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Abstract: A study of the gauged Wess—Zumino—Witten models is given focusing
on the effect of topologically non-trivial configurations of gauge fields. A correlation
function is expressed as an integral over a moduli space of holomorphic bundles with
quasi-parabolic structure. Two actions of the fundamental group of the gauge group
is defined: One on the space of gauge invariant local fields and the other on the
moduli spaces. Applying these in the integral expression, we obtain a certain identity
which relates correlation functions for configurations of different topologies. It gives
an important information on the topological sum for the partition and correlation
functions.

1. Introduction

The gauged Wess—Zumino—Witten model in two dimensions has two different
aspects of interest. On the one hand, it is an exactly soluble quantum gauge theory
and is interesting from the point of view of geometry of gauge fields. On the other
hand, it is a conformally invariant quantum field theory (CFT): There are obser-
vations [1-5] that a wide class of solved CFTs such as unitary minimal models
(bosonic [6] or supersymmetric [7]), parafermionic models [8], etc. are realized by
gauged WZW models as lagrange field theories, up to a subtle point of field iden-
tification which will be addressed shortly.

In this paper, we focus on the former, the geometric aspects of the theory
and propose a method to take into account the topologically non-trivial config-
urations of gauge  fields. Then, we get an identity which shows that incorpora-
tion of non-trivial topology solves the problem of field identification, and which
is therefore of vital importance from the point of view of the model building
of CFTs.

A gauged WZW model is specified by a choice of the target group G, the gauge
group H, and the level k. We concentrate on the case in which G is a compact,
connected and simply connected Lie group and H is a connected, closed subgroup
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of G/Zg, where Zg is the center of G. For a closed Riemannian 2-manifold X, a
map g: 2 — G, and a one form 4 € Q'(Z,b), the WZW action is given by

ik

k _ _ T
kx(4,9) = —ggtr(g 'dug A xg~'dag) — me tr(§~'dg)’
z
ik . _ _
+4—7Eftr(A(g Ydg+dgg™") + 497 '49) . (1.1)
xz

Here “tr” is the trace in a representation of G(!), g~'d4g = g '4g + g~ 'dg — A,
and * is the Hodge operator which, acting on one forms, depends only on the
complex structure of X. By is a compact three manifold bounding X~ and §: By — G
is an extension of g. If k is an integer, the value e *=(49) which we call the
WZW weight is independent of the choice of By and §, and hence may be used
as the weight for the path integration over 4 and g. It is invariant under the gauge
transformation 4 — A" = h=14h 4+ h='dh, g — h~'gh and the resulting system is a
quantum gauge theory, which has been extensively studied in [1, 3-5].

If m;(H) is non-trivial, one can also consider topologically non-trivial configu-
rations of 4 and g: Let {Up, Us} be an open covering of X such that Uy contains
a disc Dy and Uy N U is an annular neighborhood of the boundary circle dDgy. Let
{40,4x} and {go,goo} be gauge fields and maps defined on {Uy, Uy} so that

Ao = h;olvoohooo + h;ol()dhOOO’ go = h;ologoohooO on Yy NUy , (1.2)

where /.0 is a map to H. These determine a connection 4 of P and a section g
of PxyG, where P is the principal H bundle determined by the transition func-
tion Ascp. In Sect. 2, we define the WZW action kZx p(4, g) for such a configuration.
Note that any H-bundle admits such a description and the homotopy type of the loop
Yoo = Hooo|op, determines the topological type. Thus, m;(H) classifies the topolog-
ical types of configurations. In Sects.3 and 4, we give a method to calculate the
correlation function Zy p(O; - - - O5) of gauge invariant fields Oy, ..., O; for configu-
rations associated with a bundle P.

The main purpose of the paper is to prove certain exact relationships of corre-
lators for configurations of different topologies. Namely, in Sect. 4 we will see that
the group m;(H ), which acts on topological types of principal H-bundles y : P — Py
by multiplication on the transition functions yo00 — Y000}, acts also on the space of
gauge invariant local fields y : O — yO and that

Zz p(O; -+ O570) = Z5 py(O1 - - - 050) . (1.3)

We call this the topological identity. The proof is reduced to verifying a conjecture
concerning the geometry of moduli spaces of holomorphic Hc-bundles with quasi-
parabolic structure. Verification is done for the cases X = sphere with H general
and X = torus with H = SO(3), in addition to the case of abelian gauge groups.
The significance of (1.3) can be seen if we take the sum over topologies;
the fields O and yO are then indistinguishable. For instance, consider the case
of G =SU2)xSU(2) with level (k,1), and H = SO(3) diagonally embedded in
G/Zg = SO(3)xSO(3). The gauge invariant local fields can be classified by labels
in {0,3,...,5} x {0,1,..., 51 }. The space of fields labeled (i, /) is identified with

! Here is the expression for simple G, and “tr” is normalized by trg(adXadY) = 2¢"tr(XY) for
X,Y € g, where gV is the dual Coxeter number of g. Generalization to the non-simple case is obvious.
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the degenerate representation of the Virasoro algebra of central charge 1 — mz)‘m
. . 2
and dimension ((k+3)‘{(‘1;f§;(',f_)£31) =L as is also the case for the label (£ — ji, &L — ).

As we shall see in Sect. 4, this transformation (jj,j) < (% - jl,kz—ﬂ —J) corre-

sponds precisely to the transformation O < yO, where y is the non-trivial element
of 1 (SO(3)) = Z,. Hence, only after the sum over topologies, the set of distinguish-
able fields coincides with that of the &™ unitary minimal model [6]. The situation
is the same for general G and H. The space of local gauge invariant fields, acted
on by the infinite conformal symmetry, is identified [3] with the direct sum of
Virasoro modules by coset construction [9]. For each element y € m;(H), there
is an isomorphism of coset Virasoro modules, known as the “field identification”
[10-12], that corresponds to our transformation O — yO. Hence, this identification
of Virasoro mudules leads via the sum over topologies to a genuine identification
of quantum fields. In Sect. 5, we give a support of this interpretation by a detailed
calculation of torus partition function. We will see that topologically non-trivial con-
figurations play an important role especially in the presence of “field identification
fixed points” [12, 47].

2. Wess—Zumino—-Witten Model

We describe some properties of the WZW model [13] which will be needed in the
following sections. Throughout this section, H = G/Zg, and a Riemann surface X
is fixed with its open covering {Uj, Us} and Dy C Up as in Sect. 1. We choose
a complex coordinate z on Uy such that Dy is a unit disc in the z-plane. This
gives a parametrization 0 — ¢ on the boundary circle S = 0Dy = —92,, where
Eoo =2 — Do.

2.1. The WZW Action. Let P be a principal H-bundle with transition function
hooo : UpNUso — H, and let 4 = {4y, Ao} and g = {go,goo} (subject to (1.2)) be
a connection of P and a section of PxyG. The WZW weight for this configuration
is defined to factorize as a product

e HMzr(4,9) — <e—k[}:w(Aoo,goo),adyooo e—kIDO(Ao,go)> ) (2.1)

Below, we define the ingredients in this expression; the WZW weights on surfaces
with a circle boundary, adjoint transformation by a 100p Y00 = Accols, and the
pairing.

Let us complete the disc Dy by another disc D, to a Riemann sphere P!. For
a map g : Dy — Gc, we choose an extension g : P! — Gc. Following [14], we put
an equivalence relation in Map(D., G¢) X C under which the class

k _
e—Hny(4.9) _ <9|Doo’eXP{8_ ftr(g—ldAg/\*g 'dsq)
T,
ik ~—1 53
o [ (§'dG) — kpy(Arg) § || 22)
27 g,

i _ _ _
I(4,9) := o [tr(4(g 'dg+dgg~")+ 49" 4g), (2.3)
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is independent of the choice of the extension g|p_. This defines a line bundle
Z2k over the loop group LGc, and (2.2) is in the line £2¥|, over the boundary

loop y(0) = g(¢%). This is our definition of the WZW weight on Dy. A semi-
group structure of 3\531’" is introduced by requiring the Polyakov—Wiegmann (PW)
identity [15]

- ik =
e~ Moo (A:h) g —Hiny(4",6") o ~KIpy (A ") — o=Kiny(4.9) gy { - [ te(h* k" aAh)}.
Do

24)

Here, A", g" denote the chiral gauge transform (A")°' = h=14%h + h='0h, (4")!° =
R* AR+ h*0n*~, g" = h™'gh*~" by h € Map(Dy, Hc). The non-zero elements
of %, form a group which is isomorphic to the basic central extension LG¢ of
LGc [16].

The adjoint action of LH on ,Sf‘f?;" is defined as follows: For y € LH, we choose
an extension A : Do, — {00} — H; y = h|s. Then

ady~'[(g, )] := [(h™'gh,cexp{—kIp_ (hdh™",g)})] . (2.5)

Here g : Dox — G is chosen to be g =1 in a neighborhood of co so that the
Ip. (hdh™',g) to be well-defined.

The WZW weight on X, is defined in the similar way as an element of the dual
bundle £;®*. The pairing of £®* and L& is given by (we put I(g) := 1(0,9))

(e7Hr0o(9) = H(9)) — =29 - g € Map(Z, Gc). (2.6)

One may wonder whether our definition depends on the choice of the disc
Dy C 2. To prove it does not, it is enough to show that we can replace D,
by a larger disc Dy D Dy. The problem is then reduced to proving the identity
r ", g"y=r(4,g9)+ r(h='dh,g") on the cylinder Dy — Dy, which is a straightfor-
ward matter. The PW identity (2.4) together with its analog for weights on 2.,
leads to the global PW identity

Is p(A" g") =I5 p(4,9) — I5,p(4, k") . (2.7)

This ensures the gauge invariance of the action.

2.2. States and Fields. The factorization property (2.1) is inherited by the quantum
theory: A correlation function in the gauge field 4 factorizes as

Zs,p(4; [10:(x) = <sz (Aoo; I1 Oi(xz')> s Yoo * ZDy (Ao; I1 Oj(xj)) >
i Xi€loo x;€Do

(2.8)
Here, Zp,(4o; T ; Oj(x;)) denotes the wave function at § = dDy which results from
the path-integration over the interior of Dy, and similarly for Zz_ (Aeo; []; Oi(x:)).
Yoo0 *+ 1S the gauge transformation acting on sections of gv%k by

(Yoo0 * P)(7) = adyocoP(adypy) - (2.9)
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On the space of sections of gﬁk , there are the left-right representations of the group
LGc: JG)I(5)@(y) = 7,9(57 "5 _l)ﬁ . We identify the space of states with the
direct sum #%* = @ , #7F of irreducible components of the representation J x.J.
Here, the sum is over the set Pfrk) of weights of G, integrable at level £, and
H7F is the irreducible LGexLGc-module isomorphic to LG* @ LG*, where LG*
(resp.Lg’k) is the holomorphic (resp. anti-holomorphic) irreducible representation of
LGc with highest weight (A, k).

The highest weight state @4 € %”f’k is explicitly expressed in the following
way [14]. Let B be a Borel subgroup of G¢, and N C B be the maximal unipotent
subgroup. Let Bt and N*t denote the subgroup of LGc¢ consisting of boundary
loops of holomorphic maps Dy — G¢ such that the values at z = 0 are in B and N
respectively. Choosing such holomorphic maps gi(z) and g»(z) with ¢g;(0) € B and
g2(0) € N, the state @, is expressed as

3
D4(y17y) = e (g1(0))e ™ @92) | 519F = g1g5 s, (2.10)

where e is the character of B corresponding to the highest weight 4. As BY(N*+)*
is open dense in LG, the above expression completely characterizes @y.
A Ward identity follows from the PW identity (2.4):

20, (48 0) = SN (12 (403 hO) exp { = tr(h*aAh*~1h-‘5Ah)} SENCAT)
Dy

where 77! = e 0“0 and 4O is defined by hO(g) = O(h~'gh*~!). Using this,
we can identify the state @, with the wave function for the disc Dy with a
flat connection 4y =0 and a field insertion Oy at z =0. Up to a renormaliza-
tion, Oy(g) is defined as the matrix element (v4,g 'v4), where v, is a high-
est weight vector in the (finite dimensional) irreducible Gc-module of highest
weight A.

2.3. The Spectral Flow. We calculate the gauge transform y - @, of the highest
weight state @4 by a loop y that represents an element of the group [ C o
(see Appendix A). As ady preserves the subgroups BT and Nt of LG¢, the result
should again be a highest weight state. It suffices to look at the behavior over the
open dense subset BT (N*)*.
The loop is expressed as ‘

7(0)=e ", (2.12)
where y is a minimal coweight and n, € H represents an element w of the
Weyl group W. Let h,(z) =z"#n, be the meromorphic extension. Let g;,g, and
y1 € BT, y2 € N* be holomorphic maps and boundary loops, as above. Since ady
preserves the subgroups BY and N*, holomorphic maps h;'gih, and h;'gsh,
are defined on Dy, and satisfy (hy_lglhy)(O) € B and (h;‘gzhy)(O) € N. Hence
we have

y- 4’/1()’1)’;) — C—A((hy—lglhv)(0))ad,y(e—k100((h;"glhy)(h;lgzh‘/)*)) . (213)
If we put g;(0) =e" € T modN, we find that (hy_lglhy)(O) =¢” ', and hence
& A(h5 g1y )(0)) = 10 (2.14)
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Applying the transformation rule (2.5) of ady, we find that

ady(e—klno(hy_]glhy)) — gk tuluio)g=Kipy(91) (2.15)

ady (e Mook 92y — ooy (@2) (2.16)
Combining these results, we obtain the expression

p- By(p1yF) = e WAk tuo) g —Hloy (0163) 2.17)
Thus, the result is y- @4 = @, 4, the state of highest weight

yA =wA+ ki, (2.18)

where [i denotes the weight given by fi(v) = tr(uwv).

Remark. The adjoint action (2.5) by the y yields an automorphism of Kac—-Moody
algebra [17-19, 12], called the spectral flow. This induces the above map A +— yA

and permutes the elements of Pik).

A simple consequence follows from this computation. Consider the gauge field
configuration
Agy =0y~ 'dy = —(|z|)iw ' ud6 on Dy, (2.19)

where 0 < go(r) = 1 is a cut-off function such that g(r) =0 for » < 1/4 and
o(r)=1 for r > 3/4. Since it is a pure gauge for |z| > 3/4, one can choose a
horizontal frame s(0) = so(0)y(0)~! along S = 0Dy, where s is the old frame over
Dy. Note, furthermore, that 4,, can be made flat over Dy by a chiral gauge trans-
formation %, such that h,,(0) =1 and h,,|s = c; * with ¢, being a constant.
Let us insert the field O4 at z =0 and look at the state at S. If we stand on the
horizontal frame s, what we observe is

Y+ Zp,(Ag,y; O1) = consty - &4 = const D, 4 . (2.20)

The first equality is due to the Ward identity (2.11), where the constant is of the
form e "(W)be|¢,[2#A(M)_ Let A be a connection of P which is flat on the disc Do, and
let oy be a horizontal frame over Dy. Gluing the configurations 4, , and 4|5 along
S =Dy N 2 by identifying s(0) and g¢(6), we obtain another H-bundle Py with
a connection A’. Taking the pairing of Zy_(4|z. ;01 ---Os) and y - Zp,(4,4; Os)
and using (2.20), we find that

Zs,p(A7; 01 - - - Os04) = const - Zs p(4; Oy - - - O50,4) . (2.21)

This may be considered as the prototype of (1.3). An equation of the same kind is
already known in free abelian systems as the insertion theorem [22].

3. Integration Over Gauge Fields

We now turn to integration over gauge fields. In what follows, H is a closed con-
nected subgroup of G/Zg. For a principal H-bundle P over a Riemann surface X,
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we denote by .Zp the set of connections of P, by % the group of gauge transfor-
mations (sections of the adjoint bundle PxyH), and by %p. the group of chiral
gauge transformations (sections of the complexified adjoint bundle P X g Hc).

We consider the integration

Zs,p(Or -+ 0s) = f@AZZP(A 0,---0y), 3.1)

1.‘4
with the integrand being the WZW correlator of gauge invariant fields. We take
advantage of the chiral gauge symmetry

Zs p(A75 0y - - Oy) = Hur) z0 (410, - hOy) (32)

which is a consequence of the PW identity (2.7). Here, 4O; is the transform of O;
defined by 4#0i(g) = O;(h~'gh*~'). We will first integrate along the fibre of

Ap — Ap|%p (3.3)

and then over the orbit space #/p/%p.. A subtle problem here is that this orbit space,
with the natural topology, is not in general a good space that admits an integration.
However, there exists a submanifold <7 of «/p with complement of codimension
= 1 such that a certain quotient of = by %p. is a compact complex manifold A5,
possibly with orbifold points. This will be illustrated in Sect. 3.1. One can neglect the
codimension = 1 complement if the integrand of (3.1) is finite everywhere in </p.
This is guaranteed when the fields Oy,..., O, are matrix elements of representations
of G that are integrable at level &, as is observed explicitly in [23, 24] for genus 0
and 1.

Following [1] or the route that is standard in string theory [25-27], we get a
measure Q5 p(O; - - - Oy) of the moduli space 4 that gives the correlation function:

Zsp(01---O5) = [ Qs p(O1---0y) . (34)
A

To express it, we choose a complex coordinate system (u!,...,u%" ) of an open subset
U of Ap with a representative family {4, },cuv C <Zp. Note that the differentials

va(u) = aaaAgl a=1,...,dy = dim A} , (3.5)
represent (1,0)-vector fields in U. The measure is then expressed as
dy dy 2
Qs p(0y---05) = al;l; A% s p ( |Aut A ];[ 27r [ bvi(u)| hOy - - - hO; ) .
(3.6)

Here, Z5 p(Ay ;- --) denotes the correlation function for the combined system of the
following three theories in a background gauge field 4,:

(i) level £ WZW model based on the group G,
(>ii) level —k — 2hY WZW model based on the space Hc/H(2?) with the action

(—k — 20)E p(Aus hH*), b € Dp

2As the generalization is a trivial matter, we assume here that H is simple. k is defined by ktr(XY) =
I;trH (XY) for X,Y € h C g, and %" is the dual Coxeter number of H.
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(iii) spin (1,0) ghost system (b,c) in the adjoint representation of H
i . -
%sz@iuc-l-b@iuc .

The factor 1/|Aut éAul takes care of the case in which the ¥p. action on </ is
not free. When the automorphism group Aut 5Au (the isotropy subgroup of %p,
at A, € o/p) is a finite group, it is just to divide by the order of Aut 5Au. When
dim Aut 5,4“ > 1, it stands for insertion of a suitable function of the A-field and
c-ghosts, which will not be explicitly given in this paper, except for the special
case considered in Sect. 5.

3.1. The Moduli Space. We illustrate some points of the structure of %p -orbits in
ofp, presenting examples that will be used in Sects. 4 and 5. We start with some
generalities. The set .</p/%p. is identified via 4 «— 0, with the set of isomorphism
classes of holomorphic principal H¢ bundles of topological type Pc (the complexifi-
cation of P). If H is U(1), irrespectively of the topological type, this set is a copy
of the Jacobian variety of X which is a complex torus of dimension g = genus of 2.
If H is non-abelian, the situation is quite different. For simplicity, we consider the
case of simple group H. Atiyah and Bott [29] proved the stratification «/p = Uﬂ Ay,
where u runs over a discrete subset of the closure of a Weyl chambre, and </, is
a 9p.-invariant submanifold of «/p of codimension d, = Za(#)>0(oz(u) +g-—1).
For g = 1, the unique solution to d, =0 is u = 0; this .=/, is the space o/
mentioned above, and the quotient 45 is the moduli space of semi-stable Hc-
bundles. By Narasimhan—Seshadri theorem [30, 32, 31], it is isomorphic to the
space of flat connections of P modulo action of %. For g = 2, it has complex
dimension d, = dim H(g — 1).

Genus 0. Consider the case in which X is the Riemann sphere P!, covered by the
z-plane Uj and the w-plane U, that are related by zw = 1.

First, we consider the group H = SU(n)/Z,, where Z, is the center of SU(n).
The Birkhoff factorization theorem [28, 16] states that any holomorphic Hc =
PSL(n,C)-bundle admits trivializations gy and oo, over Uy and U, respectively,
that are related by

00(z) = 00(2)27%, z€UyNUy, 3.7)

where a is a matrix of the form

ai

7 n
4= with aiEZ—ﬁ, Ya =0, (3.8)
i=1
an

for some j € {0,1,...,n — 1}. The theorem also states that such a is unique up to
permutations of ay, ...,a,. Since the loop e — e~ extends to a map on Uy — H if
and only if all @; are integers, the topological type of the bundle is determined by the
number j. In other words, for each j, there is an H-bundle P() and its complexifica-
tion admits holomorphic structures classified by P/ in which P} is the set of ma-
trices as (3.8), and W is the Weyl group acting by permutation of diagonal entries.
Since the set C of diagonal matrices ¢ with ¢/ = .- = ¢ is a fundamental domain
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of W, we see that

A= U . 3.9)

aEPJVﬂC-

Here 7, is the gPi n-orbit corresponding to the holomorphic Hc-bundle with the
transition rule (3.7). We denote such a holomorphic bundle by #(;. One can esti-
mate the codimension of .&/, by counting the dimension of the group AutZ(,; of
holomorphic automorphisms. An automorphism 4 is given by Hc-valued holomor-
phic functions A(z) and h..(w) that are related by ho(z) = z%hoo(1/2)z7¢, %0, c0.
One sees that the entry ho(z)} is a span of 1,z,---,z%"% if @; 2 a; and is zero
if @; < a;. The dimension of AutZ(, is thus given by n — 1+ 3, (0a,q, + 1+
la; — a;]) and is minimized in P/ N C by the matrix a = y; given in (A.2). Hence
s/ p(» contains an orbit o/, of maximal dimension, and any other orbit </, has codi-
mension d, = Za,>a,(ai —a; —1) > 0. Thus, in this case o/ = o/, , and Np() is
a single point.

For general group H, the story is the same. For an H-bundle P") whose topo-
logical type is determined by y € m1(H), there is a single maximal orbit .. This is
represented by a holomorphic bundle £|,; described by the transition rule (3.7) with
a being a minimal coweight u € Mc such that the loop e~ represents y € m;(H).

Genus 1. We explicitly describe the moduli spaces of flat SO(3)-connections on
the torus 2, = C/(Z +1Z). Let A(¢) =t and B(t) =1t¢, 0 < ¢t < 1, be generators
of the fundamental group of X;. A flat connection of an SO(3)-bundle P defines
(up to conjugation) a holonomy representation p : m;2; — SO(3), which is deter-
mined by the commuting elements a = p(4) and b = p(B) of SO(3).

If P is a trivial bundle, a and b are represented by commuting elements 4 and
b of SU(2). By conjugation, we can bring them to diagonal matrices

N e2ni¢ 0 - eZm'zﬁ 0
a= ( 0 e-2md |> b=1{"¢ o -2mv |- (3.10)
Such holonomy is provided by the gauge field of the following form:
T - W 1 0

where u = — 1$. A, is gauge equivalent to 4, if and only if o' = +u— 5 + 15
for some n, m € Z. Hence, the moduli space is given by
Ny = CH{GZ + FZ)%{*1}}. (3.12)

It is an orbifold with four singularities u = 0, %, %, = of order 2.
If P is non-trivial, a and b are represented by elements 4, b of SU (2) that do

not commute but satisfy
aba b = (—01 _°1> . (3.13)

There is only one such pair (,b) modulo conjugation:

d:(é fi>, 13:((1’ _01). (3.14)
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Hence,
N non-triv = {one point} . (3.15)

In contrast with the abelian case, A4, is not isomorphic to Ajop-niv and even the
dimensions are different.
For a general semi-simple group H, the moduli space of topologically trivial
semi-stable Hc-bundles over the torus X is
Ny = tc/(PY +PV)XW, (3.16)

where PV is the coweight lattice, and hence of dimension rank H. On the other
hand, for each non-trivial H-bundle P, dim A is strictly less than the rank of H.

3.2. Gauge Invariant Fields. We specify the set of gauge invariant local fields in
the WZW model. One can translate the gauge invariance condition on a local field
O to a condition on the state @p € %f’k at the boundary of the disc Dy with the
insertion of O at z = 0:

(Jo(v) 4+ Jo(v)) Do =0 for v e, (3.17)
Jn(0)Po = J,(v)Po =0 forvebhe and n=1,2,.... (3.18)

Here, J,(v) and J,(v) are infinitesimal generators of J and J corresponding to the
element z"v of the loop algebra. We shall distinguish the space of states satisfying
these conditions.

Let H C G be the group over H C G/Zg. Following Goddard—Kent-Olive [9],

we decompose L ¥ into irreducible representations of the subgroup LH¢ of LG¢:

LS* = @B} @ L7F, (3.19)
A

where B/’} is the subspace of Li’k consisting of highest weight vectors of weight (A k)
with respect to Lﬁc. We denote by # j the subspace of JfAG’k corresponding to
the subspace B} ® B of L* @ LG*. Each @ € #} generates an irreducible Jo(H ) x
Jo(H )-module in %f’k which is isomorphic to V; ® V', where V) is the irreducible
H-module of highest weight A and V' is its dual. Choosing a base {e,} of ¥, and
the dual base {€"} C V}, we denote by @7 the state corresponding to e, ® " €
V,® V;. Then, the H-invariant element > P satisfies (3.17) and (3.18). Thus,
we identify the space of states corresponding to gauge invariant fields with

Hong = DA . (3.20)
A2

Let O, denote the field corresponding to the state @7 and we consider it as
a matrix element of a field O valued in End(V7};). Then, the gauge invariant field
Og corresponding to the state d'i—nii-_ Y. P is expressed as

1
0¢ = m tr,,l(Oq;) . (3.21)

Since Jo(h)Jo(h)®7 with i € Hc is expanded as o PR, the dressed field
for Og is given by

hOgp = tr, (Oghh™). (3.22)

1
dim V,1



Global Aspects of Gauged WZW Models 11
4. Topological Identity

In Sect.3, we wrote down a formula (3.4) that expresses a correlation function
as an integral over the moduli space of semi-stable bundles. If we are to use it
to prove the topological identity (1.3), we must find some relation of the moduli
spaces of bundles of distinct topologies. In general, however, they are not identical.
In the former part of this section, we convert the formula into a new one in which a
correlation function is expressed as an integral over a moduli space of bundles with
a flag at the insertion point. We will see that the new moduli spaces for distinct
topologies are isomorphic with each other, via the gauge transformation that defines
the spectral flow. Applying the argument that leads to (2.21), we will get a proof
of the topological identity.

4.1. The Flag Partner. The first step of reformulation is to express a gauge invariant
field as a certain integral over the flag manifold of the gauge group.

The flag manifold FI(H) of H is the ensemble of choices of a maximal torus
of H and a chambre. A choice (7,C) € FI(H) determines an identification

FI(H) = H/T & Hc/B , (4.1)

where B is the Borel subgroup of H¢ determined by (7,C). Thus, FI(H) is
a compact homogeneous complex manifold. A weight 1 € P gives a character
e*: T — U(1) by e¥™ i ¢?™4®) and its extension e’ : B — C* defines a homo-
geneous line bundle

L_,=Hc xpC— FI(H), 4.2)

by the relation (4b,c) ~ (h,e *(b)c), where h € He, b€ B and ¢ € C. We denote
by 4+ ¢ € L_, the class represented by (4,c). The Borel-Weil theorem states that
the space H(FI(H),L_;) of holomorphic sections is an irreducible Hc-module V-
of highest weight 1* = —woA (see [33] and also [34, 35]). The line bundle L_; is
equipped with an H-invariant fibre metric (4 - ¢1,h + ¢2)—; = ¢1ca, Where h € H.
There also exists an H-invariant volume form Q on FI(H). These induce the H-
invariant inner product in H(FI(H),L_,):

[ Wiy2)-;Q. (4.3)

1
W1 ¥2)Fiy = WFI(H)

Let {e,; m € P;} be an orthonormal base of ¥, consisting of weight vectors where
P; is an indexing set. The highest weight vector is denoted by e;. Writing the matrix
element (ey,,hen,) by (h)}, we put

Y"(hB) = h - (h). (4.4)

Then, {Y™; m € f)g} forms an orthogonal base of HY(FI(H),L_;):

1
mi my — 6m1,m2 . X
W™ ") riEy = dim 7, (4.5)

Integral Expression of Gauge Invariant Fields. Let O be the gauge invariant field
(3.21) corresponding to a state @ € Jf/f We express the dressed field 2O as an
integral over the flag manifold.
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Let us define a volume form Q(Ah*) of FI(H) by the following: At the point
mB € FI(H) represented by h; € H,

QAR )y p = MO’ |2 (b(hy ' b)) Qs (4.6)
where b(h7'h) € B is the “Borel-part” of the decomposition h'h =
b(hl'lh)U(hl_lh); b(hl_lh) € B, U(hl_lh) € H. (This decomposition is unique up

to T due to the Iwasawa decomposition.) Let ;-1 : FI(H) — FI(H) be the left
translation by 2~!. The relation

£ Qs = [ (b ) Qs 47
(which we shall prove shortly) shows
£rQRH =15 = O | (b(hy W) Q-1 - (4.8)
Putting U = U(h; 'h)~!, we have h~'h O} = UO%|e~*(b(h; ' h))|*. Hence we get
L5 Qu(hk*)|ug = hUO; Qlus = T hOh (U Ya(U)] Qus - (4.9)
This amounts to the following identity of top differential forms:
Lh Q) = S hOL (P Y") Q2 (4.10)
where /™ is given in (4.4). Due to the orthogonality (4.5), it follows that
1 1
———— [ Q(hh") = tr . (Ohn* 4.11
VolFl(H)F,EL) )= ). ( )

Proof of the relation (4.7). It is enough to prove £;Q|z = |e 2(b)|*Q|p for b €
B. Since the (1,0)-tangent space of FI(H) at B is isomorphic to hc/b, we have
only to show that e~2°(b) is the determinant of ad(b) : hc/b — hc/b. In view of
2p=73,.0% the proof is trivial since we can order the base of hc/b consisting
of negative root vectors so that ad(d) is represented by an upper triangular matrix.

The Flag Partner. Suppose that 4O is inserted at the center x of a discDy C X
in a correlator &5 p(4; - - -), where the gauge field 4 is chosen to be flat over Dj.
The fibre P, is a copy of H, and accordingly, one can consider a copy FI(Py)
of FI(H). Let us choose f € FI(P,) with its representative s(x) € P,. s(x) extends
to a horizontal frame s : Dy — P which determines a correspondence of fields and
states. The field corresponding to @ € #} can be denoted as Oﬁ( f). We also denote
by bs(h) the “Borel-part” of the decomposition of A(x) with respect to s(x). Let us
choose a local coordinate f!,. f 14+ of FI(Py) and a family {as} of holomorphic
sections of Pc|p, with respect to d4. Then, the expression (0o r/0f* )o‘l determines
a holomorphic section v,(f) of adPc = Pxghc over Dy. Using the standard OPE
of b and ¢ ghosts, from (4.11) we obtain

L' 1§93 §EHNOU) . (412)

hO(x) = T([‘[)FI(P ) B=1

where

O(f) = O4() |2 by (h)|P TT ¢ 4x)é*(x) - (4.13)

—acd_
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In the above expression, ¢~ *(x) are the coefficients of negative root vectors in the
expansion of the ghost c(x) with respect to the frame of adPc, determined by s(x).
We call this field 5( f) the flag partner of O associated to f € FI(P,).

The state corresponding to the flag partner 5( f) with respect to the frame s is
expressed as

PRP_; 5, ®|Q). (4.14)

Here, ®_,_,, is the state corresponding to the field |e**2/(b/(h))|* of the WZW
model based on H¢/H. As in WZW models based on compact groups, the state space
of this system has left-right representation of the affine Lie algebra LT)C. The state
®_)_», is a highest weight state of left-right equal weight (—A — 2p, —k — 24"). The
|Q) is the state []_, _,co ¢ *|0) in the ghost Fock space. It has ghost number |4|.
In view of the identification (3.20), we see that the space of states corresponding
to the flag partners of gauge invariant fields is given by

oy = H} @ D_;_2,® Q). (4.15)
AL

Remark. In the literature (see [36] and references therein), the state of the form
(4.14) is identified as a non-trivial element of the BRST cohomology that seems to
correspond to the physical state space of the gauged WZW model.

4.2. A New Integral Expression. Let us consider the correlation function Zz p(O)

-+ O;0(x)), which is expressed as the integral of a measure Q5 p(O; - - O;0(x))
on the moduli space Ap. Let U be an open subset of .4#p with a representative
family {4,},cv. The result (4.12) shows that the measure

. ~ dy ) |4+ ] 9
Qs px(01---O;0)y = [[d*u []d°f
a=1

a=1

2IAI

O(f ))

(4.16)

on UXFI(Py) reproduces Q5 p(0; - - - O;0(x)) by integration along FI(Py). Let us
see what happens when the family 4, is replaced by its chiral gauge transform A’
by h. € ¥p.. Absence of chiral anomaly in the combined system of the three CFTs
shows

xQ’E,p< |A ]hl hOH‘ fbva(u)

1 .
¥ Ay —— — hO, - hO,F (b;b) O
Z,P(u Aut ] 1 F (b; b) (f)>

1 - ~
- (Au; o, -~hosf(h;‘bhc;h:bh:—‘)hc0<f)> . @17)
]Aut 0Au’

where % (b;b) is an arbitrary function of » and b. By a simple argument, one

can show that hca( = 5(hc f), where A, acts on flags by evaluation at x. Since
3(A% )" = h154% ., the measure (4.16) is invariant under the replacement

(Au, [) = (Al hT1 ). (4.18)
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In other words, (4.16) defines a ¥p_-invariant form of degree 2d4 + |4| on
Ay = dlp x FI(Py). (4.19)

_ Let us see whether t_his form is null along the direction of %p_-orbits (4°,5f) =
(Q4&,—&f). When Aut gy is trivial, the b-ghost is holomorphic over ¥ — {x}:

[bége = §be. (4.20)
z x

In this case, the b-insertions from 04°! = §;¢ and from 6f = —&f cancel with
each other, and (4.16) is null along ¥p_-orbits. The story is the same when every
automorphism of ) preserves any flag f; Autds = Aut(dy, f), since in such a case
5( f) does mnot carry c-ghost zero modes so that b-ghosts are holomorphic over
2 — {x}. However, the situation is involved when Aut d; #+ Aut (Js, /). In this case,
b-ghosts have poles at points of the c-ghost insertion associated with |Aut |~
If ¢ is a holomorphic section of adPc such that ¢f 0, the be is a meromorphic
differential which has poles also in ¥ — {x}. Let ~ be an equivalence relation in
p . defined by (4, /) ~ (4, h; L), b, € Aut ds. Then, integration along the fibre of
Ap x — py/~ yields a form on op,/~ which is null along the fibre of /p ./~
- JjP,x/ gP@

In any case, after a certain integration if necessary, the form (4.16) descends
to a measure of a quotient of «/p, by ¥p.. Although taking a suitable quotient is
a subtle problem, we proceed by assuming that there exists a good one which we
denote by Ap . This will be specified in the next subsection in certain cases.

To be explicit, let us choose a coordinate system (v',...,v%) of an open sub-
set V of Ap, with a representative family {(4y, f»)}ver. We choose a family of
holomorphic sections oo(v) and o(v) of Pc over a neighborhood U of x and
Us = 2 — {x}, that are related by holomorphic transition functions A..0(v). The
oo(v) is chosen to represent f, at x. Let v,(v) be the holomorphic sections of adPc¢
over Uy N Uy, defined by

0 N
W(v) = 0o(v) * hooo(v)“gu—,\ hooo(v), a=1,...,d . (4.21)

Then, the new measure Q5 p(O) -‘-Osa) of Ap, is expressed on V as

Q5.p.4(0; - -- 0,0)

dy 1 J”
= H dszgZ,P (A y T 01~-~hOSH

1
v = h — ¢ by (v
A=l |Aut (aAv,ﬁ))l a=1 f ®)

27y

2 ~
0(fv)> :

(4.22)

By construction, integration of this measure reproduces the correlation function under
study. Thus, we get a new formula:

1 .
S — (0 ---0,0). 4.2
vol FI(H) JV{ xQ” +(O1---050) (423)

Zsp(01--- 05 O(x)) =
4.3. The Moduli Space of Parabolic Bundles. In this subsection, we explicitly
construct the quotient space Ap, for the cases: X = P! and H is general, and X is
torus and H = SO(3).
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For our purpose, it is enough to find a submanifold of «/p, with complement of
codimension = 1, having a good %p_-quotient. As a candidate for the cases at hand,
we propose to consider the set of (4, /) whose automorphism group Aut (01, f)is
of minimal dimension. We denote this set by %I'E{i}}. Note that ofp ,/%p. is naturally
identified with the set of isomorphism classes of holomorphic principal Hc-bundles
of topological type Pc with a choice of flag at x. In [37], such objects are called
bundles with quasi-parabolic structure at x. By abuse of language, we shall call
them parabolic bundles over (X,x). Two parabolic bundles (2, f1) and (£, f2)
are said to be isomorphic when there is an isomorphism #; — %, which sends f; to
fr. If (4, f) € p, corresponds to (2, f), the groups of automorphisms coincide:

Aut (ds, 1) = Aut (2, f).

Genus 0. We start with H = SU(n)/Z,. We choose a Borel subgroup B that is
represented by the group of upper triangular matrices. Let us take a parabolic
Hc-bundle over (P!',z =0) (P' is covered by the z-plane U, and w-plane U,
zw = 1). By the Birkhoff theorem [16], there is a unique coweight a € PV so that we
can choose a section o on Uj representing the flag at z = 0 and a iection Oso 0N Uy
that are related by 69(z) = 0o(z)z7% We denote this bundle by 2, = (2|4, f2). Its
automorphism group Aut ﬁa is the subgroup of AutZ, that preserves f,. Recall
that an element /2 of Aut Z|, is represented with respect to oo by a matrix-valued
function /4o(z) whose i-j™ entry (ho)j.(z) is a span of 1,z,...,z%"% if ¢; = a; and

zero if a; < a;. It belongs to Aut P, if (h0)§(0) =0 for i > j. Thus,

dimAutZ, = dmAut Py — 3 l=n—1+ 2 (lai — aj| + 040),  (4.24)
1>y i<j
a2a;

where 0,, =0ifx < yand 0,, = 1 if x = y. The lowest value (n +2)(n — 1)/2 is
saturated by » elements; a = (ijo)_l,uj, j=0,1,...,n—1, where y; and w;wy are
the minimal coweight and the Weyl group element given in (A.2). They correspond
to distinct topological types. Thus, for each H-bundle P = P)), our submanifold
M}?’? is the unique orbit of maximal dimension corresponding to the parabolic bun-

dle @ = @(WIWO)_l u- Therefore, the quotient A’p(), is a one point set. Note that
é\’j admits the transition rule 6o(z) = 00(2)z2 ¥ ny,w, With 6o(0)B being the flag,

where the loop e_"/‘ff’nij0 represents an element of I’s. Note also that dim Aut ﬁ’j
is independent of the topological type. In fact, they are all isomorphic. We revisit
these points in the next subsection.

For a general compact group H, the story is essentially the same. Each a € PV
indexes an isomorphism class represented by a parabolic bundle whose automor-
phism group has dimension 7+ > _ (|a(a)| + Oua),0) which is minimized by
a=w"'ye —C, where p is a minimal coweight. Thus, for each topological type
y € m1(H), the quotient A pr) , is a one point set represented by a parabolic bundle

?}y described by the transition rule
00(2) = 0o0(2)z ¥y, (4.25)

with (0)B being the flag. Here, the loop y(0) = e *n,, represents an element of
I that corresponds to y € m(H).
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Genus 1 and H = SO(3). Here we consider parabolic Hc = PSL(2, C)-bundles over
the torus X, = C*/q% with a marked point x with z(x) = 1, where g is the subgroup
of C* generated by ¢ = ¢*™*. (This torus is identical with the one considered in
Sect. 3 under 2" = z.)

A holomorphic Hc-bundle 2 over X, is described by the transition rule

a(qz) = 0(2)h(q;2) (4.26)
for a multivalued holomorphic section ¢(z). The bundle is topologically trivial if

and only if e — h(g; ) is single valued as a map S' — SL(2,C). Below, we list
up some bundles by exhibiting their transition matrices A(g;z):

trivial non-trivial
1 1
© . [t O ay . 0 g 3z72
oo (s 2) e ()
i 0
o . (11 R .
Zoo (0 1) “ 0 —ituz%

Here, t, = e~2™%_ Note the identifications

20 Eg’ff,’) & u = +u’ mod %Z+ 3Z &y~

PV =~ 9’3) & u =y mod %Z +3Z.
Atiyah’s classification [38] shows that other bundles have A(g;z) = diag - (f,27,
t;71z7%) with n = 2. They have automorphism groups of dimension = 3 and hence
are irrelevant in our story. {9’5,"),9})?,),@}‘)} is the collection of semi-stable bundles.
Note that 2 and 9'(;) are the flat SO(3) bundles with the holonomies (3.10) and
(3.14) respectively.

An automorphism of 2 is described by g(z) — o(z)h(z), where A(z) is a holo-
morphic map C* — PSL(2,C) satisfying

h(q;z)h(zq) = h(z)h(q;z) . (4.27)

The following is the list of the automorphism groups with their typical elements:

. 0 .
C (g c_1> if ud 01,514
PSL(2,C) if un~0
Autg®={ c 0 0 ¢ , (4.28)
Cx2y (0 c—l)’ (—c—l 0) ifur g
* & C 0 0 C. %
C*"xXZ, (O c_l), (——C 1, L (Z) ) if u ~ i, %,

Aut?Y = C <(1) ¥ (4.29)

N———
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(1) ~ . 1 0 i 0 0 i 0 -1
Aut 2 _szZZ-{(O 1), (O —z’)’ (z’ 0) {1 o ,  (4.30)

() & g— c 0
Aut 2 = B; <xﬁw(z) c—‘) : (4.31)

Here, 9, ,(z) = 9({ + 2u + ”’ ,T), where ¥({,7) is the Riemann’s theta function

ez 47" *e2minl (Recall ¢ = *™ and z = e~2"..) Note that ¥ ,(1) = 0 if and only
if u=0mod }Z+ IZ.

Looking at the action of AutZ on the flags over z =1 we can classify the
parabolic bundles. Below is the list of isomorphism classes together with the

automorphism groups. Here, a flag (1) (2’ f,)B is represented by a number
c/a € CU oo.

trivial non-trivial
@O 1 (23,y) 1 y#0,1i }
(9’%2;,0) C* pud 0tz el (.@(F),y) Z, y~0,1,
2, ,00) C* _ _
( ) ym—ymyla -y
(9)540),1) Z, } 1t 7+l 20 o c*

(0) « (U DT (Zu’,0) 0
(5.0 € @D, 00) B }“EF !

0
('@é ), 1) B (e@(()l)’ 1) C
@0,00) 1 (@%X,O) B
@W.0) ¢ (Fo,00) B

00 >

Note that

1 ~ 1 — def
@ n=(@D, YV ey =y -y hoa-y ! S yny.

By looking at the dimension of the automorphism groups we see that our can-
didate .o/0'" consists of the ¥p-orbits represented by {(9’ ,D}uto and (9’00 ,00)

for the tnv1a1 bundle, and by {(9’“) ¥)}y for the non-trivial bundle. A more care-
ful look at the dimension shows that this &imm C ofp indeed has a complement

of codimension = 1. Does (9’80),00) represent a separated orbit? The answer is
~(0
no: As we will see in Sect. 4.4, there is a holomorphic family {g’f, )},, of parabolic

~(0 ~(0
bundles such that g’f)) o (98%),00) and Wiz) = (9,(,0), 1) for u#0. So, the quotient

space should be smooth around the orbit of (9’(()%),00). We thus get the quotients

Nai.x 2 CJm (4.32)

Non-triv,x = P~ . (4.33)
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Here C//Tv is the desingularization of C/~ at the Z,-orbifold point u ~ 0 so that

v=u? is a good complex coordinate, with v = 0 being identified with (Q’f)%),oo).

Both spaces are complex orbifolds with three Z,-orbifold points; u ~ %, %,% €
Naiv,x, and y = 0,1, i € Npon—tiv,x. We will see in the next subsection that these

are isomorphic.

4.4. Action of m(H) on the Moduli Spaces. Let (X,x) be a closed Riemann surface
with a marked point. We choose a neighborhood Uj of x with a coordinate z such
that z(x) = 0. A holomorphic principal C*-bundle admits trivializations over Up and
Us, = X — x that are related by a holomorphic transition function A0 : Up N Uso —
C”*. For each a € Z, the replacement

hooo(2) > hooo(2)z™° (4.34)

of transition function induces the translation of the Picard group of X by an element
of degree a. This defines an action of 7;(U(1)) =& Z on the Picard group that covers
the natural action on the set H*(X,Z) = Z of topological types of U(1)-bundles.
This action depends on x but not on the choice of coordinate z.

We ask whether such an action exists for a general compact connected group
H: Does the natural action of m;(H) on the set of topological types of principal
H-bundles lift to an action on the set of isomorphism classes of holomorphic prin-
cipal Hc-bundles? The answer is no. Instead, as we will see, m;(H) acts on the set
of isomorphism classes of parabolic Hc-bundles over (Z,x). We denote this set by
N HC(Z,X )

Action of mi(H) on Ny (2,x). For a parabolic bundle (£, f) over (Z,x), we
say that a section of 2|y, is admissible with respect to f when it represents
f over x. Let h: (2, f) — (2, f') be an isomorphism. Under a choice of triv-
ializations {69,000} of 2 and {gy,0.,} of #' over {Up, U} such that oy and o}
are admissible with repect to f and f’, & is represented by Hc-valued holomorphic
functions {ho,ho} on {Up, Uss} With ho(x) € B : a; — ajh; (I = 0,00). Then, the
transition functions %0 and 4., are subject to the relation

Hon(2) = hoo(@hooo(@ho(z) ™", z € Uy N Use. (4.35)

For an open Riemann surface U, we denote by LUHc the group of holomorphic
maps U — Hc. Pulling back by inclusions Usg = Uy N Uy — Up, Uso, the groups
LYHc and LY~H¢ may be considered as subgroups of LU<Hc. We denote by BY%
the subgroup of LY%H¢ consisting of maps with values at x being in B. By the above
argument,

N (Z,x) =2 LY=Hc \L%"Hc/BY . (4.36)

The fundamental group 7;(H) is isomorphic to the subgroup Iz of the affine

Weyl group W consisting of elements that preserve the alcove C (see Appendix A).
For each y € I, there is a holomorphic extension %, : C* — Hc. We identify 4, as

an element of LY=0H¢ via the coordinate z : Uy, — C*. Since the adjoint action of
hy on LU=0H¢ preserves the subgroup BY% C LU<¢H¢, we find that the replacement

hooo(2) = hooo(2)h(2) (4.37)
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of transition function induces a transformation
Yyt N (2,x) = N (2,x). (4.38)

This changes the homotopy type of the transition function by y € 7;(H) and hence
permutes the subsets p /9p. C Ny (Z,x) as

Vet A/ Gre — Ayl Gy, (4.39)

Thus y — 7, is the desired action of m;(H) on Ay.(Z,x).

The Conjecture. Note that this action preserves the automorphism groups. Namely,
if the class of (2, f) is mapped by ), to a class represented by (#?, f7), we have

Au(2, ) = Au(2, [7). (4.40)

This can be seen by multiplying %,(z) on the right of Eq. (4.35) with A._; = hoco.
Note also that a holomorphic family representing a subset of .o/, ,/%p. is mapped
holomorphically by 7y, to another holomorphic family representing a subset of

o Py,x/ gPyc-

Having these in mind, we conjecture that the following holds: There exists a
method to take the quotient N'p, so that Np is mapped isomorphically onto
N'pyx by vy If, furthermore, Ap, is mapped onto Ap by forgetting the flags, we
have the following double fibration:

JVP,x = '/VPy,x
e N\ (4.41)
Np Ny

In this way, we can relate moduli spaces of bundles of distinct topological types.
This seems to be what mathematicians call the Hecke correspondence [39].

Verification for Genus 0. In Sect. 4.3, we already defined the moduli space A'p() ,

for (P!,z(x) = 0). This is a one point set represented by @y/ that is described by
the transition relation 6¢(z) = 6.0(2)hy(z), Where og is admissible. The y,-transform

of ,@y, is then described by a}(z) = 6% (2)hy(z)h,(z), where o} is now admissible.
Since Ay (2)hy(z) = hyy(2), it is 2, and we see that

Vet Nponrx = Npurnx - (4.42)
The conjecture is thus verified on the sphere.

Verification for Genus 1 and H = SO(3). For H = SO(3), the non-trivial element
y of Iz £ Z, is represented by a path

0 —etf
y(0) = (e%Q COZ ) 0<0<2n (4.43)

in SU(2). We apply 7, to the topologically trivial parabolic bundles over (2, x)
with z(x) = 1. An Hc-bundle 2 we consider is described by the transition relation
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0(zq) = 0(z)h(q;z) and a flag is parametrized by y € CU {co}. If a matrix A, €
SL(2,C) obeys (hy)3/(hs)i = y, then, a¢(z) = 6(z)hs is an admissible section on
a small neighborhood Uy of z = 1. Hence, the y,-transform of (£, y) is represented
by a bundle 27 with an admissible section ¢ on Uy and a section ¢’ on C* — g%
that are related by

ol(2) = '@ h bz — 1), z€ Up— {1}, (4.44)
0'(zq) = d'(2)i(q;z), z =1 mod ¢Z. (4.45)

The conservation Aut(Z, ) = Aut(#?, ) of automorphism groups enables us to
guess how 7y, transforms the parabolic bundles listed in Sect. 4.3. After a calculation,
we find the following solution (see Appendix C for the proof):

@0, 1) = (PP, 9) uto,

(24> 00) = (7, %), (4.46)
where 92+ 7,27)
. L oy U727

= _ 4.47

Ve = e, 2) (447)

This function satisfies y_, = y,, ¥, 1=V and yu+: = —y, ! and hence

determines a map C/~ — P!/~. The Z,-orbifold points u ~ }1, 3 %l of C/~ are

mapped to the Z,-orbifold points y ~ 0,i,1 of P!/~ respectively. In a neighbor-
hood of u = 0, it behaves as y, = yp + cu® + - - -, with ¢ being a non-zero constant.
Applying 77! to a holomorphic family (Q’(Fl), y) of parabolic bundles around
(.%(,1), o), we get a holomorphic family 22 around g”g)) = (9’8%), 00) parametrized
by v = «? such that @’SZ) o (Q,(,O), 1) for u=0. This has been the basis of the con-
struction of the moduli space Ay .. Now, we see that y, yields an isomorphism

Px * JVtriv,x = C/N — JVnon-triv,x = Pl/% . (448)
The conjecture is also verified in this case.

4.5. The Topological Identity. We define an action of 7;(H) on the space of gauge
invariant fields and prove the topological identity (1.3) using the results of the
previous sections.

Action of ni(H) on Gauge Invariant Local Fields. Let y be a loop in H represent-
ing an element of I o= n1(H). Let O be the gauge invariant field corresponding to a
state @ € A fl Since ady preserves the subgroup N of LHc, the gauge transforma-
tion by y preserves the highest weight condition with respect to LBC. So, the gauge
transform y- @ of @ is in %Vj » where y is the image of y under the natural map
n(H) — n(G/Zg), and yA and ygA are defined as in (2.18). We denote the corre-
sponding gauge invariant field by yO. As it is independent of the choice of a loop
representing an element of I3 = m;(H), this O — yO gives rise to a m;(H )-action
on the set of gauge invariant fields.

Gauge Transformation of the States Corresponding to Flag Partners. Let us recall
from Sect. 2.3 the configuration 4, , of gauge field on the unit disc Dy. We consider
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it as a connection of the trivial bundle Dy xH. As noted before, 4,, can be made
flat by a chiral gauge transformation A,, such that 4,,(0) =1 and A, ,|sp, is a
constant loop in the Cartan subgroup T¢ of Hc. Let us insert the flag partner of O
associated with the flag f 0= (0,B). Since chiral anomaly is absent in the combined
system, and since 27p,(0; O(f9)) = P ® P_;_,, ® Q) has weight zero with respect
to T, the state we observe at S = 0Dy is still

Dpo(Ag30(f0) = PR P_; 5, @) (4.49)

If we look at the same state standing on the horizontal frame s(0) = (e?,y(6)™1),
what we observe is its gauge transform y- @ ®7y-P_;_,, @y -|Q). We determine
what this is. First, note that a wave function of the WZW model based on H¢/H
is a section of a certain line bundle over the loop space of Hc/H. It is a pull
back of the line bundle .,?W‘Z"‘z"v over LH¢ by the map of loop spaces induced by
hH € Hc/H — hh* € He. (Here, H¢ is the universal cover of Hc, if Hc is simple.
Extension to a general case is obvious.) Just as in Sect. 2.3, a computation proves
Y- @P_, 2, =P_y; 2, As for the ghost part, |Q) can be considered in a certain
sense [16, 40] as a “volume form” of the infinite dimensional space Lhc/b*, where
b is the Lie algebra of the group BT C LHc. Since ady induces an orthogonal
transformation of Lhc and preserves the subalgebra b*, y-|Q) = |Q). Thus, the
gauge transform is y- @ ® @_,,_», ® |Q2). By the above definition of the 7;(H)
action, we get

Z8)(A0.:0(f0)) = Z,(0:70(f0)). (4.50)

where (s) signifies that Z) is the state observed on the horizontal frame s.

Proof of (1.3). We are now in a position to prove (1.3). We make use of the
new integral expression (4.23). Let V' be an open subet of Ap, with a holomorphic
family {(4y, f»)}ver of representatives. Absence of chiral anomaly in the combined
system enables us to take the representatives so that there is a family {a¢(v)},er
of horizontal and admissible sections on a neighborhood Uy of x.

Let us choose a complex coordinate z on Uy such that z(x) =0 and z(Uj)
includes the unit disc Dy, and put X, = 2 — Dy. If we glue along S = X N Dy
the configurations 4,|5_ and 4, , by identifying ao(v, e )y(0) and so(e?) := (e, 1),
we obtain another H-bundle Py over X with a smooth connection 4). We denote by
a(v) and s)(v) the sections of Py over X, N Uy and Dy respectively which had been
60(V)|5..nv, and so before the gluing. Consider the flag /7 = s{(v,x)B. We can find
a section a}(v) over Up, holomorphic and admissible with respect to (47, /1), such
that o{(v,z) = 0(v,z)h,(z) on a neighborhood of S. Thus the replacements

(Avafv)H(AZs 3})5 UE V’ (451)
represent the transformation y, : V' — y,(V). The image y,(¥') is an open subset of

NPy x, under the assumption that the conjecture y, : Apx = Ap, , holds.
Now, we have the identity modelled after (4.50),

25O, 0(/1)) = 25 (443 70(1,)). (4.52)
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Since the automorphism groups are naturally isomorphic, this yields

1 dy 1 2 __
Z, Ay; ———=———hOy -+ - hO; — ¢b O(f,
%P ( TCT N AI;II ' me W) | v (f))
7 v L om0 1 sevw| o
— A7, _ - hOy — )! o(f} , (4.53
Zpy | Ay lAut(aAg,fuy)l 1 AI;I] ‘2m,5f w() O(f)) ( )

where vi(v) is given by
V() = 0(v) + hooo(V)” lihooo(v) = aj(v) + M o(v) ! ﬂhioo(v), (4.54)
in which 4’_o(v) = hooo(v)h,. This amounts to the identity

Q5.px(01 -+ - 05y0) = Q5. p, (01 - -- 0,0), (4.55)

which shows (1.3).

5. Sum Over Topologies

The full correlation function Zx(O;---Os) of gauge invariant fields Oy --- O;
is given by the sum > ,Zs p(O;---Oy) over all topological types of principal
H-bundles over X. If we use the topological identity (1.3), we have

Zy(01---0,0)= > Zzp(O---0sy0), (5.1)
yEm (H)

where P is any H-bundle. This shows that O and O’ are indistinguishable in any
full correlator if Y y0 =Y yO’. This motivates us to consider the quotient of the
space of gauge invariant local fields by the kernel of the operator EVGM(H) y, or

equivalently, the quotient #4, of #4y by the kernel of > yer~V+ - By the general
principle of CFT, we expect that the torus partition funtion sz(l) satisfies

Zs(1) =tr ; (g% %G H), (52)

where ¢ = cgx — ¢y ;. Here, Lo and Ly are GKO generators [9] which commute

with the operators y- for y € I;; and hence can act on the quotient space Hing.
In this section, we calculate the full partition function on the torus X, and see

whether (5.2) holds. For simplicity, we assume H is semi- 51mple In this case, 7;(H)

is a finite group and the quotient #%,, is mapped by I (H)] Z y + isomorphically

onto the subspace of sy, of I A-1nvar1ant elements. We denote by H the universal
cover of H.

5.1. Torus Partition Function for the Trivial Topology. Let Py, be the trivial
bundle X xH. Recall that the moduli space Ay = Ap,, is parametrized by u € tc
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with the representative flat gauge fields

A, = — udC - T— adl . (5.3)
2

A, is gauge equivalent to 4, if and only if &' = wu + n + tm for some w € W and
n,m € PV. The WZW model in the background 4, has the partition function

Zs po (i 1) = 555005 k)2, (54)
4ePP(G)

(see [41, 42, 1]) in which Xﬁ’k is the character of the representation Li’k of LG:

(T u) = Lok(qL° ZWO(u)) (5.5)

where u € tc is considered as an element of gc. As it should be, (5.4) is invariant
under the gauge transformation u — wu + n -+ tm. It is also invariant [44] under the
modular transformations (t,u) — (t+ 1,u) and (—— z

We calculate the partition function in the trivial sector

1 0A°1

1 /
2ni ] O

Ay —— e
|Aut 0y, | j=1

! .
Zs ()= [ [1d% Zs.p,, (5.6)

JVH i=1

The automorphism group of 5,1” for generic u is the group of constant gauge trans-
formations by elements of Tc. Parametrizing A" as n,e®n’, where n, is N-valued
and ¢ is it-valued, division by automorphism group is implemented by

1 _ SD(p(xp)) ; y
|Autg,|  vol(T) ,Qc(xo)c (x0). (5.7)

where x, is a point of 2. As calculated in [1], the partition function of the ghost
system with the insertion of H,l‘=1 |2@) [p, 3 2d( {2, and of the Hc/H-WZW model

2mi
with the insertion of 6”(¢(xq))/vol(T) are given respectively by
2
2\ (At Qua(k + 1)) /
(12) det’, (aAuaA,,), and =i/ \ et aAuaA . (5.8)

Here, det,y( 5;[“5,4“) is the {-regularized determinant of the Laplace operator 5}“ a1,
acting on sections of the adjoint bundle. This is calculated in [45]:

det;d(éj;é“u) = (2‘C2)2]e%2h\/ﬁ(u—u-)2IHﬁ(T,u)l‘" (5.9)

where II;(t,u) is the Weyl-Kac denominator. Thus, Zs, p, (1) is equal to

1

k+h\ (@2n) ; Y (it

(m )V(ol(;)f I’ o7 )Elx “owlg(rwlf  (5.10)
NG
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The branching rule (3.19) leads to the expansion
(T u)_zb (T)X (T9u)a (511)

in which the branching function bfl is defined by b'}l('c) = try, (g%~ %). As the GKO
A

operators Ly and Lo commute with the y-, we have b"’l $= b%, which enables us

to replace the integration (5.10) over A4y by an 1ntegrat10n over A divided by
[PV/QV 2. Using vol(T) = (27)"vol(it/PV) and the orthogonality of characters;

1
/ N 2 —_— 2 z
[ T1douems ®HOmCiy Ry Bk ) Tz, u) P =V01(if/QV)(~ 2 )m,
Nyi=1 k+ R

(5.12)

we get

er,Ptriv(l) I | Zlb/l(f)|2 (513)

(H )
where (A, 1) runs over Pka)(G)for]z )(I:I ). Since bzl 4= bﬁ, it can also be expressed
as

Zs p ()= 3 LA (5.14)

(4,4 IA’1 |
where the sum is over the quotient (Pfrk)(G)fork)(FI ))/FE and Afl is the isotropy
subgroup of I at (4, 4).

If Afl =1 for every (A, 1), obviously we have

Zs, 2o (1) = 11 4, (¢ 5G07H). (5.15)
As we shall see shortly, in this case, topologically non-trivial bundles do not con-
tribute to the partition function and hence Zs_p, (1) is itself the full partition func-
tion. Thus, (5.2) holds when 7;(H) acts freely on Pik)(G)xPik)(ﬁ ).

5.2. Field Identification Fixed Points. To each y € m(H) is associated a principal

H-bundle P?) = P,y over X,. Due to the topological identity (1.3), the partition
function for P is the one point function for Py, of the field y(1) corresponding

to a state y - g in szoo:
G
Zs, po(1) = Zzp, (7(1)). (5.16)

This is expressed as an integral over A4y whose integrand contains a factor
Zs. Py (Au; Oy . ). For this to be non-vanishing, the fusion rule [41, 46, 24]

requires
> Nfo,#0 and 3 Nj,;#0. (5.17)
1ep®G) ¢ aep®)

Here N/, (resp. Nﬁ,) is the fusion coefficient of the WZW model with target G
and level k (resp. target H and level k). The Verlinde fomula expresses them in
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terms of the modular transformation matrix: fo 2 = 2225487 S+ /S¢ [46). From
Gepner’s observation [10] SX’V = (=1)/We=2m0+PWSL () = e~ 0w, it follows

that N} ‘ﬁii{, = Nj,,. Since N}, = 6%, (5.17) is equivalent to the condition that there

exist A € P_(Fk)(G) and 1 € Pfrk)(ﬁ) such that . 4 = A and yA = 4.

If there is a pair (4, A) at which the isotropy Afl C m(H) is not {1} (such a pair
is called the field identification fixed point in the literature), the partition function
for the trivial topology (5.14) has fractional coefficients in the g,g-expansion and
we can hardly expect that it is expressed as a trace of g~ %§°~ % in a Virasoro
module. In algebraic treatments of coset models [12, 47], this was recognized as a
problem of field identification fixed points. We expect that a natural resolution is
provided by the sum over topologies: If A% ={1}, the contribution Zs_ po(1) for
y € Afl — {1} may be non-vanishing and the integrality of the coefficients may be
restored for the full partition function.? In the next subsection, we examine whether
this happens in a specific example.

The partition function (5.13) for the trivial topology is manifestly modular in-
variant. It should also hold for non-trivial topologies, since P and f*P are topologi-
cally isomorphic for any diffeomorphism f. This is indeed the case for the example
below.

5.3. Models with G = SU(2)xSU(2) and H = SO(3). We consider the case of G =
SU(2)xSU(2) and H = SO(3) the diagonal subgroup of G/Zg = SO(3)xSO(3). The
level induced from (ki,k2) is k = k| + kp. Since a highest weight representation
of SU(2) is conventionally labeled by the spin G%Z, we identify PJ(rk)(SU(Z)) =
{0,1,1,...,%}. The non-trivial element of m;(H)=Z, induces the involution
(o)) = (5 =1 % = j2).5 =) in PERAG)PO@E). If ki or ko is an
odd integer, there is no fixed point and the full partition function is given by
% o, |b€ i jz)(’t)lz. For the case k, = 1, it is the diagonal modular invariant par-
tition function of the A" unitary minimal model.

Partition Function for the Non-trivial Topology. In the following, we assume that

k; and k, are both even integers. Then, there is a unique fixed point ((%L, ’%), §)
and the topologically non-trivial configurations contribute to the partition function.
Recall that there is a unique flat SO(3) connection Ar of non-trivial topological

type, which corresponds to the semi-stable bundle %9) studied in Sect. 4.3. With
respect to the multi-valued section g(z), the connection form of 4r is expressed as

s _ldz (1 0
AF_Z—Z—<O _1>. (5.18)

As 5"}1) has the automorphism group Z,xZ, of order 4, the partition function
Zs, non-triv(1) 18 Z5, non-triv(4F; %). It factorizes as the product

12 i
7 L Zso s (A D2 o (Aps DZE i (Ar3 1) (5.19)

4 ] 2., non-triv £, NON-triv 2, non-triv
1=

3In [47], a method for “fixed point resolution” is presented. Characters of the “fixed point CFTs” in
that reference may be related to the partition functions for non-trivial topologies.
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of partition functions of the four constituent systems. We show that this is inde-
pendent on 7, by proving that the one point function of the energy-momentum
tensor vanishes for each system. Let 6(z) : bc 5 adPc|, be the frame asso-
ciated to o(z) € Pc|,. The Green function of the operator éAF is expressed as
Gy(2) = Gag(W)g(W,2)0aq(2) ™' ® dz, where g(w,z) € End(hc) is represented by the
matrix

" -1 n—%

ZnEZ z—‘f]z"w 0 —ZnEZ ﬁm
g(w,z) = 0 f(w,2) 0 , (5.20)
"—% —1 n
_ZnEZ sz};zm 0 EnEZ 27%

with respect to the base (04,03,0-) of hc =sl(2,C). (61 = (g1 L i02)/2; g; are
Pauli matrlces.) f(w,z) is expressed by the theta function ¥ and its derivative
¥ = a—gﬁ as

18-+ 3) 9
2miz (& — (+ ZL1) 9G,7)

The level £ SU(2)-WZW model in the background A4r enjoys the chiral Ward
identities (/) = 0 and

f(e™2m 72y = (5.21)

(J-8(z)J - &'(w)) = ktr, (8 Gue(2)e' (w)) . (5.22)

Plugging these into the Sugawara form (B.6) of the energy momentum tensor, we
find

G
— 73Uk (4p1)=0. (5.23)

ot 2, non-triv
This also holds for the Hc/H-WZW model. As for the ghost system, the identity
(c)b(z)) = Gu(z) (5.24)

yields, through the expression (B.3) of the energy momentum tensor,

0 shos (Ar;1) =0. (5.25)

ot 2, non-triv
Thus, the partition function is a constant:

ZZ, non- tnv( 1) - non -triv - (5-26)

The Full Partition Function. The partition function for topologically trivial config-
urations is given by

1 -~
awmn—WZIMMmF+;%%mmnﬁ (5.27)
1,J2)

where the sum Z(’ is over the Z,-quotient of Pfrk"kZ)(G)fo ) {((’;l , 742), 4)} For
the non-trivial topology, we have (5.26). The term >_° in (5.27) is the trace of
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—[o— <
g~ %G~ % on the space

Hiy = H O H A=A - (5.28)

The question is whether there is a constant Cyon.triy Such that

L — & —[y— £
z'bflil‘l/4,kz/4)(7) |2 + Chon-triv = tr s (qL" z q"" %), (5.29)

We answer this in the case k&, = 2. The Virasoro modules by the GKO construc-
tion SU(2)xSU(2)/SU(2) at level (k1,2) are known [9] to be the ones appearing

in the k" N =1 superconformal minimal model. In particular, Bf := Bf,{:‘/{ ko/a) 18
in the Ramond sector with a supercharge Gy (G} = Lo — &), and contains a unique
ground state with Ly = 57. One can show that y- : # f — #' induces an involution
U, of the Virasoro module Bf such that

GoU, + U, Gy = 0. (5.30)
Let B, be the Lo-eigenspace with G} = n. We may put U, =1 on By = C and the

anti-commuting relation (5.30) shows that

G
B, =B aeB), B g_"* B{™) (isomorphic) (5.31)

0

for n = 1, where Bff: ) is the subspace of B, on which U, = £1. Thus, we have
A = #D @ #), where

o0 —_— o0 _—
AV =~ D BYeB e @ B By (5.32)
n,m=0 n,m=1
and
o0 Y —_—
#) =~ @ (BB, eB) @B} (5.33)
n=z0,mz1
are subspaces on which y+ =1 and y- = —1 respectively. Since # s isomorphic

to # ), we see that (5.29) and hence (5.2) hold if we tune Coonriv = 3.

6. Concluding Remarks

Our argument is based on the definition (2.1) of the WZW action. However,
we could have started with another one generalizing (1.1). There is a way to define
topological lagrangians subject to conditions such as locality, unitarity, gluing
property, etc. It is to use the (equivariant) differential character. Construction of an
action in terms of Cheeger—Simons differential character was initiated
by Dijkgraaf and Witten in Chern—Simons gauge theory [48] and the method was
elaborated in Ref. [49] (see also [50]). According to it, WZW actions with the
target G and the gauge group H are classified by the equivariant cohomology
group H}(G; Z) := H3(EH % ;,G; Z), where H acts on G via adjoint transformations.
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For a semi-simple group H, we have
H(G;Z) = H(G;Z) ® Hom(n;(H),R/Z) . 6.1)

The levels are classified by H3(G; Z). In the quantum theory, a term from the torsion
part Hom(n;(H),R/Z) would modify the m;(H )-actions on gauge invariant local
fields. In a theory with fixed points, it would modify the partition function as well.
For example, when G = SU(2)xSU(2) and H = SO(3), the theory corresponding to
(ki ky, 2N EZB LD Ly = H,?,(G; Z) with even ky, k, would have the full partition
function

1 ~
Zs, (1) % Caoncrv = 5| Bt 1o/ay(7) £ Cooniv + (62)

For k, =2, both have positive integral coefficients in the g,g-expansions if and
only if Chopntriv = j:%. If Chon-triv = %, (5.2) holds in each theory. Due to the re-
lation (5.30), the involution y - can be identified with the mod two fermion num-
ber (—1) and the theory for (ky,2,41) is the spin model [7, 51] with the pro-
jection (—1) = 41 on the Ramond sector. We expect in a general model that
adding a torsion term has such a simple and significant consequence in physics.

In this paper, we have been concentrated on the model whose matter theory is the
WZW model with a compact simply connected target group. However, our argument
is applicable to the models with non-simply connected target, the study of which
may be important for the classification of rational CFTs. Another interesting class of
theories is the N = 2 coset conformal field theory (Kazama—Suzuki model) [52, 12].
Algebraic structure of the spectral flows of such a model has been studied by many
authors [12,53-55]. In ref. [56], a geometric interpretation of field identification is
attempted along the line similar to ours, though the argument uses the old expression
(3.4) and hence is applicable only for abelian gauge groups. The fixed point resolu-
tion in these systems (see [55, 57] for algebraic approaches) by the topological sum
with torsion terms will be interesting and perhaps of some importance in superstring
theory.

Appendix A

In order to fix the notation and terminology, here we describe some facts on affine
Weyl groups. See [21] for the proofs. Let H be a compact connected simple Lie
group without center and let = : H — H be the universal cover. We choose a max-
imal torus 7 of H and put T = n~!(T). The Lie algebras of T and T are identified
and denoted by t. We introduce lattices Q¥ C PY in it so that the exponential maps
induce isomorphisms t/27iPY = T and t/27iQY = T. Note that m;(H) = PY/QV.
The dual lattices of PV and QV are the root lattice Q and the weight lattice P re-
spectively. In this paper, we call QV the coroot lattice and PV the coweight lattice.
A choice of a chambre C determines a decomposition of the root system 4 into
positive and negative parts 4 = 4, U A_. An element u € PV is called a minimal
coweight if a(u) =0 or 1 for any o € A.. We denote by M¢ the set of minimal
coweight. Mc C PV is a section of the projection PV — PV/QV.

The affine Weyl group of A and H are defined by Wz = Hom(U(1), T)XW =
QVXW and W = Hom(U(1), T)XW = PV XW respectively, where W is the Weyl
group of (H,T). We consider W, as a subgroup of W, by the inclusion Q¥ C PY.

7 acts on the set of alcoves whereas W, acts simply transitively. For an alcove



Global Aspects of Gauged WZW Models 29

C, we denote by I'; the isotropy subgroup of Wg. Then, W = Wg X T o> and we
have the isomorphisms

mi(H) = PV /Q = Wy /Wiy = T . (A1)

A choice C determines the decomposition A5 = A, U dag— of affine roots, which
is preserved by I. In other words, I7; permutes the simple affine roots and can be
considered as an automorphism group of the extended Dynkin diagram.

Each element of I; has a representative loop of the form y(0) = e **’n,,, where
U € Mc, and n,, represents a certain w € W. To be more precise, let ay,...,a; € 44
be the simple roots and ui,...,u; € PV be the dual base; o;(u;) = d;;. Let & be
the highest root. Then, u € Mc iff u =0 or u = p; with &(u;) = 1. For such j, let
W; be the subgroup of W generated by the reflections {s,; i#,}. Let w; be the
longest element of 1 and let wy be the longest element of W. Then, w;wq is the
element of W corresponding to u; € Mc so that e""‘fenijo represents an element
of I For the case of H = SU(n)/Z,, all the base elements u; (j=1,...,n—1)
are minimal. They are expressed together with n,,,, as

_ (1 0y J _ (0 1) =D
ﬂj“‘(o 0) nlna nijo_<1n—j0>( 1) s (A.Z)

where 1; is the unit matrix of size j.

For a general compact Lie group H, the coweight lattice PV can be defined in
the same way, though the dual lattice is no longer the root lattice. Under appropriate
definitions, the isomorphisms (A.1) holds.

Appendix B

In this appendix, we give expressions of the energy-momentum tensor 7, and the
current J, for the adjoint ghost system and for the level £ WZW model based on a
compact simple Lie group H.

We fix a metric g and an H-connection 4. Choose a local complex coordinate
z and a local holomorphic section ¢ with respect to g;. To a base {e,} of bc, o
associates a local holomorphic frame {o,} of the adjoint bundle and the dual frame
{6?} of the coadjoint bundle. We denote by w,dz = g**dg,; and AZdz the 1-forms
for the Levi—Civita connection and A4 respectively with respect to the holomorphic

frames a_az and o.

Ghost System. We put ¢’(z) = ), e,0% - c(z) € hc and bJ(z) =), €*b, - 0,(z) €

b¢. Define the regularized product : b7(z)c’(w) : by

Za e Qe
zZ—Ww

bI(z)®c(w) = +:0](z2)®c(w): . (B.1)

Then, we have
J,-0X

Il

Db - [X, % s 2RV tr(AX) (B.2)

T = 10,0 -¢ i — 1 b7 [A°, ] + WV tr(4A%A%) — %"S (B.3)

where 6X = 3", 0,.X*, ¢y = —2dimH and S, = d,w; — %wf )
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The WZW Model. To the current, we associate an hg-valued holomorphic differ-

ential J? defined by
JyroX =J7 - X —ktr(47X) . (B4)

Define the regularized product : J7(z)J7(w) : by

kw(XY) J7(w)-[X, Y]
(z —w)? z—

J(z)- X JI(w)- Y = +:J(z)- X JO(w)- Y : . (B.S)

Then, the Sugawara form of the energy momentum tensor is

ab k
I vea JY eyt =7 AT+ 5 tr(AZAD) f%s . (B6)

n
Tzz =
2k + )

where #tr(epe;) = 0% and ¢y = ;fhv dim H. This leads to differential equations
of correlation functions [20, 42, 43].

Appendix C

This appendix gives an outline of the proof of the transformation rule (4.46) of .
The y,-transform (27, f7) of an Hc-bundle 2 described by a(gz) = a(z)h(g;z) with
a flag o(1)hy is defined by the relations (4.44) and (4.45) of an admissible section

o} around z = 1 and a section ¢’ over C* — q%.

We shall find an everywhere regular (but multivalued) section ¢”. We put
a'(z) = o'(2)j(z) for z £1 and require the relation ¢?(gz) = ¢"(z)4"(g;z) to hold.
The task is then to find such j(z) that

{ H(zq) = h(g;z) "' J(z)h"(g; 2)

Cets . (C.1)
x(z)=h(z—1)""h; j(z) is regularasz — 1.

The latter condition arises from the requirement that ¢(z) = 0”(z)x(z)~"' is an
admissible section around z = 1. The solution is exhibited below as (2, f) —

(P17 ¥(2).

rRi(z)  ie?MqTir Ry (2) ),u 10
—rR-u(z) e TR 5(2))

Ro(2)F(2) iq—%R_ﬁ(z)G(z)) ©2)
Ro(z) g 4R_3(2) ’ '

29,1) = 2V, 3,) : (

(@9, 00) — (2, 30) - (

where

_ ({+2u+1,217) i
Ry(z) = (’L()(C—I—Fg—l,‘c))%’ ru=c-(z—1) Ru(z)|z=1;

22% log 9({+1,27) — 1, G(z) = 22562— log ¥(¢,27),

F(z) p

in which z = e™2™_ ¢, is a constant, and ¥ is the theta function.
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