besk

We will see in the proof that it is this map which induces the isomorphism in the
theorem.

Note that this theorem is a generalization of Sniatycki's result for reducible real
polarization in [6].

Proof The inclusion
i\D-+P

induces a filtration on the complex (3), by letting

Fp(AlP* ® JSP* ® SP) = Ann(Al-p+lD A Ap~lP (8) <£k 0 SP)

and _ _
FpC°°(AlP* ® JSP* 0 <5P) = C^iP'iA'P* 0 JSP* 0 <5P)) .

Associated to this filtered complex we have a spectral sequence {Er}, where

o

and the differential is induced from V p .
Note that if q > m then

and if p > n — m then
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By general theory we have that the spectral sequence converges to

We shall now compute this spectral sequence. Let q> G Efrq. We may then in the
local coordinates (x, j>,z,z), constructed earlier in this section, represent

L V\=p

where rji is a #-form on Tm:

\J\=q

The differential

is then given by

do<p =
=p

Hence we see that if doq> = 0 in Eg'q+\ then

(dD + /*i?) /̂(jc,z,z) = 0 . (6)

By the expression for /̂ we get thus that

MD + *'J8>J/(X,Z,Z)

i=i \j\=q

Following Sniatycki's local analysis of the leafwise complex of a real polarization
in [6], we argue as follows using Fourier series:

Write

rjf(x9y,z,z)= £ rif(n)(x,z,z)exp(-i(n,y)). (7)
nezm

Then (6) becomes

£ (*,-«,)<(>» A [ £ rjf(n)(x,z9z)dyj) =0
i=l \ \J\=q )

for all n € Zm. Suppose now that q < m. It then follows by Lemma 3.7 in [6], that
there exist ^/(/i)(x,z,z), for all n € Zm

9 such that

A ( E tf(n)(w)dyj) = rif(n)(x,z9z) ,
1=1 \ \J\=q-\ J
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and so we can construct tyf € C°°(W,Aq~lD*) by defining

£ £ \ls/(n)(x,z9z)exp(-/ < n9y*7 = £
\J\=q-\ neZm

By construction we have that

Choose a partition of unity {F x U,pvxu} on Af'. By pulling back to M9 we get
a partition of unity {W,pw} on M. Using this partition of unity, we can define

t = Epw £ il/r
w \i\=P

Then

w \i\=P

YsP E
w \i\=p

Hence we see

if ^ < m.
It is clear that

so

We have a map

given by

where (no)*(p(b) is the integration along the fibres of the fibration 7i£> : TC^l(b)
Af̂ . Note that (TT£>)* is in fact well-defined on isf'm, so we get

El
besk

) . (8)
besk

In terms of the local Fourier series description of cp, we see that the condition
(IID)*<P = 0 implies that

i,/(0X0,z,2) = 0 .

That is precisely the condition one needs on Y\I in order to be able, locally in the
coordinates (JC, y,z,z), to solve the following equation for i///(n),

i E (*/ - n/)«i A ( E ^J(n)(x9z,z)dyj J = r,f(ny(x9z9z)dyj .
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By exactly the same argument as in the case where q <m, we see that using a
partition of unity and these local solutions, we can construct il/eEQ'm~l such that
dot// = <p. Hence the map (no)* is injective.

Using the partition of unity {W9pw} one easily constructs an m-form \j/ on M,
such that

for any pr eM'b, be Sk. For

besk

we let

Then q> € E^and (no)*q> = (p. We thus see that (8) is an isomorphism.
Consider the map

d\ : Ep{m -> Ef+1'm

given by

\.\I\=P

It is clear from the definition that

Hence (no)* induces the following isomorphism on cohomology:

% Y [ b
b€Sk

Hence we see that the spectral sequence degenerates at the ^2-term, and the general
theory gives

M =
2

By a standard derivation this result implies the result stated in the theorem. •

3. A Lefschetz Fixed Point Theorem for Reducible Non-Negative Polarizations

We shall make the same assumption on the symplectic manifold (M,co) and the
polarization P as in Sect. 2. Moreover, we will for the rest of the paper assume
that M is compact.

Suppose we have a symplectomorphism / of the symplectic manifold M,
Assume we are given a lift of / to the line bundle 5£. We shall require that
/ preserves P and that we are given a lift of / to the line bundle dp. Then /
induces an endomorphism of the cohomology groups of the complex (3).

Since / preserves P, it also preserves E and D, and hence induces a map on
the leafspaces M/E = B and M/D = M'. We will denote these maps fs.B-^B
and f'.M'^M'. It is clear that f'b : Mr

b —• M'^^ will be holomorphic with respect
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to the Kahler structure induced on M'b by P. Suppose b € B is a fixed point for
fB :B —• B. Let pf e n^l{b). We shall now study / in the local coordinates on M
around n^l(p') we constructed in Sect. 2. In these coordinates we can write

f(x9y,z,z) = (fi(x,y9z9z),f2(x,z9z)(y\f3(x,y9z,z),f3(x9y,z,z)),

where
/2(JC,Z,Z) :Tm^Tm.

We calculate that

dztj ^ ^ " ^ ^ "

r ^/ &, y dzt dyj y dzt dzj y d
Since / preserves P, E and D, we can in particular conclude that

dzt

The symplectic form co is also preserved by / , so we get from (4) that

i=m+\

n
+ t rBijdf\Adfi+ t

i=m+\ /=m+

From this it follows that

i-i dxj dyk J

We have the following identifications:

so (9) is just saying
(dBf)'dDf = 1 .
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From this it follows that

-r—-—= 0, k,j = 1,.,.,/n ,
dykdyj

so we see that there exists A € GL(m,Z) and a smooth map c : V x U —• Rm, such
that

7=1

where J = dof. Moreover, since

we conclude that Det(df£>/)(/?), p € Af, only depends on TT^C/J) € 2?.
The following proposition computes the trace on the cohomology groups of any

symplectomorphism / that preserves P on the basis of the local description of / .

Proposition 3.1. Let P be a reducible non-negative polarization on a compact
symplectic manifold. Suppose f is a symplectomorphism of M that preserves P.
Assume moreover we have a lift f* of f to 5£' ® dp. Then

i=0

{bESk\fB(b)=b} i=0

where ff is the lift of f'h to &* ®*£ , constructed from f\-\{besk\fB{b)=b}) the

lift °f f\n-\{besk\Mb)=b}) t0 &k

Note that there is no assumption on the nature of the fixed point set of / in
this proposition.

Proof. Recall the spectral sequence from the proof of Theorem 2.1. We have that
the following diagram is commutative

b l
besk

Hence we get

Tr(/* : E?m - , Efm) = £ Det(dDf)(b)Tr(ff :
{beSk\fB(b)=b}

The result follows from this equality. •

Using Proposition 3.1, we can now give a fixed point formula for the trace of
the action of / on the cohomology groups, in the case where / has simple fixed
points.
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Theorem 3.1. Assume P is a reducible non-negative polarization on a compact
symplectic manifold. Suppose f is a symplectomorphism of M that preserves P.
We shall assume that f has simple fixed points. Assume moreover that we have
a lift f* of f to If® dp. Then

i=0

{peW(,)=p} PhK |Det(l -df(p))\

where
vp = SignDet(l-<%(/>)).

Before proving this theorem, we shall compute the number of fixed points for
an affine diffeomorphism of an /^-dimensional torus.

Let A e GL(m9Z) and y0 € Rm. Consider the map F : Rm -+ Rm given by

F(y) = A(y) + yQ .

This map induces a diffeomorphism of the torus. We will also call this diffeomor-
phism F.

Lemma 3.1. Suppose Det(A - 1)4=0. Then F : Tm - • Tm has finitely many fixed
points and the number of fixed points is |Det(J — 1)|.

Proof We calculate

So we see that the number of fixed points is finite and it is given by the order of

(A - l)-lZm

which is the same as \Zm/(A - l)Zm|. It is a simple exercise to prove that

-1)1. •
(A- \)Zm

Using Proposition 3.1 and Lemma 3.1 it is easy to prove Theorem 3.1

Proof of Theorem 3.1. By Proposition 3.1 and the holomorphic Lefschetz fixed
point theorem we get

{beSk\fB(b)=b}
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Using Lemma 3.1, we can write this as

;=o

= ( i r E D*(dDf)(b)
{beSk\Mb)=b} ^ ^ ~ dl>W)\ {p€nj\b)\f(p)=p}

We note that if 6 e 5 is a fixed point for fs, but b is not a Bohr-Sommerfeld leaf,
then

" ^ Tr(/fc'* : ( # ^ ) , D ( p ) » ( ^ ^ P > ) n D ( P ) ) _
|Det(l<(p))|

This follows by applying the usual Lefschetz fixed point theorem to the elliptic
complex

0 -> C 0 0 ^ 1 ^ ) , & (8) <5p) ̂  • • • £ C 0 0 ^ 1 ^ ) , ^ P * 0 JSP* ® 5P) -^ 0 (10)

and the fact that the cohomology groups of this complex are all trivial. Combining
this with the previous result, we get

i = 0

From (9) we get that

Det((l - dfBXdDf)<) =

Since
Det(l - dDf) = E (

1=0

we get that

E(-l)'Tr(/* : H'(M,VP))
i=0

{pfcP)p} - df(p))\

where
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Here we have used that

|Det(l - df(p))\ = |Det(l - dfB(p))\\Det(l - dfD(p))\\Dct(l - df^p))\,

but this follows from the fact that / preserves D and E. •

4. An Index Theorem for Reducible Non-Negative Polarizations

Suppose M is a compact symplectic manifold and assume that P' is a Kahler
polarization on M. We can then identify bp> = AT 3, where K is the canonical bundle.
The complex (3) for Pf becomes the 5-complex with values in ££k ®Ki, which is
elliptic, and by the Hirzebruch-Riemann-Roch formula we get

Index(Vp/) = /ch(J^* <g>KS ) A c h ^ " * ) AA(TM)
M

= f ch(&k) AA(TM) .
M

This formula shows that Index( V p ' ) for Kahler polarizations P' on M only depends
on the symplectic structure of M, since ch(J£?*) = exp(fao).

We shall now prove the following analogue of the Hirzebruch-Riemann-Roch in-
dex theorem for reducible non-negative polarizations P, which satisfies the following
somewhat technical assumption. We shall assume that the Tm bundle %r> • M —• M'
admits a flat connection. Note that with this connection, we can define a closed
2-form coi on M which in the local symplectic coordinates (JC, y9z,z) constructed in
Sect. 2 is given by

Notice that this condition is trivially satisfied for real polarizations and Kahler
polarizations.

Theorem 4.1. Let M be a compact symplectic manifold. Suppose we have a re-
ducible non-negative polarization P on M such that the Tm bundle no :M —• M'
admits a flat connection. The index of the complex (3) is given by

Index(Vp) = (-l)m/ch(J£*) AA(TM) . (11)
M

From the proof it will follow that if P is a real polarization, then the right-hand
side of (11) just reduces to the volume of (M9kco). So in short the theorem is in
that case saying that the cardinality of the level k Bohr-Sommerfeld set is given by
the volume of (M9kco):

Corollary 4.1. Let M be a compact symplectic manifold with a reducible real
polarization P and a prequantum line bundle (J£f, V). Let S* be the level k Bohr-
Sommerfeld set for P and (JSf, V) as defined in Definition 2.3. Then

#Sk = ^Vol (M) .
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Proof of Theorem 4.1. First of all we notice that using the symplectic form, we
get an isomorphism

* f

^ n*ET*B 0 n*DTM'.

Recall from Sect. 2 that we constructed a lattice inside UB(T*B), hence the bundle
n*B(J*B) is flat This means that

A{TM) = n*D(A(TM')).

The left-hand side of (11) becomes

/ exp(fao) A A(TM) = J (nE)*(exp(kco) A A{TM))
M B

B

Using the local expression (4) for the symplectic form we have that

O) = O)\ + 0)2 + CO3 ,

where
m

o)\ = £ dxt A dyt,
i=i

A (. . <?K
C02= E

= 22 x x- dzi A dzj -

Here C03 is a local expression for cob, the reduction of a> to M'b.
We then see that

= kmdxx A.-.Adxmf: ,. l (k(co - ox ))*— .
i=m Kl - mV-

Note that co — o\ is closed and basic with respect to %D, hence it is the pull back of
a form on M'. We shall also denote that form by co — co\. Let A be the submanifold
of UB(T*B), which consists of points in n%{T*B\ that acts trivially on the corre-
sponding fibres. We will use the notation p for the projection p : itg{T*B)IA —> M1.

Let us now define a section s* : M1 —• n^(TB)/A* by the following requirement.
Note that any <x.pi G Ap> represents a homology class in H\(n~j)

x(p'\'E\ for p1 G
7tsl(b). We then define sk(p

l) e ^(TtByAp by

( / ) ) ) = Hol[v](J2* (8) ̂ 1 , -1^)) ,

for p! € 7tgl(b). Here Hol[(y](JSf* ^ ^ P I ^ - ^ ^ / ) ) is the holonomy of the flat bundle

S£k (8) Sp\n-\pf) around [Op/]. Let s0 :Mf —• n%(TB)/A be the zero-section.
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We now note that

nB(p(s0(B)nSk(B))) = Sk, k= 1,2,... .

Let us assume that we have chosen an orientation on B. If B is not orientable, we
will just lift the whole situation to the orientation cover of B. Since M'b is oriented,
we get an orientation on Mf. From the local study of the polarization we know
there exist coordinates around each point p' € M', such that st is given by

n g
sk(x9z,z) = £ (£*,•+*?)— .

i= l Oxi

We can assume that (JC,Z,Z) are positive coordinates on M'. The orientation of Mf

gives a canonical orientation of n%TB. From the coordinate expression of sk we see
that it is possible to orient sk(M'\ such that sk(M

f) and so(M' ) always intersect
positively in n%{TB)/A*. Now define a smooth w-form a on 7tg(TB)/A* by

otb = ex A • • • A en ,

where (e\9...,en) is a positive basis of ylp' C n%(T£B^yB). It is clear that a is
the Poincare dual of the zero section of 7tg(TB)/A*. Suppose we have a closed
2(n — m)-form /? onM'. We then get by Poincare duality, that

/ P= S />*(/*)
p(st(M')nso(M')) sk(M')ns0(.M')

w

= fsTk

The local expression for sk shows that

5*(a) = kmdxx A'

Let P be the closed form, which in local coordinates is given by

P = E T - ^ W O ) - ©oy-" Ai(rM').
i=m (̂  - w ) -

By the previous calculations we get that

/ exp(fco) A A(TM) = f £ TT-^T(*(O> - ©i)y-m A i(7M')
A/ p(sk(M')nso(M'))i=m KI — ™).

p j 1=0

Here we have used that

i(
for the inclusion i : M^ -> M'.
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By Theorem 2.1 and the Hirzebruch-Riemann-Roch theorem applied to (M^dbX
we thus get

Index(Vp) = (-l)m/ch(J^*) A A(TM) . D
M

In connection with this theorem we should mention that Guillemin and
Steinberg in [4] have worked out explicitly the quantization of coadjoint orbits
of U(n) with respect to some non-trivial (singular) real polarizations. They find
that the quantization agrees with the usual Kahler quantization.
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