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Abstract: A study of the gauged Wess-Zumino-Witten models is given focusing
on the effect of topologically non-trivial configurations of gauge fields. A correlation
function is expressed as an integral over a moduli space of holomorphic bundles with
quasi-parabolic structure. Two actions of the fundamental group of the gauge group
is defined: One on the space of gauge invariant local fields and the other on the
moduli spaces. Applying these in the integral expression, we obtain a certain identity
which relates correlation functions for configurations of different topologies. It gives
an important information on the topological sum for the partition and correlation
functions.

1. Introduction

The gauged Wess-Zumino-Witten model in two dimensions has two different
aspects of interest. On the one hand, it is an exactly soluble quantum gauge theory
and is interesting from the point of view of geometry of gauge fields. On the other
hand, it is a conformally invariant quantum field theory (CFT): There are obser-
vations [1-5] that a wide class of solved CFTs such as unitary minimal models
(bosonic [6] or supersymmetric [7]), parafermionic models [8], etc. are realized by
gauged WZW models as lagrange field theories, up to a subtle point of field iden-
tification which will be addressed shortly.

In this paper, we focus on the former, the geometric aspects of the theory
and propose a method to take into account the topologically non-trivial config-
urations of gauge.fields. Then, we get an identity which shows that incorpora-
tion of non-trivial topology solves the problem of field identification, and which
is therefore of vital importance from the point of view of the model building
of CFTs.

A gauged WZW model is specified by a choice of the target group G, the gauge
group H, and the level k. We concentrate on the case in which G is a compact,
connected and simply connected Lie group and H is a connected, closed subgroup
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of G/ZG, where ZG is the center of G. For a closed Riemannian 2-manifold Σ, a
map g : Σ —> G, and a one form 4̂ G (^(Σ, ί)), the WZW action is given by

k I Σ ( A , g ) = - — f ^

^ (1.1)

Here "tr" is the trace in a representation of G(ι), g~ιdAg = g~ιAg + g~xdg — A,
and * is the Hodge operator which, acting on one forms, depends only on the
complex structure of Σ. BΣ is a compact three manifold bounding Σ and g : BΣ —> G
is an extension of g. If k is an integer, the value Q-kIΣ(A>g) which we call the
WZW weight is independent of the choice of BΣ and g, and hence may be used
as the weight for the path integration over A and g. It is invariant under the gauge
transformation A —• Ah = h~ιAh + h~ιdh, g —> h~ιgh and the resulting system is a
quantum gauge theory, which has been extensively studied in [1,3-5].

If τc\(H) is non-trivial, one can also consider topologically non-trivial configu-
rations of A and g: Let {ί/o, UOO} be an open covering of Σ such that UQ contains
a disc A) and UQ Π L ^ is an annular neighborhood of the boundary circle dDo. Let
{AQ^AOO} and {go,goo} be gauge fields and maps defined on {Uo,Uoo} so that

Ao = h^oAoohooo + A^orfAooo, 0o = O ^ o o O <>n C/o Π C/QO , (1.2)

where Aooo is a map to H. These determine a connection 4̂ of P and a section #
of PXfjG, where P is the principal H bundle determined by the transition func-
tion Aooo In Sect. 2, we define the WZW action kIΣyp(A,g) for such a configuration.
Note that any //-bundle admits such a description and the homotopy type of the loop
7ooθ = AoooldDo determines the topological type. Thus, π\(H) classifies the topolog-
ical types of configurations. In Sects. 3 and 4, we give a method to calculate the
correlation function ZΣP{O\ - Os) of gauge invariant fields O\,..., Os for configu-
rations associated with a bundle P.

The main purpose of the paper is to prove certain exact relationships of corre-
lators for configurations of different topologies. Namely, in Sect. 4 we will see that
the group π\(H), which acts on topological types of principal //-bundles y : P \—> Py
by multiplication on the transition functions y^o »-> 7ooθ7? acts also on the space of
gauge invariant local fields γ : O ι-» yO and that

ZΣ,P(Oi OsyO) = ZΣίPy(Oλ OSO). (1.3)

We call this the topological identity. The proof is reduced to verifying a conjecture
concerning the geometry of moduli spaces of holomorphic HQ -bundles with quasi-
parabolic structure. Verification is done for the cases Σ = sphere with H general
and Σ = torus with H = SO(3), in addition to the case of abelian gauge groups.

The significance of (1.3) can be seen if we take the sum over topologies;
the fields O and yO are then indistinguishable. For instance, consider the case
of G = SU(2)xSU(2) with level (jfc,l), and H = 50(3) diagonally embedded in
G/ZQ = 50(3 )x50(3). The gauge invariant local fields can be classified by labels
in {0, | , . . . , §} x {0, \,..., ψ } . The space of fields labeled (juj) is identified with

1 Here is the expression for simple G, and "tr" is normalized by trg(adXad7) = 2gvtr(XY) for
X, Y G g, where gv is the dual Coxeter number of g. Generalization to the non-simple case is obvious.
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the degenerate representation of the Virasoro algebra of central charge 1 — ,k+2tk+3)

and dimension ^^^S+S^'1 a s i s a l s o t h e c a s e f o r t h e l a b e l (f ~ h> Ψ ~ J)-
As we shall see in Sect. 4, this transformation (j\,j) <-» (f —j\, ^γ~ — j) corre-
sponds precisely to the transformation O <-> yO, where γ is the non-trivial element
of π\(SO(3)) = Z2. Hence, only after the sum over topologies, the set of distinguish-
able fields coincides with that of the kth unitary minimal model [6]. The situation
is the same for general G and H. The space of local gauge invariant fields, acted
on by the infinite conformal symmetry, is identified [3] with the direct sum of
Virasoro modules by coset construction [9]. For each element y G π\(H), there
is an isomorphism of coset Virasoro modules, known as the "field identification"
[10-12], that corresponds to our transformation O *-* yO. Hence, this identification
of Virasoro mudules leads via the sum over topologies to a genuine identification
of quantum fields. In Sect. 5, we give a support of this interpretation by a detailed
calculation of torus partition function. We will see that topologically non-trivial con-
figurations play an important role especially in the presence of "field identification
fixed points" [12, 47].

2. Wess-Zumino-Witten Model

We describe some properties of the WZW model [13] which will be needed in the
following sections. Throughout this section, H — G/ZG, and a Riemann surface Σ
is fixed with its open covering {Uo, UQQ} and Do C UQ as in Sect. 1. We choose
a complex coordinate z on Up such that Do is a unit disc in the z-plane. This
gives a parametrization θ 1—> eιθ on the boundary circle S = dDo = — dZΌo, where
Zoo := Σ-DQ.

2.1. The WZW Action. Let P be a principal //-bundle with transition function
hooo : ί/o Π t/00 -> H, and let A = {^0,^00} and g = {00,000} (subject to (1.2)) be
a connection of P and a section of PXfjG. The WZW weight for this configuration
is defined to factorize as a product

Q-kIΣ>P(A,g) _ /Q~khoo(Aoo,9oo)^SL(^yOG0 Q-kIDo(Ao,go)\ # (2Λ)

Below, we define the ingredients in this expression; the WZW weights on surfaces
with a circle boundary, adjoint transformation by a loop 7^0 = λoools? a n d the
pairing.

Let us complete the disc Do by another disc Doo to a Riemann sphere P 1 . For
a map g : Do -» GQ, we choose an extension 0 : P 1 —> Gc Following [14], we put
an equivalence relation in M a p φ o c G c ) x C under which the class

Q-kIDo(A,g) =e - 1 " ^ " " = I ί/|D_,exp< — I ti(β~idAg Λ *g~'dAg)

+ik f tr(§~ld^3 ~ kΓDo(A,β)}) (2-2)

I

4τc
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is independent of the choice of the extension g^^ This defines a line bundle
-S?^* over the loop group LGC, and (2.2) is in the line <$?®z

k\y over the boundary
loop y(θ) = g(eιθ). This is our definition of the WZW weight on Do. A semi-
group structure of «5f^ is introduced by requiring the Polyakov-Wiegmann (PW)
identity [15]

Q-kIDo(A,h)Q-kIDo(A\g»)Q-kIDo(A,h*) = Q-kIDQ(A,g) QXp I — J tv(h*dAh*~lh~ldAh) 1 .

[2πDo J

(2.4)

Here, Ah,gh denote the chiral gauge transform (Ah)01 = h~lAolh + h~ιdh, (Ah)10 =
h*A™h*-1

 + h*dh*-i9 gh = h~ιgh*-1 by he Map(D0,//c). The non-zero elements
of J£?wz form a group which is isomoφhic to the basic central extension LGQ of
LGC [16].

The adjoint action of LH on S£^ is defined as follows: For y e LH, we choose
an extension h : D ^ — {00} —> //; y — h\s. Then

ady-^^c)] := [(h-ιgh9cexp{-kΓDoo(hdh'\g)})] . (2.5)

Here f̂ : Doo —> Gc is chosen to be g — 1 in a neighborhood of 00 so that the
ΓDoo(hdh~\g) to be well-defined.

The WZW weight on ΣΌo is defined in the similar way as an element of the dual
bundle &£*. The pairing of &£* and J2*»* i s g i v e n by (we put I(g) := 1(0, g))

(2.6)

One may wonder whether our definition depends on the choice of the disc
DQ C Σ. TO prove it does not, it is enough to show that we can replace Do
by a larger disc D o D Do. The problem is then reduced to proving the identity
Γ(Ah,gh) = Γ(A,g) + Γ(hrιdh,gh} on the cylinder D o - D o , which is a straightfor-
ward matter. The PW identity (2.4) together with its analog for weights on IΌo
leads to the global PW identity

)-hAAM*). (2.7)

This ensures the gauge invariance of the action.

2.2. States and Fields. The factorization property (2.1) is inherited by the quantum
theory: A correlation function in the gauge field A factorizes as

ZΣχA; Π Oi(Xi)) = [ ) [
i \ \ xteΣoo ) \ Xj(ΞD0 )

(2.8)

Here, ZDo(Ao; JJ.OJ(XJ)) denotes the wave function at S = dDo which results from

the path-integration over the interior of Do, and similarly for ZΣOG{A00\ Π/Φ'C*/))-

yooo is the gauge transformation acting on sections of ££®£ by

Φ)(y) = adyoooΦίady-^y). (2.9)
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On the space of sections of ££®£, there are the left-right representations of the group

LGQ: J(yι)J(y2)Φ(y) = yi^ίyΓVy* 1)^*- W e identify the space of states with the

direct sum Jί?G>k = φ ^ J^Λ ' of irreducible components of the representation JxJ.

Here, the sum is over the set P+ of weights of G, integrable at level k, and

Jff'* is the irreducible LGQXLGQ-module isomorphic to Z,J* ®L%k", where L^k

(resp.zj^) is the holomorphic (resp. anti-holomoφhic) irreducible representation of

LGQ with highest weight (Λ,k).

The highest weight state ΦA G fflA ' is explicitly expressed in the following
way [14]. Let B be a Borel subgroup of Gc, and N C B be the maximal unipotent
subgroup. Let B+ and N+ denote the subgroup of LGQ consisting of boundary
loops of holomorphic maps Do —• GQ such that the values at z = 0 are in B and N
respectively. Choosing such holomorphic maps g\(z) and gi(z) with g\(0) G B and
#2(0) G N, the state ΦA is expressed as

, (2.10)

where e"1 is the character of B corresponding to the highest weight A. As B+(N+)*
is open dense in LGQ, the above expression completely characterizes ΦA.

A Ward identity follows from the PW identity (2.4):

Z ^ O^/tfVί^ I , (2.11)
[2πDo J

where y~λ = e~/Do^A> and /zθ is denned by hθ(g) = O(h~lgh*~l). Using this,
we can identify the state Φ^ with the wave function for the disc Do with a
flat connection v4o = 0 and a field insertion OA at z = 0. Up to a renormaliza-
tion, Qi(<7) is defined as the matrix element (vΛ,g~ιVΛ), where VA is a high-
est weight vector in the (finite dimensional) irreducible Gc-module of highest
weight A.

2.3. The Spectral Flow. We calculate the gauge transform y ΦΛ of the highest
weight state ΦA by a loop γ that represents an element of the group Fξ C W^
(see Appendix A). As ady preserves the subgroups B+ and Λf+ of LGQ, the result
should again be a highest weight state. It suffices to look at the behavior over the
open dense subset B+(N+)*.

The loop is expressed as
y(fl) = e - ^ Λ W J (2.12)

where μ is a minimal coweight and nw G H represents an element w of the
Weyl group W. Let hγ(z) = z~μnw be the meromorphic extension. Let #1,02 a n d
7i G B+, 72 G Λ^+ be holomoφhic maps and boundary loops, as above. Since ady
preserves the subgroups B+ and N + , holomorphic maps h~ιg\hy and h~ιg2hy

are defined on Z)o, and satisfy (h~ιg\hγ)(0) G B and (h~ιg2hγ)(0) e N. Hence
we have

7 Φyi(yi7*) = e y l ( ( ^ V i

If we put #i(0) Ξ e ί o e Γ modN, we find that (h-ιgιhy)(0) = e w " l ί o , and hence

^ ^ Q~wΛM . (2.14)
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Applying the transformation rule (2.5) of ady, we find that

(2.16)

Combining these results, we obtain the expression

y ΦiOΊy*) = e-wΛM'hxt(jjίo)e~klDo^ιg*). (2.17)

Thus, the result is y Φ^ = Φ y y ί, the state of highest weight

yΛ = wΛ + kμ, (2.18)

where μ denotes the weight given by μ(v) = tr(μt?).

Remark. The adjoint action (2.5) by the 7 yields an automorphism of Kac-Moody
algebra [17-19,12], called the spectral flow. This induces the above map A v-+ yA
and permutes the elements of P+*\

A simple consequence follows from this computation. Consider the gauge field
configuration

ι ι on Do , (2.19)

where 0 ^ ρ{r) ^ 1 is a cut-off function such that ρ(r) = 0 for r < 1/4 and
ρ(r) = 1 for r > 3/4. Since it is a pure gauge for \z\ > 3/4, one can choose a
horizontal frame s(0) = so(θ)y(θ)~ι along S = dD0, where so is the old frame over
Do. Note, furthermore, that A^Ί can be made flat over Do by a chiral gauge trans-
formation hQίy such that hρ^(0) = 1 and ^ y ^ Ξ c j μ with cρ being a constant.
Let us insert the field QΊ at z = 0 and look at the state at S. If we stand on the
horizontal frame s, what we observe is

y - ZDo(Aρy, OA) = consty ΦΛ = const Φ ^ . (2.20)

The first equality is due to the Ward identity (2.11), where the constant is of the
form Q-ktr(μ2)bήc^2wΛ(μ)^ L e t ^ be a connection of P which is flat on the disc Z)o, and
let σo be a horizontal frame over Do. Gluing the configurations Aρ^ and A^^ along
S — Do Π Γoo by identifying s(θ) and σo(0), we obtain another //-bundle Py with
a connection v4y. Taking the pairing of ZΣσo(A\Σoo;0\ Os) and y Zo 0 (^ ρ β ; Qi)
and using (2.20), we find that

ZΣ,Py(Ay; 6>! OSOA) = const ZΣ,P(A; Ox 0 , 0 ^ ) . (2.21)

This may be considered as the prototype of (1.3). An equation of the same kind is
already known in free abelian systems as the insertion theorem [22].

3. Integration Over Gauge Fields

We now turn to integration over gauge fields. In what follows, H is a closed con-
nected subgroup of GJZQ. For a principal //-bundle P over a Riemann surface Σ,
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we denote by s/p the set of connections of P, by <3p the group of gauge transfor-
mations (sections of the adjoint bundle PxHH), and by ^Pc the group of chiral
gauge transformations (sections of the complexified adjoint bundle PXHHQ).

We consider the integration

^ O ι O s ) , (3.1)

with the integrand being the WZW correlator of gauge invariant fields. We take
advantage of the chiral gauge symmetry

; hθι - hθs), (3.2)

which is a consequence of the PW identity (2.7). Here, hθj is the transform of Oi
defined by hθi(g) = Oi(h~ιgh*~~ι). We will first integrate along the fibre of

^p -> s/p/9Pc , (3.3)

and then over the orbit space s/P/^Pc. A subtle problem here is that this orbit space,
with the natural topology, is not in general a good space that admits an integration.
However, there exists a submanifold &?ss of stfP with complement of codimension
^ 1 such that a certain quotient of sίss by ̂ Pc is a compact complex manifold JίP,
possibly with orbifold points. This will be illustrated in Sect. 3.1. One can neglect the
codimension ^ 1 complement if the integrand of (3.1) is finite everywhere in srfP.
This is guaranteed when the fields O\,...9OS are matrix elements of representations
of G that are integrable at level k, as is observed explicitly in [23, 24] for genus 0
and 1.

Following [1] or the route that is standard in string theory [25-27], we get a
measure ΩΣ,P(O\ OS) of the moduli space JίP that gives the correlation function:

Z Σ , P ( O ι " Ό s ) = J ΩΣXOX O S ) . (3.4)
JTp

To express it, we choose a complex coordinate system (uι,..., udjSί) of an open subset
U of JfP with a representative family {Au}ueu c j/p. Note that the differentials

^ a (3.5)

represent (l,0)-vector fields in U. The measure is then expressed as

ΩΣ,P(OI •OS)= Π <Af&Σ,p ( A l Π
i 2 \

— fbva(u) hθχ hθs .
lπiΣ )

(3.6)

Here, ^Σ,P(AU \ •) denotes the correlation function for the combined system of the
following three theories in a background gauge field Au:

(i) level k WZW model based on the group G,

(ii) level -k - 2hv WZW model based on the space Hc/H(2) with the action

2As the generalization is a trivial matter, we assume here that H is simple, k is defined by ktrG(XY) =

ktrH(XY) for X, Y e ί) C g, and hv is the dual Coxeter number of H.
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(iii) spin (1,0) ghost system (Z>, c) in the adjoint representation of//

The factor l/ |Aut^J takes care of the case in which the &Pc action on sip is
not free. When the automorphism group Aut^M (the isotropy subgroup of ^ p c

at Λu £ sip) is a finite group, it is just to divide by the order of Aut^M- When
dimAut<|ίu ^ 1, it stands for insertion of a suitable function of the /z-field and
c-ghosts, which will not be explicitly given in this paper, except for the special
case considered in Sect. 5.

3.1. The Moduli Space. We illustrate some points of the structure of ^pc -orbits in
sip, presenting examples that will be used in Sects. 4 and 5. We start with some
generalities. The set siP/^pc is identified via A «-• dA with the set of isomorphism
classes of holomorphic principal HQ bundles of topological type PQ (the complexifi-
cation of P). If// is U(l), irrespectively of the topological type, this set is a copy
of the Jacobian variety of Σ which is a complex torus of dimension g = genus of Σ.
If H is non-abelian, the situation is quite different. For simplicity, we consider the
case of simple group //. Atiyah and Bott [29] proved the stratification sip = \Jμ^μ,
where μ runs over a discrete subset of the closure of a Weyl chambre, and s/μ is
a ^pc-invariant submanifold of sip of codimension dμ = Σα(M)>o(α(ju) + 9 ~ Ό
For g ^ 1, the unique solution to dμ = 0 is μ — 0; this siμ=0 is the space siss

mentioned above, and the quotient Jίp is the moduli space of semi-stable HQ-
bundles. By Narasimhan-Seshadri theorem [30, 32, 31], it is isomorphic to the
space of flat connections of P modulo action of $P. For g ^ 2, it has complex
dimension djr — dim H(g — 1).

Genus 0. Consider the case in which Σ is the Riemann sphere P 1 , covered by the
z-plane UQ and the w-plane U^ that are related by zw = 1.

First, we consider the group H = SU(n)/Zn, where Zn is the center of SU(n).
The Birkhoff factorization theorem [28,16] states that any holomorphic HQ =
PSL(n, C)-bundle admits trivializations σo a n d 0Όo over UQ and t/oo respectively,
that are related by

σo(z) = σoo(z)z-a, zeUoΠUoo, (3.7)

where a is a matrix of the form

ax

a=\ •• wi thα,€Z-^ , Σ > = 0 , (3.8)

I n

an

for some ; ' G { 0 , 1 « - l } . The theorem also states that such a is unique up to
permutations of a\9... ,αw. Since the loop QW I-> Q~iaθ extends to a map on UQ -* H if
and only if all aι are integers, the topological type of the bundle is determined by the
number j . In other words, for each j , there is an //-bundle P ( y ) and its complexifica-
tion admits holomorphic structures classified by Pj jW in which P j is the set of ma-
trices as (3.8)i_and W is the Weyl group acting by permutation of diagonal entries.
Since the set C of diagonal matrices t with t\ ^ ^ ί" is a fundamental domain
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of W, we see that

J*PU) = U da . (3.9)
αGPy

vnc

Here srfa is the &pu) -orbit corresponding to the holomorphic //c-bundle with the
transition rule (3.7). We denote such a holomorphic bundle by &[a] One can esti-
mate the codimension of &0a by counting the dimension of the group Aut ^ [ f l] of
holomorphic automorphisms. An automorphism h is given by HQ-valued holomor-
phic functions ho(z) and λoo(w) that are related by ho(z) = zahoo(l/z)z~a, z#=0,oo.
One sees that the entry Ao(z)y is a span of l,z, )z

f l ί~^ if fl, ^ fly and is zero
if 0/ < fly. The dimension of Aut^[αj is thus given by « — 1 + ^2ί<j{δaι,aj + 1 +
flί — fly I) and is minimized in P j (Ί C by the matrix a = μ ; given in (A.2). Hence

j/po) contains an orbit s/μj of maximal dimension, and any other orbit s&a has codi-
mension da — Σaι>a (aΐ ~ aj ~ 0 > ^ Thus, in this case sdss — s$μp and JVP{J) is
a single point.

For general group //, the story is the same. For an //-bundle P ( y ) whose topo-
logical type is determined by y G πi(//), there is a single maximal orbit s/ss. This is
represented by a holomoφhic bundle ^[μ] described by the transition rule (3.7) with
a being a minimal coweight μ e Me such that the loop o~ιμθ represents y e π\{H).

Genus 1. We explicitly describe the moduli spaces of flat <SO(3)-connections on
the torus Στ = C/(Z + τZ). Let ^ ( 0 = t and 5 ( 0 = τt9 0 ^ / ^ 1, be generators
of the fundamental group of Στ. A flat connection of an SO(3)-bundle P defines
(up to conjugation) a holonomy representation p : n\Στ —> SO(3), which is deter-
mined by the commuting elements a = p(A) and b = p(B) of £(9(3).

If P is a trivial bundle, a and Z? are represented by commuting elements a and

b of SU{2). By conjugation, we can bring them to diagonal matrices

2πiφ Q \ „ /g2τ# A

o e-2πi0 I > ^ = I Q e-2πiψ

Such holonomy is provided by the gauge field of the following form:

Au=[—udζ udζ n . , (3.11)

where u = φ — τφ. Au> is gauge equivalent to v4w if and only if u' = ±w — f + τ |
for some «, wi E Z. Hence, the moduli space is given by

ΛΊriv = C/{(^Z + i Z ) x { ± l } } . (3.12)

It is an orbifold with four singularities u = 0, | , | , ^ of order 2.

If P is non-trivial, fl and b are represented by elements fl, έ of SU(2) that do
not commute but satisfy

ιFl ( l °^ (3.13)

There is only one such pair (fl, b) modulo conjugation:

a = o -/ ' * = l i o (3 1 4 )
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Hence,
^non-triv = {one point} . (3.15)

In contrast with the abelian case, J^ήv is not isomorphic to Λ ôn-triv and even the
dimensions are different.

For a general semi-simple group //, the moduli space of topologically trivial
semi-stable HQ-bundles over the torus Στ is

>ίriv = tc/(P v + τ P v ) x f F , (3.16)

where P v is the coweight lattice, and hence of dimension rank//. On the other
hand, for each non-trivial //-bundle P, dim JfP is strictly less than the rank of //.

3.2. Gauge Invariant Fields. We specify the set of gauge invariant local fields in
the WZW model. One can translate the gauge invariance condition on a local field
O to a condition on the state Φo € ffl*^ at the boundary of the disc DQ with the
insertion of O at z — 0:

(Jo(v) + J0(v))Φo = Q for υ el), (3.17)

Jn(v)Φ0 =Jn(v)Φo = 0 for υ 6 ϊ)c and n = 1,2,.... (3.18)

Here, Jn(v) and Jn(v) are infinitesimal generators of J and J corresponding to the
element znv of the loop algebra. We shall distinguish the space of states satisfying
these conditions.

Let H c G be the group over H c G/ZG. Following Goddard-Kent-Olive [9],

we decompose L^ik into irreducible representations of the subgroup LHQ of LGQ'
G/ λf\ (3.19)

where B\ is the subspace of L^k consisting of highest weight vectors of weight (λ,k)

with respect to LHQ. We denote by Jfj the subspace of Jf^'* corresponding to

the subspace B\ ®B\ of L%k ΘL^k. Each Φ e Jfj generates an irreducible JQ(H)X

JoC^O-module in Jtf^'k which is isomorphic to Vχ 0 Vχ, where Vχ is the irreducible

//-module of highest weight λ and Vχ is its dual. Choosing a base {em} of Vχ and

the dual base {em} c Vχ, we denote by Φ^ the state corresponding to em 0 em £

Vλ® Vχ. Then, the //-invariant element Σm Φ™ satisfies (3.17) and (3.18). Thus,

we identify the space of states corresponding to gauge invariant fields with

^hw := Θ ^ i (3.20)
Λ,λ

Let Oφ™ denote the field corresponding to the state Φ^ and we consider it as
a matrix element of a field Oψ valued in End(F^). Then, the gauge invariant field
Oφ corresponding to the state -^-^ Σm Φ™ is expressed as

i (3 21)

Since Jo(h)Jo(h)Φ™ with heHc is expanded as Σ,^sh*tήΦr

sh
s

m9 the dressed field
for Oφ is given by

hOΦ = — l — %{OΦhh*). (3.22)
dim V\ A
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4. Topological Identity

In Sect. 3, we wrote down a formula (3.4) that expresses a correlation function
as an integral over the moduli space of semi-stable bundles. If we are to use it
to prove the topological identity (1.3), we must find some relation of the moduli
spaces of bundles of distinct topologies. In general, however, they are not identical.
In the former part of this section, we convert the formula into a new one in which a
correlation function is expressed as an integral over a moduli space of bundles with
a flag at the insertion point. We will see that the new moduli spaces for distinct
topologies are isomorphic with each other, via the gauge transformation that defines
the spectral flow. Applying the argument that leads to (2.21), we will get a proof
of the topological identity.

4.1. The Flag Partner. The first step of reformulation is to express a gauge invariant
field as a certain integral over the flag manifold of the gauge group.

The flag manifold Fl(H) of H is the ensemble of choices of a maximal torus
of H and a chambre. A choice (Γ, C) G Fl(H) determines an identification

Fl(H) ^ H/T 9έ Hc/B , (4.1)

where B is the Borel subgroup of HQ determined by (Γ,C). Thus, Fl{H) is
a compact homogeneous complex manifold. A weight λ G P gives a character
Qλ : T -> U(l) by e2πiv ^ e2πiλ(v) and its extension eλ : B -> C* defines a homo-
geneous line bundle

L-λ=HcxBC—*Fl(H), (4.2)

by the relation (hb,c) ~ (h,e~λ(b)c), where h G HQ, b £B and c G C. We denote
by h c G L-χ the class represented by (h, c). The Borel-Weil theorem states that
the space H°(Fl(H),L_χ) of holomorphic sections is an irreducible //c-module Vχ*
of highest weight λ* — —woλ (see [33] and also [34, 35]). The line bundle L_χ is
equipped with an //-invariant fibre metric (h c\,h C2)-χ — δ\C29 where h G //.
There also exists an //-invariant volume form Ω on Fl(H). These induce the H-
invariant inner product in °

Ω. (4.3)
Fl{H)

Let {em m G P^} be an orthonormal base of Vχ consisting of weight vectors where
P t is an indexing set. The highest weight vector is denoted by eχ. Writing the matrix
element (em,hem2) by (/*)^2, we put

φm(hB) = h (hfί. (4.4)

Then, {φm;me Pλ} forms an orthogonal base of H°(Fl(H),L-λ):

(φm\φm2)FKH) = 1^—δm-mK (4.5)
dim Vχ

Integral Expression of Gauge Invariant Fields. Let O be the gauge invariant field
(3.21) corresponding to a state Φ G Jf^. We express the dressed field hO as an
integral over the flag manifold.
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Let us define a volume form Ω(hh*) of Fl(H) by the following: At the point
h\B e Fl(H) represented by h\ e H,

\ λ ι 2 Ω \ h ι B 9 (4.6)

where b(hγιh)eB is the "Borel-part" of the decomposition h\ιh —
b(h\xh)Ό(K{xh)\ b(h^λh)eB, U(h^ιh)eH. (This decomposition is unique up
to T due to the Iwasawa decomposition.) Let th-\ : Fl(H) -> Fl(H) be the left
translation by hΓx. The relation

\hιB, (4.7)

(which we shall prove shortly) shows

rhΩ(hh*)\h-%B = hx&λ \eλ(b(hγ]h))\2 Ω\h-ίhίB . (4.8)

Putting U = U(h^lh)-\ we have h~xhx0\ = Uθ\ \e~λ(b(h-ιh))\2. Hence we get

rhΩλ(hh*)\UB = hUθ[Ω\UB = ΣhCfjU-'ΫJU^Ωlus. (4.9)
m,m

This amounts to the following identity of top differential forms:

where ψm is given in (4.4). Due to the orthogonality (4.5), it follows that

* Ω(hh*) = ^Λ-r-tvv (Ohh*) . (4.11)
dimF ^ v ;

1 x /
volFl(H)Fl(H)

Proof of the relation (4.7). It is enough to prove ΓbΩ\B = \Q~2P{b)\2Ω\B for b e
B. Since the (l,0)-tangent space of Fl(H) at B is isomorphic to fχ:/ί>, we have
only to show that e~2p(b) is the determinant of ad(Z>) : ί)c/b —> I)c/ί>. In view of
2p = Σ α > o

α ? m e proof is trivial since we can order the base of ί)c/ί> consisting
of negative root vectors so that ad(6) is represented by an upper triangular matrix.

The Flag Partner. Suppose that hO is inserted at the center x of a disc£>o C Σ
in a correlator ^Σ,p(A •)> where the gauge field A is chosen to be flat over Do.
The fibre Px is a copy of H, and accordingly, one can consider a copy Fl(Px)
of Fl(H). Let us choose / e Fl(Px) with its representative s(x) G P*. s(x) extends
to a horizontal frame s : Do —>• P which determines a correspondence of fields and
states. The field corresponding to Φ e Jtf% can be denoted as θ\(f). We also denote
by b/(h) the "Borel-part" of the decomposition of h(x) with respect to s(x). Let us
choose a local coordinate Z 1 , . . . , / ' ^ ' of Fl(Px) and a family {σ/} of holomorphic
sections of PC\D0 with respect to 3A- Then, the expression (dσf/dfa)σjι determines
a holomorphic section vα(/) of adPc =Px//ϊ)c over Z>o. Using the standard OPE
of b and c ghosts, from (4.11) we obtain

J ^d2fβh§bW)h§Bw)d{f) (4 12)

where
O(f) = O\(f) \cλ^(bf(h))\2 Π c"α(x)c-α(x). (4.13)
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In the above expression, c a(x) are the coefficients of negative root vectors in the
expansion of the ghost c(x) with respect to the frame of adPcx determined by s(x).
We call this field O(f) the flag partner of O associated to / 6 Fl{Px).

The state corresponding to the flag partner O(f) with respect to the frame s is
expressed as

Φ(8)Φ_A-2P0|Ω). (4.14)

Here, Φ-χ-2p is the state corresponding to the field \Qλ+2p(bf(h))\2 of the WZW
model based on HQ/H. AS in WZW models based on compact groups, the state space
of this system has left-right representation of the affine Lie algebra Lt)c. The state
Φ-χ-2P is a highest weight state of left-right equal weight (—λ — 2p, — k — 2/zv). The
\Ω) is the state Π-α<oc()~α^o~α|O) m * n e 8n°st Fock space. It has ghost number \A\.
In view of the identification (3.20), we see that the space of states corresponding
to the flag partners of gauge invariant fields is given by

Φ-λ-
Λ,λ

λ-2p (4.15)

Remark. In the literature (see [36] and references therein), the state of the form
(4.14) is identified as a non-trivial element of the BRST cohomology that seems to
correspond to the physical state space of the gauged WZW model.

4.2. A New Integral Expression. Let us consider the correlation function ZΣ,p(O\
• OsO(x)), which is expressed as the integral of a measure ΩΣP(O\ OsO(x))
on the moduli space Jίp. Let U be an open subset of Jίp with a representative
family {Au}ueu- The result (4.12) shows that the measure

a=\ α=l

on UxFl(Px) reproduces ΩΣ,P(O\ OsO(x)) by integration along Fl(Px). Let us
see what happens when the family Au is replaced by its chiral gauge transform A^c

by hc G ̂ pc. Absence of chiral anomaly in the combined system of the three CFTs
shows

Σ,P
λhc . hO1...hOs&(b;b)O(f)

(4.17)

where SF{b\ b) is an arbitrary function of b and b. By a simple argument, one
can show that hc0(f) = O(hcf), where hc acts on flags by evaluation at x. Since
δ(Ah

u

cγι = h~ιδA®ιhc, the measure (4.16) is invariant under the replacement

(4.18)
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In other words, (4.16) defines a ^p c-invariant form of degree 2djr + \A\ on

stp,x = ^P x Fl(Px). (4.19)

Let us see whether this form is null along the direction of ^/>c-orbits (δAoι,δf) =

(^ε, — εf). When A u t ^ is trivial, the &-ghost is holomorphic over Σ — {x}:

$bε. (4.20)

In this case, the ^-insertions from δA01 = dAε and from δf = —εf cancel with
each other, and (4.16) is null along &pc-orbits. The story is the same when every
automorphism of dA preserves any flag / ; Aut4ι = Aut(4ι>/)5 since in such a case
O(f) does not carry c-ghost zero modes so that ^-ghosts are holomorphic over
Σ — {x}. However, the situation is involved when Aut<|i φAut(<34,/). In this case,
^-ghosts have poles at points of the oghost insertion associated with |Aut ^ l " 1 :
If ε is a holomorphic section of adPc such that εf φ 0, the bε is a meromorphic
differential which has poles also in Σ — {x}. Let ~ be an equivalence relation in
jtfPίX defined by (A,f) ~ (A,h~ιf); hc e A u t ^ Then, integration along the fibre of
sdp x —>• stfp χl ~ yields a form on s/p xj ~ which is null along the fibre of

In any case, after a certain integration if necessary, the form (4.16) descends
to a measure of a quotient of srfp,x by ^pc. Although taking a suitable quotient is
a subtle problem, we proceed by assuming that there exists a good one which we
denote by Jfp,x. This will be specified in the next subsection in certain cases.

To be explicit, let us choose a coordinate system (vι,...,vdjr) of an open sub-
set V of JίpiX with a representative family {(Av,fv)}veV. We choose a family of
holomorphic sections σo(v) and σoo(ι ) of PQ over a neighborhood t/o of x and
UOQ = Σ — {x}, that are related by holomorphic transition functions hooo(v). The
σo(ιθ is chosen to represent fv at x. Let vA(f) be the holomorphic sections of adPc
over UQ Π UQQ defined by

d
Uv) = σo(v) hoooiυ^—hoooiυ), A = l , . . . , d ^ . (4.21)

Then, the new measure ΏΣ 5 J P,*(^I OSO) of jVpfX is expressed on V as

ΩΣ,p,x(Oi ' OSO)

Π <r*Zi,p Av; hθλhθsγ[
A=I V \kvA(dAv,fv)\ A=i 2πiJ

x

(4.22)

By construction, integration of this measure reproduces the correlation function under
study. Thus, we get a new formula:

ZΣ,P(Oι " Ό s O(x)) = I J ΩΣ,P,x(Oλ ...OSO). (4.23)
vol Pl(H)

4.3. The Moduli Space of Parabolic Bundles. In this subsection, we explicitly
construct the quotient space JίpiX for the cases: Σ = P 1 and H is general, and Σ is
torus and// = SO(3).
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For our purpose, it is enough to find a submanifold of s/piX with complement of
codimension ^ 1, having a good $Pc -quotient. As a candidate for the cases at hand,
we propose to consider the set of (A9f) whose automoφhism group Aut(dA,f) is
of minimal dimension. We denote this set by stff™. Note that j/p, x/^p c is naturally
identified with the set of isomoφhism classes of holomoφhic principal HQ-bundles
of topological type Pc with a choice of flag at x. In [37], such objects are called
bundles with quasi-parabolic structure at x. By abuse of language, we shall call
them parabolic bundles over (Σ,x). Two parabolic bundles (^ i ,/ i ) and i&i.fi)
are said to be isomoφhic when there is an isomoφhism ^ i —> ̂  which sends f\ to
/2. If (A9f) G srfp,x corresponds to (0>9f\ the groups of automoφhisms coincide:

Genus 0. We start with H = SU(n)/Zn. We choose a Borel subgroup B that is

represented by the group of upper triangular matrices. Let us take a parabolic

//c-bundle over ( P ^ z ^ O ) (P 1 is covered by the z-plane Uo and w-plane Uoo,

zw = 1). By the Birkhoίf theorem [16], there is a unique coweight a G P v so that we

can choose a section σo on ί/o representing the flag at z = 0 and a section σ ^ on U^

that are related by σo(z) = σoo{z)z~a. We denote this bundle by &a = (^ [ α ],/ α ). Its

automoφhism group Aut^ β is the subgroup of Aut^[fl] that preserves fa. Recall

that an element h of Aut ^[fl] is represented with respect to σo by a matrix-valued

function ho(z) whose z-/h entry (A0)y(z) is a span of l9z9...9z
aι~aJ if at ^ aj and

zero if at < α ;. It belongs to Aut^ β if (λo)y(O) = 0 for i >j. Thus,

dim Aut βa = dim Aut &>[a] - £ 1 = n - 1 + Σ ( l«ί ~ aj\ + ^ ,« y ) , ( 4 2 4 )

where 0 ^ = 0 if x < y and 0 ^ = 1 if x ^ y. The lowest value (« + 2)(n — l)/2 is

saturated by n elements; a = (wjWo)~ιμj, j — 0,1,...,« — 1, where ^ y and W/Wo are

the minimal coweight and the Weyl group element given in (A.2). They correspond

to distinct topological types. Thus, for each //-bundle P = P^J\ our submanifold

&#™x is the unique orbit of maximal dimension corresponding to the parabolic bun-

dle 0>j = ^(Wjwo)-ιμj Therefore, the quotient J^pω}X is a one point set. Note that

&>j admits the transition rule σo(z) = σoo(z)z~μJnWjWo with σo(O)B being the flag,

where the loop e~ψjθnWjWo represents an element of fg. Note also that dim Aut ^ y

is independent of the topological type. In fact, they are all isomoφhic. We revisit
these points in the next subsection.

For a general compact group //, the story is essentially the same. Each a G P v

indexes an isomoφhism class represented by a parabolic bundle whose automor-
phism group has dimension / + Σ α > 0 ( lα(α)l + 0α(α),o ) which is minimized by
a — w~λμ G —C, where μ is a minimal coweight. Thus, for each topological type
γ e πi(//), the quotient Jfpw,x is a one point set represented by a parabolic bundle
&y described by the transition rule

σo(z) = σoo(z)z-μnw, (4.25)

with σo(O)B being the flag. Here, the loop y(θ) = Q~ιμθnw represents an element of
Fζ that corresponds to γ G π\(H).
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Genus 1 and H — SO(3). Here we consider parabolic He — PSL(2,C)-bundles over
the torus Στ = C*/qz with a marked point x with z(x) = 1, where qz is the subgroup
of C* generated by q = e2 π r r. (This torus is identical with the one considered in
Sect. 3 under e~2πiζ = z.)

ed by q
e~2πiζ =

A holomorphic HQ -bundle

for a multivalued holomorphic section σ(z). The bundle is topologically trivial if
and only if QIΘ I-» h(q;Qιθ) is single valued as a map S1 —> SZ(2,C). Below, we list
up some bundles by exhibiting their transition matrices h(q z):

over Στ is described by the transition rule

= σ(z)h(q;z) (4.26)

trivial non-trivial

'oo

0 t

1 1
0 1

Here, tu = Q~2πiu. Note the identifications

u = ±u> m o d ι_

w Ξ w/ m o d i z

+ i Z

0 q

0 -iY

V,

Atiyah's classification [38] shows that other bundles have h(q z) = diag (4z2,

t~ιz~%) with n ^ 2. They have automorphism groups of dimension ^ 3 and hence

are irrelevant in our story, {βu \&\2^F J *S m e collection of semi-stable bundles.

Note that 0^ and 0^ are the flat SO(3) bundles with the holonomies (3.10) and

(3.14) respectively.
An automorphism of 0> is described by σ(z) ι-» σ(z)Λ(z), where A(z) is a holo-

morphic map C* —> PSL(2,C) satisfying

h(q;z)h(zq) = h(z)h(q; z) . (4.27)

The following is the list of the automorphism groups with their typical elements:

C*
0 c

PSL(2,C)

C*xZ2

C*xZ2

—c
- 1

c <

0 c —C ! Z 2 0

if M ~ 0

if u ~ T

1 1 M 4» 4 '

(4.28)

1 x
0 1

(4.29)
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? -„

(4.31)

Here, ϋXjU(z) = ϋ(ζ + 2u + ^ , T ) , where # ( £ τ ) is the Riemann's theta function

^ ^ . (Recall q = e 2 π / τ and z = e" 2 π / ί . ) Note that t?τ>f l(l) = 0 if and only

if WΞΞO mod ± Z + § Z .

Looking at the action of A u t & on the flags over Z Ξ I we can classify the
parabolic bundles. Below is the list of isomorphism classes together with the

automorphism groups. Here, a flag σ(\)ia

c A B is represented by a number

φecu oo.

trivial

c*
c*

B

non-trivial

) i
) Z 2

n

0,1,/

0,1,i

s -y~

Note that

(0$\y) ^ {0*£\y') ̂ yf = y, -y9y'\or - y~ι

By looking at the dimension of the automoφhism groups, we see that our can-

didate stψ£ consists of the ^Pc-orbits represented by {(^i0 ), \)}u^o and ( ^ ^ o o )

for the trivial bundle, and by {(0*F \y)}y for the non-trivial bundle. A more care-

ful look at the dimension shows that this s^ψ^ C stfpiX indeed has a complement

of codimension ^ 1. Does (^QQ\ 00) represent a separated orbit? The answer is

no: As we will see in Sect. 4.4, there is a holomorphic family \βPv }v of parabolic

bundles such that 3^ ^ ( ^ \ OD) and ^ = ( ^ 0 ) , 1) for M + 0. SO, the quotient

space should be smooth around the orbit of (^00 > °°) ^ e ^ n u s Se^ the quotients

^riv,x = C / ^ , (4.32)

(4.33)
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Here C/~ is the desingularization of C/~ at the Z2-orbifold point u ~ 0 so that
v = u2 is a good complex coordinate, with υ = 0 being identified with ( ^ ^ , 0 0 ) .
Both spaces are complex orbifolds with three Z2-orbifold points; u ~ \,\,^~ £
J^tήv,x, and j ; « 0,1, i e Λ^on-tnv,*- We will see in the next subsection that these
are isomorphic.

4.4. Action of π\{H) on the Moduli Spaces. Let (Σ9x) be a closed Riemann surface
with a marked point. We choose a neighborhood U$ of x with a coordinate z such
that z(x) — 0. A holomorphic principal C*-bundle admits trivializations over UQ and
C/QQ = Σ — x that are related by a holomorphic transition function h^o : ί/oΠ (Too ~*
C*. For each α e Z , the replacement

Aooθ(*) "-+ AooθOΦ~α (4.34)

of transition function induces the translation of the Picard group of Σ by an element
of degree a. This defines an action of π\(U(l)) = Z on the Picard group that covers
the natural action on the set H2(Σ,Z) = Z of topological types of t/(l)-bundles.
This action depends on x but not on the choice of coordinate z.

We ask whether such an action exists for a general compact connected group
H: Does the natural action of π\(H) on the set of topological types of principal
//-bundles lift to an action on the set of isomorphism classes of holomorphic prin-
cipal //c-bundles? The answer is no. Instead, as we will see, π\(H) acts on the set
of isomorphism classes of parabolic //c-bundles over (Σ,x). We denote this set by

Action of %\{H) on J^Hc{Σ,x). For a parabolic bundle ( ^ , / ) over (Σ,x), we
say that a section of &*\u0 is admissible with respect to / when it represents
/ over x. Let h : (0*,f) —> (^ / ,/ / ) be an isomorphism. Under a choice of triv-
ializations {σo, <7oo} of & and {σf

0, σ'^} of 0*' over {UQ, UOQ} such that σo and σf

0

are admissible with repect to / and / 7 , h is represented by HQ -valued holomorphic
functions {/*o>̂ oo} on {C/o, Uoo] with ho(x) e 5 : 07 ι-> <τj/*/ (/ = 0,00). Then, the
transition functions hooo and A^Q are subject to the relation

A^oίz) - A00(z)Aoo0(z)Ao(z)-1, zG(/ 0 Π [/«,. (4.35)

For an open Riemann surface U, we denote by LUHQ the group of holomorphic
maps U —> //c Pulling back by inclusions C/QOO = ^0 Π C/oo ^^ C/o, £4o? the groups
L^Z/c and LUooHc may be considered as subgroups of LUoo0Hc> We denote by BUo

the subgroup of Lu°Hc consisting of maps with values at x being in B. By the above
argument,

U \ U U (4.36)

The fundamental group π\(H) is isomorphic to the subgroup Γ~ of the affine

Weyl group W^ consisting of elements that preserve the alcove C (see Appendix A).
For each y £ Fg, there is a holomorphic extension hy : C* —> //c We identify Ay as
an element of LUOO0HQ via the coordinate z : C/QOO —> C*. Since the adjoint action of
Ar on LUOO0HQ preserves the subgroup Bu° c LUoo0Hc, we find that the replacement
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of transition function induces a transformation

yx : JTHSΣ9x) -> JVHC(Σ9X) . (4.38)

This changes the homotopy type of the transition function by y e π\(H) and hence
permutes the subsets s#p,x/&pc C J^Hc(Σ,x) as

7x : 4 x / ^ c "+ ^Py,x/^Pyc (4.39)

Thus y f-> yΛ is the desired action of πi(//) on JVΉC(Σ9X).

The Conjecture. Note that this action preserves the automorphism groups. Namely,
if the class of ( ^ , / ) is mapped by yx to a class represented by (^y,fy), we have

Aut(^,/) ^ A u t ^ , / 7 ) . (4.40)

This can be seen by multiplying hy{z) on the right of Eq. (4.35) with A^Q = Aooo
Note also that a holomorphic family representing a subset of sdp,x/^pc is mapped
holomorphically by yx to another holomorphic family representing a subset of

Having these in mind, we conjecture that the following holds: There exists a
method to take the quotient JfP,x so that Jίp^x is mapped isomorphically onto
^Py,x by 7x- If* furthermore, Jfp,x is mapped onto Jίp by forgetting the flags, we
have the following double fibration:

(4.41)

In this way, we can relate moduli spaces of bundles of distinct topological types.
This seems to be what mathematicians call the Hecke correspondence [39].

Verification for Genus 0. In Sect. 4.3, we already defined the moduli space Jfpψ)x

for (P !,z(x) = 0). This is a one point set represented by &Ίι that is described by
the transition relation σo(z) = σoo(z)Ay/(z), where σo is admissible. The yx-transform

of ^γf is then described by σy

0(z) = σy

oo(z)hy'{z)hy{z), where σy

0 is now admissible.

Since hy(z)hy(z) = hy>y{z), it is &y>y and we see that

7χ ' ^p(/),x — ^ ^p(y'y\x ( 4 4 2 )

The conjecture is thus verified on the sphere.

Verification for Genus 1 and H — SO(3). For H — SO(3), the non-trivial element
y of Fζ = Z 2 is represented by a path

in SU(2). We apply yx to the topologically trivial parabolic bundles over (Στ,x)
with z(x) = 1. An //c-bundle ίP we consider is described by the transition relation
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σ(zq) — σ(z)h(q;z) and a flag is parametrized by y eCU {oo}. If a matrix hf G
SL(2,C) obeys (hf)\/(hf)\ = y, then, σo(z) = σ(z)hf is an admissible section on
a small neighborhood UQ of z = 1. Hence, the yx -transform of (&,y) is represented
by a bundle 0>Ί with an admissible section σ\ on (/0 and a section σf on C* — qz

that are related by

σl(z) = σf(z)hfhγ(z-\), zGί/o-jl}, (4.44)

σ'(z#) = σ'(z)h(q;z), z =φ 1 mod qz. (4.45)

The conservation Aut(^,/) = Aut(^ y , / y ) of automorphism groups enables us to
guess how yx transforms the parabolic bundles listed in Sect. 4.3. After a calculation,
we find the following solution (see Appendix C for the proof):

(^\l)-*(^\yu) ιιψθ,

(&Z\oo)^(0$\yo)9 (4.46)

where

This function satisfies y-u = yu, yu+i = —yu and yu+i = —jμw *, and hence

determines a map C/~ —> P 1 / ^ . The Z2-orbifold points w ~ | , | , ̂  of C/~ are

mapped to the Z2-orbifold points j ; « 0, i, 1 of P ! / ~ respectively. In a neighbor-

hood of u — 0, it behaves as yu — yo + cw2 + , with c being a non-zero constant.

Applying y~ι to a holomorphic family ( ^ ,j;) of parabolic bundles around

(^f\yo), we get a holomorphic family J ^ 0 ) around ^ 0 ) = ( ^ } , c x ) ) parametrized

by v = u2 such that d^ = ( ^ 0 ) , 1) for wφO. This has been the basis of the con-

struction of the moduli space Λ̂ triv,*- Now, we see that yx yields an isomorphism

yX : ^triv,* = C / ^ — > ^non-triv,x - P 1 / ^ (4.48)

The conjecture is also verified in this case.

4.5. The Topologίcal Identity. We define an action of π\(H) on the space of gauge
invariant fields and prove the topological identity (1.3) using the results of the
previous sections.

Action of %\{H) on Gauge Invariant Local Fields. Let y be a loop in H represent-
ing an element of Aj = π\{H). Let O be the gauge invariant field corresponding to a

state Φ E dtfλ

A. Since ady preserves the subgroup N+ of LHQ, the gauge transforma-
tion by y preserves the highest weight condition with respect to Lί)c So, the gauge
transform γ Φ of Φ is in J^y^Λ9 where yG is the image of γ under the natural map
π\{H) —> π\(G/ZG), and yA and y^Λ are defined as in (2.18). We denote the corre-
sponding gauge invariant field by yO. As it is independent of the choice of a loop
representing an element of Γ^ = π\(H), this O ι-» yO gives rise to a πi(//)-action
on the set of gauge invariant fields.

Gauge Transformation of the States Corresponding to Flag Partners. Let us recall
from Sect. 2.3 the configuration Aρ^y of gauge field on the unit disc Do. We consider
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it as a connection of the trivial bundle DoxH. As noted before, Aβiγ can be made
flat by a chiral gauge transformation hQ^y such that Aρ,y(0) = 1 and λρ,y|d£>0 is a

constant loop in the Cartan subgroup TQ of HQ. Let us insert the flag partner of O
associated with the flag /o = (0,5). Since chiral anomaly is absent in the combined
system, and since «̂ £>0(0; O(fo)) = Φ® Φ_^_2P 0 |Ώ) has weight zero with respect
to Γ, the state we observe at S = d/}0 is still

i^0(Λρ,y; 0(/o)) = Φ 0 Φ_^-2p 0 | « ) . (4.49)

If we look at the same state standing on the horizontal frame s(θ) = (eιθ,y(θ)~ι),
what we observe is its gauge transform y Φ 0 y Φ_,i-2p 0 y |Ω). We determine
what this is. First, note that a wave function of the WZW model based on HQ/H
is a section of a certain line bundle over the loop space of HQ/H. It is a pull
back of the line bundle 5£~^~lh over LHQ by the map of loop spaces induced by
hH G HQ/H I—> A/z* G He- (Here, 77c is the universal cover of He, if He is simple.
Extension to a general case is obvious.) Just as in Sect. 2.3, a computation proves
y' Φ-χ-2p — Φ-γλ-2p As for the ghost part, \Ω) can be considered in a certain
sense [16, 40] as a "volume form" of the infinite dimensional space Lί)c/b+, where
b + is the Lie algebra of the group B+ c LHQ. Since ady induces an orthogonal
transformation of Lί)c and preserves the subalgebra b+, y \Ω) = \Ω). Thus, the
gauge transform is γ Φ 0 Φ-yχ-2p 0 \Ω). By the above definition of the π\(H)
action, we get

( \ d (4.50)

where (s) signifies that ^ ( 5 ) is the state observed on the horizontal frame s.

Proof of (1.3). We are now in a position to prove (1.3). We make use of the
new integral expression (4.23). Let V be an open subet of JfpiX with a holomorphic
family {(Av,fv)}υev of representatives. Absence of chiral anomaly in the combined
system enables us to take the representatives so that there is a family {<Jo(v)}vey
of horizontal and admissible sections on a neighborhood UQ of x.

Let us choose a complex coordinate z on UQ such that z(x) = 0 and z(Uo)
includes the unit disc A), and put Γ ^ = Σ — Do. If we glue along S = Σ^ ΠDQ
the configurations Av\Σoo and AQ,y by identifying σo(v,eιθ)γ(θ) and so(e^) := (&ιθ, 1),
we obtain another //-bundle Py over Γ with a smooth connection Λβ. We denote by
σ(v) and SQ(Ϊ ) the sections of Py over ZΌo Π ϋ/o and D o respectively which had been
^o(^)|r00nt/0

 a n ( l ô before the gluing. Consider the flag fl = sy

0(v,x)B. We can find
a section σy

0(v) over UQ, holomoφhic and admissible with respect to (A7

v,f
y

v), such
that OQ(V,Z) = σ(v,z)hy(z) on a neighborhood of S. Thus the replacements

( A Ό 9 f Ό ) » ( A l 9 f ] ) 9 v^V, (4.51)

represent the transformation yx : V —> y x(F). The image yx(K) is an open subset of
^Py,jc, under the assumption that the conjecture yx : JfpiX = ^ p ^ ^ holds.

Now, we have the identity modelled after (4.50),

%)\ %M\ ' . (4.52)
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Since the automoφhism groups are naturally isomoφhic, this yields

2πi
yθ(fv)

A = l

1

vτ/!ooθ(^) = σζ(»)
5uA

where vA(u) is given by

v » = σ(v) Aoooί

in which h^^v) — h^(υ)hΊ. This amounts to the identity

ΩΣ,P,x(Oι Osib) = y i O ^ ^ i d 0,5),

which shows (1.3).

O(/J) , (4.53)

( 4 5 4 )

(4.55)

5. Sum Over Topologies

The full correlation function ZΣ(O\ Os) of gauge invariant fields O\ - OS

is given by the sum ΣPZΣ^p(O\ Os) over all topological types of principal
//-bundles over Σ. If we use the topological identity (1.3), we have

ZΣ(Oι OsO)= (5.1)

where P is any //-bundle. This shows that O and Of are indistinguishable in any

full correlator if ΣyO = ΣyO1'. This motivates us to consider the quotient of the

space of gauge invariant local fields by the kernel of the operator Σy<Eπγ(H)y> o r

equivalently, the quotient Jfhw of J fhw by the kernel of ΣyeΓ^y By the general

principle of CFT, we expect that the torus partition funtion ZΣτ{\) satisfies

(5.2)

where c = cc,k — cH %. Here, Lo and L$ are GKO generators [9] which commute

with the operators γ- for γ e Γ^ and hence can act on the quotient space 3tfhw

In this section, we calculate the full partition function on the torus Στ and see
whether (5.2) holds. For simplicity, we assume H is semi-simple. In this case, n\(H)
is a finite group and the quotient JfW is mapped by , * • ^ γ isomoφhically

onto the subspace of J f hw of /^-invariant elements. We denote by H the universal
cover of //.

5.1. Torus Partition Function for the Trivial Topology. Let Ptπv be the trivial
bundle ΣτxH. Recall that the moduli space Jin = J^ptήv is parametrized by u £ tc
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with the representative flat gauge fields

Au = —udζ- —ΰdζ.

23

(5.3)

Auf is gauge equivalent to Au if and only if u' — wu + n + τm for some w e W and
« , W I G P V . The WZW model in the background 4̂M has the partition function

Zx^Λ l^e^M"^2

 Σ \f/(τ,u)\\ (5.4)

(see [41, 42, 1]) in which χ^k is the character of the representation LG

A'
k of LG:

i (5.5)
A

where u 6 tc is considered as an element of §c As it should be, (5.4) is invariant
under the gauge transformation u ι—> wu + « + τm. It is also invariant [44] under the
modular transformations (τ,w) ι-> (τ + 1,M) and (—^, " ) .

We calculate the partition function in the trivial sector

Στ

(5.6)

The automorphism group of 3AU for generic u is the group of constant gauge trans-
formations by elements of TQ. Parametrizing hh* as n+Qφn\, where n+ is N-valued
and φ is zt-valued, division by automoφhism group is implemented by

(5.7,

where x0 is a point of Στ. As calculated in [1], the partition function of the ghost

system with the insertion of ^ C l 2 , and of the HC/H-WZW model

with the insertion of δ^ι\φ(xo))/γo\(T) are given respectively by

Here, det'aά(dAuδAu) is the C-regularized determinant of the Laplace operator dAudAu

acting on sections of the adjoint bundle. This is calculated in [45]:

(5.9)

where Πβ(τ,u) is the Weyl-Kac denominator. Thus, ZΣτfPtήw(l) is equal to

(5.10)
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The branching rule (3.19) leads to the expansion

(5.11)

in which the branching function bλ

A is defined by bΛ(τ) = trβλ (qL°~^). As the GKO
A

operators Zo and Zo commute with the γ , we have byλ

Λ = bΛ, which enables us

to replace the integration (5.10) over JYΉ by an integration over Jί^ divided by
|P V /Q V | 2 . Using vol(Γ) = (2π)7vol(/t/Pv) and the orthogonality of characters;

= vαl(Λ/Qv)

we get

where

as

runs over P.f }(G)xP.f}(//). Since

(5.12)

< 5 1 3 )

= bλ

Λ, it can also be expressed

where the sum is over the quotient (Pf )(G)xPJ^ )(^))/Γ- and Aλ

Λ is the isotropy

subgroup of Γζ at (Λ9λ).

If A^ = 1 for every (Λ9 λ), obviously we have

J * q L ° - * ) . (5.15)

As we shall see shortly, in this case, topologically non-trivial bundles do not con-
tribute to the partition function and hence ZΣτίPiny{\) is itself the full partition func-

?\ ?f\Htion. Thus, (5.2) holds when m(H) acts freely on ??\G)x?f\H).

5.2. Field Identification Fixed Points. To each y e π\(H) is associated a principal
//-bundle P ( y ) = P^ ̂ y over Στ. Due to the topological identity (1.3), the partition
function for P^ is the one point function for Ptήv of the field y(l) corresponding
to a state γ ΦQ in 3#*y

y°0:

ZΣτ,p(y)(l) = ZΣτ,PtnMV) (5.16)

This is expressed as an integral over JVΉ whose integrand contains a factor
ZΣτ,ptnv(Au;Oγ. Φo). For this to be non-vanishing, the fusion rule [41, 46, 24]
requires

Σ Nγ

Λ

0Λ+0 and Σ Λ ^ + 0 . (5.17)

Here NAΛ, (resp. Nχ'λ,) is the fusion coefficient of the WZW model with target G

and level k (resp. target H and level k). The Verlinde fomula expresses them in
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terms of the modular transformation matrix: Nχ λ =J2χ^λ^λ^Γ/^o t ^ ] From

Gepner's observation [10] sf = ( - l y W e - ^ + ^ ^ s f y(θ) = e~iμθw, it follows

that N^l2λ"λ/ = Nχ'λ,. Since N$'λ = δf, (5.17) is equivalent to the condition that there

exist A e ?ik)(G) and λ G ?[k)(H) such that yGΛ = A and y/l = /I.

If there is a pair (yd, λ) at which the isotropy Aλ

Λ c n\(H) is not {1} (such a pair
is called the /ϊeW identification fixed point in the literature), the partition function
for the trivial topology (5.14) has fractional coefficients in the q, ̂ -expansion and
we can hardly expect that it is expressed as a trace of qL°~^qLo~^ in a Virasoro
module. In algebraic treatments of coset models [12, 47], this was recognized as a
problem of field identification fixed points. We expect that a natural resolution is
provided by the sum over topologies: If A^=j={l}, the contribution ZΣτiP(γ)(l) for
γ £ Aλ

Λ — {1} may be non-vanishing and the integrality of the coefficients may be
restored for the full partition function.3 In the next subsection, we examine whether
this happens in a specific example.

The partition function (5.13) for the trivial topology is manifestly modular in-
variant. It should also hold for non-trivial topologies, since P and f*P are topologi-
cally isomorphic for any diffeomorphism / . This is indeed the case for the example
below.

5.3. Models with G = SU(2)xSU(2) andH = SO(3). We consider the case of G =

SU(2)xSU(2) and H = SO(3) the diagonal subgroup of G/ZG = SO(3)xSO(3). The

level induced from (kx.ki) is k — k\-\-k2. Since a highest weight representation

of SU(2) is conventionally labeled by the spin e | Z , we identify ?^\SU(2)) =

{0, \, 1,..., §}. The non-trivial element of π\(H) = Z 2 induces the involution

(UuJ2)J)^((ki-juki-J2lk2-J) i n ?ίkl'*\G)x?f\H). If kx or k2 is an
odd integer, there is no fixed point and the full partition function is given by

\ Σ \ h Î C/! 2 )( τ )l 2 ' ^ o r ̂ e c a s e ^2 = ^' ̂  ^s ̂ n e < ϋ a S o r i a l modular invariant par-
tition function of the kf1 unitary minimal model.

Partition Function for the Non-trivial Topology. In the following, we assume that
k\ and k2 are both even integers. Then, there is a unique fixed point ( ( ^ , ^ ) , | )
and the topologically non-trivial configurations contribute to the partition function.
Recall that there is a unique flat SO(3) connection AF of non-trivial topological
type, which corresponds to the semi-stable bundle ^p studied in Sect. 4.3. With
respect to the multi-valued section σ(z), the connection form of Ap is expressed as

1 0

As &F' has the automorphism group Z2 x Z2 of order 4, the partition function

Ziτ,non-triv(l) is ^zτ,non-triv(^F; \\ It factorizes as the product

Π
i=\

3 In [47], a method for "fixed point resolution" is presented. Characters of the "fixed point CFTs" in
that reference may be related to the partition functions for non-trivial topologies.
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of partition functions of the four constituent systems. We show that this is inde-
pendent on τ, by proving that the one point function of the energy-momentum
tensor vanishes for each system. Let σa<i(z): ί)c —* ad/fclz be the frame asso-
ciated to σ(z) G PQ\Z> The Green function of the operator §AF is expressed as
Gw(z) = σaά(w)g(w,z)σad(z)~ι<8> dz, where g(w,z) G End(I)c) is represented by the
matrix

/ Σ,
g(w,z) =

L\

\ Δ^n

neZ z-q2nw v Z^«GZ z-q2"-

0 f(w,z) 0

2-^neZ z—a2nw '0

(5.20)

with respect to the base (σ+,σ3,σ_) of t)c = $I(2,C). (σ± — (σ\ ± iσ2)/2; σz are
Pauli matrices.) f(w,z) is expressed by the theta function ΰ and its derivative
ϋ' = §-ζϋ as

1
JK ' }

(5.21)

The level k SU(2)-WZW model in the background AF enjoys the chiral Ward
identities {J) = 0 and

(J • ε(z)J • ε'(w)) = )Gwε{z)ε\w)). (5.22)

Plugging these into the Sugawara form (B.6) of the energy momentum tensor, we
find

.) = 0. (5.23)
U ί

This also holds for the HQ/H-WZW model. As for the ghost system, the identity

(c(w)b(z)) = Gw(z) (5.24)

yields, through the expression (B.3) of the energy momentum tensor,

O yghost

Thus, the partition function is a constant:

(5.25)

(5.26)

The Full Partition Function. The partition function for topologically trivial config-
urations is given by

(5.27)

where the sum J2° i s o v e r the Z2-quotient of ?^uk2\G)x?^ - { ( ( j , j \ | ) } For

the non-trivial topology, we have (5.26). The term ^ ° in (5.27) is the trace of
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qLo-jiqLo-J4 o n t h e S p a c e

The question is whether there is a constant CnOn-triv such that

6 ^ - * ). (5.29)

We answer this in the case £2 = 2. The Virasoro modules by the GKO construc-
tion SU(2)xSU(2)/SU(2) at level (*i,2) are known [9] to be the ones appearing

in the kf1 N — 1 superconformal minimal model. In particular, Bf := ify( /4 k μ\ is

in the Ramond sector with a supercharge Go (GQ = £0 — ̂ )> and contains a unique

ground state with Lo = ^ . One can show that y : Jf f —> Jff induces an involution

C/y of the Virasoro module Bf such that

Got/y + i[/yGo = O. (5.30)

Let Bn be the Zo-eigenspace with GQ = w. We may put Uy = 1 on ^o — C and the
anti-commuting relation (5.30) shows that

Bn = £<+> ®B{-\ B{

n

+) ^ 4 " } (isomorphic) (5.31)
Go

for n ^ 1, where Bn is the subspace of Bn on which £/y = ± 1 . Thus, we have
M J/p(-)9 w h e r e

; (5.32)
n,m=O n,m=\

and

CO — — - — -

are subspaces on which y = 1 and y = — 1 respectively. Since ffl is isomorphic
to Jf (+), we see that (5.29) and hence (5.2) hold if we tune Cnon-triv = \-

6. Concluding Remarks

Our argument is based on the definition (2.1) of the WZW action. However,
we could have started with another one generalizing (1.1). There is a way to define
topological lagrangians subject to conditions such as locality, unitarity, gluing
property, etc. It is to use the (equivariant) differential character. Construction of an
action in terms of Cheeger-Simons differential character was initiated
by Dijkgraaf and Witten in Chern-Simons gauge theory [48] and the method was
elaborated in Ref. [49] (see also [50]). According to it, WZW actions with the
target G and the gauge group H are classified by the equivariant cohomology
group HJj{G\ Z) := H3(EHxHG; Z), where H acts on G via adjoint transformations.
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For a semi-simple group H, we have

T4(G; Z) = H3(G; Z) Θ Hom(πi(#),R/Z). (6.1)

The levels are classified by H3(G; Z). In the quantum theory, a term from the torsion
part Hom(πi(//),R/Z) would modify the πi(//)-actions on gauge invariant local
fields. In a theory with fixed points, it would modify the partition function as well.
For example, when G = SU(2)xSU(2) and H = SO(3), the theory corresponding to
(k\9k2,±l) e Z Θ Z Θ Z 2 = Hjj{G\Z) with even kuk2 would have the full partition
function

Zrτ,triv(l) i Cnon_triv — ~ | ^(^/^^/^(Ό "^ n̂on-triv + . (6-2)

For A?2 = 2, both have positive integral coefficients in the q, ̂ -expansions if and
only if CnOn-triv = ± ^ If Cnon-triv = \, (5.2) holds in each theory. Due to the re-
lation (5.30), the involution y can be identified with the mod two fermion num-
ber (— l)F and the theory for (&i,2,±1) is the spin model [7, 51] with the pro-
jection (—l)F = ±1 on the Ramond sector. We expect in a general model that
adding a torsion term has such a simple and significant consequence in physics.

In this paper, we have been concentrated on the model whose matter theory is the
WZW model with a compact simply connected target group. However, our argument
is applicable to the models with non-simply connected target, the study of which
may be important for the classification of rational CFTs. Another interesting class of
theories is the N = 2 coset conformal field theory (Kazama-Suzuki model) [52, 12].
Algebraic structure of the spectral flows of such a model has been studied by many
authors [12,53-55]. In ref. [56], a geometric interpretation of field identification is
attempted along the line similar to ours, though the argument uses the old expression
(3.4) and hence is applicable only for abelian gauge groups. The fixed point resolu-
tion in these systems (see [55, 57] for algebraic approaches) by the topological sum
with torsion terms will be interesting and perhaps of some importance in superstring
theory.

Appendix A

In order to fix the notation and terminology, here we describe some facts on affine
Weyl groups. See [21] for the proofs. Let H be a compact connected simple Lie
group without center and let π : H —> H be the universal cover. We choose a max-
imal torus T of H and put f = π~ι(T). The Lie algebras of T and f are identified
and denoted by t. We introduce lattices Q v c P v in it so that the exponential maps
induce isomorphisms t/2π/Pv 2* T and t/2π/Qv ^ f. Note that π\(H) = P v / Q v .
The dual lattices of P v and Q v are the root lattice Q and the weight lattice P re-
spectively. In this paper, we call Q v the coroot lattice and P v the coweight lattice.
A choice of a chambre C determines a decomposition of the root system A into
positive and negative parts A — A+ U A-. An element μ G P v is called a minimal
coweight if α(μ) = 0 or 1 for any α £ Δ+. We denote by Me the set of minimal
coweight. M c C P v is a section of the projection P v -> P v / Q v .

The affine Weyl group of H and H are defined by W^ = Hom(t/(1), T)xW^
QvxW and W^ = Hom(ί/(1), T)x W ^ P v x W respectively, where W is the Weyl
group of (//, T). We consider W^ as a subgroup of W^ by the inclusion Q v c P v .
W^fi acts on the set of alcoves whereas W^ acts simply transitively. For an alcove
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C, we denote by Γ g- the isotropy subgroup of W^. Then, Wjg = ^ x Γ - and we
have the isomorphisms

<* P v / Q v <* WJB/WM = Γ ε . (A. 1)

A choice C determines the decomposition Δ^ — Aa^+ U zlaff- of affine roots, which
is preserved by Fg. In other words, Fζ permutes the simple affine roots and can be
considered as an automorphism group of the extended Dynkin diagram.

Each element of Γ~ has a representative loop of the form y(θ) = Q~ιμOnw, where
μ G Me, and nw represents a certain w G W. To be more precise, let αi,...,α/ G Δ+
be the simple roots and μi,...,μ/ G P v be the dual base; α/(μy) = <5/>y . Let α be
the highest root. Then, μ G Me iff μ = 0 or μ = μ; with α(μ/) = 1. For such j , let
^ be the subgroup of W generated by the reflections {saι; iή=j}. Let wj be the
longest element of Wj and let WQ be the longest element of W. Then, WJWQ is the
element of W corresponding to μy G M c so that Q~ψjθnWjWo represents an element
of Fz. For the case of H = SU(n)/Zn, all the base elements μ, (j — 1,...,« — 1)
are minimal. They are expressed together with nWjWo as

^ V i J I _ y o J ( " 1 ) " (A'2)

where 17 is the unit matrix of size j .
For a general compact Lie group //, the coweight lattice P v can be defined in

the same way, though the dual lattice is no longer the root lattice. Under appropriate
definitions, the isomorphisms (A.I) holds.

Appendix B

In this appendix, we give expressions of the energy-momentum tensor Tzz and the
current Jz for the adjoint ghost system and for the level k WZW model based on a
compact simple Lie group H.

We fix a metric g and an //-connection A. Choose a local complex coordinate
z and a local holomorphic section σ with respect to dA. To a base {eΆ} of ί)c, G
associates a local holomorphic frame {σa} of the adjoint bundle and the dual frame
{σa} of the coadjoint bundle. We denote by ωzdz = gzzdgzf and Aσ

zdz the 1-forms
for the Levi-Civita connection and A respectively with respect to the holomorphic

d
dz

frames |- and σ.

Ghost System. We put cσ(z) = Σ a ^ σ a c(z) G ί)C and bσ

z(z) = Σ a < ? a ^ σa(z) G
f)£. Define the regularized product : ί£(z)cσ(w) : by

bσ

z{z) <8> cσ(w) = L i f J ^ + . ̂ ( z ) ^ C*(W) . . (B.I)

z — w

Then, we have

Λ σX = :bσ

z [X,cσ] : -2hvtr(Aσ

zX), (B.2)

Γ2Z = : dzb
σ

z cσ : - :bσ

z [Aσ

z,c
σ] : -j-hvtr(Aσ

zA
σ

z) - ^Szz , (B.3)

where σX — Σa GaX
a, cgh = —2 dim// and Szz = 3 z ω z — \ω2

z .
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The WZW Model To the current, we associate an ί)£-valued holomorphic differ-
ential Jξ defined by

Jz σX=Jz

σ X- ktr(Aσ

zX). (B.4)

Define the regularized product : Jz

7(z)J^(w) : by

Then, the Sugawara form of the energy momentum tensor is

Tzz = 2(*+V) : J/ ' βa J/ 'βb : ~J° '^
where f/abtr(βbβc) = δ^ and c//^ = j^ψ dim//. This leads to differential equations
of correlation functions [20, 42, 43].

Appendix C

This appendix gives an outline of the proof of the transformation rule (4.46) of yx.
The y^-transform ( ^ y , / 7 ) of an //c-bundle & described by σ(qz) = σ(z)h(q;z) with
a flag σ{\)hf is defined by the relations (4.44) and (4.45) of an admissible section
σγ

0 around z = 1 and a section σf over C* — qz.
We shall find an everywhere regular (but multivalued) section σy. We put

σy(z) = σ'(z)χ(z) for z φ 1 and require the relation σy(qz) = σy(z)hy(q;z) to hold.
The task is then to find such χ(z) that

[ χ(z) = hy(z — 1) ιhf ιχ(z) is regular as z —> 1 .

The latter condition arises from the requirement that σγ

0(z) = σy(z)χ(z) ' is an
admissible section around z = 1. The solution is exhibited below as (^,/)—»

: χ(z).

where

rβ(r -V- 9.77 4- T ?.T)

2 τ ) - l , G(z) = 2z|-logtf(C,:

in which z = e~2 r a ί, cT is a constant, and ϋ is the theta function.
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