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Abstract: For each irrational number, 0 <a <1, we consider the space of one
dimensional almost periodic tilings obtained by the projection method using a line
of slope a. On this space we put the relation generated by translation and the iden-
tification of the “singular pairs.” We represent this as a topological space X, with
an equivalence relation R,. On R, there is a natural locally Hausdorff topology from
which we obtain a topological groupoid with a Haar system. We then construct the
C*-algebra of this groupoid and show that it is the irrational rotation C*-algebra, 4,.

Given a topological space X and an equivalence relation R on X, one can form
the quotient space X/R and give it the quotient topology. It frequently happens
however that the quotient topology has very few open sets. For example let X
be the unit circle, which we shall write as [0,1] with the endpoints identified and
the group law given by addition modulo 1. Fix «, irrational, 0 <& <1, and let
R={(x,y)|x — y € Z + oZ}. Since each equivalence class of R is dense in X, the
only open sets in X/R are §) and X/R.

However the equivalence relation R has the structure of a groupoid and if we
can put a topology on R, (usually not the product topology of X x X'), so that
R becomes a topological groupoid:

(i) R> (x,y) — (»,x) € R is continuous, and
(ii) R? 3 ((x,),(3,2)) = (x,2) € R is continuous,

and we can find a compatible family {y*} of measures (4* is a measure on R* =
{(x,y)|x ~ y}), called a Haar system (see Renault [7, Definition 1.2.2]), one can
construct a C*-algebra, C*(R, 1), by completing C,,(R), the continuous functions on
R with compact support in a suitable norm.

In the example above of the relation R on the unit circle S, suppose (x, y) € R,
so there is n € Z such that (x + ne) — y € Z and let % C S' be a neighbourhood
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of x, then a basic neighbourhood of (x,y) in R is given by {(a,a + na)|a € %}.
On R* = {(x,x + na)|n € Z} we put the counting measure. With this information
one can construct the C*-algebra of this topological groupoid by completing C,o(R)
in a C*-norm; see Renault [7, Definition II.1.12].

In this paper we shall show how this same C*-algebra arises as the “non-
commutative” space of a set of one dimensional almost periodic tilings of R.

For each irrational number a, 0 < a < 1, let T, be the space of tilings obtained
from the projection method using a line of slope a. We shall classify the tilings in 7,
as follows. Given T € T, we choose a tile ¢ in T and construct in an explicit way a
sequence (x;) in X, = {(x;)|x; € {0,1,2,3,...,a;} and x;+; = 0 whenever x; = a;},
where a = [0;a;,a,,a3,...] is the continued fraction expansion of a. The sequence
of X, constructed from (¢, T) depends on the choice of the tile z. So we put on X, the
smallest equivalence relation so that the sequence obtained from (¢, T) is equivalent
to the sequence obtained from (¢, T) for any other tile ¢ € T. By putting a topology
and a Haar system on this relation we construct a C*-algebra and show that it is
the irrational rotation C*-algebra 4,.

A number of authors have considered C*-algebras associated with almost peri-
odic tilings. This paper was motivated by the observation of Connes [3, 11.3] that the
space of Penrose tilings are classified by the space {(x;)|x; € {0,1} and x;4; =0
whenever x; = 1} (=X,_, in our notation) modulo the equivalence relation of

tail equivalence. Connes then shows that the C*-algebra of this equivalence rela-
tion is the simple AF C*-algebra AF 5., with Ko =Z + 3@1 (as an additive
2

subgroup of R) and positive cone (Z + 3552’—‘Z)+. In [5] J. Kellendonk considers
C*-algebras associated with almost periodic tilings, however the algebras constructed
are the C*-crossed products associated with an action of Z on a Cantor set and thus
have Ky = Z. In [1] Anderson and Putnam consider C*-algebras associated with
substitution tilings. While our tilings are also substitution tilings, the substitution
rule will (in general) change at each iteration; thus the tilings considered here are
different from those analysed by Anderson and Putnam.

An interesting feature of our construction is that there is a sub-relation £, C R,.
Ry = {(x, y) € Xy X X, | x is tail equivalent to y}. The topology of R, restricted to
R, is a Hausdorff topology and %, is a principal r-discrete groupoid. We shall
show that C*(&,) is a s1mple AF-algebra with the same ordered K, group as A,.

Let us now describe in detail the plan of the paper. In Sect. 1 we give a brief
overview of the tilings under consideration; full details will be published sepa-
rately [6].

In Sect.2 we put a topology on the relation %,, of tail equivalence on X,,
and show that it yields a principal r-discrete groupoid whose C*-algebra is AF and
we show that its ordered Ky is (Z + aZ,(Z + aZ). ) with the class of the identity
equal to 1.

In Sect.3 we describe an isomorphism ¢ between SNa and X,, where SNa is
the Cantor set obtained by dlsconnectmg the circle S' along the forward orbit of
0: {0,2,2a,3a,...}. On the space Sk, there is the partial homeomorphism of adding
o modulo 1 with domain S \{—a}. We construct a partial homeomorphxsm © on
X,, such that ¢ intertwines ® and the partial homeomorphism on S},. The relation
x ~ O(x) on X, is exactly tail equivalence.

In Sect. 4 we put a topology on the relation R, and construct a continuous onto
map @ : R, — S' ><, Z such that @* : Cpy(S! >, Z) — C,o(R;) is an isomorphism
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of vector spaces, where C,,(R,) is the space of functions whose support is the
closure of a compact set.

In Sect. 5 we construct a Haar system {u*} on R, and use this to put the structure
of a x-algebra on C,,(R,). Then we show that &* is a *-homomorphism. This then
implies that C*(R,, 1) is isomorphic to A4,.

1. The Tilings

The tilings we consider are doubly infinite sequences {t}°__,, where ¢ € {a,b}
and which satisfy three axioms.

(A1): the letter a is isolated: if , =a then #,_; =, =b.
(A;): there is an integer n such that between a’s there are either n or n+ 1 b’s.

A sequence which satisfies (A;) and (A;) is composable. Given a composable
sequence T we can produce a new sequence T' by composition: each segment
beginning with an a and followed by n b’s gets replaced by a b, and each segment
beginning with an a and followed by n 4+ 1 b’s gets replaced by ba.

abbb...b—b and abbb...b+— ba
Nt N e

n n+1

Axioms (A;) and (A;) are exactly what are needed in order to compose a
sequence. The third axiom is then:

(A3): each composition of the sequence produces a composable sequence.

We shall call a sequence satisfying axioms (A;), (Az), and (A3) a cutting sequence,
following C. Series [6].

A cutting sequence may be constructed by choosing a slope a and a y-intercept
B for a line L : y = ax + f. We mark by an a each intersection of the line L with
the horizontal lines y = i for i € Z and by a b the intersection of L with the vertical
line x = j for j € Z. This produces along L a sequence of a’s and b’s.

If a line L passes through a point (m,n) in Z2 we call it singular for at (m,n) an
a and a b coincide. Such a line produces a singular pair: two cutting sequences T+
and T~. In the upper sequence T+ all coinciding a’s and b’s are written with the
a preceding the b; in T~ all coinciding a’s and b’s are written with the a following
the b.

Via composition we may associate with a cutting sequence a real number
0 < a < 1 which we call the slope of the tiling. Let T be a cutting sequence. Let T,

Fig. 1.
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Fig. 2.

be the cutting sequence obtained from T; = T by composition. In general, let Ty
be the cutting sequence obtained from T; by composition. For each i there is, by
axiom (A;), an integer n; such that in T; there are between adjacent a’s either »n; or
n;i1 b’s. This produces a sequence of non-negative integers {ny,n,ns,...}. Let a
be the real number with continued fraction expansion [0; ny,n;,n3,...], adopting the
convention that a trailing sequence of 0’s is dropped. Let T, be the set of cutting
sequences of slope a. v

A line of slope a will produce a cutting sequence of slope o, moreover for each
cutting sequence of slope a there is a § (not unique) such that the line y = ax + §
will produce the given cutting sequence.

Motivated by the classification (see [3]) of Penrose tilings by sequences of 0’s
and 1’s where a 1 must be followed by a 0, modulo tail equivalence, we can classify
the cutting sequences of slope a by sequences of integers. If « is rational then there
is up to translation only one cutting sequence and it is periodic.

Suppose that 0 <a <1 and a is irrational. Let [0;a;,a3,as3,...] be the con-
tinued fraction expansion of a. Let X, = {(x;)72, |x; € {0,1,2,...,a;} and x; = a;
implies that x;;; = 0}. We give X, the topology it inherits as a subspace of
[1:2,{0,1,2,...,a;} with the product topology. X, becomes a separable totally dis-
connected metrizable space, i.e. a Cantor set. When a = 352‘—1, X, is the space which
classifies the Penrose tilings.

Suppose T € T,, is a cutting sequence of slope a and ¢ is a letter in T. Let
T, =T, and T; be the sequence of cutting sequences obtained by composition. The
letter ¢t € T will be absorbed into a letter £, of T,, this letter £, will be absorbed
into a letter 73 of Ts.

abbp..b € T;
e

! .
bablb 4y € Ty

Letting #, =t we obtain a sequence {t}X, with 4 € T;. The sequence (x;) € X,
associated with the pair (T,¢) is constructed as follows. If #; = a then x; =0, if
t; = b then x; is the number of b’s between ¢; and the first a to the left of #;. In the
example above x; = 1 and x;;; = 0. This describes a map from {(T,?)|t € T € T,}
to X,. If ¢t and ¢’ are in T then we will obtain two sequences (x;) and (x]) in X,
which will be in general different. If T is not singular then (x;) and (x!) will be
tail equivalent, i.e. there is an integer k such that x; = x] for i > k. If a is irrational
and T is singular, this may not happen.

Let us denote by 0" = (0,42,0,44,...), 0~ = (a1,0,a3,0,...), and —a = (a; — 1,
ay — 1,a3 — 1,a4 — 1,...) three sequences in X,. If T is a T* then each (x;) will be
tail equivalent to either 0" or —a. If T is a T~ then each (x;) will be tail equivalent
to either 0~ or —a.
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Suppose now that on the set of cutting sequences with slope a, T, we say that
T, is equivalent to T,, if by shifting T, a finite number of letters to the left or
right it agrees with T, and that we decree that the upper and lower sequences for
a singular line are equivalent (as in fact they only differ by a single transposition of
an a and a b at the one singular point). Transferring this relation to X, it becomes
the relation R, generated by tail equivalence and 0" ~ 0~ ~ —a.

In [6] we prove that the map from T, to X, is onto and tail equivalence plus
0" ~ 0~ ~ —a classifies the tilings of slope a.

2. Ko(C*(92)

In this section we calculate Ky of the AF C*-algebra C*(2) and show that it is equal
to (Z+ aZ,(Z + aZ),, [1]). The equivalence relation # defines an AF groupoid,
and thus this C*-algebra is AF (see Renault [7, Proposition I11.1.5]). We shall follow
the construction given by Connes [3, I1.3].

Let 0 <a <1 be irrational and [0;a;,a,,as3,...] be its continued fraction ex-
pansion. Let X, = {(x;)2, |x; € {0,1,2,3,...,a;} and x; = a; implies x;;; = 0} and
Ry = {(x, y) € X, X X, | there is k such that x; = y; for i > k}. To simplify the no-
tation we shall write X for X, and # for #,, as a will be fixed throughout this
section. ,

We construct a topology on % as follows. Suppose (x, y) € # for each k such
that x; = y; for i >k we construct a basic neighbourhood #(x,y,k) = {(a,b) €
.Q|a,-=x,- and bi=y,' for 1 <i §k anda,-=b,~ fOl'i>k}.

Suppose (x, y) € &, and x; = y; for i > k, also (x',y’) € Rand x| = y/ for i > k/,
and k' > k. Then either %(x,y,k) and %(x',y',k’') are disjoint or #(x’,y’,k') C
A(x, y, k). For suppose (a,b) € U(x, y,k)NU(x',y',k'). Thena; =x; for 1 <i <k
and a; =x] for 1 <i S k’. Hence x; =x] for 1 < i < k. Similarly y; = y] for
1 <i <k Since a;=»b; for i >k, we have x, = y/ for i>k. Thus (x',y') €
U(x, y,k), so Ux',y',k') C U(x,y,k). Thus the set {#(x, y,k)} forms a base for
a topology of .

By defining r(x, y) = (x,x) and d(x, y) = (,y), R becomes an r-discrete prin-
cipal groupoid in the sense of Renault [7, I.Sect. 1 and I.Sect. 2]. The sets #(x, y,k)
are compact open #-sets in that both » and d are one-to-one when restricted to
U(x, y, k).

C*(#) will be the completion of the space of continuous functions on R with
compact support with respect to a norm that we will presently construct.

Let #%) = {(x,y) € X x X |x; = y; for i >k}. Then & =J, #P. If (x,y) €
R®) then %(x; y,k') C R#® for some k' < k. So #*) is an open subset of #. If
x; % y; for some i >k then %(x, y,k’) is disjoint from %#*), where k' ( > k) is such
that x; = y; for i > k’. Hence #® is also closed in #. Since ¥(x, y,k) C #® we
see that # has the inductive limit topology associated with the sequence

ROCaVcCcaxVCc...Ccx.

Let us show that each 2¥) is compact. In doing so we shall see that Z*) is an el-
ementary groupoid in the terminology of Renault [7, p. 123]. First we develop some
notation. Let X® = {(x;),,, |x € {0,1,2,3,...,4;} and x; = a; implies x;;; = 0},
and X® be the subset of X®) consisting of those sequences which begin with
0: X® = {x € X® | xp1 = 0}, X© = X. Give X® and X® the product topology.
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Each X® and each X® is compact. Let Xy = {(x1,...,%)|% € {0,1,...,a;} and
x;iy1 = 0 whenever x; = a;}. Let &) = {(x,y) € Xy X Xty | xx = yx}. Give X
and %) the discrete topology. Write %, as the disjoint union of two groupoids
RURY: R ={(x,y) € Bpy|xx +ar} and R~ = {(x,y)|xx = ax}. We shall
next show that #*) is homeomorphic to the Cartesian product of a finite set and
X®_ In the following lemma we put the product topology on each of 2~ x X*) and
A~ x X®, and denote by B~ x X® U R~ x X®) their topological disjoint sum.

Lemma 2.1. The map

(*) 6, ) = (155X ), (V15 -5 Yi))s Okt 15 Xk425 - )
is a homeomorphism from &® to R~ x X® U R~ x X®. So #*®) is compact.

Proof. The map is one-to-one as, for (x,y) € #X) we have xpy1 = Yis1, Xps2 =
Vkt+2s---. If (x,¥) € R~ and z € X) then (x1,...,%k, Zk+1,...) and (yi,...,
Zk4+1,--.) are in X as neither x; nor y; is equal to a;. Also given (x, y) € £~ and
z€X® the sequences (X1,...,Xk»Zk+1>Zk+25---) = (X1,..-Xk—1,8k;0,2k42,...) and
P1seeos Vs Zktls---) = (X15- o+ » Vi—1,Gk, 0,2k +2,...) are in X. Thus the map is onto.
The map also takes the basic open sets %(x, y,k’) (for k' > k) for the topology
of #®) to basic open sets in &~ x X® U R~ x X®), Hence (x) is a homeo-
morphism.

R« is a finite equivalence relation. Let 4; be the C*-algebra of %,); i.e. 4y is
the complex vector space with basis {e,y) | (x, y) € %)}, with involution ef; , =
€(y,x) and product e y)e(,,) = €(x,y) if y =x’ and 0 otherwise. The product and
involution are extended to all of 4; by linearity. We shall also find it convenient
to think of e(,y) as the characteristic function of the set {(x, y)}. For each k¥ and
0 < i < a; let m* be the number of sequences of X*) ending in i.

Lemma 2.2.
A >~ Mmf,(c) &D--- QBM,,,:k(C) .

Proof. For each x € X®) we have a projection e, 5y € Ax. Moreover e xy ~ €y, ) if
and only if x; = yx. Hence e x) and €(,, ) are centrally disjoint if x; & yx. Hence A4
has 1 + a; central summands. Also for each j € {0,1,2,...,ax}, {exx) |xk =j} isa
set of pairwise orthogonal pairwise equivalent projections which sum to the central
supp;)rt for the jt* summand (0 < j < a;). Hence the size of the j® summand
is m}.

Define ¥ : 4¢ ® C(X®) — C(#®) by

Ye(a ® f)x,y) = a((x1,. 3%k )y (V1. - o5 V) K15 Xk425 ) -
By Lemma 2 yj is an isomorphism when restricted to the ideal
My (CXD) @ @ My (CX®)) @ My (CXM)) C 4 ® CX®) .
ag— i

Let C,(#) be the continuous functions on % with compact support. If
f € Coo(2R), then there is k such that the support of f is contained in %),
since {#®)}; is an open cover of #. Thus f is in the subspace C(#*). Hence
Coo(#) = U, C(2®)). Thus & is what Renault [7, p. 123] calls an AF groupoid.
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Next we shall recall the *-algebra structure on C,o(2). Suppose f and g are in
C(AP). We define f* € C(AD) by f*(x,y) = F(7,%) and f *g in C(AD) by
f*g(x,y)= Z(x,z)egv(k) f(x,2)g(z, y). The sum is finite because, for given x and k,

{z € X|(x,z) € #®} is finite. Each subspace C(#®)) is a *-subalgebra.
Ar ® C(X®) has a unique C*-norm, and thus so does

M"{&(C(X(k))) ®--- @M”‘:‘—‘(C(X(k))) eMmj‘(C(XU‘))) )

Hence C(#®)) has a unique C*-norm. Thus C,,(#%) has a unique C*-norm.

Definition 2.3. C*(), the C*-algebra of the equivalence relation R, is the com-
pletion of Coo(R) with respect to its unique norm.

To calculate the Ky group of C*(#) we have to carefully analyse the inclu-
sion maps i: C(#®) - C(#**D) in terms of the maps Y4. For (x,y) € Ry,
let S(x,y) = {(%,7)|(%,7) € Rg+1) and x; = %, y; = y; for 1 £ i < k}. Define
@k : A ® C(AP) — Apyy ® C(R*HD) by

or(er,y) ® fNaki2,ak43,-..) = 2 ez iSf(Fri1,Qr42,-..) .
(%,5)ES(x,y)

Lemma 2.4. The diagram .

C(#%)) .._'___, C(R%+D)

A4 ® CX®) —— 44 ® CXED)

N
is commutative.

Proof. 1t is enough to check commutativity on the elementary tensors: ey, ) ® f €
A ® C(X®). For (a,b) € # we have

Ye+1(@r(e,y) ® f)Na,b)
26, esey) €& )@, @k1), (B, -, k1) Gk, Gk, )
= when a; = b; for i>k+ 1 and
0 otherwise
f(ik+1’ak+2"") a; = Xi, bi=J"i for 1 é i §k+l
= anda,-:b,-fori>k+1
0 otherwise
f(@rs1,ah42,...) ai=x;, b=y forl i<k
= and a; = b; for i >k

0 otherwise

= Yi(eq,y) ® fNa,b).
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Note that @ carries Ay ® 1 into 4;4; ® 1. It is these maps that will enable us to
calculate Ko(C*(4)). For we shall denote by A4 the limit of the inductive sequence

A2 dy Boay B

and show that 4 ~ C*(#) and then use the maps {¢;} to calculate Ky(4). So we
shall identify, where convenient, 4; with 4; ® 1. With this identification we have
a sequence of commutative diagrams:

c(2M) _'_, C(2D) ! > e » C*(R)
7] [ Wz[ 'PI
A4, — A NP |
(2] (2]

Lemma 2.5. ¢ is an isomorphism.

Proof. We shall show that the range of V¥ : |J, 4k — Coo(2R) is dense. Let f €
C(X®) and ¢ >0 be given. For each x € X*) choose j, such that on O(x,j,) =
{a€X®|a; =x; for k £i < k+j,— 1}, f varies by less than ¢, ie. |f(y)—
f(x)| <& for y € O(x, ji). Then by the compactness of X*), we may cover X*) by
a finite number of these sets {O(xi,jx,),..., O(xn,jxy)}; since these sets are open
and closed we may re-arrange them into a cover {O,...,Ox} of pairwise disjoint
open and closed sets, with O; C O(xy( ), jx, ;,)- Thus

Let jmax = max{jx,,...,j,,,}. Now Pjax—10 "+ O(pk(lA,‘ ®X0,) € Ajw ®1C
Ajpy ® C(XUn)). Thus @10 -+ © Pr(€z,y) ® X0(x,j,,)) is Within & of an ele-
ment of 4, ® 1. Hence for each element f € C(#*)) and &> 0 there is j and

f €4;®1 such that || f — y;(f)|| <e. Hence the range of ¥ is dense.
Each central projection in 4; produces one copy of Z in Ko(A4x). Thus Ko(4x) ~
Z'*% with positive cone Zf’“‘* = {(20,---,24, |zi 2 0}.

Lemma 2.6. Under the identification of Ko(Ax) with Z'**,
[ox] : Ko(4k) — Ko(Ak+1)

is represented by the 1 + ax+1 X 1 + ax matrix

<eE.

f= 2 fGigro,
1sjsK

1 - 11
1 -~ 10

Ty = 1
1 1 0

e T = 1 j<l4agrori=1
e =10 j=1+aandi>1.
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0 1 2 3 Iy

0 1 2 Ny
Fig. 3. The Bratteli diagram for the inclusion of A into Ay, ;.

Proof. We only have to show that there is a map of multiplicity one from each
central summand of 4; to each central summand of Ai,; with the exception of
the last summand M,,,;;k(C) of A;. In the latter case we must show that M,,,:k(dl’)
gets mapped only to the first summand M"{OH(C) of Aiy; and that this map has
multiplicity one.

Suppose x € /Y(k) and Xk *ak- Then S(X,X) = {((X,O), (xa 0))’ sy ((x, ak)’ (xs ak))};
i.e. the sequence x in Xy) can be extended to a sequence (x,i) in X441y by
adding any i € {0,1,...,ax+1} to the end of x. Hence in the sum @x(ex,x)) =
Z(i’i)es(x’x) e ) there is one term in each of the 1 + gz, summands of 4.

Suppose x € X(x) and x; = a;. Then x can be extended only by adding a 0, so
S(x,x) = {((x,0),(x,0))}. Thus the last summand of 4; only gets mapped into the
first of A¢4; and with multiplicity one.

The Bratteli diagram for the inclusion of A; into A4xy; can be described as
-follows. There are 1+ a; vertices on level k¥ and an edge between the i vertex of
the k™ level to the j® vertex of the k + 1 level if a sequence in X4 ending in i
can be extended to one in X(x+1) by appending a j.

1

0 .
) and é;") = | - | be vectors in Z!*%, Then

0

1
For each k let ¢% = (
1

ar +1 1
ak k k .

L& =1 T | =ag"+ gD and ngP = | | =Y.
ag 1

So let 5% C Z'+ be the span of {¢X, &P}, Since the rank of T; is two, we see
that Z¢+! is the range of Ty and Z!*% = ke(Ty) @ E*. Let P = {(m,n) | m&® +
nég‘) € EX} = {(m,n)|m = 0 and m + n 2 0}. Define a map EZ* — Z? by méﬁ“ +
n&® s (m,n). The positive part of Z* gets mapped to P. Relative to the standard
basis {({), ()} of Z* we have Ty = (¥ ;). Hence we have a sequence

2 T 2 I 2 I
z z z .
) 1+a;

—
with positive cone P at each term. Recall that 4} =COC & --- ® € and so the
class of 1 in Ko(d;) is & € 5! C Z¥™. Under the map from Z! to 22 & is
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sent to ((',) We shall compute Ko(C*(£) using the following diagram — where

0 1
s°=( ) Si=8"'T . S=8 T T

1 0
Oerr 2 = 12>, ...
(**) &j S[‘ Sz'[
Z? 72 zZ2
Since Tg -+~ T1So = (,”* 2 ), where po =0, py =1,..., Pk+1 = @r+1 Pk + Pi-1
and go =1, g1 = a1, Gk+1 = Gk41Gk + Go—1, Sk = (=1 (21 TH) Let e =

Sk+1(p) =(—1)k(_q;,k) and px=Sk1( ) = (~1)k(_(z:i‘:,":,))- Let P, = {(m,n) €

Z?|am + n > 0}.
Lemma 2.7. For all k, n; and py are in P, and P, is generated by {n; }+.

Proof. Since % < a, we have agop +(— par) > 0; thus 1y € P,. Also since %:L >

o, we have a(—qa+1) + pax+1 > 0; thus nox4 € P,. We apply the same argument to
the inequalities % < Bt o P22 < g to conclude that py = (_ 920119 ) € P,

q%+1 +‘1212 lm+z) (P2k+1+ Pax)
. . — (- gau+qan—1 . . . o 41
The inclusion of ( Pt M_l) is proved using the inequalities a < P""—qm‘ <
Pt pak—1 < Pzt
92%+q2k—1 qu—1 "

Finally let us show that P, is generated by {m}s. Since (7)= (mpa+1 —
nqok+1 M2k + (mpax + nqax )41 it suffices to show that whenever (m,n) is in P,
there is large enough k so that mpyiy| + ngae+1 and mpay + ngy are positive. This
can always be done; for if m = 0 choose k so that =) < % <o, and if m<0

choose k so that o < £l < 2
G2k+1 m

Theorem 2.8.
(Ko(C*(R)Ko(C*(R))+, (1) 2 (Z + 2 Z,(Z + aZ)4,1) .

Proof. By the diagram (x*) Ko(4) ~ Z2. Under this mapping the positive cone gets
sent to | J; S(P). In Lemma 2.7 we have shown that this union is exactly P,. The
class of 1,(}) in the upper left-hand comner of (**) gets sent to ({) in Z2. Thus
(Ko(4),Ko(A4)4,[11) ~ (Z%,B,, (})). Now map Z2 to R by (m,n) — am + n. This
order isomorphism sends (Z2,P,, (%)) onto (Z + aZ,(Z + aZ),,1).

Remark 2.9. Let us conclude by showing how the Bratteli diagram for 4 may
be given an order making it an ordered Bratteli diagram in the sense of Herman,
Putnam, and Skau [4, Sect.2] so that X is homeomorphic to the path space X.
This ordered Bratteli diagram is not simple in that there are two minimal paths
and one maximal path. In this case the VerSik transformation is a partial home-
omorphism. Two paths are tail equivalent if and only if a power of the Versik
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Fig. 4. Construction of the ordered Bratteli diagram for #. In the figure m; = a; — 1. In the upper
left we have the original diagram. In the upper right we have reversed the order of the lower row
and changed the a;’s to —1’s. In the lower left we have added the ordering to the edges. In the
lower right we have marked —a with a dotted line and 0~ and 0% with dashed lines. Assuming
that k is odd, 0~ is to the right.

transformation takes one of them tothe other and thus % is the equivalence rela-
tion arising from this partial homeomorphism. In the next section we shall show
that there is a homeomorphism from X to Sk, the Cantor set obtained by cutting
the circle along the forward orbit of 0 under rotation by 2na, such that the Versik
transformation is exactly rotation by 2na. To simplify the notation let my = a; — 1
and Y = {(y)Z; | yi € {-1,0,1,...,m} and y;;; =0 whenever y; = —1}. X and
Y are homeomorphic by rewriting all ai’s as —1’s. Under our new notation
the vertices of the k% row of our Bratteli diagram are ¥ = {-1,0,1,...,m;}
and the edges between V; and Vi, are E; = {(i,j) € Vi X Vit1|j = 0 whenever
i=—1}. We put an order on E; by saying (i1,j) < (i2,j) whenever i} < i;. We
set Vo = {0} and Eo = {(0,i)|i € V1}. A path on this diagram is thus a sequence
{(0, i), (i1, 12), (i2, i3),...}, i.e. a point of Y.

Denote by 0~ the path (—1,0,—1,0,...), by 0% the path (0,—1,0,—1,...), and
by —a the path (m;,mz,ms,...). Under the homeomorphism in Sect. 3, these points
get sent to the points 0~, 0%, and —a in S}, respectively, hence our notation. In
path notation —a = {(0,m), (my,mz),(mz,ms),...}. (m;,m;;) is the maximal edge
ending at m;;;. So —a is maximal and must be the only maximal path. In path
notation 0~ = {(0,—1),(—1,0),(0,—1),...}. (—1,0) is the minimal edge ending at 0
because —1 is the minimal index, and (0,—1) is the minimal edge ending at —1
because there is no edge (—1,—1). Thus 0~ is a minimal path and by the same
argument 0% is another minimal path. '

If p={(0,i1),(i1,i2),...} is a minimal path then i¢ is 0 or —1. To be minimal
then we must have —1 whenever possible, i.e. every other entry. Hence 0~ and 0%
are the only minimal paths.

Let us recall the VerSik transformation. Suppose y € Y and y+ — a. Let & be
the first k£ such that (y1,y2,..., ) = (my,my,ms,...,m;) and yiyy <myyy. Then
(yi) = (¥)), where y; = y; for i>k+1, y;,, =1+ y41, and

(=1,0,—1,...,—1,0,—1) if k is odd and yg4; = —1
(0,-1,0,...,0,—1,0)  if k is odd and ygp1 % — 1

(-1,0,...,~1,0) if k is even and ygy 1+ — 1
0,-1,...,0,—1) if k is even and ygy = —1,

Db Yo Vi) =
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ie. yy =—1if y;,, =0 and y; = 0 otherwise, and we then extend backwards to y]
by an alternating sequence of 0’s and —1’s.

3. The Space X,

Suppose a is an irrational number between 0 and 1. Let a = [0;4a;,a3,4a3,...] be
the continued fraction expansion of a and let m; = a; — 1. For a real number x, [x]
denotes the unique integer such that [x] < x < [x] + 1. Note that [—x] = —(1 + [x]).
Let {x} =x — [x]. Let

% =1

o = &

0 =1-—aga=a{a!}

a = ap — a0 = ap{ueg '}

Unt1 = Op1 — Gnlly = 0 {010, '} .
Let
g-1=0 92 = g0 + axq1
g0 =1

91 = g-1+a1qo dni1 = qn—1 + any1Gn

be the usual denominators of the convergents in the continued fraction expansion
of a. Note that modulo 1 o;yy —( 1)'q,

Let us construct the space Sy Skia is obtained by dlsconnectmg the circle at the
points of No. S}, is an inverse limit Sy — S} «— 8, — --- — Sg,. So=S! §; =
cut at the point Oa, i.e. as a topological space S; = [0, 1] except we relabel the
end points as 0" and 0~ respectively. S, is obtained by cutting S; at the point a,
ie. § =[0",a"]JU[at,07]. In general S, is obtained from S, by cutting S, at
the point na. As an alternative description S, is the maximal ideal space of the
C*-algebra obtained by adjoining the pro_]ectlons Xio,na) to C(S').

Let 7 : Sk, — S' be the canonical map, i.e. the map which sends ma* to ma
and leaves the other points alone. We shall also need the larger space S},, which
is constructed in the same way as Sk, except that we cut along all the points of
the orbit of a.

Given x € R and y € S}, we define

x+y={n(x+y)i ?f,v=71r(y)’_r
nx+y)” if y=mn(y)

. _{1:(ch)Jr if y=n(y)" and x>0o0r y=n(y)” and x <0
Y n(xy)~ ify=n(y)" andx>0or y=n(y)t and x>0

We shall also write —ma* to mean (—ma)*; on the other hand —(ma*) = —ma~.
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Recall that X, = {(x;))2, |x; € {0,1,...,a;} and if x; = a; then x;1; = 0}. We
shall define a map ¢ : Sk, — X, as follows. To do this we first extend the floor
map to R cutalong Z : [n*]=n,[n"]1=n-1.

Given B € S, let, f1 = B and x; = [B1/n1], then

By = {(1 +xu—p x<a
% — 1 xn=a °

and x; = [B>/o2]. Supposing B,..., . and x1,...,x,_; to be already defined we let
Xp = [ﬂn/an] and
Bous = {(1 +X0)tn = Bn Xn <an
i On—1 — B Xp = Qp ’
Note that if x, = a, then a,0, < Bp < 0p_1 = @0y + 01 SO Pry1 = Uy —
Bn < aps1. Hence x,41 = 0. Thus (x;) = ¢(B) € X,.

Examples 3.1.

(i) Let f=1—a=a9—a;. Then x; =a; — 1 and so B, = a1y — B = o —
az. Suppose By = ax_; — ox. Then xg = [ Br/ox] = [ —1/ox] — 1 = ax — 1, and By =
(1 4 xp)og — Br = arog — (k-1 — k) = g — (0k—1 — @xx) = o — o4 Hence by
induction x; = a3 — 1 for all k.

(ii) Let = 0*. Then x; =0, B = dl_, x; = [oy/z] = a3, and B3 = ot. If

Pox—1 = 0% then xp3_; =0, P = ax—1 — Pok—1 = Wy, X = [O2x—1/002%] = am,
and ﬂ2k+l = 02k—1 — ﬁZk = 0*. Thus (xlaxZ,anx‘b“') = (0"12: 0,a4,.. )

(iii) Let § =0~ =ao“.Thenx1 =ay, pp=09g— 1 =0, x, =0,and,83=a2'.
Suppose fa—1 = 0y _,. Then xpp—1 = an—1, P = k-2 — Pa—1 = 0%, xu =0,

and fory1 = o — P = oy

Sl‘qct has the inductive limit topology and X, has the product topology; thus both
are Cantor sets. We shall show that ¢ is a homeomorphism such that

(i) @(ma™) is tail equivalent to (0,a3,0,as,...),

(ii) @(ma™) is tail equivalent to (a;,0,a3,0,...),

(iii) @(—na) is tail equivalent to (a; — l,a; — l,a3 — 1,...).

To prove this we shall adopt (with a small modification) the notation of Sinai
[9, Lecture 9]. If x,y € S,‘h, [x, y] means the oriented interval which begins at x
and ends at y where Sy, has the usual counter-clockwise orientation.
Let

A7 =[0%,071],

" {[q,,a*,()“] n odd
! [0*,g,2"] n even’

” {[(i-1+q,.)a+,(i—1)a-] n odd
PTG - Dt (= 1+gn)a~] neven’

These are intervals in Sk,. If we apply 7 to these intervals we obtain the closure
of the intervals in S' used by Sinai. The same arguments apply to Si, and thus:
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Theorem 3.2 (Sinai [9, Lecture 9, Theorem 1]).

(i) For each n,

Po={47",.. 47 A, 4]}

is a partition of Sy, into disjoint open and closed sets.
(ii) For eachn and 1 £ i < qp,

A;l—l = A"

+1
Mg VAT U---udp u4r

i+qn—1+4gn i+qn_1+Mny1qn

and the sets in this partition are disjoint.
Let us show that the sequence (x;) constructed above can be obtained from the
partitions {%,}2,.

Theorem 3.3. For B € S\, x» and B,y1 can be computed using the partition

Por = {472,452, 47 A

qn—1° g2
to decompose Sk, as follows.

WD IfBedr ' =[st,t"]for 1 £i < qy_o then x, =0 and

Bous = B—s n even
"1T\t—-B nodd

i) If ﬁeA;"z for 1 £i < g, then write (by Theorem 32) A?™* =

A:‘ U (U;”;o A?—I:I}.—2+jqn—| )
@) If B € Ay, _1jq, = 5*,t7), then x, = j and
Bruy = {ﬂ —5§ n even.
"1 T\ t—B nodd -

(b) If B € 4 = [s*,t7] then x, = a, and

Bour = B—s n even
"1 \t—B nodd

Proof. For n =1 we use % = {47"'}. This excludes case (i). So we write (since
q-1=0)
A7t =MuM L u---ud,, U4

If Bedl,;, =Lt (j+1a7] then jo*t SBS(i+ 1o so j<[Bfa]<j+1.
Hence x; = j,and f = (1 +j)a — f=t—B. If B € 4] =[a10",07] = [@10F,17],
aj0t <P<1" and so a; <[P/a], thus x; =a; and fr=1—B=1t—p.

Now suppose the theorem holds for n = k. Let us prove it for n =k + 1.
To compute x;.; we use the partition & = {4¥~",..., 4k-1, 4%, ... A% 1.

ceesdg s Qe—1

(i) Suppose Be AF for some 1 <i < gs_;. Then

k k=2 __ 4k k—1 k—1
Beatc A=A ud) U UA)



C*-Algebras Associated With 1D Almost Periodic Tilings 321

So by the induction hypothesis x; = ay, hence x;;; = 0 as required. To prove the
claim about B, there are two cases to consider: k£ even or k odd.
Let us suppose k is even. Then 4% = [(i — 1)a*,(i — 1+ qx)a"] and Bit1 =
B — (i — 1)a. Then
Brs2 = 1 — Birr = (=1 qea — B+ (i — Dax
=@(l-14+q)a —-p=t-4,
as required.
If k is odd then 4* = [(i — 1 + g4)a*,(i — 1)a~] and Bey1 = (i — 1)a — B. Then
Besz = k1 — B = (1 fqua+ B — (i — e
=f-(-1+q)=p-s,
as required.
(ii) Suppose € 4¥~! for some 1 i < g;.
(a) Suppose Be Af‘ﬂk_l +jge for 0 = j < my,, again there are two cases depend-
ing on the parity of k. First suppose k is even. Then Af_' =[(—14+gg-1)at,
(i—1a"] and Biy1 = B — (@ — 1 + gx—1)a. Since

Xi1 = [Brs1/0k+1] = [ Be+1/qx2]

we have
er1ge)0t < Brt S (1 + X )ge™
i.e.
G=14+ g1 +xeng)a” S — 14+ g + (L +xg1)ge)e™
hence e 4%, .. . as required and

Br+2 = (1 + xk41)0k41 — Br+1

= (-1 +xep)gra+ G — 1+ ge—1) — B

=(@{-1+@ga+(+x)g)e—p=t—B
as required. Suppose k is odd. Then A¥~!=[(i — 1)a*,(i — 1+ g4—1)x"] and
Br+1 = (i — 1+ gx—1)a — B. Since

Xks1 = [Brr1/0k41] = [Brs1/ — qrt] ,

we have

—Xe1qk®" S P S —(1 + xpq1 g,
thus _

—( =1+ g1 +xpqe)a” S —BS—(— 14 ge—1 + (1 + X1 )ge)a™
hence ‘
(= 14+ qa+ A +xe1)ge)at SBS(G— 1+ grt +Xprage)a

ie.

Be 4t

i+qk—1+Xk+19k
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as required, and

Bivz = (1 + Xi41)0%+1 — Brt
=B-(—-1+q+Q+x)g)e=p~—s,
as required.

(b) Suppose BeA¥*! 1 <i<gq;. Again we consider the two cases; k even
and k& odd. Suppose k£ is even. Then A,-k_1 =[(Gi—-14+qgt_1)at,(i—1)a"] and
Bis1 =B—(G—14+q_1)o As A =[(i — 1 + ggy1)a™,(i — 1)a~] we have (i —
L+ gep)at SpS(@E—1)a, ie (i — 1+ gr—1 + a9k )t < B, hence

W10 = agrgea” SP— (G — 1+ gi—1)a = Pry1 -

Thus ag41 < [Br+1/%+1] = Xk+1. SO Xk41 = Gg41 as required. Also

Biv2z = ok — Brr1 = —qr—10 — B+ (i — 1 +q—1)
=@{i-Na—-p=t-B,
as required.
Finally, let us consider the case of k odd. As before A~ = [(i — 1)of,(i — 1 +
Gr—1)a*), Besr = (i — 1+ qe—r)a — B. As A = [(i — Dat, (i — 1+ gig1)a™] we
have (i— Dat SB<(—1+ges1)a” =@ — 1 +ge—1 +akrge)a”. So (i—1+

G—1)2 = P S — 1+ @1 + @page)a™, i€ @1y = —ak19k0t < iy, s0
Xg+1 = a4+ as required. Also

Bi+2 = otk — Br+1 = qr—10— (i — 1+ q—1) + B
=f—(G-1Da=p-s
as required.

Definition 3.4. In the formula for B,.1 given above, B, is the distance of B
from the left (n even) or right (n odd) of an interval in the partition P,. Call this
element of P, the n interval of B.

Lemma 3.5.

(i) P41 is a refinement of %,.
(i) If a £m < qu_1 + g, then ma~ and ma* are in different partition elements
of P,
(iii) For each n let P,€ %, be the n® interval of B. Then {B} = (2, Pn

Proof. (i) This follows from Theorem 3.2(ii).
(ii)) f 0 =m<gu—1 + ¢, and n is odd then

either A7, =[s*,ma"] ifm<gn_1,

or A',:.:,ll_q,,_, =[st,ma~] if g1 Em<gu_i+qn,
and

either A;:Lll = [mat,t7] ifm<gq,,

or Aiyg, =[mat,t7] ifmzg,.
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So we have three cases:

(a) If m < g,_1, then ma~ €47, | and mat e 4,

m+l
(b) If g,_1 £ m < q,, then ma~ GA’,:;I”% and mat e A:;l
(c) If g» =m < gn_1 + ¢n, then ma™ €Am+l_q _, and matedl,  _ —g

By Theorem 3.2(i), in all three cases, these intervals are disjoint.
If n is even then

either A% =[s*,ma"] ifm<gqy,,

or A, =I[stmaT] ifgaSm<qgni+qn;
and

either 47, = [ma t7] ifm<gq,_,

or A g, =mat 7] if o SM<qn1+qn

We can apply the same analysis to conclude that ma* and ma~ are separated in %,.

(ili) By construction B € (oo Ps. Also the diameter of m(P,) — 0. Thus
(i Pr) = {n(B)}. If p ¢ Na then = n(p) and we are done. If f€Nu then
by part (ii) of this lemma mat and ma~ eventually lie in different intervals so we
cannot have ma* and ma~ in (2, P,. Thus N2, P, = {B}.

Theorem 3.6. The map ¢ : Sy, — Xo given by @(B) = (x1,x2,...) is a homeo-
morphism.

Proof. Since S}, and X, are both compact metric spaces we only have to show
that ¢ is continuous, one-to-one, and onto.

Suppose P€%;, and BEP. Then @(P)={(y)|yi=¢(B) 1<i<n}. So ¢
takes basic open sets to basic open sets. So (p is continuous. If (1) = ¢(B2)
then for each n, B and B, have the same n™ interval P,. So B, € ﬂ 1Pa.
By Lemma 3.5 f; = f,; hence ¢ is one-to-one. Specifying a sequence {x,}eX,,,
specifies a path P, € %, on the partition tree which must have non-empty intersection
by the compactness of Sy,. Thus ¢ is onto.

We want to consider next the connection between @(f) and ¢(f + a). As before
let €Sk, and @(B) = (x1,x2,...). Recall that m; = a; — 1.

Lemma 3.7.
()] BeA%t‘ if and only if x; =my,...,xx = my,
(ii) pe 4y Vif and only if x, = ay, x, =0, ...,%%—1 = aGz—1, Xox = 0,

(iii) BeAz" ifand only if x, =0, x = ay, x3 =0,...,X4 = G, X241 = 0.

Proof. (i) We shall prove this by induction on k. It is clear for kK = 1. Suppose
it is true for 1<k <n and prove it for k =n+ 1. This means we must
show that ﬁeAq ., if and only if x; =m,...,Xs41 = Myy1. By the induction hy-
pothesis we have x; = my,...,x, = m, if and only if § eA;:‘. So we only have to
show that if B 45~ then, X,41 = myyy if and only if f€ 4 . Now to compute x,
we use the partition &, = {A’l'",...,A;:',A'{,...,A;n_l}. We are already assuming
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Fig. 5. The decomposition of S]{,a is shown along the horizontal axis and the first five terms of

X, are shown on the vertical axis. In this example a = 342_7{——3 =1[0;3,1,3,1,...]). The expaﬁsion
of —a is shown by the dashed line.

that ﬂGAZ:I, so by Theorem 3.3 we decompose A;:‘ as

n n n n+1
Aq +qn—1 UA qntqn—1+4n UAqn+qn—l+mn+lqn A *
n .
Now x| =My if and only if e 47 ., ., . =4 ., as required.

(ii) We prove this by induction on k. For k = 1 we must show that f€ 4}
if and only if x; =a; and x, =0. This is straightforward. Suppose that we
have proved the claim for 1 <k <n, and we shall prove it for k =n+1. So
by the induction hypothesis S EAZ” ! if and only if x; =a;, x2 =0,...,x,—1 =
an—1, and xp, =0. So we only have to show that for fe 4!, B €A2"+’ if
and only if x5,.1 = @,+1 (and hence xz,,+2 0). To compute Xone1 We use the
partition &, = {42"~1,... , At , 4 ~_,}. Since B € 42! we decompose
A1 a5
! 2n+1

AH"Izn U A1+qu 1+q2n U AH—qzn 1+M2n11G28 U 4y :

By Theorem 3.3, BGA%"“ if and only if x;3,,1 = a3,41 as required.
(iii) We shall again prove this by induction. For ¥ = 0 we must show that
Be A =[0F,a~] if and only if x; = 0; but this is clear from the definitions.
Suppose we have proved the claim for 1 £k <n and we shall prove it for
k=n+1. Since we have that B€4?" if and only if x; =0, x; = az,...,Xy =
a2, %2n+1 = 0, we only have to show that for Be€ 4%, Be 4***? if and only if
Xp+2 = Gon+2. TO compute x,42 we use the partltlon .%,,+1 {Al ye

At ""’A§;+l}' We are assuming that

quH»l ’

2n 2041 1) A2nH] 2142
B €4y Al‘Hizn Al+q2n+m2n+2q2n+l 4 .
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By Theorem 3.3, B€ 42"*2 if and only if Xzm42 = 2442, as required.

Theorem 3.8. Let —a + BESK,, ¢(B) = (x1,x2,...) and (B + @) = (y1, y2,--

(X15.eesx) = (my,...,my) but xx Fmy then

()’1,.--,)’k+1)
(0,a2,0,a4,...,0,ar—2,0,ax,0) Xi+1 = 41 and k even
(01’0903303-"soaak—Z,O’akaO) Xk+1 = k41 and k odd

(a1,0,a3,0,...,0,a,-1,0,1 +xx41) Xk4+1 <mgyy and k even
(0,a3,0,a4,...,0,a5-1,0,1 +x541) Xpr1 <mpyy k and odd
and y; =x; for i>k+ 1.
Proof. Suppose x;i+1 = ap4+1. By Lemma 3.7,
U---u 4t

k—1 __ 4k k
BEA‘I’: =4 u4 r+qk—1+Miy 1 Gk

k+1
qk+qr—1 qi+qr—1+qx U A‘Ik y

By Theorem 3.3, f€ 44+ Thus

ﬂ+a€Ak+l gAfZAk+l

k+1 k+2
1+qx 1+qu”.UA UAI ’

1+qe+mi42Gi+1

and so by Theorem 3.3 again y;;, = 0. By Lemma 3.7

(0,a3,0,a4,...,0,a,) k even

01720 76) = {(a;,O,a;,O,...,O,ak) k odd

If 457" = [s*,07] then Ay, = [(s + )", (1 +)7]. As
By = B—s k+1 even
27 V\t—B k+1o0dd

_ B+a—(s+a) k+1 even
(,8+<X)k+2—{(t+a)_(ﬁ+a) k+1odd ’

we see that ., is unchanged and hence y; = x; for i >k + 1.
Now suppose x3+) < mi.1. By Lemma 3.7,

pedi ! = 4t U4k

k
qx+qx—1 Qx+gr—1+gx u---u4

k+1
qr+qk—1+mi4 19k U Ath .

. . k
Since x4 <mMpy1, B E Aqk—l+(l+xk+l)‘1k' Thus

k k=1 _ 4k k
ﬂ + a€A1+qk—1+(1+xk+x)qk < Al - A1+qk—l U Al‘HIk—l‘HIk

V. k k+1
U U A1+qk—|+mk+1qk U Al :

Hence yr4+1 = 1+ x4 and since f + aeA’f“, we have by Lemma 3.7 that

(a1,0,a3,0,. . ’ak——l’o) k even

Ot i) = {(O,az,O,a4,...,ak_1,0) k odd

325
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XVn'ting A tx)g 38 [51,17] we have B rimnrg = [+, +a)7].
s

Brus = B—s k+1 even
17 1e—B k+1o0dd
(B+a)—(s+a) k+1 even

(t+a)—(f+a) k+1 odd
we see that Bry > = (B + a)r+2 and hence x; = y; for i >k + 1.

(B+a)t2 = {

Corollary 3.9. Suppose B,y € Sk, and ¢(B) = {x;} and ¢(y) = {y:}. Let P and Q
in P be the k't intervals of B and vy respectively.

(i) If there is k such that x; = y; for i > k then there is n€Z such that § =y +
no. and |n| < qi + gx—1. Moreover if |P| < |Q| then U(x, y,k) = {(p(n), ¢(v)) | n€
P and v = u+ na} (see the third paragraph of Sect. 2 for the definition of ¥).

(ii) If n(B) ¢ Za and there is n€ Z such that f =y + na, then there is k such
that x; = y; for i 2 k.

(iii) If n(B) = ma and n(y) = na and either m,n =0 and B and y have the
same sign, or m,n <0 then there is k such that x; = y; for i 2 k.

Proof. (i) Since x; = y; for i >k, Br+1 = Yi+1; so the distance of B and y from the
corresponding endpoints (left for k even, right for £ odd) of P and Q will be equal.

Suppose P and Q are of the same length. If P = Ak~! and Q = 4%~!, then
1< p,g=<q: and so B=y+(p—q)n with |n| <gx <qi + qs—1. If P =A% and
0= A: then the same argument applies except we then have |n| < g¢_;.

Suppose P and Q are of different lengths. Say P = 4%~! and Q = 4} with
1< p<giand 1 £q=gs_1. We know that Br.; = Pk+1 < tk41; SO Xg41 = 0. Now
decomposing

k—1 __ 4k k k k+1
AP - AP+qk-l U AP+qk—l+qk U U Ap+qk—l+mk+14k U AP 4
we see that :BEAI;thk_]- Thus for n =g — (p+ qx—1) we have B =y + na and

|n| <qr+qx-1 3 p+qr—1 =gk +qr—1 and g = 1.

For the second assertion suppose |P| <|Q|. Let a = ¢(u) and b = ¢(v). Then
uePifand only ifa; =x; for | Si<kand veQ ifand only if b; = y; for 1 £i <
k. If (a,b)e%(x,y,k) then ueP and ¢(u);=¢@(v); for i>k. Hence
v = u+ na. Conversely if u€P and v = u+ no then veQ, so a; =x; and b; =
yi for 1<i<k. Also if p=4% and Q=45"", then P+na CQ so a;=b;
for i > k. '

(ii) and (iii) Theorem 3.8 showed that as long as —a ¢{y,y + o,y + 2a,...,7 +
(n—1)a} then for 1 i< n, ¢(y+ (i — 1)a) and ¢(y + ia) agree from some point
onwards.

4. The Relation R,

Suppose again that 0 <a <1 is irrational with continued fraction expansion
a = [0;ay,a3,a3,...]. Let X, be the Cantor set constructed in Sect.2. R, C X, X
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X: will be the equivalence relation on X, generated by tail equivalence and
(a1,0,a3,0,...) ~ (0,a3,0,a4,...) ~ (a1 — l,a; — 1,a3 — 1,...). In this section we
shall construct a locally Hausdorff topology on R, and a surjective continuous map
@ : R, — Si X Z such that

(i) the diagram

Xy s St
L3

commutes where p; is the projection onto the first factor; and

(ii) ®* : C(S! x Z) — C(R,) is a linear bijection.

Recall that S}, is S! cut along the forward orbit of «. Rotating by « is a partial
homeomorphism on Sy, defined on Sk, \{—«}. Let us denote this partial homeo-
morphism by 6. In Theorem 3.8 we showed that there is a partial homeomorphism
on X, and that the bijection ¢ : Sy, — X, intertwines the actions. Therefore we
shall denote by © as well, the partial homeomorphism on X, : p 0o @ 0 ¢~ 1.

We shall find it convenient to identify, via ¢, points of S§, with their corre-
sponding sequences in X,. In particular

0t =(0,a2,0,as,...)
0~ = (a.,O,a;,O,...)
-0 = (m;,mz,m3,m4,...)

recalling that in Sect.2, m; was defined to be a; — 1 (and the computations in
Example 2.1).

Definition 4.1.

(i) For x,y€Xy, x and y are tail equivalent, x ~, y, if there is k such that
X =y,-for i>k.

(ii) R, is the smallest equivalence relation on X, containing {(x,y)|x ~, y} U
{(0%,07),(0%, —a)}.

Remark 4.2. Explicitly (x, y)€R, if either, x and y are tail equivalent, or each of
x and y are tail equivalent to one of {0*,0, —a}.

The topology on R, will be constructed from a basis made from three families
of sets. The first family is the one constructed in Sect.2 giving the topology on
Ry 2 {U(x, y,k)|(x,y) € R,}. These form a neighbourhood base for the points of
ARy. For points in R,\%, we will introduce two new families; basic neighbourhoods
of points of the form (ma*, na¥) with m,n = 0 will be denoted ¥ (na*t,na¥,k), and
basic neighbourhoods of points of the form (ma*, —na) or (—no, ma*) for m >0
and n>0 will be denoted by W (ma*, —na,k) or W (—no,mat,k) as the case
demands. To describe ¥~ we need to construct some open sets in #,. %°(x, y,k)
is an open subset of #(x, y,k) and should be thought of as being constructed by
removing both endpoints of the interval — if #(x, y,k) were equal to [a,b], then
U°(x, y,k) would be (a,b).
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Definition 4.3. Suppose (x,y)ER, and let B and y in S}, be the pre-images of
x and y respectively, with B =y + na for |n| <qi + qr—1 (as in Corollary 3.9).
Let P, =[s},t;] and P, =[s5,t;] be the intervals in % containing B and 7y
respectively.

If |P| S|Py let %°(x,y,k) = {(o(n), @(v)) | E(s}, 17 ) and p=v+na}. If
|P| < |P1| let %°(x, y, k) = {(@(w), p(v)) | VE(s7,2; ) and p = + na}.

Definition 4.4. Suppose x = ma®, y = na* for m,n = 0 and k is large enough that
m,n < gx_1 + qx. Let ¥ (x, y,k) = U°(ma*,nat, k) U %°(mo—,na~, k) U {(x, y)}.

Before constructing %~ we shall make some preparations.

Lemma 4.5.

(i) O((4E,, U AE\{—a}) = (4t U 45)\{0,0-}.
(ii)

Ak l\{ a}) - (Al+qk+lh 1 U A§+2qk+qk—l
UM mng U AT UAD\{0V,07} .
(i) If 0=Sn<gqi and 1 Em < gi then
A:,,—l(m—l) N {-a,—2a,...,—(m+n—1)} = {—-ma} .
Proof. (i) Suppose k is even
(4t U AEON\{—a} = [(gr+1 — Dat,—a)U (=0, (gr+1 + qx — 1a”]
U [(gr+1 + g — Dat, (g — Da~].
Thus
O(4,, \{—-a} U 45 = [genat,07) U (0, gra™] = 477"\ {07} U 45\ {0*} .
The proof is the same for £ odd.
(i)
A: 1\{ a} A1k+qk 1 U A24k+qk 1 ‘U A'k"k+14k+qk—1 U Al‘;kﬂ\{ a} U Ak“ .
So by (i)
Ak 1\{ a}) l+qk+q1 1 U A‘l:+qk—1+24k

‘U AH"II: 14+Me1gk u (Allt-H U A’f)\{0+, 0_} .

(iii) As m < qq, —maeAqk —(m—1) and Aq,,—(m-x) is disjoint from {-—oa, —2a,...,
—(m — 1)a}. Thus we are reduced to showing that Aqk —(m—1y 18 disjoint from
{—-(m+Da,...,~(m+n— l)a}. If —jae A’;k_'(m_,) for some m+1<j<m+
n—1 then —(j — l)aeAqk —(m—1)- S0 we may assume that m = 1. Thus we must
show that A’;k ! is disjoint from {—2a,...,—na} which is true as long as n < gj.
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Fig. 6. From left to right: the neighbourhoods ¥, %, and ¥

Definition 4.6. Given positive integers m and n, choose k such that m,n < q; +
qr—1; let W (—mo,no*, k) ={(a,b)|a € 45 \{-ma} and b= O""(a)}U

q—(m—
{(=ma,nat)}. By Lemma 4.7(iii) ©@™*" is defined on A";:_l(m_l)\{——ma} and so
the definition makes sense. We let W (noa®, —ma, k) = W{—mo,na®, k)", where
(x, )" = (3,x) for any (x,y)ER,. We let W°(—ma,noa*t k) be the subset of
W (—ma,nat, k) obtained by deleting the endpoints of A::_'(m_l) in the construc-

tion above.

Lemma 4.7. If U(x, y,k) meets W (x',y, k') then

() W, Y K) S Ux, y,k) if k<K, o
(i) %(x, y,k) C W' (x',y",k') if k' <k and x' is not in the k® set of x, or
(iii) %(x, y, k)N W (X, y' k') = W (x, ¥, k) if K <k and X' is in the k™ set of x.

Proof. By taking inverses, if necessary, we may assume that x' = —ma. Let P
and Q be respectively the k™ sets of x and y with |P| <|Q|. Suppose %(x, y,k) =
{(u,v)|u€P, v = O"(u)}. Then P and A"; 1) meet, and %(x, y,k) N W(x, ', k')

qy —(m—

={(wv)|ueP n 4%, _,_,)\{-ma} and v = O"(u)}. So if k <K’ then 4}, ., )

CPand # (¥, y\k') C Ux, y,k). f k' Skandx' ¢ P then P C AX _  \{-ma}
and thus %(x, y,k) C w'(x, y',k'). If K’ < k and x'€P then U(x, y, k)N W (x, y' k') =
{(u,v)|ueP\{—ma} and v = O"(u)} = #(x,y,k). The case when |Q| < |P| is
handled similarly.

Theorem 4.8. The sets {%, ¥, W} form a basis for a locally Hausdorff topology
on R,.

Proof. The sets {#} are a basis of #,. By construction {¥, %} covers R,\%, so
we just have to show that the intersection of two subsets of {#,¥, %} is an open
subset of &, or is a neighbourhood of type ¥ or #. A ¥  neighbourhood is the
union of two #°’s and a point not in #,. Thus any intersection of the form # N ¥~
is an open subset of %,.

By Lemma 4.7 the intersection of a %~ and a %-type neighbourhood must be
a % neighbourhood or a #~ neighbourhood. Also if ¥'(x, y,k) meets #'(x, y, k'),
then the intersection must be a union of %-type neighbourhoods since no point
(—na,ma*t) or (mat,—na) is in any ¥-neighbourhood nor is any (ma*,na¥) in
any W-neighbourhood. The intersection of two ¥~ neighbourhoods (or #  neigh-
bourhoods) is either a ¥~ neighbourhood (respectively a #” neighbourhood) or an
open set in #,, i.e. a %° neighbourhood or the union of two #° neighbourhoods.
Thus the family {#%, ¥, %"} forms a basis for a topology of R,.
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Fig. 7. The diagram shows some sub-basic neighbourhoods of Ry C Xu X Xy. In this example o =
[0;2,4,3,...]. From left to right are shown #(9a™*,7at,3), ¥'(5a*, 140—,2), and W (—a,at,1).

Each % neighbourhood is Hausdorff, thus each point of #, has a Hausdorff
neighbourhood. Hence each ¥~ neighbourhood is Hausdorff, being the union of
a point and two %° neighbourhoods. If (x, y) € #W (—ma,na*,k) and (x, y) + (—ma,
nat), then we may choose k' > k large enough that x and —ma lie in different ele-
ments of %. Thus ¥(x, y,k’) and # (—ma, na*, k') will be disjoint. Since any other
two points of W (—ma,nat,k) lie in &,, they can be separated. So we can con-
clude that % (—ma,nat,k) is also Hausdorff. Hence the topology just constructed
is locally Hausdorff.

Definition 4.9. Define ® : R, — S' x Z as follows:
If x ~, y, in which case there is n € Z such that y = @"(x), then let ®(x,y) =
(m(x), n).

If m,n = 0, let ®(mo*,na~) = &(ma~,na*) = (mo,n — m).
If m>0 and n = 0, let &(—ma,nat) = &(—mo,nt~) = (—ma, m+n) and
d(nat, —ma) = S(no—, —ma) = (na, —(m + n)).
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Proposition 4.10. If &(x,y) + &(x', y') then (x,y) and (x,y') can be separated by
disjoint open sets.

If &(x,y) = D(x’,y') but (x,y) + (x',y') then there is an open set containing
(x,y) but not (x’,y'); however (x,y) and (x’,y') cannot be separated by disjoint
open sets.

Proof. Suppose &(x,y) = (n(x),n) and &(x’,y’') = (n(x'),n’). If n + n’ then every
basic neighbourhood of (x, y) will be disjoint from every basic neighbourhood of
(x,y). If n(x) + n(x’) we may choose k large enough so that the basic neigh-
bourhoods of (x,y) and (x)y') are defined and the elements of % containing
{n(x)*, mn(x)"} are disjoint from the elements of <% containing
{n(x")* and n(x")~}. The basic neighbourhoods of (x, y) and (x, y’) will be disjoint.

Suppose P(x, y) = D(x, y'). There are two cases. First (x, y), (x}y') € {(ma™,
(n - m)a*), (mat,(n —~ m)a~), (ma~,(n—m)at), (ma~,(n —m)a~)}. The basic
¥-neighbourhoods contain exactly one of the two points, (—,—),(+,+). So there
are basic neighbourhoods which contain one of the four points but none of the other
three. Also the basic #-neighbourhoods of each of these points (for any k) all meet
the basic # neighbourhoods, so these points cannot be separated by disjoint open
sets. ‘

The second case is that (x, y), (x, ') € {(—ma,(m + n)a™), (—ma, (m + n)a~)}
(after taking inverses if necessary). The basic #-neighbourhoods contain only one
of these two points but any two of them meet. Thus one can find an open set con-
taining a given point but not the other, but one cannot separate these points with
disjoint open sets.

Proposition 4.11. & : R, — S' x Z is continuous.

Proof. Let T C S' be open and (x,y) € ~1(T x {n}).

First suppose 7(x) ¢ Za. Then there is k and P € % such that n(P) C T. Sup-
pose y € Q € #. Then &(# (x,y,k)) is either n(P) x {n} or a(O~"(Q)) x {n}
whichever is smaller. Hence % (x, y,k) C @~ (T x {n}).

Secondly suppose n(x),n(y) € Na. Then choose k& such that there are P,P' €
%, with n(P),n(P') C T and n(x)* € P and n(x)~ € P’. Then % (n(x)*,n(y)*, k),
U (n(a) ", n(y)",k) € ®~(T x {n}). Hence ¥ (x,y,k) C & (T x {n}).

Thirdly suppose x = —ma for some m > 0. Then choose k such that there is
P € &, with x € P and n(P) C T. Then #'(x, y,k) C @~ (T x {n}).

Since neighbourhoods of the form T x {n}, with T open in S! form a base for
the topology, the proposition is proved.

Proposition 4.12. If &(x,y) = &(x',y’) then f(x,y) = f(x,y') for all continuous
functions f : R, — C.

Proof. Let ¢ = f(x,y) and ¢’ = f(x',3’) and suppose ¢ % ¢’. Then there are neigh-
bourhoods # of (x,y) and %’ of (x, y') such that

16 ) = fw,)| < '““2—0’ for (u,0) € ¥

and o
&) = f@,0)] < lc—rz——l for /o) e @' .
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By Proposition 4.10 N %’ is not empty. Suppose (u,v) € ¥ N4'. Then
le=c'| = |f(xy) = f& )
S |fey) = f@o)| + | f(wv) - (x5

le ¢l
2

IIA

This contradiction shows that we must have ¢ = ¢’.
Theorem 4.13. &* : C(S' x Z) — C(R,) is a linear bijection.

Proof. @* is injective since @ is surjective. Suppose f € C(R,). By Proposition
4.12 there is f : S! x Z — €, such that f = fo &.

Let ¢ >0 and (n(x),n) € S! x Z be given. We shall show that f is continuous
at (n(x),n). Suppose first that n(x) ¢ Zo and choose y such that (x, y) € R,. Choose
k such that |f(x, y) — f(x}y')| <& for (x,y') € U°(x, y,k). Now ®(U°(x, y,k)) is
open and for (¢,n) € O(U°(x, y,k)), |f(1t(x),n) — f(t,n)l < ¢. Thus f is continuous
at (n(x),n).

Now suppose n(x) € Na, choose y such that (x,y) € R,\%®, and k such that
[fCr,p) = f(x, )| <& for (x}y') € ¥(x, y,k). Again &(¥(x,,k)) is open and
for (t,n) € (V' (%, y,k)), |f(n(x),n) — f(t,n)] <e. Thus f is continuous at
(n(x),n).

Finally suppose m(x) € —INa. Choose y such that (x,y) € R, and k such that
|f(xy) — f(x,y)| <ée for (x},y') € #W°(x, y,k). Since &(#°(x, y,k)) is open we
have again that f is continuous at (7(x),n).

Remark 4.14. As shown in Proposition 4.10, the topology on R, is not Hausdorff.
By a compact subset of R, we mean a set satisfying the Borel-Lebesgue axiom:
every open cover has a finite subcover. These sets are called quasi-compact by
Bourbaki [1, Chapter 1, Sect. 9]. The set {(x,x)|x € X,} is an open compact subset
of R, which is not closed and whose closure is not compact.

Lemma 4.15. For each compact J C S' x Z, the inverse image ®~'(J) C R, is
the closure of the compact set ®~'(J) N Ry.

Proof. We may suppose that J has no isolated points. Let K = &~ 1(J)N &,. K is
a compact subset of #, and thus a compact subset of R,. Let x € &~ (J)\K.
Suppose that x (or x~!) is of the form (ma*,na~) for m,n = 0. Then ¥ (ma™*,
no”,k)\{x} C #, and &(¥ (mat,na",k)) must meet J\{P(x)}, as &(¥ (mat,
no~,k)) is open. Hence ¥ (ma*,na~,k) meets K. The same argument applies to
the case when x (or x~!) is of the form (ma*, —na) for m = 0 and n>0, as &
carries %™ neighbourhoods into open subsets of S' x Z. In either case x € K.

Theorem 4.16. Suppose f € C(Ry) and g € C(S' x Z) is the unique function such
that f = g+ ®@. The support of f is the closure of a compact set if and only if the
support of g is compact.

Proof. Suppose supp(g) is compact. So supp(g) C S' x {—n,...,n} for some n.
Since @7!(S! x {—n,...,n}) N R, is compact, ®~!(supp(g)) N &, is compact.
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Now &~'{y|g(»)+0} C ~'({y|g(y)+0}~) = & '(supp(g)). Thus supp( /)
= (& Yy |g(»)%0})~ C & !(supp(g)), and thus supp( 1) N &, is a closed subset
of the compact set @~ !(supp(g)) N .

Now suppose x € supp( f)\%,. We have two cases to consider: x = (ma*,na™)
(or its inverse) for m,n = 0, or x = (ma*, —ma) (or its inverse) for m = 0 and
n>0.

In the first case let ¥ = (mat,nat). Then f(x) = f(¥). So if f(x)+ 0 then
f = 0 on some % neighbourhood of X. Hence x has a ¥~ neighbourhood which meets
supp( f) N R,. If f(x) = 0 then every ¥~ neighbourhood of x meets supp( ) N #,,
since every ¥ neighbourhood of x contains a point y for which f(¥) % 0 and such
a point must be in %, as a ¥ neighbourhood only contains one point not in %, —
x in our case. Thus x € (supp(f) N %,)".

In the second case we proceed similarly. If f(x) 40 then f 4+ 0 on some
# neighbourhood of x. x will be the only point of such #  neighbourhoods not
in %#,, so each # neighbourhood of x meets supp( )N X,. If f(x) =0 then
every W neighbourhood of x meets supp( /) N %,, since every %  neighbourhood
of x contains a point y for which f(y)#+ 0 and such a point must be in %,
as a W neighbourhood only contains one point not in %, — x in our case. Thus
x € (supp(f) N %#,)~. Hence in either case x € (supp( f) N %#,)~, and thus supp( )
is the closure of the compact set supp( f) N %,.

Now suppose supp( /) = (®{y|g(y) + 0}) is compact. Then ®((®~'{y|g(»)
#+ 0})™) = @(supp( 1)) is compact. Hence {y | g(y) #+ 0} is a subset of the compact
set @(supp( f)), and thus supp(g) is compact.

Definition 4.17. C,,(R,) is the space of continuous functions on R, whose support
is the closure of a compact set. By Theorem 4.13, @*(C,o(S' X Z)) = C,oo(Ry), the
continuous functions on S' x Z with compact support.

5. The C*-Algebra C*(R,, p)

We construct a Haar system u on R, and show that the C*-algebra C*(R,, ) is
isomorphic to A4, the irrational rotation C*-algebra for the angle 2mo.

Definition 5.1. For x € X, let R: = {(x,y)|(x,y) € R,}. Define a measure u*
on RX by setting p*(x,y)=1 if y¢{mat|m = 0} and u*(x,y)=1/2 if y€
{mat|m = 0}. Let pu={u*}rcx, We make S' X Z into a groupoid in the
usual way: (x,m)(y,n) = (x,m + n) provided y = x + ma (modulo 1), (x,n)™! =
(x + na,—n). Let v* be counting measure on (S' x ZY = {(x,n)|n € Z}. Then
v = {V*},es1 is a Haar system on S' x Z.

We shall adopt the notation of Renault [7, Chapter 1, Definition 2.2]: for f €
Coo(Ry) and x € X, let

)= Y feyIrxy),

(x,7)ER,
and for g € C,o(S! x Z) and y € S! let
vgXy) = 3 9(yn).
neZ
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Lemma 5.2. Given g € Cpo(S! X Z) let f =go ®. For x € X,,
u(f)x) = v(g)(n(x)),

and u( f) is continuous on X,. Also u is left invariant:

> (L) Ly (L) = Y fLy2)et (v, y2) .

(1, 32)ER? 1, 72)ER!

Proof. We shall break the proof into two cases.

(i) 7z(x)¢la Then R: = {(x,0"(x))|n € Z}, ®: R — (S' x Z)"® is bijec-
tion and both x* and v**) are counting measures.

(ii) 7(x) € Za. Then

BOx) = X fOyuxy)

(x,y)ER,

= Y (f(x,ma" ) (x,mat) + f(x,ma” )u*(x,ma™))
m20

+ Z f(x, —ma)u*(x, —mo)
ZI g(n(x),m)+ 3 g(n(x),m)

m>0
= W(g)(n(x)) .

Hence u( f) = v(g) o & is continuous on Xj,.
As for the last claim note that u*(x, y) depends only on y. Thus

> f(GLx2) Ly IER(L ) = Y f((x,x2)(x2, y2 ) (x2, y2)

(1,y2)ER? Y2~z
= Z f(xla y2)l‘xz(x21 y2) = Z f(xl, yZ)qu(xls )’2)
Yyarvxz Yarvxz
= Y fOLyIOLy).
(1, 2)€RT!

Definition 5.3. We give C,,(R,) an involution and product by defining

& y)=f(y.x)
and
fl * fz(x,z) = Z fl(xs y)fz(y,Z)[lx(X,y) .

y~x

As the algebra of continuous functions on a topological groupoid Cpo(S! x Z) has
the involution and product:

g(y,n)* = g(y + na, —n)
and
g1 * g2(y,n) = Zzyn(y,rn)gz(y +ma,n —m).
me

Since the functions have support the closure of a compact set the sums are always
finite.
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Proposition 5.4. Suppose f, and f, are in Coo(R,), and g, and g, are in Cpo(S'X Z)
with fi=gio® and f, =g,0®. Then [} =gio® and fi* f,=(91%g2)0 ®.
Hence ®* is a *-homomorphism.

Proof. Suppose ¥(x,z) = (n(x),m), then &(z,x) = (n(x) + ma, —m). Thus

gf(d)(x,z)) = 97(7‘()‘)”") = g1(n(x) + ma, —m)
= f](Z,X) = fl*(xvz) .

Hence &* is a *-linear map.

To verify that @* is a homomorphism we consider two cases.

(i) Suppose n(x) ¢ Za. Then RX = {(x,O"(x)|n € Z} , y* is counting measure,
and the restriction of @ to R} is one-to-one. Also there is m € Z such that z =
O®™(x). Thus

Six fo(x.2) = fi * fo(x, 07(x))
= %:zfn(x, 6"(x))f2(8"(x), 0™(x))

= Zzgn(n(x),n)gz(n(x) + no,m — n)
ne

= g1 * ga(n(x),m) = g1 * g2(P(x,2)) .
(ii) Suppose n(x) € Za, and D(x,z) = (n(x),m). Then
fi* fa(x,2) = Ezjo(f](x, na*) fa(na*,z) + fi(x,na”) f2(na”,2))/2

+ Zo Si(x, —na) fo(—na,z)

= Ez:ogl(n(x),n)gz(n(x) + no,m — m)

+ 3 gi(n(x),n)ga(n(x) + no,m — n)

n>0
= g1 * g2(m(x),m) = g1 * g2(P(x,2)) .
Thus @* is a x-homomorphism.

Definition 5.5. We give C,,(R,) the topology of uniform convergence on the clo-
sures of compact sets, and Co,(S' x Z) the topology of uniform convergence on
compact sets.

Proposition 5.6. ®* : C,o(R,) — Coo(S! X Z) is a homeomorphism.

Proof. Let fo € Coo(R,) and go = @*( fo). A basic neighbourhood of f; is given
by % (fo,K,&) = {f € Coo(Ry)||f(x) — fo(x)| <€ for x € K~}, where K C R, is
compact and ¢ > 0. Thus

O* (U (f,K,€)) = {g € Coo(S" X Z)||g(P(x)) — go(®(x))| <& for x € K}
= {g € Co(S' X Z)||g(») — go(¥)| <& for y € H(K)} .
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This is a basic neighbourhood of go in Cpo(S' x Z).
Conversely, given J C S' x Z compact and & > 0, let

U (go,J,€) = {g € Coo(S' X Z)||9(¥) — go(y)| <& for y € J}.

By Proposition 4.15 there is a compact set K C R, such that &(K)=J. So
U (9o,J,€) = D*(U ( fo, K, ¢).

Definition 5.7. Following Renault [7, Definition 1.3] we define a norm ||-|; on
Coo(Ry) such that || f*|lr = ||fllr and || fi * f2ll < [LAllzll f2lls. Let

1fller = sup 3 /G 9K 5 3

o yx

I fllz: = sup 3 |f(0)u*(x, »),

XEXy y~x

ANl = max{|| flls |l fllz:} -
Remark 5.8. Note that || f*|l1, = || fllz» so |l.f*llr = |l fll;- Also
Ifi % f2llr = sup 3= |fi * folu'(x, »)

XEXy y~x

= sup )

XEXy y~x

w(x, y)

Z fl (x,Z)fz(Z, }’)le(xaz)

zZ~x

< sup - ) fits2)| | f2(z W) (x2)p* (x, y)

XEXy y~xzrx

X€EXy z~x y~x

= sup ) |fi(x2)| (Z Ifz(z,y)llt‘(x,y)) K (x, y)

= sup Z Ifl(x Z)l (2 le(z’ .V)“‘z(z’y)) #x(x,z)

XEXy z~vx yr~x

IIA

sup > | f1(x,2)] (sup > e y)lﬂ’(z,y)) W (x,z)

XEXy z~x Xo yr~x

I/l A2 N -

A

Also
1A * fallne = 1L * £ ller S W2 NLAA s = IANL A2 -

Hence || f1 * f2llr < | Al f2llr-

Definition 5.9. A x-representation of C,,(R,) on a Hilbert space # is a continuous
*x-homomorphism from Coo(R,) to B(H#') when Coo(R,) has the topology of uniform
convergence on the closure of compact sets and #(#) has the strong operator
topology. A -representation n is bounded if ||n( f)|| < ||f |z for all f in Coo(Ry).
We place a C*-norm on C,(R,) by setting | f|| = sup{||n( f)|| | = is a bounded
x-representation of Cyo(Ryz)}. C*(Ry, 1) is the completion of C,o(R,) with respect
to this norm.
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Theorem 5.10.
C*(Ry, pt) ~ Ay .

Proof. We have already shown that as topological *-algebras @* is a homeomorphic
*-isomorphism from Cpo(Ry) to Coo(S' X Z). Let us show that @ also preserves the
norm || - ||;. Let f € Coo(Ry) and g = ®*(f) € Coo(S' x Z). Then

Ifllzr = sup 3 |f (e, »)Iu*(x, y) = sup u(|f])(x)
X, x€X,

XEXy y~x

= sup v(|2*())(n(x)) (by Lemma 5.2)

sup v(|g])(») = llgllrr -
y€es!

Thus ||2*( )l = || f)l;- Since the completion of (C,o(S' X Z),]| - ||) is 44, the proof
is complete.
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