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Abstract: For each irrational number, 0 < a < 1, we consider the space of one
dimensional almost periodic tilings obtained by the projection method using a line
of slope a. On this space we put the relation generated by translation and the iden-
tification of the "singular pairs." We represent this as a topological space X* with
an equivalence relation Ra. On Ra there is a natural locally Hausdorff topology from
which we obtain a topological groupoid with a Haar system. We then construct the
C*-algebra of this groupoid and show that it is the irrational rotation C*-algebra, Aa.

Given a topological space X and an equivalence relation R on X, one can form
the quotient space X/R and give it the quotient topology. It frequently happens
however that the quotient topology has very few open sets. For example let X
be the unit circle, which we shall write as [0,1] with the endpoints identified and
the group law given by addition modulo 1. Fix a, irrational, 0 < a < 1, and let
R = {(*> y) I x ~ y € Z + aZ}. Since each equivalence class of R is dense in X, the
only open sets in X/R are 0 and X/R.

However the equivalence relation R has the structure of a groupoid and if we
can put a topology on R9 (usually not the product topology of X x X)9 so that
R becomes a topological groupoid:

(i) R 3 (x9y) i—> (y,x) G R is continuous, and
(ii) R2 3 {{x9y)9{y9z)) »-> (X9Z) G R is continuous,

and we can find a compatible family {/i*} of measures (nx is a measure on Rx =
{(x9y)\x ~ y}), called a Haar system (see Renault [7, Definition 1.2.2]), one can
construct a C*-algebra, C*(R,fi)9 by completing Coo(R\ the continuous functions on
R with compact support in a suitable norm.

In the example above of the relation R on the unit circle Sx
9 suppose {x9y) E R9

so there is n G Z such that (JC + no.) — y G Z and let t C S 1 be a neighbourhood
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of JC, then a basic neighbourhood of (x, y) in R is given by {(0,0 + wa) | a £ aU\.
On R* = {(JC,JC + «a) | w E Z} we put the counting measure. With this information
one can construct the C*-algebra of this topological groupoid by completing Coo(R)
in a C*-norm; see Renault [7, Definition II. 1.12].

In this paper we shall show how this same C*-algebra arises as the "non-
commutative" space of a set of one dimensional almost periodic tilings of R.

For each irrational number a, 0 < a < 1, let Ta be the space of tilings obtained
from the projection method using a line of slope a. We shall classify the tilings in Ta

as follows. Given T € Ta we choose a tile / in T and construct in an explicit way a
sequence (xz) in Xa = {(*,) |JC,- € {0,1,2,3,... ,a,} and Jt/+i = 0 whenever x, = 0,},
where a = [0;01,02,03,...] is the continued fraction expansion of a. The sequence
of Xa constructed from (t, T) depends on the choice of the tile t. So we put on Jfa the
smallest equivalence relation so that the sequence obtained from (f,T) is equivalent
to the sequence obtained from (t\ T) for any other tile t' € T. By putting a topology
and a Haar system on this relation we construct a C*-algebra and show that it is
the irrational rotation C*-algebra Aa.

A number of authors have considered C* -algebras associated with almost peri-
odic tilings. This paper was motivated by the observation of Connes [3, II.3] that the
space of Penrose tilings are classified by the space {(*,-) | xt G {0,1} and Xf+\ = 0
whenever jt, = 1} ( = ^ys-i in our notation) modulo the equivalence relation of

tail equivalence. Connes then shows that the C*-algebra of this equivalence rela-
tion is the simple AF C*-algebra AF2^-1 with Ko = Z + :^1Z (as an additive

subgroup of R ) and positive cone (Z -j- v*~lZ)+. In [5] J. Kellendonk considers
C*-algebras associated with almost periodic tilings, however the algebras constructed
are the C*-crossed products associated with an action of Z on a Cantor set and thus
have K\ = Z. In [1] Anderson and Putnam consider C* -algebras associated with
substitution tilings. While our tilings are also substitution tilings, the substitution
rule will (in general) change at each iteration; thus the tilings considered here are
different from those analysed by Anderson and Putnam.

An interesting feature of our construction is that there is a sub-relation 01* C Ra.
@<* = {(*> y) € Xa x Xa I x is tail equivalent to y}. The topology of Ra restricted to
01* is a Hausdorff topology and i?a is a principal r-discrete groupoid. We shall
show that C*(0ta) is a simple /IF-algebra with the same ordered KO group as Aa.

Let us now describe in detail the plan of the paper. In Sect. 1 we give a brief
overview of the tilings under consideration; full details will be published sepa-
rately [6].

In Sect. 2 we put a topology on the relation ^ a , of tail equivalence on Xa,
and show that it yields a principal r-discrete groupoid whose C* -algebra is AF and
we show that its ordered AT0 is (Z + <xZ,(Z + aZ)+) with the class of the identity
equal to 1.

In Sect. 3 we describe an isomorphism q> between S^a and Xa, where S^ is
the Cantor set obtained by disconnecting the circle S\ along the forward orbit of
0: {0, a, 2a, 3a, . . .}. On the space S^a there is the partial homeomorphism of adding
a modulo 1 with domain ^ a \ { ~ a } - ^ e construct a partial homeomorphism 0 on
Xa, such that q> intertwines 0 and the partial homeomorphism on 5^ a . The relation
x ~ 0{x) on Xa is exactly tail equivalence.

In Sect. 4 we put a topology on the relation Ra and construct a continuous onto
map <P : R^ —> S1 x « Z such that #* : Coo(51 x a Z) —• C ^ ^ ) is an isomorphism
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of vector spaces, where C^Rx) is the space of functions whose support is the
closure of a compact set.

In Sect. 5 we construct a Haar system {fix} on Ra and use this to put the structure
of a *-algebra on C^R^). Then we show that #* is a *-homomorphism. This then
implies that C* (/?«,/*) is isomorphic to Aa.

1. The Tilings

The tilings we consider are doubly infinite sequences {*i},??_oc» where U e {a,b}
and which satisfy three axioms.

(Ai): the letter a is isolated: if f, = a then /,-_i = f,+i = b.
(A2): there is an integer n such that between a's there are either n or n 4-1 b's.

A sequence which satisfies (Ai) and (A2) is composable. Given a composable
sequence T we can produce a new sequence T' by composition: each segment
beginning with an a and followed by n b's gets replaced by a b, and each segment
beginning with an a and followed by n 4-1 b's gets replaced by ba.

abbb...b>-+b and a b b b . b ^ b a
n n+1

Axioms (Ai) and (A2) are exactly what are needed in order to compose a
sequence. The third axiom is then:

(A3): each composition of the sequence produces a composable sequence.

We shall call a sequence satisfying axioms (Ai), (A2), and (A3) a cutting sequence,
following C. Series [6].

A cutting sequence may be constructed by choosing a slope a and a jy-intercept
P for a line L : y = ax 4- ft. We mark by an a each intersection of the line L with
the horizontal lines y — i for 1" € Z and by a b the intersection of L with the vertical
line x = j for j £ Z. This produces along L a sequence of a's and b's.

If a line L passes through a point (m9n) in Z2 we call it singular for at (m,n) an
a and a b coincide. Such a line produces a singular pair: two cutting sequences T+
and T~. In the upper sequence T+ all coinciding a's and b's are written with the
a preceding the b; in T~ all coinciding a's and b's are written with the a following
theb.

Via composition we may associate with a cutting sequence a real number
0 < a < 1 which we call the slope of the tiling. Let T be a cutting sequence. Let T2

Fig. 1.
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Fig. 2.

be the cutting sequence obtained from Ti = T by composition. In general, let T*+i
be the cutting sequence obtained from T* by composition. For each i there is, by
axiom (A2), an integer /i,- such that in T, there are between adjacent a's either », or
nt+\ b's. This produces a sequence of non-negative integers {ni,W2,W3,...}. Let a
be the real number with continued fraction expansion [0;«i,«2,«3,...]> adopting the
convention that a trailing sequence of O's is dropped. Let Ta be the set of cutting
sequences of slope a.

A line of slope a will produce a cutting sequence of slope a, moreover for each
cutting sequence of slope a there is a /? (not unique) such that the line y = OCJC + ft
will produce the given cutting sequence.

Motivated by the classification (see [3]) of Penrose tilings by sequences of O's
and l's where a 1 must be followed by a 0, modulo tail equivalence, we can classify
the cutting sequences of slope a by sequences of integers. If a is rational then there
is up to translation only one cutting sequence ^nd it is periodic.

Suppose that 0 < a < l and a is irrational. Let [0;#1,02,03,...] be the con-
tinued fraction expansion of a. Let Xa = {(x,-)^ |JC, € {0,1,2,...,a*} and JC,- = 0,
implies that xi+\ = 0}. We give Xa the topology it inherits as a subspace of
E d {0> 1,2,...,a,} with the product topology. Xa becomes a separable totally dis-
connected metrizable space, i.e. a Cantor set. When a = v^"1, Xa is the space which
classifies the Penrose tilings.

Suppose T € ra is a cutting sequence of slope a and t is a letter in T. Let
Ti = T, and T, be the sequence of cutting sequences obtained by composition. The
letter t eT will be absorbed into a letter /2 of T2, this letter h will be absorbed
into a letter ts of T3.

Letting t\ = t we obtain a sequence {*,}£?! with f, e T,. The sequence (JC,) E X*
associated with the pair (T, t) is constructed as follows. If U = a then xt = 0, if
// = b then xt is the number of b's between tt and the first a to the left of f,-. In the
example above xt = 1 and JC/+I = 0. This describes a map from {(T,f) 11 € T € Ta}
to Xa. If t and t1 are in T then we will obtain two sequences (JC,) and (xj) in X*
which will be in general different. If T is not singular then (*,) and (JC£) will be
tail equivalent^ i.e. there is an integer k such that xt = x\ for i > k. If a is irrational
and T is singular, this may not happen.

Let us denote by 0+ = (0,02,0,04,...), 0~ = (01,0,03,0,...), and - a = (01 - 1,
02 - 1,03 - 1,04 - 1,•• ) three sequences in Xa. If T is a T+ then each (JC,) will be
tail equivalent to either 0+ or —a. If T is a T~ then each (JC,) will be tail equivalent
to either 0~ or - a .
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Suppose now that on the set of cutting sequences with slope a, Ta, we say that
Ti is equivalent to T2, if by shifting Ti a finite number of letters to the left or
right it agrees with T2 and that we decree that the upper and lower sequences for
a singular line are equivalent (as in fact they only diflFer by a single transposition of
an a and a b at the one singular point). Transferring this relation to Xa it becomes
the relation Ra generated by tail equivalence and 0+ ~ o~ ~ — a.

In [6] we prove that the map from Ta to Xa is onto and tail equivalence plus
0+ ~ 0~ ~ —a classifies the tilings of slope a.

In this section we calculate Ko of the AF C*-algebra C*(^2) and show that it is equal
to (Z + <xZ,(Z 4- aZ)+, [1]). The equivalence relation ^ defines an AF groupoid,
and thus this C*-algebra is AF (see Renault [7, Proposition III.1.5]). We shall follow
the construction given by Connes [3, II.3].

Let 0 < a < l be irrational and [0;a\9a29a39...] be its continued fraction ex-
pansion. Let X<x = {(#,•)£?! |*i € {0,1,2,3,...,a{\ and JC, = a, implies JC,+I = 0} and
^« = {fa y) € Xa x Xa | there is k such that JC/ = yt for i > k). To simplify the no-
tation we shall write X for Xa and & for ^ a , as a will be fixed throughout this
section.

We construct a topology on & as follows. Suppose (JC, y) £ M for each k such
that JC/ = yi for i>k we construct a basic neighbourhood °Ufay,k) = {(a9b) £
St\at = Xj and 6,- = >>,- for 1 ^ i ^ it and at = b( for i > k}.

Suppose (JC, y) € P̂, and JC, = yt for i > Â, also (JC', y') G R and JC- = y\ for i > k',
and t / > t . Then either *(JC,J>,A:) and « (x / , y / , t / ) are disjoint or *(jt / , / ,Jt /) C
W(x,y9k). For suppose (a, 6) € ^(jc,^,it) n *(x / ,y / ,* / ) . Then ^ = JC, for 1 ^ i g it
and a,* = xz- for 1 ^ i '^ A:7. Hence JC, = JCJ for 1 ^ ii ^ ^. Similarly yt = y\ for
1 ^ i ^ A. Since at = fc, for i > k9 we have JC- = y\ for i > k. Thus (JC7,./) G
^(JC,^,*:), so «(jc / ,y,* /) C ^r(jc,̂ ,A:). Thus the set {<%(x,y,k)} forms a base for
a topology of &.

By defining r(jc, >>) = (JC,JC) and d(xyy) = (>v>0, ^ becomes an r-discrete prin-
cipal groupoid in the sense of Renault [7,1.Sect. 1 and I.Sect. 2]. The sets ^T(JC,^,A:)
are compact open ^-sets in that both r and d are one-to-one when restricted to

will be the completion of the space of continuous functions on R with
compact support with respect to a norm that we will presently construct.

Let &k) = {(x9y)eXxX\Xi, = >* for />*} . Then 0t = \Jk3fn. If fay)e
then <%(x9y9k') C 0fk^ for some A:7 ^ *. So «(*> is an open subset of St. If

for some i > k then $f(jc,>>,&7) is disjoint from 3fik\ where A:' ( > k) is such
that JC, = y{ for i > k!. Hence ^ } is also closed in ^ . Since <%{x9y9k) C d̂ *> we
see that J> has the inductive limit topology associated with the sequence

Let us show that each ^*> is compact. In doing so we shall see that 0fik) is an el-
ementary groupoid in the terminology of Renault [7, p. 123]. First we develop some
notation. LetX{k) = {(x i)gk+1 |JC, e {0,1,2,3,.. . ,a t} and JC, = a, implies JCI+I = 0},
and X^ be the subset of X^ consisting of those sequences which begin with
0: AT<*> = {x € ^ > | JC*+I = 0}, X(0> = X. Give X^> and X<*> the product topology.
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Each Jf<*> and each X^h) is compact. Let X{h) = {(xi,... ,xk) \x, G {0,1,.. . ,ak} and
xt+i = 0 whenever xt = af}. Let 0t{k) = {(x,>>) € JQ*) x JT^) jx* = yk\. Give J fo
and $&) the discrete topology. Write ffi^y as the disjoint union of two groupoids
«~U««: &~ = {(x,y)e&(ky\xk±ak} and &* = {(x9y)\xk = ak}. We shall
next show that 9fi& is homeomorphic to the Cartesian product of a finite set and
X&\ In the following lemma we put the productjopology on each of SIT x JjfW and
m™ x X{k\ and denote by SIT x X{k) U &* x Xik> their topological disjoint sum.

Lemma 2.1. 77*e map

a homeomorphism from &k) to 0t~ x X{k) U 0f x j?<*>. So ̂ * } w compact.

Proof. The map is one-to-one as, for (x9y) G ̂ * } we have xk+\ = ^ + 1 , xk+2 =
If (x,y)e&~ and z C ^ ) then ( x i , . . . , ^ , z*+i,...) and ( ^ i , . . . , ^ ,

are in ̂  as neither x^ nor ̂  is equal to ak. Also given (x,j>) € &** and
the sequences (xXi...,xk9zk+\,zk+2,...) = ( x i , . . . * * - ! , ^ , © ^ ^ , . . . ) and

( y i , . . . , n , ^ + i , - . - ) = (*i J--^W-u^»0,z i k +2,.. .) are in X. Thus the map is onto.
The map also takes the basic open sets <%(x9y,k') (for k' >k) for the topology
of 0fik) to basic open sets in 9l~ x ^ U * 8 x ^ > . Hence (*) is a homeo-
morphism.

&(k) is a finite equivalence relation. Let Ak be the C*-algebra of 0t(ky9 i.e. ̂ 4jt is
the complex vector space with basis {e(x,>o | (x,^) € ^(it)}, with involution ef^y) =
^(^X) and product e^yye^yy = e^yy if y = x ; and 0 otherwise. The product and
involution are extended to all of Ak by linearity. We shall also find it convenient
to think of e^yy as the characteristic function of the set {(x, >>)}. For each k and
0 ^ i ^ ak let mf be the number of sequences of X^k) ending in i.

Lemma 2.2.

Proof. For each x € A *̂* we have a projection e^x) € Ak. Moreover (>>)
and only if xk = yk. Hence e^xy and e^yy are centrally disjoint if xk ̂ yk. Hence Ak

has 1 4- ak central summands. Also for each j G {0,1,2,... 9ak}9 {e^XtXy \ xk = j} is a
set of pairwise orthogonal pairwise equivalent projections which sum to the central
support for the 7th summand (0 ^ j ^ fl^)- Hence the size of the 7th summand
is nfij.

Define \l*k:Ak® C(X^) -+ C(&k)) by

By Lemma 2 ^t is an isomorphism when restricted to the ideal

C

Let Coo(&) be the continuous functions on ^ with compact support. If
/ G Co o(^), then there is k such that the support of / is contained in &k\
since {&k^}k is an open cover of 01. Thus / is in the subspace C(0ftk^). Hence

= U* C(&k)). Thus M is what Renault [7, p. 123] calls an AF groupoid.
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Next we shall recall the *-algebra structure on Coo(^). Suppose / and g are in
"" ). We define / * € C(#<*>) by f*(x,y) = f(y,x) and f*g in C(Sfik)) by

/ * 9(x*y) — 12(Xyz)e&k) f(x>z)9(z>y)- Tte s u m ^s finite because, for given x and £,
| (JC,Z) G ̂ *^} is finite. Each subspace C(0k^ is a *-subalgebra.

has a unique C*-norm, and thus so does

Hence C(&flk^) has a unique C*-norm. Thus Coo(0t) has a unique C*-norm.

Definition 2.3. C*(^), the C-algebra of the equivalence relation 0t, is the com-
pletion of Coo{^t) with respect to its unique norm.

To calculate the KQ group of C*(^) we have to carefully analyse the inclu-
sion maps i : C(&k)) -> C(^*+1)) in terms of the maps ife. For (x9y) e %>
let S(x,y) = {(x9y) \(x,y)e %+i) and xt = 5/, >>, = ^ for 1 ^ / ^ k}. Define

by

(x,y)eS(x,y)

Lemma 2.4. The diagram

is commutative.

Proof. It is enough to check commutativity on the elementary tensors: e^y) 0 / 6
Ak (8) C(X{k)). For (a,b) e 0k we have

when a,- = 6,- for i > A: + 1 and

0 otherwise

f(xk+\,ak+2,.• ) «i = x,-, A, = ^ for 1 ^ i ^ A:

and at = fe, for i > A: H-1

0 otherwise

!,a*+2,.-.) «i =^i , 6i = yt for 1 ^ i ^ A:
and a, = 6f for i > k

0 otherwise
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Note that <p* carries Ak 0 1 into Ak+\ 0 1. It is these maps that will enable us to
calculate KQ(C*(&)). For we shall denote by A the limit of the inductive sequence

A

A\
V1 V2

and show that A ~ C*(9E) and then use the maps {q>k} to calculate Ko(A). So we
shall identify, where convenient, Ak with Ak 0 1. With this identification we have
a sequence of commutative diagrams:

<p\ q>2

Lemma 2.5. xj/ is an isomorphism.

Proof. We shall show that the range of $ : \Jk^k —• Coo(&) is dense. Let / G
C(X{k)) and e > 0 be given. For each x e X^k) choose jx such that on O(xJx) =
{a e X{k) | <n = xt for k ^ i ^ k +yx - 1}, / varies by less than £, i.e. \f(y) -
f(x)\ <sforye O(x9jx). Then by the compactness of X^k\ we may cover X{k) by
a finite number of these sets {O(x\,jXl),...,O(XN,JXN)}; since these sets are open
and closed we may re-arrange them into a cover {O\,...,OK} of pairwise disjoint
open and closed sets, with Oj C O{x^j)JXi(j)). Thus

Let ./max = max{yXl,... JXN}. Now
^y-« ® C(Ar(^m«)). Thus ^y^-i o • • • o (^(e^) 0 X(Kxijx.)) is within e of an ele-
ment of Ajiasx 0 1. Hence for each element / G C(&k)) and € > 0 there is j and
/ G ̂ 4y 0 1 such that | | / — ^/( / ) | | < s. Hence the range of i// is dense.

Each central projection in Ak produces one copy of Z in K0(Ak). Thus Ko(Ak) ^
Z1+a* with positive cone Z^fl* = {(zo,...,zflJt |z,- ^ 0}.

Lemma 2.6. t//itfer the identification of K$(Ak) with

is represented by the 1 x 1 + a* matrix

/ I •• 1 1\
1 ••• 1 0

\ 1 1 0/

\o j =
+ ak or i = I
+ ak and i> 1.
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0 1 2 nk+1

Fig. 3. The Bratteli diagram for the inclusion of A^ into

Proof. We only have to show that there is a map of multiplicity one from each
central summand of Ak to each central summand of Ak+\ with the exception of
the last summand M^ (C) of Ak. In the latter case we must show that M^ (<C)
gets mapped only to the first summand AfJt+^C) of Ak+\ and that this map has
multiplicity one.

Suppose* eX{k) and**4=0*. ThenS(x,x) = {((*,0),(*,0)),...,((*,a*),(*,fl*))};
i.e. the sequence x in X^) can be extended to a sequence (JC,/) in f̂(*+i) by
adding any i 6 {0, l , . . . ,a*+i} to the end of*. Hence in the sum <?*(£(*,*)) =
S(x,jc)€5(xx)e(*,x) there i s o n e tenn i*1 e a c ^ °f the 1 +ak+\ summands of Ak+\.

Suppose x € X(k) and JC* = a*. Then JC can be extended only by adding a 0, so
5(JC,JC) — {((JC,O),(JC,O))}. Thus the last summand of Ak only gets mapped into the
first of y4*+i and with multiplicity one.

The Bratteli diagram for the inclusion of Ak into Ak+\ can be described as
follows. There are 1 + a* vertices on level k and an edge between the Ith vertex of
the £* level to the 7th vertex of the k + 1st level if a sequence in X(k) ending in i
can be extended to one in X(k+\) by appending a y.

be vectors in Z1+a*. Then

and

So let S* C Zl+ak be the span of {{\k\ ^}. Since the rank of 7* is two, we see
that 3k+l is the range of 7* and Z1+** = ker(r*) 0 5*. Let P = {(m,/i) | ro^ +
w ^ } 6 S^} = {(m,n) | m ^ 0 and m + « ^ 0}. Define a map 3* -> Z2 by m{{*} 4-
n^ *-+ (m,n)- The positive part of Sk gets mapped to P. Relative to the standard
basis {(Q), (^)} of Z2 we have 7* = ("* ^). Hence we have a sequence

with positive cone P at each term. Recall that A\ = C © C
^ 1 }

C and so the
class of 1 in K0(A{) is ^ 1 } G 5 1 C Z1+Wl. Under the map from Sl to Z2 {{{1} is
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We shall compute Ko(C*(&) using the following diagram - where

(•*)

= (i o)' 5t=Vrrl.-.* = ̂ "V"-7Tl.

Since Tk - • • TiSb = ( ^ * J , where /?0 = 0, p\ = l,...,/>*+i = a*+i/>* + p w

and go = 1, ?i = ai,...,tf*+i = a*+i?*+ ?*-i, & = (~1)*+ 1(-£.1 ""/*)• L e t tf* =
SMQ=(-l?(«pk) and » = 5 4 + 1 ( . 1

1 ) = ( - l ) f c ( . ( * ^ i ) ) . Let ft =
Z2 | aw + w > 0}.

Lemma 2.7. For all k, rjk and fa are in Pa, and Pa is generated by {rjk}k-

Proof. Since ^ < a, we have aq2k+(-P2k) > 0; thus riu G Pa. Also since ^
a, we have a(—qu+x) + Pu+i > 0; thus fak+i € Pa. We apply the same argument to
the inequalities £* < ^ ^ < *** < a to conclude that fiu = ( / ^ i ? >) € ft.

n ^2* ?2*+l+?2* ^2t+2 ^ ^ V—(P2*+1+P2*V "

The inclusion of fi2k-\ = ("(S[+S~?) *s Prove(* us^nS *© inequalities a < ^ ^ <
Plk + Plk-l ^ Pik-\
q2k+q7k—\ <l2k-l '

Finally let us show that Pa is generated by {if*}*. Since (*) = (mp2k+i -
nq2k+\)*l2k + (mpik + nq2k)*l2k+\ it suffices to show that whenever (/w,/*) is in Pa
there is large enough k so that mp2k+\ + H#2*+I and m/?2* + nqx are positive. This
can always be done; for if m ̂  0 choose k so that -=jj < ^ < a, and if m < 0
choose it so that a < £S±L < -^ .

?2*+l — " I

Theorem 2.8.

(Ab(C*(*))Kb(C*(«))+,[l]) * (Z + aZ,(Z + aZ)+, 1) .

Proof. By the diagram (**) ATo(̂ 4) ĉ  Z2. Under this mapping the positive cone gets
sent to Ujt Sk(P)< In Lemma 2.7 we have shown that this union is exactly Pa. The
class of 1,(Q) in the upper left-hand corner of (**) gets sent to (j) in Z2. Thus
{K0{A\KQ{A)+,[\})^{Z2^i^). Now map Z2 to R by (m,n) i-> am + n. This
order isomorphism sends (Z2,Pa, (j)) onto ((Z + aZ,(Z + aZ)+, 1).

Remark 2.9. Let us conclude by showing how the Bratteli diagram for A may
be given an order making it an ordered Bratteli diagram in the sense of Herman,
Putnam, and Skau [4, Sect. 2] so that X is homeomorphic to the path space X.
This ordered Bratteli diagram is not simple in that there are two minimal paths
and one maximal path. In this case the Versik transformation is a partial home-
omorphism. Two paths are tail equivalent if and only if a power of the Versik
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m k

m k + i • • • 1

Fig. 4. Construction of the ordered Bratteli diagram for ^ . In the figure m* = a* — 1. In the upper
left we have the original diagram. In the upper right we have reversed the order of the lower row
and changed the a^s to — l's. In the lower left we have added the ordering to the edges. In the
lower right we have marked —a with a dotted line and 0~ and 0 + with dashed lines. Assuming
that k is odd, 0~ is to the right.

transformation takes one of them tothe other and thus ^ is the equivalence rela-
tion arising from this partial homeomorphism. In the next section we shall show
that there is a homeomorphism from X to S^a9 the Cantor set obtained by cutting
the circle along the forward orbit of 0 under rotation by 2na, such that the Versik
transformation is exactly rotation by 2n<x. To simplify the notation let m* = a* — 1
and F = {(^,-)~i \yt € {-1,0, l,...,/w*} and yf+i = 0 whenever y{ = - 1 } . X and
Y are homeomorphic by rewriting all a*'s as —l's. Under our new notation
the vertices of the ** row of our Bratteli diagram are Vk = {—1,0,l,...,/w*}
and the edges between Vk and Vk+\ are Ek = {(Uj) € Vk x Vk+\ |y = 0 whenever
i = - 1 } . We put an order on Ek by saying (i\J) ^ {hj) whenever i"i ^ i2. We
set Vo = {0} and EQ = {(0,/) | / € V\). A path on this diagram is thus a sequence
{(0,ii),(ii,i2X('2,fei.--}» i-e. a point of Y.

Denote by 0~ the path ( -1 ,0 , -1 ,0 , . . . ) , by 0+ the path (0 , -1 ,0 , -1 , . . . ) , and
by —a the path (mi,/W2,/«3,...)- Under the homeomorphism in Sect. 3, these points
get sent to the points 0~, 0+ , and —a in 5^a respectively, hence our notation. In
path notation —a = {(0,/wi),(/wi,m2),(/n2,m3),...}. (ni,-,m/+i) is the maximal edge
ending at m/+j. So —a is maximal and must be the only maximal path. In path
notation 0" = {(0, - 1 ) , ( - 1 , 0 ) , (0, - 1 ) , . . . } . ( - 1 , 0 ) is the minimal edge ending at 0
because —1 is the minimal index, and (0 , -1 ) is the minimal edge ending at —1
because there is no edge (—1,-1). Thus 0~ is a minimal path and by the same
argument 0+ is another minimal path.

If p = {(0,I"I),(I'I,i*2),.-•} is a minimal path then i* is 0 or —1. To be minimal
then we must have - 1 whenever possible, i.e. every other entry. Hence 0~ and 0+

are the only minimal paths.
Let us recall the Versik transformation. Suppose y € Y and >># — a. Let k be

the first k such that (yuyi9...,yk) = (mum29m3,...9mk) and yk+i <mk+\. Then
' where y\ = yt for i > k + 1, y'M = 1 + yk+u and

f ( - 1 , 0 , - 1 , . . . , - 1 , 0 , - 1 ) if* is odd and yk+l = - 1

(0 , -1 ,0 , . . . ,0 , -1 ,0) if A: is odd and yk+\± - 1

(—1,0,...,—1,0) if* is even and yk+\ 4= — 1

k ( 0 , -1 , . . . , 0 , -1 ) if* is even and yk+\ — —1 ,
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i.e. y'k = — 1 if yk+l — 0 and y'k = 0 otherwise, and we then extend backwards to y[
by an alternating sequence of O's and — l's.

3. The Space X%

Suppose a is an irrational number between 0 and 1. Let a = [0;a\9a2,a^...] be
the continued fraction expansion of a and let /»,- = ax• — 1. For a real number JC, [x]
denotes the unique integer such that [JC] ^ x < [JC] + 1. Note that [— JC] = — (1 + [JC]).
Let {JC} = JC - [JC]. Let

ao = 1
<xi = a

Let

tfo = 1

= ^«-i +an+iqn ,

be the usual denominators of the convergents in the continued fraction expansion
of a. Note that modulo 1 al+i = (—ly^a.

Let us construct the space ^ a . S^a is obtained by disconnecting the circle at the
points of Na. S^a is an inverse limit 5b <- S\ «- S2 < <- 5^a. 50 = Sl S\ = 51

cut at the point 0a, i.e. as a topological space Si = [0,1] except we relabel the
end points as 0+ and 0~ respectively. 52 is obtained by cutting S\ at the point a,
i.e. 52 = [0+ ,a~] U [a+ ,0~]. In general S^i is obtained from Sn by cutting Sn at
the point na. As an alternative description Sn is the maximal ideal space of the
C*-algebra obtained by adjoining the projections X[0,««] to C(Sl).

Let n : 5^a —• 51 be the canonical map, i.e. the map which sends m^ to ma
and leaves the other points alone. We shall also need the larger space 5 ^ , which
is constructed in the same way as S^a except that we cut along all the points of
the orbit of a.

Given JC £ R and y e S^a we define

- if y = n(y)~ '

_ J n(xy)+ if y = n{yY and JC>0 or y = n(y)~ and JC < 0

\ 7r(jcy)~ if y — n(y)~ ^ d JC>0 or ^ = n{yV~ and JC>0

We shall also write - w a + to mean (-ma)+; on the other hand -( /na+) = -mar.
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Recall that Xa = {(x*)£i |*i € {0, l , . . . ,a ,} and if xt = a{ then xM = 0}. We
shall define a map q>: S^a —> Xa as follows. To do this we first extend the floor
map to R cut along Z : [/i+] = n, [n~] = n — 1.

Given j8 E S^a let, ft = 0 and xx = [ft/ai], then

— ft Xl < 01
ao - ft xi = ai

and JC2 = [ft/a2]« Supposing ft,...,ft and xi,...,x,,_i to be already defined we let
and

/Wi =

Note that if xn = an then anan S Pn < a«-i = anan + aw+i so ft+i = aw_i -
pn < an+i. Hence xw+i = 0. Thus (x,) = q>(P) G Xa.

Examples 3.1.

(i) Let ) S = 1 — a = ao — ai. Then xi = a\ — 1 and so ft = ai<xi — ft = ai —
a2. Suppose ft = â —I — a*« Then x* = [ft /a*] = [##—i/a*] — 1 = €ijt — 1, and ft+i =
(1 + xk)oik - fa = akak - (ak-i -aLk) = <x.k- {<x.k-x - ak0Lk) = 0Lk- a*+i. Hence by
induction xk = ak — 1 for all k.

(ii) Let P = 0+. Then xi = 0 , ft = af, x2 = [ai/a2] = a2, and ft = 0+. If
Pik—\ — 0"1" then x2k—i = 0, ft** = â —i — p2k—\ = ô —̂1> *2* = ta2it—1/̂ 2*] = 2̂it»
and ft*+i = a^-i — ft* = 0+ . Thus (XI,JC2,X3,X4,...) = (0,a2,0,a4,...).

(iii) Let j8 = 0~ = aj". Then xx =au Pi = ao - ft = 0+, JC2 = 0, and ft = o£\
Suppose Pik—\ = ^2^_2. Then x^—i = a2k—\9 p2k = â —2 — Pik—x z=z 0+ , x^ = 0,
and ftjt+i = oĉ t — ft* = â t*

5^a has the inductive limit topology and Xa has the product topology; thus both
are Cantor sets. We shall show that <p is a homeomorphism such that

(i) <p(ma+) is tail equivalent to (0,a2,0,a4,...),
(ii) q>{mor) is tail equivalent to (a\90,^3,0,...),

(iii) <p(—not) is tail equivalent to (a\ — l,a2 — 1,03 — 1,...).

To prove this we shall adopt (with a small modification) the notation of Sinai
[9, Lecture 9]. If x, y £ 5^a, [JC, y] means the oriented interval which begins at x
and ends at y where 5^a has the usual counter-clockwise orientation.
Let

fc,a\0-] nodd

)+,qna~] n even'

_ f [(1 — 1 + #/i)a+,(z — l)a~] n odd
1 ~ l [ ( / ~ l ) a + , ( / - l + ^ ) a - ] *even*

These are intervals in 5^a. If we apply n to these intervals we obtain the closure
of the intervals in Sl used by Sinai. The same arguments apply to S^a and thus:
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Theorem 3.2 (Sinai [9, Lecture 9, Theorem 1]).

(i) For each n,

ss> f An— 1 An— 1 xn An \

0> = {A A A A J
is a partition of S^ into disjoint open and closed sets.

(ii) For each n and 1 !§ i ^ #„,

«—1 — / i w | I yf1 I I . . . I I A n I I /jw

sets in this partition are disjoint.
Let us show that the sequence (JC,-) constructed above can be obtained from the

partitions {9>H}%LV

Theorem 3.3. For P e Sj^, xn and fin+\ can be computed using the partition

sm r An—2 An—2 An—I An—I 1
^ i _ ! = { ^ j , . . . 9 A q n _ l , A l , . . . , A q n 2 }

to decompose S^ as follows.

(i)Ifp€ An~x = [s+,r] for 1 ^ i ^ ^_2 r/ze/z xn = 0 awJ

( ft — s n even
It — p n odd

(ii) //* )8 € ^ r 2 > r ! ^ ' ^ <ln-\ then write {by Theorem 3.2) A1}'2 =

(a) Ifpe Ai+l_2+jqn_x = [s+,t~l then xn =j and

ft — s n even.
t-f} nodd *

(b) Ifp€An = [s+,r] then xn = an and

( P-s n even
Pn+\ = \ . Q , , .

[t - P n odd
Proof For n = 1 we use 9^ = {A\l}. This excludes case (i). So we write (since
<7-i=0)

If ^ € ^ 0 = [7a+,O + l)a-] then j<x+Z p ^ (j + l)or so y ^ [ /̂a] <j+ 1.
Hence xi =y, and fc = (1 +y)a - p = t - p. If 0 € A\ = [aia+,0"] = [a,a+, 1"],
a\a.+ ^P^l~ and so ai ^ [p/<x], thus x\=a\ and p2 = 1 - P = t - p .

Now suppose the theorem holds for n = k. Let us prove it for n = k + l.
To compute Xk+\ we use the partition £ \ = {zlf"' , . . . ,4*"1 ,^*, . . . ,^, t_,} .

(i) Suppose PEA* for some 1 ̂ i ^ ^ - i - Then

C 4-2 = 4 u 4+->_2 u • • • u 4 4
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So by the induction hypothesis ** = ak, hence xk+\ = 0 as required. To prove the
claim about /?*+2 there are two cases to consider: k even or k odd.

Let us suppose k is even. Then A\ = [(i — l)a+ ,(i —'1 + #*)a~] ^ d At+i =
P-(i- l)a. Then

- ft+i = (-l)^a - fi

as required.
If it is odd then A\ = [(/ - 1 + ft)a+,(i - l)a~] and pk+x = (/ - l)a - /!. Then

as required.
(ii) Suppose jSe^f"1 for some 1 ̂ 1

(a) Suppose P^^Uqk-i+jqk ^or ̂  =^ = m*+i» aSa^n * e r c a r e t w o c a s e s depend-
on the parity of k. First suppose k is even.

(1 — l)a~] and ft+i = / ? - ( / - ! + 9^-1 )«• Since

q j q

ing on the parity of k. First suppose k is even. Then Ak~x = [(/ — 1

we have

i.e.
+ -i +(1

hence /feJ^_1+Jft+lf t as required and

&+2 = (1 +**+i)«*+i - Pk+\

= (-1/(1

as required. Suppose £ is odd. Then A*~l =[(i — l)(X+,(i — I+qk-\)<x~] and
pk+i = (1 - 1 + #*_! )a - jS. Since

we have
-^+i9ita+ ^ ft+i ^ -(1

thus

-(1 - 1 + # - i +*t+ift)a+ S-P^-(i- 1 + f t - i +(1

hence

- ( / - 1 + f t - i +(1 +

i.e.
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as required, and

ftt+2 = (1 +**+i)a*+i ~ At+i

= P - (i - 1 + qk-x + (1 + xM )qk)oi = P-s,

as required.
(b) Suppose /?ejf+1 1 ^ / ^ f t . Again we consider the two cases; k even

and k odd. Suppose k is even. Then jf"1 = [(i — 1 + ft_i)a+,(i' — l)a~] and
fc+i = j8 - (i - 1 + ft-,)«. As J*+1 = [(i - 1 + ft+, )<x+, (i - 1 )a~] we have (i -
1 + qk+x )a+ ^ j8 g (i - l )o r , i.e. (i - 1 + qk-\ + a*+ift)a+ ^ ft hence

*-i )a =

Thus ak+\ ^ [jSjt+i/ajt-hi] = Jfjt+i. So JCjt-»-i = a*+i as required. Also

)8*+2 = a* ~ /fc+i = - f t - i « - j8 + (/ - 1 + ft-i )a

as required.
Finally, let us consider the case of k odd. As before A\~x = [(i - l)ar,(z — 1 +

ft_! )a+] , fc+1 = (i - 1 + ft-j )a - ft As 4 + 1 = [(i - 1 )a+,(i - 1 + ft+! )a"] we
have (i - l )a + g ]5 ̂  (i - 1 + ft+Oa" =_(/ - 1 + ft-, + aMqk)ar. So (/ - 1 +
ft_i)a - pk+\ ^ (/ - 1 + ft_i -h a;t+ift)a~, i.e. fl*+iajf+1 = - ^ + i f t a + < /fc+i, so

as required. Also

Pk+2 =<*k- Pk+\ = qk-\<*> - (i - 1 + ft-i) + P

as required.

Definition 3.4. In the formula for ft,+i given above, ft,+i is the distance of P
from the left (n even) or right (n odd) of an interval in the partition Pn. Call this
element of &n the /1th interval of ft

Lemma 3.5.

(i) ^n+i is a refinement of 0>n.
(ii) If a ^m< qn-\ + qn then moT and moi+ are in different partition elements

(iii) For each n let Pne0>n be the n^ interval of p. Then {P} = (X!L\pn-

Proof (i) This follows from Theorem 3.2(ii).
(ii) If 0 ^ m < qn-\ + qn and n is odd then

either An
m+X = [j+, mor] if m < qn-X ,

or ^nm+\-qH_x = [s+,mot-] if ft_, ^ m < ft-, + ^w ,

and

either A^\ = [/wa+, t~] if m < qn ,

or 41 . i « = [ma+,f~l if m ;
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So we have three cases:

(a) If m < qn-\, then moT G An
m+X and /wa+ G^+i*

(b) If qn-\ ^m<qn, then m<x~ eA^\ and moi+ € J^~ \ .

(c) If #„ ^ m < r̂w_i + qn, then ma" € A^\_qni and ma+ G An
m+X_qn.

By Theorem 3.2(i), in all three cases, these intervals are disjoint.
If n is even then

either A^\ = [s+
9moi~] if m < qn ,

or An
m+X_qn = [s+9moL~] if qn^m<qqn-X + qn ;

and

either An
m+X = [moL+, t~] if m < qn-x ,

or ^i+i-a.-i = N ^ r ] if ^ _ ! ^ w < ^n_! + qn .

We can apply the same analysis to conclude that moc+ and moT are separated in 0>n.
(iii) By construction ft € f d ^ / i - A l s o t h e diameter of n(Pn) - • 0. Thus

fXLi») = M 0 ) } . If i8 $ Na then )S = n(p) and we are done. If jSeNoc then
by part (ii) of this lemma ma+ and ma" eventually lie in different intervals so we
cannot have ma+ and moT in f l ^ i ^ f ^ {}

Theorem 3.6. The map (p:SkOL-+Xa given by q>(P) = (xi,JC2,...) is a homeo-
morphism.

Proof, Since S^ and Xa are both compact metric spaces we only have to show
that (p is continuous, one-to-one, and onto.

Suppose P€&n9 and jSeP. Then q>(P) = {(yO\ytr = <p(j?), 1 ^ / ^ n } . So <p
takes basic open sets to basic open sets. So <p is continuous. If <p(fi\) =
then for each n, f}\ and fc have the same /2th interval Prt. So i8i,j82 € n
By Lemma 3.5 fix = fcl hence (p is one-to-one. Specifying a sequence {
specifies a path Pn € ^ n on the partition tree which must have non-empty intersection
by the compactness of S^a. Thus q> is onto.

We want to consider next the connection between q>(P) and (p(P + a). As before
let peS^ and (p(p) = (JCI,JC2,...). Recall that /w, = a{-- 1.

Lemma 3.7.

(i) PeAk~l if and only if xx = mu...,xk = mk,
(ii) jSe J f " ! z/aAit/ (?/i/y / /xi = <ii, x2 = 0,...,x2it-i = a^-i, JC2* = 0,

(iii) PeAf if and only if x\ = 0 , x2 = fl2, ^3 = 0,...,*2* = «2*, ^2*+i = 0.

Proof (i) We shall prove this by induction on k. It is clear for k = 1. Suppose
it is true for l^k^n and prove it for k = n+l. This means we must
show that PeAqn+l if and only if x\ = m\9...,xn+\ — mn+\. By the induction hy-
pothesis we have x\ = /WI,...,JCW = mn if and only if PeA^~l. So we only have to
show that if /? e An

q~
l then, xn+\ = /wn+i if and only if /? G JJn. Now to compute JCW+I

we use the partition &n = {A"~l,...9Aq~
l
9A",...,An

qn_1}. We are already assuming
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Fig. 5. The decomposition of S^ct is shown along the horizontal axis and the first five terms of

Xa are shown on the vertical axis. In this example a = \~ = [0;3,1,3,1, . . . ] . The expansion
of —a is shown by the dashed line.

that P^An \ so by Theorem 3.3 we decompose An l as

U U
n+l

N o w xn+x = mn+\ i f and only i f p e An
qn+qnX+mn+iqn = An

q^x9 as required.

(ii) We prove this by induction on k. For k = 1 we must show that /?£ A\
if and only if JCI = a\ and X2 = 0. This is straightforward. Suppose that we
have proved the claim for 1 %. k ^ n, and we shall prove it for k — n + 1. So
by the induction hypothesis P€Af*~l if and only if JCI = a\, X2 = 0,...,X2n_i =
#2/1-1, and x2n = 0. So we only have to show that for PeA2n~l, PeA]n+l if
and only if X2n+\ = «2n+i (and hence xin+2 = 0). To compute X2n+\ we use the
partition ^2« = {Af1 ~\...,A%^\Aft

9...,A%ii_l}. Since p € A^~x we decompose

A2n~l as

By Theorem 3.3, PeA*n+l if and only if X2n+\ = 02n+i as required.
(iii) We shall again prove this by induction. For k = 0 we must show that

peA® = [0+,<x~] if and only if x\ = 0; but this is clear from the definitions.
Suppose we have proved the claim for 1 ̂  k ^ n and we shall prove it for

k = n 4-1. Since we have that PGAf1 if and only if x\ = 0, X2 = <Z2,...,JC2n =

02»,*2/i+i = 0 , we only have to show that for PeAf1, peAf1*2 if and only if
x2n+2 = 02/1+2- To compute 2̂n+2 we use the partition &2n+\ = ? ^

1 A*£x}. We are assuming that

j . . . I | A2n+\ ,
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By Theorem 3.3, fie A\n+2 if and only if Jt2m+2 = 02*+2, as required.

Theorem 3.8. Let - a * PeS^, <p(P) = (xux2,...) and <?(£ + «) = (yuy2,...). If
but xk+i*mk then

(0, a2,0, 04,..., 0, fljt-2,0, ak, 0) xk+\ = ak+x and k even

(ax, 0,03,0,..., 0, ak-2,0, 0*, 0) x*+i = ak+x and k odd

(ax,0,03,0,...,0,ak-U0,1+ **+i) ^ + i < mk+\ and k even

% (0,a2,0,a4, • • •,0,0*-i,0,1 + xk+x) xk+x < mk+x k and odd

and yt = JC, for i > k + 1.

Proof Suppose JC*+I = ak+x. By Lemma 3.7,

PeAk
q~

l = Ak
qk+qk_x u 4*+^_i+^ u • • • u ^ — — — u -

By Theorem 3.3, PeAk
q+

l. Thus

and so by Theorem 3.3 again yk+x = 0. By Lemma 3.7

' J(0,a2,0,a4 , . . . ,0,ai0 A: even
(yuy2-'-n)-\(axAasA.-Aak) k odd

If JJ+1 = [5+,r-] then A\X\k = [(^ + a)+,(/ + a)"]. As

J p — s k+\ even

^ + 2 ~ \ t - p k + 1 odd

and
-fa — (s + a) £ + 1 even

we see that /?*+2 is unchanged and hence >>, = JC, for I > t + 1.
Now suppose x;t+i <m*+i. By Lemma 3.7,

+* u • • • u / l* t + f t 1 + m t + l ? t u J*

Since jtn+i < mi+u p G ̂ * i_1+(I+%+l)9 t. Thus

C J*-1 = J*+gt_, U

Hence j>*+i = 1 + % i and since P 4- aE A\ l, we have by Lemma 3.7 that

ii,0,03,0,...,0jt-i,O) k even
), 02,0,04,..., 0jt—i, 0) k odd
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Writing <_ I + ( 1 + J f t + l ) f t as [s+9r] we have Ak
+qkxHl+Xk+i)qk = [(s 4- «)+,(* + a ) " ] .

As

1 — s k 4-1 even

- p k 4-1 odd

and
f (p 4- a) - (s 4- a) k 4-1 even

[ (f -I- a) — (p 4- a) A: 4-1 odd

we see that j?*+2 = (/} 4- a)jt+2 and hence JC, = JK/ for I > 1 4 - 1 .

Corollary 3.9. Suppose P^yeS^ and q>(p) = {*,} a/irf
in 3Pk be the &* intervals of jS and y respectively.

(i) If there is k such that xt = yt for i>k then there is w G Z such that ft — y 4-
na and \n\ <qk + qk-X. Moreover if \P\ ̂  \Q\ then %(x9y,k) = {(cp(fi\<p(v))\iie
P and v = (i + not] {see the third paragraph of Sect. 2 for the definition of <%).

(ii) If n(p) ^ Za and there is neZ such that p = y + ncn, then there is k such
that Xf = yt for i ^ k.

(iii) If n(P) = met and n(y) = not and either m,n^.O and P and y have the
same sign, or m9n<0 then there is k such that xt = yt for i ^ k.

Proof, (i) Since JC, = >>, for / > k, /?*+i = y*+i; so the distance of P and y from the
corresponding endpoints (left for k even, right for k odd) of P and Q will be equal.

Suppose P and Q are of the same length. If P = Ak~x and Q = Ak~x
y then

\^p,q^qk and so j8 = y 4- (/> - #)fl with |w| l£9* <9* H-9*-i. If P = ^ and
Q = A* then the same argument applies except we then have \n\ ̂  9*_i.

Suppose P and g are of different lengths. Say P = Ak~x and Q — Ak
q with

1 ^ /? ̂  9^ and 1 ̂  9 ^ 9^-1. We know that pk+{ = yk+x ^ a^+i; so ̂ + i = 0. Now
decomposing

k~l — A k [ J A k IJ • • • IJ A k U Ak+l

we see that PeAk
p+qkl. Thus for n = q — (p + qk_\) we have P = y-\-noc and

I"I < 9* + 9*-i as /? 4- qk-\ ^ 9* 4- 9*-i and 9 ^ 1.
For the second assertion suppose l^l ^ |g | . Let a — <p(n) and b = <p(v). Then

)H £P if and only if a,- = JC/ for 1 ̂  / ' ^ A: and veQ if and only if 6, = yt for 1 ̂  i' ^
k. If (a, b) e <%(x, y9k) then \i GP and </)(//)/ = <p(v), for 1 > k. Hence
v = /i-f«a. Conversely if /iGP and v = \i4-na then vG0, so a,- = x, and 6, =
7, for 1^/^A:. Also if p = Ak and g = 4*"1 , then ? + n a C Q so a, = bt

for 1 > A:.
(ii) and (iii) Theorem 3.8 showed that as long as - a ^{y, y 4- a, 7 4- 2a, . . . , y 4-

(w — l)a} then for 1 ̂  / ^ /i, <p(y 4- (1 — l)a) and q>(y 4- /a) agree from some point
onwards.

4. The Relation Ra

Suppose again that 0 < a < 1 is irrational with continued fraction expansion
a = [0;ai,tf2,tf3,-]- Let X* be the Cantor set constructed in Sect. 2. RaQX^x
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Xa will be the equivalence relation on Xa generated by tail equivalence and
(01,0,03,0,...) ~ (0,02,0,^4,.,.)~(a\ - l,a2 - 1,03 - 1,...). & this section we
shall construct a locally Hausdorff topology on Ra and a surjective continuous map
<P:Ra-+ S\ x Z such that

(i) the diagram

l x Z

p\ p\

n

commutes where p\ is the projection onto the first factor; and
(ii) $* : C(Sl x Z) -» C(Ra) is a linear bijection.
Recall that S^ is Sl cut along the forward orbit of a. Rotating by a is a partial

homeomorphism on 5^a , defined on ̂ a \ { ~ a } - Let us denote this partial homeo-
morphism by 0. In Theorem 3.8 we showed that there is a partial homeomorphism
on X& and that the bijection q>: 5^a —»Xa intertwines the actions. Therefore we
shall denote by © as well, the partial homeomorphism on Xa : q> o 0 o <p~l.

We shall find it convenient to identify, via <p, points of S^a with their corre-
sponding sequences in Xa. In particular

0 + = (0,02,0,04,...)

0" =(01,0,03,0,...)

—a = (mi,/W2,m3,/W4,...)

recalling that in Sect. 2, m, was defined to be at — 1 (and the computations in
Example 2.1).

Definition 4.1.

(i) For x,yeXa, x and y are tail equivalent, x ~t y, if there is k such that

*i = yt for l > k-
(ii) Ra is the smallest equivalence relation on Xa containing {(x, y) \ x ~t y} U

{(0 + ,0- ) , (0 + , -a )} .

Remark 4.2. Explicitly (x,y)€Ra if either, x and y are tail equivalent, or each of
x and y are tail equivalent to one of {0+,0~, —a}.

The topology on Ra will be constructed from a basis made from three families
of sets. The first family is the one constructed in Sect. 2 giving the topology on
&a : {<%(x9y,k)\(x9y) £ ^ a } . These form a neighbourhood base for the points of
^ a . For points in / ? a \ ^ a we will introduce two new families; basic neighbourhoods
of points of the form (ma±,n(xT) with m,n ^ 0 will be denoted f (wa^na^ifc), and
basic neighbourhoods of points of the form (ma±, —wa) or (-«a,ma± ) for m ̂  0
and n>0 will be denoted by ^ ' (ma ± , - «a ,* ) or i(^(—/ia,wa±,it) as the case
demands. To describe 'V we need to construct some open sets in ̂ a . tfl°(xyy,k)
is an open subset of %{x^y^k) and should be thought of as being constructed by
removing both endpoints of the interval - if %(x9 y,k) were equal to [0,6], then
<%°(x, y9k) would be (0,6).
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Definition 4.3. Suppose (x,^)G^a and let /? and y in 5^a be the pre-images of
x and y respectively\ with ft = y + no. for \n\ < qk + qt-\ (as in Corollary 3.9).
Let P\ = [s*,t^~] and P2 = [sj,^"] be the intervals in &k containing ft and y
respectively.

If |Pi|^|ft| let «°(x,^*) = {(9(|i),«Kv))|Ai€(5+,/r) and /x = v + *a}. If
Iftl ^ |fl| let «°(x^,t) = {(<p(ji)Mv))\ v€(4,tf) and |i =

Definition 4.4. Suppose x = /wo^, 3; = wâ 1 /or /n,« ̂  0 a«rf A: is large enough that
k. Let r(x,y,k)

Before constructing ^ we shall make some preparations.

Lemma 4.5.

(i) 0((Ak
qk+i U 4+1)\{-«}) = (4 + 1 U 4)\{0+,0"}.

(ii)

U • • • U 4 + f t - ^ , * U 4 + 1 U 4

(iii) IfO^n<qt and X^nKq^ then

4r4.-D n {-«,-2a,...,-(m + n - 1)} = {-ma} .

Proof, (i) Suppose k is even

(Ak
qM U 4 + 1 ) \{-a} = [(qk+l - 1 )a+, - a ) U ( -a , (q M +qk-\)oc~]

Thus

0 ( 4 t + i \ { - a } U 4+ 1 ) = [qk+l<x+,0-) U (O+^oT] = 4 + 1 \ {0"} U J*\{0+}

The proof is the same for k odd.
(ii)

4'1\{-«} = <+*- .u W . u • • •u 4L.ft-*.,u <+A(-a> u <+1.
So by (i)

U • • • U ̂ U 1 + m t + 1 , t U (Jf+1 U

(iii) As i iKft , -rnaGJ^".1^.!) and J^I1^-!) is disjoint from {-a,-2a,...,
—(m —l)a}. Thus we are reduced to showing that A^k_^m_ly is disjoint from
{-(m + l)a,. . . ,-(m + « - l)a}. If -ya G ̂ 1 1

( m _ 1 ) for some m + l ^ y ^ / n +
n — 1 then —(y — I)a6id*^w_1j. So we may assume that m = 1. Thus we must
show that Ak

q~
l is disjoint from {—2a,...,— /ia} which is true as long as n<qk.
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Fig. 6. From left to right: the neighbourhoods TT, <#, and iV.

Definition 4.6. Given positive integers m and n9 choose k such that m9n<q^ +
qk.u let TT(-/Wa^a±,A:) = {(a,6)|a€4-_1

(m_1)\{-ma} and b = 0m+»(a)} U
{(—ma.noi^)}. By Lemma 4.7(iii) 0m+n is defined on Ak~\m_xA{—ma} and so
the definition makes sense. We let /W(na±

9—ma9k) = ii\—ma9na±
9k)~l

9 where
(x,y)~l =(y,x) for any (x9y)eR«. We let iVo\-ma9na±

9k) be the subset of
iV(-ma9na±

9k) obtained by deleting the endpoints of Ak
q~^m_X) in the construe-

tion above.

Lemma 4.7. If' %(x9y9k) meets HT{x\y\k') then

(i) W(x'9y',k>) C %(x,y,k) ifk^k'9 or
(ii) %{x9y9k) C iT(x'9y'9k') ifk'^k andx' is not in the k* set of x9 or
(iii) °U(x9y9k)n IT(JC' , / ,£ ' ) = iT(x'9y'9k) ifk'^k andx1 is in the k^ set ofx.

Proof By taking inverses, if necessary, we may assume that x' = —ma. Let P
and Q be respectively the k* sets of x and y with |P| ^ \Q\. Suppose %(x9y9k) =
{(u9v)\ueP9 v = 0n(u)}. ThenP and 4i/-<m-o m e e t ' md®(x>y>k)n W(x'9y'9k

r)
= {(u9v)\ueP n ^ . ^ . D X i - m a } and v = 0\u)}. So if k ^kf then A*^^
C P and iT(x'9y'9k') C %{x9y9k). If k' ^k andx1 §P then P C Ak

q[t_im_l}\{-moL}
and thus ^(x,^,*) C iV{x\y'9k'). \fk' ^ k andx'eP then <%(x9y9k) n TTOC',/,*') =
{(w,t?)|«GP\{-ma} and t? = ©"(«)} = ^ (JC' , / ,* ) . The case when |g| ^ \P\ is
handled similarly.

Theorem 4.8. The sets {% ir
9 iT} form a basis for a locally Hausdorff topology

on Ra.

Proof The sets {<%} are a basis of £?a. By construction { f , i T } covers J?«\*« so
we just have to show that the intersection of two subsets of {% ir

9 'W} is an open
subset of 0t<t or is a neighbourhood of type if or HTm A if neighbourhood is the
union of two ^°'s and a point not in ^ a . Thus any intersection of the form WHi^
is an open subset of ^ a .

By Lemma 4.7 the intersection of a W and a ^f-type neighbourhood must be
a r̂ neighbourhood or a *T neighbourhood. Also if y{x9y9k) meets ^(JC7,/,£')>
then the intersection must be a union of $Mype neighbourhoods since no point
(—na.moL )̂ or (ma±

9—noi) is in any ^"-neighbourhood nor is any (ma±,/ia:F) in
any ^-neighbourhood. The intersection of two if neighbourhoods (or iV neigh-
bourhoods) is either a ^ neighbourhood (respectively a iV neighbourhood) or an
open set in ^ a , i.e. a ^1° neighbourhood or the union of two <%° neighbourhoods.
Thus the family {% ir

9 W} forms a basis for a topology of Ra.



330 J.A. Mingo

0.2

2

:
3
2

0 Y'

i 4
! ; 2

i 1 r 1

0

1 r j

0
• : s:

\ : 2

0

4 0
: 3

2
0 f

0
' "3

2
1 1

0

• : •

• . ; . .

| ; 2

0

4 0

i ••• i '••••: : : •; ' r •: ;-

| ; :
7 - •; • • ! ; -

izzz3:izzi..iz.aixii
• : M ; •• i '• i : •

. - ; ':••< : : -I : ;-

•••.iz:z:iz"z....:v^:.z..a:zzi

j£_ ' : ..j :. ,.: : L
: . i : : '• '• ' • ' • • •

\ '• • '• ' '••'•. '•• M i

0 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4 3 2 1 0

0

; •...; \ \ :...:- ; L.....U I j :..

; : ;-! \ ; : "i l- '• :"l " :" " :"

| ; 7 • : ; : ; ;

: : ' . • : . M ; :

! " [ "T'""\ rryjr"\"rr \ ; •;

•--•; ; ; i y • -~':: :

: ' • % • : ''• ''

0 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4 3 2 1 i 0

1

, i i-

ZIIEI

0 1 2 3

0

2

29 "

20

11

13

6

26

28

21

3

}4

25

7

18

0.4

Fig. 7. The diagram shows some sub-basic neighbourhoods of R^ C.Xa xX^. In this example a =
[0;2,4,3,...]. From left to right are shown #(9<x+,7a+,3), iT(5a+, 14a~,2), and 7T(-a ,a+ , 1).

Each % neighbourhood is Hausdorff, thus each point of 0t^ has a Hausdorff
neighbourhood. Hence each 'V neighbourhood is Hausdorff, being the union of
a point and two °U° neighbourhoods. lf(x9y) G iV(—moi^no^ Jc) and (x,y) + (—/na,
noi^), then we may choose kr > k large enough that x and -met. lie in different ele-
ments of ^ . Thus <%(x9y,k') and TT(-jiia,Jia:fc,Jt/) will be disjoint. Since any other
two points of iV(—moi^noL^,k) lie in ^ a , they can be separated. So we can con-
clude that iT(—m^no^^k) is also Hausdorff. Hence the topology just constructed
is locally Hausdorff.

Definition 4.9. Define & :Ra^> Sl xZ as follows:
Ifx~ty9 in which case there is n € Z such that y — @n{x\ then let 4>(JC,J>) =

{n(x\n\

and
If m9n ^ 0, let #(/na+,>ia~) = <P(mot~,na+) = (ma,n - m).
If m > 0 and n ^ 0, let 4>(—ma,na+) = $(—ma,na~) = (-ma,

/ia+, —ma) = ^(wa~, —ma) = (wa, —(m H- H)).
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Proposition 4.10. If<P(x9y) 4= $(xt
9y

f) then (x9y) and (x'9y') can be separated by
disjoint open sets.

If $(x9y) = <P(xf
9y') but (x9y) 4= (x'9y') then there is an open set containing

{x9y) but not ( x ' y ) ; however (x9y) and (x^y) cannot be separated by disjoint
open sets.

Proof Suppose $(x9y) = (n(x)9n) and <P(x',y') = {n(xr\nf). If n 4= n1 then every
basic neighbourhood of (x9 y) will be disjoint from every basic neighbourhood of
(jc 'y). If n(x) 4= n(x') we may choose k large enough so that the basic neigh-
bourhoods of (x9y) and (x'9y') are defined and the elements of 9k containing
{n(x)+

9 n(x)~} are disjoint from the elements of 9jt containing
{n(x')+ and n(xf)~}. The basic neighbourhoods of (x9y) and (x'9y

f) will be disjoint.
Suppose &(x9y) = ^{xf

9y
f). There are two cases. First (x9y\ ( x ' y ) G {(/wa+,

( / i - m ) a + ) , ( m a + , ( « - m ) a " ) , ( m a ~ , ( n - m ) a + ) , (mor9{n-m)or)}. The basic
^-neighbourhoods contain exactly one of the two points, (—,—),(+,+)• So there
are basic neighbourhoods which contain one of the four points but none of the other
three. Also the basic ^-neighbourhoods of each of these points (for any k) all meet
the basic °U neighbourhoods, so these points cannot be separated by disjoint open
sets.

The second case is that (x9y)9 {x'9y
r) G {(—mo,(m + «)a+) , (-ma, (m + n)<x~)}

(after taking inverses if necessary). The basic ^-neighbourhoods contain only one
of these two points but any two of them meet. Thus one can find an open set con-
taining a given point but not the other, but one cannot separate these points with
disjoint open sets.

Proposition 4.11. <P : Ra -» Sl x Z is continuous.

Proof Let T C S1 be open and (x9y) G Q~\T x {«}).
First suppose n(x) $Z<x. Then there is k and P G 9k such that n(P) C T. Sup-

pose y€Qe9k. Then W*U(x,y9k)) is either n(P) x {n} or n{O'n{Q)) x {n}
whichever is smaller. Hence <$t(x9y9k) C 4>~l(T x {n}).

Secondly suppose n(x)9n(y) G Na. Then choose k such that there are P9P
f G

9k with n(P)9n(P') C T and TT(X)+ G P and n(x)~ G P ' . Then <%(n{x)+9n{y)+
9k\

%(n(a)-,n(y)~9k) C<P~l(T x {«}). Hence TT(X,JK,A:) C &~l(T x {n}).
Thirdly suppose x = —ma for some m > 0. Then choose * such that there is

P G ̂ t with x G P and 7t(P) C 7\ Then W(x9y9k) C ^ - ^ r x {«}).
Since neighbourhoods of the form T x {/*}, with T open in 5 1 fonn a base for

the topology, the proposition is proved.

Proposition 4.12. If &(x9y) = &(x'9y') then f(x9y) = f&y') for all continuous
functions f : R^ —> C

Proof Let c = f(x9y) and c ; = f{x'9y') and suppose c 4= c;. Then there are neigh-
bourhoods ^r of (x9y) and flf' of (x' y1) such that

l/fe 7) ~ /(«. »)l < 2
C for («>») € *

and

l/(^' / ) - /(«', f )| < ^ ^ for («', t;') € * ' .
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By Proposition 4.10 ^ n <%' is not empty. Suppose (w,i?) G # n <V. Then

This contradiction shows that we must have c = c'.

Theorem 4.13. #* : COS1 x Z ) - > C(Ra) is a linear bijection.

Proof #* is injective since 0 is surjective. Suppose / G C(Ra). By Proposition
4.12 there is / : Sl x Z - • C, such that / = / o #.

Let e > 0 and (TT(X),/J) G 5 1 x Z be given. We shall show that / is continuous
at (TT(X),W). Suppose first that n(x) ^ Z a and choose y such that (x,y) G # a . Choose
A: such that \f(x,y) - / ( * ' , / ) ! < s for ( x ' , / ) G *U°(x,y,k\ Now *(«°(x ,^ i t ) ) is
open and for (t9n) e <P(<%°(x,y9k)\ \f(n(x\n) - f(t,n)\ < s. Thus / is continuous
at (n(x),n).

Now suppose 7C(JC) e Na, choose y such that (x,y) e Ra\3t<x and A: such that
\f(x,y)-/&/)]<* for ( j j / , / ) e ^ ( x , M ) . Again *(f^(x,^*)) is open and
for (*,«)€ ^ ( ^ ( J C , ^ , ^ ) ) , | / ( W ( X ) , I I ) - / ( / , / I ) | <e. Thus / is continuous at
(n{x\n).

Finally suppose n(x) G - N a . Choose y such that (JC,J>) G /?« and A: such that
\f{*,y) ~ f(/9/)\ < e for {x\y') G ir°(x,y9k). Since ^ ( T T ° ( X , ^ * ) ) is open we
have again that / is continuous at (n(x\n).

Remark 4.14. As shown in Proposition 4.10, the topology on Rx is not Hausdorff.
By a compact subset of R^ we mean a set satisfying the Borel-Lebesgue axiom:
every open cover has a finite subcover. These sets are called quasi-compact by
Bourbaki [1, Chapter 1, Sect. 9]. The set {(x,x) \ x G Xa} is an open compact subset
of Ra which is not closed and whose closure is not compact.

Lemma 4.15. For each compact J C Sl x Z, the inverse image 4>~*(J) QRa is
the closure of the compact set 4>~l(J)n &&.

Proof We may suppose that J has no isolated points. Let K = <P~l(J) D ̂ 2a. K is
a compact subset of M^ and thus a compact subset of Ra. Let x G $~~l(J)\K.

Suppose that x (or JC"1) is of the form (ma+,/ia~) for myn ^ 0. Then f ' (ma+ ,
n(x~9k)\{x} C&a and $(-r(m*+,nar9k)) must meet 7 \{^(x)} , as <P(TT(ma+,
noT,k)) is open. Hence y(7wa+,/ia~",£) meets AT. The same argument applies to
the case when JC (or x" 1) is of the form (ma+, - n a ) for m ^ 0 and n > 0, as #
carries iT° neighbourhoods into open subsets of Sl x Z. In either case x G A'".

Theorem 4.16. Suppose f G C(i?a) am/ gf G C(5 ! x Z ) « /Ae unique function such
that f — Q'0. The support of f is the closure of a compact set if and only if the
support of g is compact.

Proof Suppose supp(#) is compact. So supp(gf) C Sl x {—n,...9n} for some n.
Since <P~l(Sl x {-/2, . . . ,w})n^ a is compact, $~l(sapp(g))r\8a is compact.



C*-Algebras Associated With ID Almost Periodic Tilings 333

Now <p-l{y\g(y)*0} C #- 1 ({;H0OO*O}-) = <P~l(supp(g)). Thus supp(/)
= ( # l{y\ 0(>O + O}) C # 1(supp(^)), and thus supp(/) fl ^ a is a closed subset
of the compact set # - 1(supp(0))n^2 a .

Now suppose JC G supp(/)\^2a . We have two cases to consider: x = (ma+,wa")
(or its inverse) for m,n ^ 0, or x = {mo^.—moL) (or its inverse) for m ^ 0 and

In the first case let jc = (ma+,na+). Then /(JC) = /(jc). So if /( j t) * 0 then
/ =1= 0 on some ^l neighbourhood of Jc. Hence x has a if neighbourhood which meets
supp(/) fl ^ a . If / ( JC) = 0 then every V neighbourhood of JC meets supp(/) n ^ a ,
since evfery if neighbourhood of JC contains a point y for which f(y) 4= 0 and such
a point must be in ^ a as a ^ neighbourhood only contains one point not in 0t^ -
x in our case. Thus JC G (supp(/) fl ̂ a ) ~ .

In the second case we proceed similarly. If / (JC) =t= 0 then / + 0 on some
iff neighbourhood of JC. JC will be the only point of such Hf neighbourhoods not
in 0t^ so each Of neighbourhood of JC meets s u p p ( / ) f l ^ a . If f(x) = 0 then
every iV neighbourhood of x meets s u p p ( / ) f l ^ a , since every iV* neighbourhood
of JC contains a point y for which f(y) + 0 and such a point must be in 0t^
as a # neighbourhood only contains one point not in ^ a - JC in our case. Thus
JC G (supp(/) fl ^ a ) ~ - Hence in either case x G (supp(/) fl # « ) " , and thus supp(/)
is the closure of the compact set supp(/) fl Ma.

Now suppose supp(/) = (<P{y | g(y) + 0})~ is compact. Then <P((<P~l{y | gf(jv)
=}= 0})~) = ^(supp(/) ) is compact. Hence {y \ g{y) =1= 0} is a subset of the compact
set #(supp(/)) , and thus supp(#) is compact.

Definition 4.17. Coo(R<x) is the space of continuous functions on R^ whose support
is the closure of a compact set. By Theorem 4.13, Q*(Coo(Sx x Z)) = Coo(i?a), the
continuous functions on Sl x Z with compact support.

5. The C*-Algebra C*(Ra, p)

We construct a Haar system \i on Ra and show that the C*-algebra C*(/?a,/x) is
isomorphic to Aa the irrational rotation C* -algebra for the angle 2nai.

Definition 5.1. For xeXa let Rx
a = {(x9y)\(x,y) G /?«}. Define a measure fix

on R* by setting fix(x9y) = 1 if ^ { m o c * \m ^ 0} and iix(x,y) = 1/2 if y G
{moi^lm ^ 0}. Let \i = {li^xex*- We make Sl x Z ihto a groupoid in the
usual way: (x9m)(y,n) = (jc,/w-hw) provided y = x + m(x (modulo 1), (jc,n)-1 =
(JC-h«a, —«). i>^ vx i e counting measure on (Sl x ZY = {(x9n)\n G Z}. Then
v = {v*}x€5i w a Haar system on Sl x Z.

We shall adopt the notation of Renault [7, Chapter 1, Definition 2.2]: for / G
CooiRa) and x G Xa let

and for gf G ^ ( . S 1 x Z) and y G S1 let
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Lemma 5.2. Given g e Coo(Sl x Z) let f = g o 4>. For x e Xa,

and fi(f) is continuous on Xa. Also JJL is left invariant:

E f((xux2)(yuy2))^(yuy2) = E

Proof, We shall break the proof into two cases.
(i) 7i(jc)$Za. Then ^ = {(x, 0n(x)) \ n e 2 } , 0 :Rx

a -> (51 x Z)*> is bijec-
tion and both /ix and v^^ are counting measures.

(ii) n(x) e TLOL. Then

= E

+ E f(*> -rn(x)fix(x, -ma)
m>0

m>0

Hence / i ( / ) = v(#)on is continuous on Xa.
As for tiie last claim note that nx(x,y) depends only on y. Thus

x\yi,y2)= E

= E /Oci.wV^te,*^ E / ( '

= E /(yi,»)^(yi,>i).

(yuy2)e<1

Definition 5.3. We give Coo(Ra) an involution and product by defining

and
f\ * fi(x9z) = E fi(x>y)f2(y,z)fix(x,y) .

As the algebra of continuous functions on a topological groupoid Coo(Sl x Z) has
the involution and product:

g(y,n)* =

and
G\ *gi(y,n) = X

Since the functions have support the closure of a compact set the sums are always
finite.
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Proposition 5.4. Suppose f\ and fa are in Coo(Ra)9 and g\ and g2 are in Coo(Slx2)
with f\ = g\ o 0 and fi—gi0 #• Then f* = g* o <p and / i * /2 = (g\ * gi) ° <£.
Hence 0* is a *'homomorphism.

Proof. Suppose <P(x9z) = (n(x)9m)9 then <P(z,x) = (n(x) + mot,-m). Thus

g*(<P(x9z)) = g\(n{x)9m) = g\(n(x)

Hence $* is a *-linear map.
To verify that 0* is a homomorphism we consider two cases,
(i) Suppose n(x) $Zot. Then R% = {(JC, 0n(x) |« € Z} , fix is counting measure,

and the restriction of # to R* is one-to-one. Also there is m € Z such that z =
6>m(;c). Thus

nez

= Q\ *

(ii) Suppose 7C(JC) € Za, and <&{x9z) = (7t(x),m). Then

fi*f2(x9z) =

n>0

E - m)

n>0

= Q\* g2(n(x)9m) = gx* g2(#(x9z)) .

Thus 0* is a *-homomorphism.

Definition 5.5. Wie gfwe C^RH) the topology of uniform convergence on the clo-
sures of compact sets, and Coo(Sl x Z) the topology of uniform convergence on
compact sets.

Proposition 5.6. #* : Coo{Ra) —> CQO(SX X Z) is a homeomorphism.

Proof Let /o € C ^ ^ ) and go = #*(/o). A basic neighbourhood of /o is given
by ®(fo,K9s) = { / e C«,(J?«) | |/(JC) - /0(x) | < e for JC € ^ " } , where ^ C Ra is
compact and e > 0. Thus

= {S G QoOS1 x Z) | \g(<P(x)) - go(*{x))\ < e for x e K'}
l - go(y)\ <sfory€



336 J.A. Mingo

This is a basic neighbourhood of go in Coo(Sl x Z).
Conversely, given J C Sl x Z compact and £ > 0, let

^(0o,./,£) = {# € C ^ S 1 x Z) | |0(JO - go(y)\ <sfor yeJ}.

By Proposition 4.15 there is a compact set K C /?a such that <P(K)=J. So

Definition 5.7. Following Renault [7, Definition 1.3] we *fe/me a /wrm || • ||7 on
CUR.) such that \\r\\j = 11/11/ and \\fi*f2\\ ^ II/1II/II/2II/. Let

p E I
x€X. y~x

II/IU/ =

11/11/ =

Remark 5.8. Note that \\fkr = 11/11/,/, so ||/*||7 =

ll/l */2||/,r = SUP E l/l •/zl/A*,.?)

= sup ]|

/. Also

^ sup

= sup E

= sup

^ sup E l/i(*>z)l ( sup E I/2&

Also

Hence

ll/l */2||/./ = II/2* */ril/.r ^ 11/2

, * /2 | | /^ ||/,||/||/2||/.
Ur = II/1IU/II/2II/.I

Definition 5.9. 4̂ ̂ -representation ofCoo(Ra) on a Hilbert space 3tf is a continuous
*-homomorphism from Coo(R<x) to &(3tif) when C^Ra) has the topology of uniform
convergence on the closure of compact sets and 39(34?) has the strong operator
topology. A ^-representation n is bounded if\\n(f)\\ ^ ||/||/./w* oil f in COO(RQL)-

We place a C*-norm on CUR*) by setting \\f\\ — sup{||7r(/)|| \n is a bounded
^-representation of CUR*)}- C*(Rot,V>) is the completion of Coo(Ra) with respect
to this norm.
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Theorem 5.10.

Proof. We have already shown that as topological *-algebras #* is a homeomorphic
•-isomorphism from C^R*) to Coo(Sl x Z). Let us show that <P also preserves the
norm || • ||7. Let / e Coo(Ra) and g = # * ( / ) € C^CS1 x Z). Then

= sup v(|<r(/)|)(7T(jc)) (by Lemma 5.2)
xexa

Thus | |#*(/) | | j = H/ll/. Since the completion of (C^S1 x Z), || • ||) is 4 , , the proof
is complete.
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