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Abstract: We prove that the set of solitary wave solutions of a generalized
Kadomtsev-Petviashvili equation in two dimensions,

is stable for 0 < m < 4/3.

1. Introduction

The generalized Kadomtsev-Petviashvili (GKP) equation

(Ut + (MW+1)X + UXXX)X = fUyy (1)

is a two dimensional analog of the generalized Korteweg-de Vries (GKdV) equa-
tion. When m = 1 and a2 = 1, (1) is known as the KPI equation while m = 1
and o2 = — 1 corresponds to the KPII equation. Both are universal models for the
propagation of weakly nonlinear dispersive long waves which are essentially one
directional, with weak transverse effects [6]. It also describes the evolution of sound
waves in antiferromagnetics [9]. It is well known that both KPI and KPII can be
solved by the Inverse Scattering Transformation (1ST) [1, 2].

Many local existence results for KP and GKP have recently appeared for both
infinite space and periodic boundary conditions (see [19, 20, 13]). There are also
some global results [22]. It is shown in [9, 20] by a virial method that GKP-I

(II, + (W^ 1 )X + UXXX)X = Uyy ( 2 )

has blow-up solutions for m ^ 4 while arguments in [14] indicate that blow up
should occur for much lower m, namely m > | .

An important question is the stability and instability of solitary waves for GKP,
that is, solutions of form u(x,y,t) = (p(x — ct,y). Existence of solitary waves is
shown in [14] for 1 <m < 4 and also in [21] by a different method. For GKP-I,
instability is shown in [14] for | < m < 4 using a method of Shatah and Strauss [3]
and a completed proof is provided by de Bouard and Saut [24]. In this paper, we
shall prove that the solitary waves are nonlinearly stable for 0 < m < | . After this
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paper was completed, we learned that de Bouard and Saut [24] have a similar result
by a different method.

The paper is organized as follows. In Sect. 2, we give the detailed proof of the
existence of solitary waves for GKP-1 with 0 < m < 4. The solutions are obtained
by using the variational method and the techniques developed by Lieb [18] to solve
a constrained minimization problem. In Sect. 3, we prove the set of solitary waves of
KP-I is nonlinearly stable for 0 < m < | . The proof is based on the idea of Shatah
[4] and Levandosky [5]. We use the variational properties of the minimizer and
a convexity lemma of Shatah to estabilish the key inequality for stability theorem.

We shall use the following notations. | • 1̂  (resp. || • ||5) will stand for the norm
in the Lebesque space LP(R2) (resp. the Sobolev space HS(R2)) .

Because of the structure of Eq. (1), we introduce the following function space-

r s ) = {u\u € L\Q\ux e L2(Q)9D-luy e L2(Q)} (3)

equipped with a norm

\u\y=htf + \Vu\2)dxdyj
and an inner product

(w, v) = J (uv + VM • Vv) dxdy .
a

Here Q may be R2 or a box [a9b] x [c,d] in R2, and Vu = (ux,D~luy)
T,

D~x
x - £„ (or O

We thank the referee for the vaulable comments.

2. Existence of Solitary Waves

In this section, we give a more detailed proof of the existence of localized solitary
waves for GKP-I given in [14]. By solitary waves, we mean traveling wave solutions
of the form u(x,y9t) = cp^x — cot9y). Substituting in (1), (pw satisfies the following
equation:

2 - q>xx = q>m+l . ( 4 )

For m = 1, this equation has an explicit solution (lump soliton [1])

q » -

i ) 8

We shall prove the existence of decaying solutions for 0 < m < 4 in space
V=V(R2) by a variational method. We first introduce the following functionals
on F(R2),

\ (6)

= f (\
R2 \ 2

+ u2
x) - — i — ^ 2 ) dxdy , (7)

(m + 2) J
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K(u) = / iT+1 dxdy , (8)
R2

Iw(u) = J (cou2 + \Vu\2)dxdy . (9)
R2

Remark 1. Here and in the following, we always assume that m = /W1//W2, where
nt\ is any even integer and nij any odd integer. This guarantees that K(u) is non-
negative.

Let's also define the following minimization problem:

M{a>)= inf U U \

It is easy to see that

\ \ fcri+0.
(K(ku))^ (K(u))^

Similarly, we have
M(co)= inf {/„(«) | K ( u ) = l } .

By change of variable u(x,y) = w* V(y/wx,wy), one easily obtains that

M(w) = w ^ ) M ( l ) w>0. (10)

Note that Eq. (4) is the Euler-Lagrange equation of the functional

Therefore, if there is a function q> € F(R2), such that

IJjp) = M(co) vnthK((p)=l9

then (p is a solution of

where A is the Lagrange multiplier. Hence \j/ = X«q> is the solution of (4). We call
such a solution a ground state.

T h e o r e m 1 (Existence of solitary waves). Let 0 < / w < 4 , c o > 0 #n*/ /w = /wi//W2>
where m\ it is any even integer and mj any odd integer. Then there exists a
minimizer cpw G N such that

I(o(<Pa>) = inf /<w(w) = Af(co) ,
ueN

where N = {u\u e K(R2), K(u) = 1} and K(u) given by (8).

To prove this theorem, we use the techniques used in [15,18,23 and 17]. The
following lemmas are needed for the proof of Theorem 1. We shall prove the lemmas
later.
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Lemma 1. Let V(Q) be the space defined in (3) and Q may be R2 or a box in
R2. Then for any 2 < n < 6, there exists^ a constant C, such that for any u G V(Q),

Q )2
(/M")" ^

Lemma 2. Let u € V(B)9 where 5 c R 2 is an arbitary box. Then Ve > 0, there
exist integers Ne,Me, s.t.

B nx=\m=\ \B / B

where wnun2 are orthonomal basis functions in V(B).

Lemma 3. Let {uj} denote a minimizing sequence of I\ = 4,=!. That is,
limy-.oo I\(uJ) — infueN I\(u). Then there exist 8,8 > 0 such that for all j ,

K[\uj\ > «]) ^ S,

where fi( • ) denotes the Lebesgue measure.

Lemma 4. Let u be a function such that \u\v ^ C and fi([\u\ > e]) ^ S > 0.
Then there exists a shift TSttu(x,y) = u(x -f- s9 y 4-1), such that for some constant

where B is the unit box (i.e. box centered at origin and has length 1 x 1) in R2.

Lemma 2 is used in [11]. Lemmas 3 and 4 are similar to the results in [15 and
18].

Proof of Theorem 1. By (10), it suffices to show that there exists a minimizer
uoeN such that I\(u0) = M ( l ) . We denote I(u) = Ix(u) and 7° = MueNI(u). Let
{UJ} be a minimizing sequence, i.e 7(wy) —>/0 with I(UJ) ^ C, |w/|w+2 = 1. We
then have w, —* wo weakly in F, My -^ «o weakly in *Lm+1. It follows from Lemma 2,
wy —>• wo strongly in Z,2 on any bounded domain. And wy —> t/o a.e. in R2.

We next show wy —> UQ strongly in Lm+1. To do that it suffices to prove
|Mo|£m+2 = 1; i.e. that «o € N. Since w, —̂  MO weakly in Lm+2, this implies lwol̂ +2 ^ 1.
Next, we want to show that |t/o|x/»+2 + 0 , i.e. w<> ̂ 0 . From Lemmas 3 and 4, there
exists a, such that

KBn[\TSjitjuj\ > s])> a .

Let TSjjtjUj be the new sequence denoted also by My, we have

Since My —• M<> a.e., it follows that fi(Bn[\uo\ > f]) > a , therefore Mo^O and

NIU#o
Next, we show that if 0 < X = / M J + 2 < 1, we have a contradiction. Denote

Vj = My - MO, so that t?y —̂  0 weakly in Im + 2 . Observe that due to a theorem of
Brezis and Lieb (a refined Fatou lemma [16])

Note that

I(Uj) = I(vj + «o) = I(vj) + /(«o) + 2 / ^ « b x + 2 / (Dj' i? , , ) (DJ V ) + 2/t;,u0 .

The last three terms converge to zero by weak convergence of Vj —- 0 in 2
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Hence
7 ° = lim I(Vj) + I(u0). (14)

y->oo

Let «o = -J^-> then we have f |2o|m+2 = 1. By homogeneity,

° (15)

Let vj = — V J - J - . From (13), we have / 1 Vj\m+2 = ̂ ^ -» 1. Similarly,
(1—A)'s+5

lim I(Vj) = (1 )
y — • o o y — • o o

Therefore
/°-/(wo)^(l-^/°. (16)

Equations (15) and (16) give

7°

which is a contradiction. Therefore

i.e. My —• wo strongly in £ w + 2 .
Moreover, because Wy —* UQ weakly in V9 I(UQ) ̂  inf/(My) and UQ minimizes /

in N. Hence /(wy) —> I(uo). Therefore Uj —• UQ strongly in F(R2), and this estab-
lishes Theorem 1.

We now prove the lemmas.

Proof of Lemma 1. We shall prove (12) for Q = R2 only. The case with Q being
a box can be proved similarly. Consider the Fourier transform representations of
u9ux and D~luy,

Then, we have

/ \u\2 dxdy = J | u\2dpdq , / \Vu\2 dxdy = / \$u\2dpdq .

For some 0 ̂  a ̂  1 and p,q+0, we have

,q) = fe-**-*u(x,y)dxdy

= a / e-^-^uix, y) dxdy + (1 - a) / e'^'^uix, y) dxdy

^
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It follows that

Let a = ^p. Then

From Holder's inequality, we have

/ \u\mdpdqZ J

It is easy to see that f,+ i^i(-nsif]?)TZ:"dpdq is convergent if | < m < 2. Hence

A J \ux\
2 + \D^uy\

2dpdq\

J

I ,
where Ci = Jp2+q2^l(-d^p)r:i"dpdq. On the other hand, we have

/ |JTX|2 + \I>^uy\
2dpdq

\u\mdpdq ̂  C2 ( J \u\2dpdq] ^ C2 ( / \u\2dpdqf .
)

Again, / denotes the integral over R2. It follows then,

/ \u\»dpdq ̂  C, ( / \ux\
2 + {D^uyfdpdqf + C2 ( / \u\2dpdqf

By the theorem of Hausdorff-Young (p. 72 in [7]), we have

(J\u\"dxdy)" ^ (/|«D" ,
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where £ + -j- = 1. Therefore, if f < m < 2, we have 2 < » < 6, and5

i

f / \u\»dxdy) £ Co I J u*x + (D~luy)
2 + u2dxdy) . •

Proof of Lemma 2. Let us assume that the box is of length 2n x In. The general
case can be obtained by a scaling.

Consider the Fourier series representations of u,ux and D~xuy

u = E am,neimx+iny , ux = £ bm,neim*+iny ,

Then,
/ \u\2dxdy = E <„ , I \Vu\2dxdy = £ b\n + <„ .

m,n m,n

For some 0 ^ a ^ 1 and p,q=tO, we have

= a / e-*a-i*u(x, y) dxdy + (1 - a) / e'1""'^ u(x, y) dxdy

= - 4 - / e~ipx-iqyux{x,y)dxdy + ^ — ^ f e - * " - t i » n - i
—itn n

It follows that

a ., , (1 — a)|m|.
\um,n\ = i i \um,n\ ^ i i ''/n./i

Let a =

> 0, 3ATe, Me,^X for n > Ne, m>Me, we have ( ^ i ) 2 < £• Hence

OO NB,Me / \

J"2 = E<n ^ E v + M E t + 4

= E E (fuw^+sls^ + iD-'uy)2). a
m=l/i=l \Q J \Q
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Proof of Lemma 3. Since {w,} is a minimizing sequence, we have

where 0 < y < 4 — m. From Lemma 1, we have

/ \uj\m+2+y g / |M;r
+2+ ' ' g c , ,

\uj\2 ^ J \uj\^ C2 .

By choosing s small enough, we have

Proof of Lemma 4. For simplicity, we assume |M|K ̂  1. Consider any function t;,
such that |t;|^ ̂  1 and \v\2 +0. Let A: = 1 + rW. We first prove that there is some x,

such that
/ (v2 + \Vv\2)dxdy < mk J v2dxdy , (17)

Bx Bx

where Bx is the unit box centered at x and m is a certain integer.
If (17) is not true, then we can cover R2 with unit boxes {BXi} so that each

point x is covered by at most m unit boxes and we have

m f (v2 + \Vv\2)dxdy ^ £ / (v
2 + \Vv\2)dxdy ^ mkJ2 J vtdxdy

R 2 * BXi i BX(

^ mk J v2dxdy = m I 1 + / v2 I > m .
R2 \ R2 /

Therefore
\v\2

v = Jtf + \Vv\2)dxdy> 1,
R2

which is a contradiction. By Lemma 1, we have, for JC satisfies (17) and some
P>2,

( f \v\pdxdy ) g Ci / ( |u | 2 + |Vt)|2)rfxflTv < C,m* / \v\2dxdy
\BX ) Bx B,

( \P

J \v\Pdxdy) WBX n suppd;)))^ (18)
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and

supp(iO) >

£2

—A' •

261

(19)

Equation (19) is true for any v satisfying \v\y ^ 1 and M2+O. Now let's take
v = max(|w| - | , 0 ) , we have \v\v ^ 1 and /R2 v2dxdy ^ (§)28 and we have k ^
1 + T J W From (19), there exists x9 s.t.

li(Bx n [|fi| > E/2] ) > a .

The conclusion of the lemma follows with a shift. •

3. Stability of the Solitary Wave

In this section, we show that the solitary wave of GKP-I is nonlinearly stable if
0 < m < | . In order to study the stability of solitary wave of GKP-I, we need to
consider the local existence for GKP-I. There are many results on local existence
for GKP-I (see [19, 20, 13]). For our purpose, we state here the local existence
results by Saut [20]. Let

H;\R2) = { / e S'(R2), i / « i , &) € I2(R2))

equipped with the norm

-2,x =

and

with

=lfeHs(R2),SF-1 (L\ €HS(R2)\,

ll/lk = 11/11.+ r - l 7

v-2Theorem 2. Let (f> e Xs, s ^ 3, such that <j>yy € Hx . There exists T > 0 such
that (1) has a unique solution u with M(0) = <̂  satisfying

u e C([-T9T];HS(R2))U C\[-T9T];H'"3(R2)) ,

Moreover, Q(u) and E{u) are well defined and independent of t.

We next give our definition of stability of the solitary waves.
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Definition 1. A set S C X is X-stable with respect to GKP-I if Ve > 0, 3d > 0

such that for any wo £ X n Xs and d2
yuo €HX , s ^ 3 with

inf \\u0 - v\\x < S , (20)
ves

the solution u(t) of (1) with w(O) = v can be extended to a global solution in
C([0,oo);XnXs), s ^ 3 and

sup inf ||w(f) — v\\x < e . (21)

Otherwise S is called X-unstable.

Now define the set of all ground state with speed co > 0 as

Sm = W e V(R2); K(q>) = Im{q>) = (M(co))^} .

Let cpco be a ground state of GKP-I. For simplicity, we denote (pw by <p. Then

cocp + D~2<pyy - cpxx - q>m+l = 0 .

It is well known in [8] that the stability of the solitary waves depends on the
behavior of the following functional:

(22)

It follows that

d(co) = -Iw(<Pa>) - ; ^ j~2*(<?">)

^W ^ - (23>
Theorem 3 {Nonlinear stability). Let 0 < m < | with m — m\/m2, where nt\ is any
even integer and mi any odd integer and w > 0. Then Sw is V-stable, where V is
defined in (3).

Remark 2. It is easy to calculate that

where A = ±ff(q% + (D-l<py)
2)dxdy. Hence

4
d"(co) > 0 ^ 0 < m < - .

In order to prove Theorem 3, we need several lemmas.

Lemma 5. d(a>) is differentiable and strictly increasing for co>0, 0 < m < 4 with
m = AW1//W2, where m\ is any even integer and mi any odd integer.
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Proof. In fact, from (5), we have

and

for 0 < m < 4.

Lemma 6. Let d"{co) > 0 with co > 0. Then 3e > 0, such that for co\>0 with
\co\ — co\ < s we have

d(coi) ^ d(co) + d'(co)(cox - co) + ^d"(co)\co - cox \
2 . (24)

Proof. This follows by Taylor's expansion at a>\ = co. •

Define

M = \u e F(R2); inf \\u - <p\\v < e\ .

Since d(co) is differentiable and strictly increasing for co > 0, it follows that for u
near cp and <p G Sw,

((^TT/) (25)

is a C1 map:
w( • ): UcoiB -> R+ for small g > 0 ,

and co^o,) = o> for any cpa, € 5a,.
The next lemma uses the variational characterization of ground states to establish

the key inequality in the proof of stability.

Lemma 7. Suppose d"{co) >0for co>0. Then there exists e > 0 such that for all
u € Uco,e and cp^ e Sw,

E(u) - E(cpw) + co(u)(Q(u) - Q(cpw)) ^ l-d"{o) \co{u) - co\2 , (26)

where co{u) is defined by

Proof. First of all, we have

E(u) + co(u)Q(u) = \latutu) l-^K(u). (27)
2 m + 2

Since

and

d(Q)(u)) =
m
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then

This implies that

Ico(u)(u) ̂  Iatu)(<Pa{u)) • (28)

Since q>co(u) is a minimizer of I^u) subject to the constraint K(u) = K^cp^u)) and
a>(u) € C1, then by (27) and Lemma 6 we have

E(u) + co(u)Q(u) ^ -Ic*u)()
Z

Ic*u)((Potu)),
Z m-r Z

£ rf(co) + d'(coXoKu) - co) + irf"(co)|co(M) - co\2

^ « ) - co|2 , (29)

where we use the fact

d\(o) = ec^). oo)
Now we can prove Theorem 3.

Proof. Assume that Sm is V-unstable. Then by the definition of stability, 3d > 0
and initial data K*(0) € Um i such that

sup inf ||«fc(O-plk >&, (31)

where «*(0 is the solution of GKP-I with initial data w*(0). By continuity in t, we
can pick the first time ft so that

inf |Mft)-<p| |F = <5. (32)

Since iE'(w) and Q(u) are conserved at ^ and continuous for w, we can find q>k G 5<y
such that

\E(uk(tk)) - E(<pk)\ = \E(uk(0)) - E(cpk)\ - , 0 (33)

as k —• oo and

»0 (34)

as * —• oo. Choose <5 small enough so that Lemma 7 applies,

E(uk(tk)) - E(9k) + «Km(r*)Xfi(«k('t)) - e(«Pt)) ^ ^ " ( a ) ) K « t ( / t ) ) - co|2.

(35)

By (32), there exists ^ik € £„ such that

hk{tk)\\v ^ \Wk\\v + 1* (36)

+oo . (37)
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Since co(u) is a continuous map, co(w*(f*)) is uniformly bounded for k. By (35),
letting k —> oo, we have

co(uk(tk)) -+co. (38)

Hence

lim K{uk{tk)) = lim 2 (yW4"2)J(o)(t/.fa)) = 2(/W + 2)^(Q)) . (39)
it—>oo *—»>oo 7W /W

On the other hand,

= 2d(o>(uk(tk)) + 2(w - a*uk(tk))Q(uk(tk))
ffl -jr

(40)
Since

then by (39)

Uuk(tk)) - 2rf(o» + - i _ 2 £ ± ! k ( « » = ?^±2)rf(a>) as * -> oo.

(41)

That is
/«,(«*(<*)) -» /(<?>«,) = (M(ft>))^ . (42)

Let

Then ^(^(r*)) = 1 and

«=M(o>). (43)

Hence, #*(**) is a minimizing sequence. Therefore, B<p* G Sw such that

lim ||tfc(fiO — (M(co))~*<p*||r = 0 , (44)

where K((M(w))~«(pk) = 1. This implies that

lim ||ift(fc) - ^ H K = lim KAT(«*(/t)))=is • IK^w*^*) ) ) '^^*^) - <Pk)\\r]
k—+oo k—*oo

i \ lim |
t—>oo

+ lim \MTr{fo) - (K(uk(tk))y^\ \\q>k\\y = 0 (45)
k-+oo

since ||^||2K £ (1 + £)U«»*) -» 0 + ^
Hence (45) contradicts with (32). •
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