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Abstract: We prove that the set of solitary wave solutions of a generalized
Kadomtsev—Petviashvili equation in two dimensions,

(u + (um+l)x + Ugrr)x = Uyy
is stable for 0 <m < 4/3.

1. Introduction

The generalized Kadomtsev—Petviashvili (GKP) equation
(ut + (um-H )x + uxxx)x = Jzuyy (1)

is a two dimensional analog of the generalized Korteweg—de Vries (GKdV) equa-
tion. When m =1 and 6> =1, (1) is known as the KPI equation while m = 1
and 02 = —1 corresponds to the KPII equation. Both are universal models for the
propagation of weakly nonlinear dispersive long waves which are essentially one
directional, with weak transverse effects [6]. It also describes the evolution of sound
waves in antiferromagnetics [9]. It is well known that both KPI and KPII can be
solved by the Inverse Scattering Transformation (IST) [1, 2].

Many local existence results for KP and GKP have recently appeared for both
infinite space and periodic boundary conditions (see [19, 20, 13]). There are also
some global results [22]. It is shown in [9, 20] by a virial method that GKP-I

(u, + (um+1)x + Uyrr)x = Uuyy 2)

has blow-up solutions for m = 4 while arguments in [14] indicate that blow up
should occur for much lower m, namely m > 3.

An important question is the stability and instability of solitary waves for GKP,
that is, solutions of form u(x, y,t) = @(x — ct, y). Existence of solitary waves is
shown in [14] for 1 <m <4 and also in [21] by a different method. For GKP-I,
instability is shown in [14] for % < m < 4 using a method of Shatah and Strauss [3]
and a completed proof is provided by de Bouard and Saut [24]. In this paper, we
shall prove that the solitary waves are nonlinearly stable for 0 <m < %. After this
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paper was completed, we learned that de Bouard and Saut [24] have a similar result
by a different method.

The paper is organized as follows. In Sect. 2, we give the detailed proof of the
existence of solitary waves for GKP-1 with 0 <m < 4. The solutions are obtained
by using the variational method and the techniques developed by Lieb [18] to solve
a constrained minimization problem. In Sect. 3, we prove the set of solitary waves of
KP-I is nonlinearly stable for 0 <m < %. The proof is based on the idea of Shatah
[4] and Levandosky [S]. We use the variational properties of the minimizer and
a convexity lemma of Shatah to estabilish the key inequality for stability theorem.

We shall use the following notations. |- |, (resp. || - ||s) will stand for the norm
in the Lebesque space LP(R?) (resp. the Sobolev space H*(R?)) .

Because of the structure of Eq. (1), we introduce the following function space:

V(Q) = {ulu € L(Q),u, € L*(RQ),D;'u, € L}(Q)} 3)

equipped with a norm ’

july = (f(u’ ; Wulz)dxdy)z ,
Q

and an inner product
(u,0) = f(uv+ Vu- Vv)dxdy .

Here Q may be R* or a box [a,b] x [c,d] in R?, and Vu = (u,,D;'u,)",

Dy'= [ (or [Z)

We thank the referee for the vaulable comments.

2. Existence of Solitary Waves

In this section, we give a more detailed proof of the existence of localized solitary
waves for GKP-I given in [14]. By solitary waves, we mean traveling wave solutions
of the form u(x, y,t) = @,(x — wt, y). Substituting in (1), ¢, satisfies the following
equation:

@+ D70y — Pux = ¢ @
For m = 1, this equation has an explicit solution (lump soliton [1])

o —x*/3 + y*/(3w)

(0 +x2/3+ y2/(3w))

We shall prove the existence of decaying solutions for 0 <m <4 in space
V= V(Igz) by a variational method. We first introduce the following functionals
on V(R%),

u(x,y) =8 )

0w =5 [ dxdy, ®)
R?2

Ew)= [ (%«D:‘uy)2 +185) -

'“*2) dxdy )
RZ

(m+2)
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K@) = [u™dxdy, 8)
RZ
In(u) = [ (cu® + |Vul*)dxdy . 9)
R2

Remark 1. Here and in the following, we always assume that m = m;/m,, where
m; is any even integer and m; any odd integer. This guarantees that K(u) is non-
negative.

Let’s also define the following minimization problem:
M@)= inf @
u€V(R?) (K(u))m+2
It is easy to see that
Io(A)  lo(u)

_ = — for A40.
KOup=a K=

Similarly, we have
M(@) = inf {lu(w)| K@) =1}
u

By change of variable u(x, y) = wr V(/wx,wy), one easily obtains that
Mw) = wi=M(1) w>0. (10)
Note that Eq. (4) is the Euler-Lagrange equation of the functional

1
(m+ 1)(m +2)

Therefore, if there is a function @ € V(R?), such that
Iy(¢) = M(w) with K(¢)=1,

Lo(w)= [ (%uz + %Wu|2 - u’"+2) dxdy . (1)

then ¢ is a solution of

DY — Pxx + D;Z(Pyy = 29",

where A is the Lagrange multiplier. Hence ¢ = l'liq) is the solution of (4). We call
such a solution a ground state.

Theorem 1 (Existence of solitary waves). Let 0 <m <4, w > 0 and m = my/m,,
where my it is any even integer and m, any odd integer. Then there exists a
minimizer ¢,, € N such that

1u(90) = inf 1,(u) =M(w),
where N = {ulu € V(R?), K(u) = 1} and K(u) given by (8).
To prove this theorem, we use the techniques used in [15,18,23 and 17]. The

following lemmas are needed for the proof of Theorem 1. We shall prove the lemmas
later.
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Lemma 1. Let V(Q) be the space defined in (3) and Q may be R* or a box in
R2. Then for any 2 <n < 6, there exists a constant C, such that for any u € V(22),

({{Iul”)" <cC (r{WuF +u2) . (12)

Lemma 2. Let u € V(B), where BC R? is an arbitary box. Then Ve > 0, there
exist integers N¢,M;, s.t.

fu2 (fuw,.l ,.2) +£f |Vul?,

m—-l nz—
where wy, ,, are orthonomal basis functions in V(B).

Lemma 3. Let {u/} denote a minimizing sequence of I, =1,-,. That is,
lim;_,o0 Iy(w/) = infyuen Iy(u). Then there exist &,6 > 0 such that for all j,

u(lu’] > €) z 6,
where u( - ) denotes the Lebesgue measure.

Lemma 4. Let u be a function such that |uly < C and p([lu| > ¢€]) = 6 > 0.
Then there exists a shift T u(x,y) = u(x + s,y + t), such that for some constant
oa=u(C,0d,8)>0,

HBN([|Ts,u| > &/2]) > a,
where B is the unit box (i.e. box centered at origin and has length 1 x 1) in R%.

Lemma 2 is used in [11]. Lemmas 3 and 4 are similar to the results in [15 and
18].
Proof of Theorem 1. By (10), it suffices to show that there exists a minimizer
up € N such that I;(up) = M(1). We denote I(u) = I,(u) and I° inf,en I(u). Let
{u;} be a minimizing sequence, i.e I(u;) — I® with I(4;) < C, |ujlm2 =1. We
then have u; — uo weakly in ¥, u; — uo weakly in L2 1t follows from Lemma 2,
u; — ug strongly in L? on any bounded domain. And u; — ug a.e. in R

We next show u; — up strongly in L™, To do that it suffices to prove
|ug|m2 =1; i.e. that ug € N. Since u; — ug weakly in L™+2, this implies |uo|yms2 < 1.
Next, we want to show that |ug|;m+2 %0, i.e. ug £0. From Lemmas 3 and 4, there
exists a, such that

WBOIT, ] > &) > a.
Let T, ,u; be the new sequence denoted also by u;, we have
uBN[|uj| > €]) > a.

Since u; — uo ae., it follows that p(BN[|lug| > 5]1) > a, therefore up F0 and

||uo]|L..+z *0
Next, we show that if 0 <A = [uf*? < 1, we have a contradiction. Denote

v; = uj — up, so that v; — 0 weakly in L™t2 Observe that due to a theorem of
Brezis and Lieb (a refined Fatou lemma [16])

Note that o™ =1~ fug*t? =1-12. (13)
ote tha

I(u;) = I(vj + o) = I(vj) + I(uo) + 2 [ vju0, + 2 [ (D 'v;,) (D 'uoy) +2 [ vjug -

The last three terms converge to zero by weak convergence of v; — 0 in V(R?).
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Hence
I° = lim I(v;)+I(uo) -
J—00

Let g = A—%, then we have [ |ito]™+? = 1. By homogeneity,
m+.

I(uo) = A=1 (;‘i) = A (i) = Al .

m+2

n. = Y D m+2 — |vj|m+2 imi
Let 9; (1__,1;5 From (13), we have [ || Ll_l — 1. Similarly,

vj

I(;))=(1— )] | —L —
()=~ ((1_1)#

) = (1 - )15 ,

lim I(v;) = (1 — A)=7 lim I(5;) = (1 — A)=21° .
Jj—00 Jj—oo

Therefore ,
I° —I(up) = (1 — A)mI°.

Equations (15) and (16) give
P2+ (1 =)0 >0,
which is a contradiction. Therefore
A= [lu™? =1,

ie. u; — up strongly in L™*2.
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(14)

(15)

(16)

Moreover, because u; — ug weakly in V, I(up) < inf I(u;) and up minimizes /
in N. Hence I(u;) — I(uo). Therefore u; — uy strongly in V(R?), and this estab-

lishes Theorem 1.
We now prove the lemmas.

Proof of Lemma 1. We shall prove (12) for 2 = R? only. The case with Q being
a box can be proved similarly. Consider the Fourier transform representations of

u,uy and Dy 'u,,

u= [ a(p,q)e"**Vdpdq , u, = [ix(p,q)e? dpdq ,

D;l'u, = fDE’\uy(p,q)e"”x'”"ydp dq .
Then, we have
[ |u* dxdy = [ |i|*dpdq , J|Vu? dxdy = [ |Vul*dpdq .
For some 0 < « < 1 and p,q=+0, we have
W(p,q) = [e P Pu(x,y)dxdy
= a [ e P Dy(x,y)dxdy + (1 — a) [ e P* D u(x, y) dxdy
(1-a)p

= _a._ [ e Py, (x, y)dxdy + B [eP*~9D 1y, dxdy .
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It follows that
1 —o)pl =

n o~ ( -
|a(p,q)| < mlux| + Iql IDxluyl
2 2
o l1—a R —
S\ (3] + (4522) - Vi vemr,
Let « = £ Then
L V2 _ =
“ = lq| -llj?z x[? + ‘Dxl”ylz s
~ \/i Y ~ 1 m
jal" < <|q| 22 ) i+ ot

From Holder’s inequality, we have

m —
P fl llﬁl’"dpdq ép2 qf’zl (ML‘{'F) Uil + 105"y '} dpdg
+9*2 +7z

ol \**
= (p2+qf2g1 ("II“‘PZ) dpdq)

3
X{ 1 Iﬁ}|2+|D;luy|2dpdq} .
Pz

2—m

=z

It is easy to see that [ 2+ ngl(ﬁ-‘%;z)iz—"_"dpdq is convergent if g < m < 2. Hence
3
[ la"dpdg < C1{ [ &>+ |Dx'uy|*dpdg
P+ zl P+l

2

=G { Tl + ID:?‘uyIzdpdq} ,
RZ

where C; = [ » +ngl(ﬁf|;z)ﬂdpdq. On the other hand, we have

m

2
[ |a|"dpdq < Cz( / Iﬁlzdpdq) < G ([ |al*dpdq) .

P+gi<l P+e<l1

Again, [ denotes the integral over R2. It follows then,

~im ~ — 3 . n
[\almdpdg < C\ ( J | + D5, Pdpdq) +C, ( f |afdpdq)

IIA

Co ([ 1P + D5 u, P + lifdpdg)

By the theorem of Hausdorff-Young (p. 72 in [7]), we have
1 e

([ lul"axdy)” < ([1a")" ,
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where 1 4+ 1 = 1. Therefore, if § <m <2, we have 2 <n <6, and

1
2

(f |u|"dxdy)" <G (f 12 + (D; 'uy)? +u2dxdy) . O
R? R?

Proof of Lemma 2. Let us assume that the box is of length 2% x 2%, The general
case can be obtained by a scaling.
Consider the Fourier series representations of w,u, and Dy ‘uy

_ imx-+in — imx+in
u= Zam,ne v, Uy = Z by, ne v,

Dx—-luy — Z cm’"eimx+iny .
Then,

For some 0 < o« < 1 and p,q=1=0, we have

amn = [ e ™™ u(x, y)dxdy
= o [ e ™ MWy(x, y)dxdy + (1 — a) [ e ™ Wu(x, y) d}cdy

= ——zm J e P Wy (x, y)dxdy + g—_;l—aﬂf e~ ™= p-ly, dxdy .

It follows that

o (1 —a)|m
lam,nl =< mlbm,nl + Tlllcm,nl

T+ (52 ot o

IIA

2
Let o = Inlﬁ’ Then

m .
|am,n| < |n||+| ZV Ibmn|2+lcmn|2

2
lam,nlz = (l"l T m2) ('bm,nl2 + 'cm,nIZ) .

Ve > 0, 3N, M,,s.t. for n>N,, m> M,, we have (;2;)* < &. Hence

fu _E m,n = 2 amn+e(2bt2n,n+crzn,n)
m,n m,n

N

mg ) (‘j)'uw,,,,,.) +e (‘{ui +(D;‘uy)2) . O
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Proof of Lemma 3. Since {u;} is a minimizing sequence, we have

L= [lul™ = [ lwi™+ [ ™+ [ |y

fluwlz 4] [lu;) <el [e<lujl<?1]
IPNER)|

g [ "™+ [ |wl? + Con([luy] > €l),
[lui12 4] [luj| sel

| uj Im+2+y

1 m+2
+e" [ |ulF+ (E) u(luj| > €])

|7 l] e

IIA

where 0 <y <4 — m. From Lemma 1, we have

[ ™ < [ | ™ < G,
Rz

(|21

d
an I P s flwPsc.
[luj] Ze) R?

By choosing & small enough, we have

1—8yC1—8mC2

C. =9. O

w(llu;| > €]) 2
Proof of Lemma 4. For simplicity, we assume |u|y < 1. Consider any function v,
such that |[v|y <1 and |v];+0. Let k =1+ l_vlT" We first prove that there is some x,
2
such that .
J @+ |Vo*)dxdy < mk [ v*dxdy, a7
B, B,

where B, is the unit box centered at x and m is a certain integer.
If (17) is not true, then we can cover R? with unit boxes {B,,} so that each
point x is covered by at most m unit boxes and we have

m [ (W +|Vo)dxdy = 3 [ (v* +|Vo|*)dxdy 2 mk Y [ vPdxdy
R? i By, ’

i B,

[\

mkfvzdxdy=m(1+fuz) >m.
R? R?

Therefore 3
[ = [ @+ |Vo[*)dxdy > 1,
RZ

which is a contradiction. By Lemma 1, we have, for x satisfies (17) and some
p>2

2

<f|v|”dxdy> < G (v + |Vo*)dxdy < Cimk [ |v|?dxdy
Bx Bx B’

IA

IIA

Cimk (f Ivl”dxdy)p (4(B, N supp(v))) 7" (18)
B,
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and p=2

1 P
K(Bx N supp(v)) > (m) . 19)
Equation (19) is true for any v satisfying |v|y < 1 and |v|,+0. Now let’s take
v =max(|u| — £,0), we have |v]y < 1 and [p, v’dxdy 2 ()’6 and we have k <
1+ @—')13. From (19), there exists x, s.t.
2 1 P2
I 4
u(Bx Nsupp(v)) > @, o= (m) ,

ie.
H(B: N [lu] > &/2]) > a.

The conclusion of the lemma follows with a shift. O

3. Stability of the Solitary Wave

In this section, we show that the solitary wave of GKP-I is nonlinearly stable if
O<m< %. In order to study the stability of solitary wave of GKP-I, we need to
consider the local existence for GKP-I. There are many results on local existence
for GKP-I (see [19, 20, 13]). For our purpose, we state here the local existence
results by Saut [20]. Let

H, (R?) = {f € 5'(R%), zlff(fl,fz) € LZ(RZ)}
1
equipped with the norm
1 4
"f”"Z,X - é%f ) s

X = {fEH‘(Rz),?"' (E[') GH’(RZ)},
1

~ (@)l

Theorem 2. Let ¢ € X, s = 3, such that ¢,, € H; 2. There exists T > 0 such
that (1) has a unique solution u with u(0) = ¢ satisfying

with

Al = NAlls +

ue C([-T,TEH (R*))UCY([-T, T H*(R?)),

D;'uy € C(-T,TLH ' (R?)) .
Moreover, Q(u) and E(u) are well defined and independent of t.

We next give our definition of stability of the solitary waves.
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Definition 1. 4 set S C X is X-stable with respect to GKP-I if Ve > 0, 36 > 0
such that for any uy € X N X, and Pup € H;z, s = 3 with

Lrelg |luo —vllx < 9, (20)

the solution u(t) of (1) with u(0) =v can be extended to a global solution in
C([0,); X NX;), s =3 and

sup inf ||u(t) —vllx <e. (21)
0<t<oo VES

Otherwise S is called X-unstable.
Now define the set of all ground state with speed w > 0 as
So = {9 € V(R?); K(0) =I(9) = (M())} .
Let ¢, be a ground state of GKP-I. For simplicity, we denote ¢, by ¢. Then
W +Dx_2¢yy — @Pxx — (Pm+l =0.

It is well known in [8] that the stability of the solitary waves depends on the
behavior of the following functional:

d(w) = E(¢o) + 9Q(00) @ € So . (22)
It follows that
d(w) = w(‘Pw) K(‘Pw)
m
Nm12) 2) 1(¢0) = mK((Pw)- (23)

Theorem 3 (Nonlinear stability). Let 0 <m < % with m = my/m,, where m, is any
even integer and m, any odd integer and w > 0. Then S,, is V-stable, where V is
defined in (3).

Remark 2. 1t is easy to calculate that

vo= (50 ()=

where 4 =1 [ [ (¢? + (D;'¢,)?)dxdy. Hence

d”(w)>0¢>0<m<§.

In order to prove Theorem 3, we need several lemmas.

Lemma 5. d(w) is differentiable and strictly increasing for v >0, 0 <m < 4 with
m = my/my, where m, is any even integer and m; any odd integer.
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Proof. In fact, from (5), we have

- SE My
d(@) = 5@ (M(D)
and
d'(w) = m w'B (M(1)) %
for 0 <m<A4.

Lemma 6. Let d"(w) >0 with @ >0. Then 3¢ >0, such that for v, >0 with
|y — w| < & we have

1
d(w1) Z d(w) +d' (o) — w) + Zd"(w)lw -, (24)
Proof. This follows by Taylor’s expansion at v} = w. O
Define
Uy, = {u € V(R?); inf |lu—o|y < e} .
PESy

Since d(w) is differentiable and strictly increasing for w > 0, it follows that for u

near ¢ and ¢ € S,
_ g1
() =d (2( P ()) (25)

a(-): Up: — RY for small ¢ > 0,

and a(@y,) = w for any ¢, € S,,.
The next lemma uses the variational characterization of ground states to establish
the key inequality in the proof of stability.

is a C! map:

Lemma 7. Suppose d"'(w) > 0 for w > 0. Then there exists € > 0 such that for all
uec U,, and ¢, € S,

E(u) ~ E(90) + 0u)(Q) ~ Q(90)) 2 7d"(@) o) ~af,  (26)
where o (u) is defined by

o(u) =d™! (m (u)) forueU,,.

Proof. First of all, we have

E(u) + o(u)Q(u) = lIw(u)(u) ————K(u) (27

Since ) )
242 tawy) = K@),

and

2 2
%d(w(u)) = K(Pot)s Do) € St
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then
K(u) = K(Puww)) -
This implies that
Loy(#) 2 Low)(Pow)) - (28)

Since @) is a minimizer of I,y) subject to the constraint K(#) = K(@uu)) and
a(u) € C!, then by (27) and Lemma 6 we have

1 1
E() + o(u)Q) 2 Flow(Pow) = =5 K(0uw) = d(u))

v

d(©) + d (@)XW - 0) + 74" @)o) - of

E(¢0) + o(u)Q(¢0) + %d"(w)lw(u) ~of, (29)

where we use the fact
d'(w) = Q(¢o) - (30)

Now we can prove Theorem 3.

Proof. Assume that S, is V-unstable. Then by the definition of stability, 36 > 0
and initial data u;(0) € Uw,% such that

sup inf |u(t) —olly 2 9, (31)
t>0 9€S

where u;(¢) is the solution of GKP-I with initial data 1#;(0). By continuity in ¢, we
can pick the first time # so that

inf ||lu(te) — @lly = 9. (32)
IS

Since E(u) and Q(u) are conserved at ¢ and continuous for #, we can find ¢, € S,
such that
|E(ui(t)) — E(@x)| = |E(ux(0)) — E(9x)| — 0 (33)

as k — oo and

10 (%)) — Q(@i)| = |Q(ui(0)) — Qi) — 0 (34)

as k — oo. Choose & small enough so that Lemma 7 applies,

EGa()) — E(@r) + oXur(t)XQa(t0)) — 0(00)) Z 7d"(@)oour(1)) — of
35)
By (32), there exists Y € S,, such that
llux(@lly = lloklly +26 (36)

IIA

(1 + —;—)—) I,(or) + 26

IIA

d(@M(0)™ +26 < +00. (37)
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Since w(u) is a continuous map, w(ux(%)) is uniformly bounded for k. By (35),
letting £ — oo, we have

o(up (%)) — o . (38)
Hence
Jim K@) = lim XD g(apuy)) = 25 Dyy . 39)

On the other hand,

Fo(10)) = 2B () + 0Qur(1)) + —>—K(ur(4)

= 2d(our(te)) + 20 — (utg(16))Q(ue(te)) + —— K (1))

m+2
(40)
Since
O(ur(tx)) = Q(ur(0)) = |lu(t)lly £ C(w) < +00,
then by (39)
Lo(u(te)) — 2d() + mi“@d(w) = @d((») as k — oo.
(41)
That is niz
Io(u(t)) — (@) = M(w)) = . (42)
Let

(1) = (K (u(1))) ™ ™ u(ty) .
Then K(vx(#%)) = 1 and

Lo(o(t)) = (K(u(t)))™ = Lo(ur (k)

mi2
(2—5%( ;;)();))_'ﬁ = (M(0))™ (M(@)) " =M(w). (43)

Hence, vx(#%) is a minimizing sequence. Therefore, d¢; € S,, such that
Jim [jo(te) ~ (M(@)) = @elly =0, (44)
where K((M(w) ‘»l-(p,,) = 1. This implies that
Jim [lug(te) = @elly = Jim [(K (%)) - 10K (e (86)))™ %7 (i(tr) = @)lv]
< MA@ | fim o) - M@)ol
+ lim M7 (@) - (K@) llgelly =0 (45)

since [|@ell} < (1+ LMul(or) — (1 + LM(0))™ < +oo.
Hence (45) contradicts with (32). O
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