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Abstract: This paper presents a resolution of the gauged O(3) sigma model pro-
posed by B.J. Schroers in which the matter field ¢ maps R? into 2 while the vector
gauge potential gives rise to a magnetic field. It is shown that for each natural num-
ber N there are solutions to saturate the classical energy lower bound £ = 4nN for
the field configurations in the topological family deg(¢) = N if and only if N +1.
Furthermore the solutions obtained depend on at least 4N — 3 continuous para-
meters, the associated magnetic flux can assume its value in an open interval, and
the decay rates of the field strengths may be specified in a suitable range. These
solutions are multisolitons represented by N prescribed lumps of the magnetic field,
simulating N identical particles in equilibrium, and are governed by a nonlinear
elliptic equation with both vortex and anti-vortex source terms.

1. Introduction and Main Results

In this paper we are interested in static solutions of a gauged O(3) sigma model
which originates from the classical planar ferromagnet model defined by the energy
functional

E() = & [(@0167 + @97 M)

where the spin vector ¢ = (¢1, $2, ¢3) maps R? into S%, namely, ¢? + ¢3 + ¢3 = 1,
and the integral is taken over the full R? under the Lebesgue measure d?x (unless
otherwise stated). Finite energy condition implies that ¢ goes to a constant unit
vector, say @, at infinity, which makes ¢ a continuous map from S? to S? so that
the Hopf degree, deg(¢), is well defined. In fact the work of Belavin and Polyakov
[1,2] establishes that the energy (1) has the topological lower bound

E(¢) 2 4n|deg(9)], 2)
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which is now considered a classical fact, and all energy minimizers saturating the
inequality (2) can be explicitly constructed in terms of rational functions, which
thus renders the model integrable

Since the functional (1) is invariant under O(3), we may always assume that
the asymptotic state ¢, of a finite-energy field configuration ¢ is simply, say,
n = (0,0,1) (the north pole) This choice breaks the O(3) symmetry down to
SO(2) = U(1) which is clearly represented by the elements of O(3) that preserve
the direction n. Consequently one is tempted to include a minimal potential term
like (1 —n-¢)? in the energy integral to automatically respect such a choice of
the asymptotics However, although the new energy is still clearly bounded from
below and satisfies (2), a simple scaling argument indicates that there can be no
nontrivial solutions To overcome this difficulty, an important device in gauge theory
may be introduced so that an extra gauge vector field A = (4,4,) is added, the
usual partial derivatives in (1) are replaced by the corresponding gauge-covariant
derivatives, Dy, D, and the energy contribution of A, measured by the associated
curvature B = 0145 — 0241, is counted as a part of the total energy. Now the energy
reads

EA) = 3 [ (D9 + (D) + (1 —n-4) + 8. )

where D,¢p = d;p +A4;(nx ¢), j =1,2.

The model (3) was first introduced in the recent work of Schroers [3] as an
approximate soliton model for heavy particles and is connected to the baby Skyrme
model (sec [4] and the references therein) and Higgs vortices [5, 6].

Following [3] we identify the curvature B as the magnetic field and consider the

magnetic flux
D= d(Pp,A)= [B. 4)

In [3] Schroers compares the flux here with those in various vortex systems in
which quantized flux implies topological stability (e g., the Abelian Higgs vortices
[5,7]) while nonquantized flux implies otherwise (e.g., the nontopological Chern—
Simons vortices [6,8,9]). However, Schroers points out in [3] that the topological
stability of the solitons given in the model (3) is independent of their magnetic flux.
These solitons can carry arbitrary flux but yet be topologically stable. It is this last
interesting property that motivates the rigorous study of the present paper We will
show indecd that there are solutions at various quantized minimal energy levels, and
at each energy level, there are solutions whose magnetic fluxes can assume arbitrary
values from a designated open interval.
Recall that we can express deg(¢) as

dea(@) = o [0+ (016 % 026) 5)

One of the crucial steps in [3] is to apply boundary behavior of a finite-energy field
configuration to rewrite (5) into the useful form

dea(#) = 7= [9+ (D16 x D) + B —n- ). (©)

Thus, in view of (6), the energy (3) can be recast into the form

E(,A) = 47 deg(@)] + 5 [ (i 6 x Do) + (BFIL —n- 9], (7)
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according to the sign of deg(¢). Consequently, as (2) for the O(3) sigma model,
Schroers [3] arrives at the conclusion that the energy (3) has the same Bogomol’nyi
type topological lower bound and that this bound (2) is attained if and only if (¢, A)
solves the self-dual Bogomol’nyi equations

Dld) = _¢XD2¢a
B=1-n-¢,
¢ : R 82, (8)

Here and in the sequel we concentrate on the (self-dual) case that deg(¢) =
N = 0 because the anti-self-dual case deg(¢) < 0 can be obtained by a simple
transformation.

Note that, unlike the classical O(3) model, the system (8) cannot be solved
explicitly and there are some new features embedded. For example, Schroers [3]
already found that there is no radially symmetric N = 1 solution. Further under-
standing of (8) can only come from nonlinear functional analysis.

Since ¢ € S we have —1 < n-¢ < 1. Inserting this property in the second
equation in (8) we see that the magnetic field B satisfies 0 < B < 2. In other words
the flux-lines are penetrating the plane along the same direction and the locations
of the spots where the magnetic field achieves the greatest possible penetration is
given by those points p € R? at which

B(p) = Bmax = 2. )

Of course, due to the structure of the second equation in (8), the locations of the
peaks of the magnetic field given in (9) are equivalently represented by the valleys
of the projection of the map ¢ along n, at which

n-¢(p)=@:P)min =—1. (10)

Such a simple identification leads to the important observation that the number of
points at which the peaks or valleys take place is actually the degree N of the map
¢. To see this fact we use s = (0,0, —1) to denote the south pole of S? and express
the set of the locations of valleys defined in (10) as

P=¢"'(s). (11)

It will be seen that #P (the number of points)= N = deg(¢) which is a topological
invariant. We now state and comment on our main results.

Theorem 1. The system (8) has no finite-energy degree one solutions whatsoever.

This result is the general form of Schroers’ finding that there can be no radi-
ally symmetric degree one solutions since we have removed the radial symmetry
restriction for the solutions. Such a nonexistence property alone indicates that the
model here indeed possesses some new features.

The above theorem says that to obtain existence of solutions we need to consider
the case that the degree of the map ¢ is greater than one. We have

Theorem 2. For any N = 2 the system (8) has a family of finite-energy smooth
solutions containing at least (4N — 3) independent continuous parameters to fulfill
the topological condition deg(¢) = N.

In fact this theorem may be stated in the following precise form.
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Theorem 3. For any integers M,N satisfying N = 2, M < N — 1, the parameter

o in the range

M+2 M+1
I—T+—<oc<1——-—%—, (12)

and the points pi, pay..., PNsG1,925 --squm € R’ which may appear repeatedly in
the collection, the system (8) has a solution (¢(»),A()) so that

{p1-p2s- o} = o) (9), {q1,92, - qu} = ¢, (),
the energy lower bound (2) is saturated at the quantized level,
E(¢ (), A)) = 41N (13)
with deg(¢(.)) = N, and the total magnetic flux (4) is given by
D(P(5), Any) = 2N . (14)

Furthermore, set
p=2(N—M)—2Nu. (15)

Then the solution decays at infinity according to
193, 1—¢3 = O(x "),
B=1-n-¢=0(k"),
D1 + |D2g]* = x| ). (16)

In other words, for given integer N = 2 and the points py, pa,..., py € R?, the
system (8) has a solution so that these points p’s are realized as the locations of
the maximal peaks of the magnetic field and the total energy is proportional to
the number N which may well be viewed as the number of particles in the system
Besides, the magnetic flux (14) can be designated in a continuous interval by using
the parameter o in (12) and the decay exponent [ in (16) can also be specified
in the continuous range 2 < f§ < 2(N — M) so that « and [ are related to each
other through (15).

The count of the number of parameters stated in Theorem 2 now follows easily
from Theorem 3 The points pi, p2,. , py give 2N parameters which are simply
their coordinates, the points ¢i,q2, ..,qu can give up to 2(N — 2) parameters be-
cause we may have M = N — 2; the parameter o or f§ gives one more degree of
freedom

In the Ginzburg-Landau theory of superconductivity the greatest penetration of
the magnetic field occurs at the zeros of the order parameter where the normal phase
is restored. Such a phenomenon is known as the Meissner effect. In our gauged sigma
model, however, the greatest penetration of the magnetic field B occurs at the point
set ¢~ '(s) in R? If B is viewed as a vorticity field the system clearly represents
multivortices If B is viewed as a physical force such as the magnetic field the
system represents multisolitons which may be thought of as a collection of identical
particles because the maximal peaks of B indicate well-defined force concentration at
those points The surprising feature of the solution is that if the points py, p2, .., pn
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are viewed as magnetic monopoles, then the points g;,4s,...,qs behave like anti-
monopoles. This phenomenon may be seen from (12) and (14): Although, according
to the second equation in (8) the magnetic field at p’s and ¢’s have the same sign
(in fact the magnetic field at the points ¢’s vanishes), the formula (12) says that the
presence of the points ¢’s reduces the total flux. Besides, by (13), the total energy
only depends on the number N of the points p’s but not the number M of the
points g’s. When M =0 but N is large, the expression (14) gives rise to a flux
which is close to what is to be expected in the Ginzburg—Landau theory.

To conclude this section, we also notice that Theorem 1 is in fact a consequence
of the following more general statement.

Theorem 4. Let N be an integer. Then (8) has a finite-energy solution (¢,A) with
deg(¢) =N and #¢~'(n) =M if and only if N -2 = M.

Since M = 0 it is seen that there is a degree N solution if and only if N = 2
and Theorem 1 follows immediately.

In the rest of the paper we prove the above results. In the next section we
follow [3] to rewrite (8) into an elliptic scalar equation with some Dirac function
type source terms representing vortices and anti-vortices. In Sect. 3 we carry out the
existence proof for part of Theorem 2 or 3 using a suitable weighted Sobolev space
setting and find the restricted ranges of the free parameters. In Sect. 4 we establish
the asymptotic behavior of the solution obtained by using comparison functions. In
Sect. 5 we observe that the degree associated with the solution (¢, A) is actually the
number #¢~!(s) and complete the proof of Theorem 2 or 3. In Sect. 6 we prove
Theorem 4 and complete the paper with some remarks.

2. Multisolitons and the Reduced Governing Equations

As in [3], consider the stereographic projection from the south 2pole s of 2. We
can then represent ¢, at least partially, as a map u = (u;,u;) : R — R2,

o1 ¢z

f— N :‘—’ 17
1+ ¢3 “ 1+ ¢3 (17

23]

where, of course,

V1—¢t—¢3 when ¢ lies on the upper sphere S? ,
¢3 = (1 8)
—/1—¢? —¢2  when ¢ lies on the lower sphere S2 .

Thus the transformation (17) is not well defined at the south pole ¢; =0, ¢p,=0,
¢3 = —1. In fact, let

peP=¢7'(s). (19)

Then by L’Hopital’s rule we easily see that the continuity of ¢ at x = p implies
the interesting property

. . . ¢+ ¢3
lim JuG)l? =351},(u¥+u§)=}grg,(l — 1‘_[¢%2+ i (20)
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In order to explore (20) further, we recall that, away from those points given in
(19), the complex function u = u; + iu; reduces the Bogomol’'nyi system into the
following more familiar “vortex” equations [3]

D]M: ~iD2u,
2|”’2 €R2 ¢ P (257](5)
= —,x N X =
1+ |ul?
Du=2adu+idu, j=12, (21)

Thus, using the usual 0*-lemma argument as in [7], we see that near a point
p € P the function u may be written as the product of a nonvanishing function and
a meromorphic function with p as the only singular point In fact p is a pole. To
see this, we consider U = 1/u near p Then (20) says that U is continuous at p
and U(p) =0 Furthermore, simple calculation gives us

DiU = ——UQD/-LI, j=12, x*p.

Here D;U = (¢, — id;)U Using the first equation in (21) we have DjU = —iD;U
Therefore the above argument and the removable singularity theorem tell us that,
near p, U is the product of a nonvanishing function and a holomorphic function
Hence p must be a zero of U with an integer multiplicity Such a property is crucial
for the rest of the work here.

In general, assume

P=¢ '(8)={p.p .p}. (22)
Then there are positive integers 71,72, ,n; so that, up to a positive factor,
1
Ill(.x)[ - ___”’ ]: 172’ . ’k (23)
'x - P,! !

Besides we assume that ¢—'(n) is finite and set

0=¢"'m)={q.q, . .q/} (24)

Then ¢1(gq;) = 0,$2(q;) = 0,¢5(q,) = 1, and, so, u(q;) =0, j = 1,2, ..,/ Conse-
quently there are positive integers m,m,, ,m; so that, up to a positive factor,

()| = —q, " =12 (25)

Finally, using the information (22)—(25) and the new variable v = In |u|?> in
(21), we see that the system (21) is reduced to the following scalar equation with
the Dirac function type point source terms

4e"

A’:
! 1+ et

k !
—4n Y nd, +4ny mp,, x€ R’ (26)
j=1 =1

Equation (26) is a typical planar “vortex” equation. Its most interesting feature is
that vortices of opposite charges (at p;’s and ¢,’s, respectively) co-exist Although
the vorticity or magnetic field B does not change its sign the vortices at p,’s may
still be called anti-vortices, whereas, at g;’s, vortices

The next section is an analytic study of (26) Since finite-energy condition
¢(x) —n as |[x| — oo requires u(x) — 0 as |x] — oo, we need to look for solu-
tions of (26) satisfying v(x) — —oc as |x| — oc
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3. Proof of Existence

Our main strategy is to construct suitable lower and upper solutions of (26). At
the first glance, (26) allows a variational principle. However, the structure of the
problem makes it hard to control some important terms. Thus we turn to apply
similar variational principles to get lower and upper solutions as approximations.
When this is done, an exact solution is ensured provided that the obtained upper
solution is larger than the lower solution indeed.

First, introduce the background functions

k I
v =—y n;In(l + |x — pjl_z), vy =—> mn(l+[x — qjl‘z),
J=1 j=1

and . l
g1 = 421 ni(1+|x — pi|H 2, g =4 zl mi(1+x—q;>™2. (27)
Jj= Jj=

Setv=—vi+v,+V in (26) and N = > n;, M = > m;. Then V satisfies

Jevitn2tV
AV = 9t (28)
with
[ g1 = 4aN, [ g2 =4nM . (29)

Recall that we need to obtain a solution V' of (28) satisfying V(x) — —oo as
x| — oo. For this purpose, we choose a function v3 € C*°(R?) so that

u(x)=—Inlx|, x| =1, xecR>.
Then an integration by parts gives
— [ 4vy =2m. (30)

Let § > 0 and
f=-v1+u, K =P,

Then V = fv; + w transforms (28) into the equation

4Kel v
AW =T 9 (3D
where

g=4g1— 92+ pdvs. (32)
It is important to record the space average of g here in view of (29) and (30):
Jg=2nQ2[N —M]-p). (33)

It is also important to observe that

g(x) = O(x|™),

|x| is large . (34)

K(x) =O(x|7"),
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In our variational treatment, we shall use K as a weight function where we need
the condition f > 2 (see (34)) Besides, for some technical reason, we also need
(33) to be positive. These restrictions make it clear that we must choose f to satisfy

2 < B <2N—-M). (35)

We will always observe (35) from now on.!

We denote the usual L” space over R? simply by L? and its norm by | |,.
Define the weighted measure du = K dx and use L”(du) to denote the induced L”
space Let # be the space of L? functions w such that

Wl = 19wl + Wl Fag < -
Then # contains all constant functions and, thus,
H' ={we AH|[wdu=0}

is a closed subspace of #. Recall that there is a constant 7 > 0 depending on
given in (34) so that the following Trudinger-Moser type inequality holds [10]:

fe’wl d,lt < Ce"”kug, we #H' (36)

For our problem the range of y will not be important.

It is interesting to note that Eq (31) allows a variational formulation based on
the weighted Sobolev space # However, due to the fact that g defined in (32) can
change sign, it is difficult to control the quantity

Jwdp

for a minimizing sequence. Fortunately we may use a less direct approach to solve
(31) To see this we first modify (31) into the form

4Ke!

Aw = ——
I+ Kel

—lgl- (37)
Of course a solution of (37) can serve as an upper solution of (31) Later we will
show that it is easy to get a lower solution of (31) that can be chosen to stay below
any upper solution obtained from (37). Thus we are led to a resolution of (31) by
standard iterative methods. Consequently we can concentrate on (37) first

To solve (37) consider the functional

o) = [ {%|Vw\2 +4In(1 + Ke! ™) — |g)w}, we A (38)

We shall look for a solution of (37) satisfying the constraint [ Aw = 0, which
we will need in, e g., Lemma 13. Thus we introduce the admissible class

’ Kel/tw 1

' This condition is actually also almost necessary Sce the Note Added at the end of the paper
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Lemma 5. If' w solves the optimization problem

min{/(w)|w € &}, (39)
then w is a solution of Eq. (37).
Proof. By the rule of the Lagrange multipliers we have

4Ke/ W Ke/tw

SVw-VE+ mf—léﬂf:lfmf, (40)

where 4 € R is a constant and ¢ € & is an arbitrary trial function. Let £ =1 in
(40). Using the definition of .«/ and w € ./ we immediately obtain 4 = 0. Returning
to (40) with 4 = 0 we see that w is a weak solution of (37). By the standard elliptic
theory we find that w is a classical solution of (37).

Lemma 6. The functional (38) is bounded from below in <.
Proof. From the simple relation
In(1 +Ke/ ) = (f + fos + w) + In(1 + e~V TPty

we can rewrite (38) as
I(w) = %HVW||§+4f In(1 + Ke/™) — [ |g|In(1 + Ke/**)

+ [1gI(f + Bv3) + [ |g|In(1 4 e~/ Fhmtw)y (41)

Of course the last two terms on the right-hand side of (41) are of no harm. The
crucial terms are the first three terms.
Set
W =In(1 + Ke/™).

Then W = 0. Furthermore the definition of the functions f,K, the fact w € ./, and

the relation
Ke f+w

W=—
v 1 + Ke/ W

(Vf + BVvs + Vw)

imply the inequality

VW], £ Ci||Vw]2 + C2,

where, and in the sequel, we use Cj,C,, etc. to denote various positive constants.
Hence (41) leads to

100) 2 ZIVwIE + VIR +4 W~ [1glW — Cs. “2)

On the other hand the property W =0 yields W = W?/(1+ W). So (42)
becomes

1 w2’
1w) z ZIVwlia + GV + 4] 15 = [ 1ol = 2. (43)
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We recall the standard interpolation inequality over R%:
[wh<2f w2 |Vw|*. (44)
Since g € L? for any p = 1 we can use (44) to obtain the bound

Jlgw < gl Wlla < ellWlz+ C@IVI I+ C

[IA

C
W2+ VIS + ) (45)

where C; > 0 is as given in (43) and ¢ > 0 is small.
Now, using (44) again,

2
W
g = (W) 5§ oy

’ (fw2+2fW2[|VW]?).

<2f

1 +W

Consequently
2

1+W

Inserting (45) and (46) into (43), we obtain the following important lower bound
estimate

Wl <1+ [ +IVI3. (46)

1 2
100 2 JIvwlE+ & (W + f 7 ) - ¢ (47)

Thus the lemma is proven

Lemma 7. Suppose that the parameter [§ defined in K or (34) satisfies f < 4
Then the optimization problem (39) has a solution

Proof Let w; € o/, j=1,2,..., be a minimizing sequence of (39) so that
lim /(w,) = n = min{l/(w)|w € ./} .
]— 00
Set W, = In(1 + Ke/ ") Then (46) and (47) imply that {¥,} is a bounded se-

quence in L2,
On the other hand (42) implies that

[Ow) = 4 W, = llgllWilla = € (48)

Hence, using the L*-boundedness of {I¥,} in (48), we conclude that the sequence
{W;} is also bounded in L'(R?). It is useful to recall that (47) already implies that

{IIVw, ]2} is bounded.
At this moment we need to invoke the following Poincaré type inequality on 7

[whdp £ C[|Vw|’, we#' (49)

For a proof see [10]
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We decompose w; into the form
R / —_— / /
wi=w;+w, Ww,e€R, w,eH. (50)

Inserting (50) into /(w;), we have

1 _
§||VW1'||§ + 4wl —w; [ gl = [ lglw; = n.
Namely,

— 1 _
willglh = 5||VW1||§+4IIWJ‘II1 +Cllge™ )| oo Wi ll 2y + Inl - (51)

Applying the Poincaré inequality (49) and the conditions (34) and f < 4 in (51)
we conclude immediately that {w;} is bounded from above.
Moreover, since w; € ./, we have

+w;

= ’ Kef
W, f+Wj P —
e fe d'u>f1+Kef+w/ flg’
Hence
Ww; > In(f |g]) — In(f &/ ™ du) = In ([ |g]) — alIvwil; - G

by (36). But we have shown that {|[Vw]||} is bounded. Thus {;} is also bounded
from below.

In summary we have shown that for the minimizing sequence {w;} of (39) the
sequence {w;} is bounded.

From (47) and (49) we see that {w]} is bounded in #. By going to a suitable
subsequence if necessary, we may assume that there is an element w € # so that

— / . .
w; =W;+w;, > w asj— oo weakly in 4.

Recall that the embedding s# — L?(du) is completely continuous (see [10]). So we
may assume that w; — w strongly in L*(dp).
To see that the constraint in the admissible space .27 is preserved, we note that

Ke/*+%i Ke/*
f 1+Ke/*v 1+ Kel v

< fKef+|wf|+'w|[wj —w|

— — 2 2
< Cllwy — Wiz sup (™ HFHEUTwBHITHID) (52)
J

Besides we also have
[ 1In(1 + Ke/*") —In(1 + Ke/*)| < [ Ke/ Ty, — |

Thus, using (52), we see that the functional / defined in (38) is weakly lower
semicontinuous on .

Consequently we obtain /(w) < liminf I(w;) =# and w € /. In other words
w is a solution of (39). Of course it also solves (37) by Lemma 5.

We now turn to the construction of a lower solution of (31).
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Lemma 8. Under the condition (35) the equation

Aw = 4Ke' T — g (53)
has a smooth solution in # Moreover w — a constant at infinity
Proof. See [11] This is where we use the property [¢g > 0 according to (35).

Lemma 9. Let w be a solution of (53) and ¢ < 0 an arbitrary constant Then
W. = w+c is a lower solution of (31)

Proof. This is a straightforward fact because

4Ke
_ _ f+w _
Aw, = A(w +¢) = 4Ke gg—l—f—KeHW g.

In order to establish suitable comparison between the upper and lower solutions
just obtained we need to recall the following facts from the well-developed theory
of weighted Sobolev spaces [10].

For 0 € R and s € N (the set of nonnegative integers) define Wsz’ s to be the

closure of the set of C functions over R* with compact supports under the norm

I8z, = X 0+

Let Co(R?) be the set of continuous functions on R? vanishing at infinity.

Lemma 10. If s > 1 and § > —1, then W2; C Co(R?)

Lemma 11. For —1 < 6 < 0, the Laplace operator 4 : W3 5 — W, is 1-1 and
the range of A has the characterization

A3 ) = {F € W5 5.y | [F =0}
Lemma 12. If & € # and AE = 0 then & =constant

Lemma 13. If § in Lemma 7 satisfies § < 4 then the solution w of (37) obtained
in Lemmas 5 and 7 goes to a constant at infinity

Proof. Since w solves (37) we write the right-hand side of (37) as F. Then F €
L(R?) and J F =0. Besides it is straightforward to show that F € W& 512 With 6
satisfying

1
—1<5:—1+§([3—2)<0 (54)
by virtue of the condition f < 4. In fact we first have

Kef+w

2
2w
) €I

f(l + |x|¢‘i+2)2 <
with S
C = sup{K(x)(1+ |x|o+2)2}

YeR?
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The quantity C is finite if 2(0 + 2) — f < 0. The least stringent value of § is ensured
by setting f =2(0+2) or 6 = =2+ /2 = —1 + (f — 2)/2 as given in (54). Since
—1 < & < 0 it is already clear that |g| € W ;_,. Therefore by Lemma 11 there is a
E € sz, 5 such that A& = F. From Lemma 10 E vanishes at infinity. In particular E €
L*(dp). By the fact that V& € W& 541 and 6 > —1, we get VE& € I2. Consequently
Ee . By w € &/ we have A(f—w):O. Since E—we #, we find E—w=
constant which proves that w goes to a constant at infinity as expected. The lemma
is proven.

We can now turn to the proof of existence for the original equation (31).

Let wt be an upper solution of (31) obtained in Lemmas 5 and 7 as a solution
of (37) and w~ = w, a lower solution obtained in Lemma 9. Suppose that f < 4
as stated in Lemma 13. Then w* and w™ approach respectively their finite limiting
values at infinity. In particular they are bounded functions. Therefore we can choose
the parameter ¢ < 0 in the definition of w, = w~ (Lemma 9) to make w~ < w™ on
the entire R%. Thus we can use the method of iterations (cf. [13]) to get a solution
of (31) so that

w™ <w<w' inR? (55)

which proves the existence of a solution of (31).

To calculate the magnetic flux generated by the solution, we need to study the
behavior of the solution at infinity. In particular we want to find the value of [ Aw.
This part of work is carried out in the next section.

4. Asymptotic Behavior of the Solution

In order to calculate the exact value of the magnetic flux we must evaluate the
integral
4Ke/+w
J 1+ Ke/tw’

where w is the solution of (31). Since w is obtained from monotone iterations the
value of (56) is not known in the process of construction and some analysis has to
be carried out. The main goal of this section is to show that (56) is equal to f g
which is explicitly known by virtue of (33).

We first show that the solution w obtained above lies in . For this purpose
let the cut-off function ¢ € C*°(R?) be such that

(56)

E=1 in{x|]x| £1}, £=0 in{x|]x] =22}, 0= ¢ <1 everywhere.

Set &,(x) = &(x/p) (p > 0). Multiplying (31) by éf,w and integrating by parts we
have

(57)

4Ke/+w
1+ Keltw Y

&IV = 2] &7, V) - f w
However the definition of &, gives us

1

f|V£p|2§ 2sup|V§|2 [ =4nsup|VEP.
p° R R?

[x|=2p
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(Another way of getting the above bound is to use the scaling invariance to arrive
at [|VE? = [|VEP? < 4nsup|VER) Inserting this result into (57) we find that

4Ke! T

2 2 2
féplvw' =G +C2ffp 15 Kel o

where we have used the fact that w is a bounded function (see (55)) and that K
enjoys the decay rate given in (34). Letting p — oo in (58) we have |Vw| € L.
Consequently we obtain the relation w € 5.

After the above preparation we turn to the following useful result.

Lemma 14. Suppose that < 4 and that w is the solution of (31) obtained in
the last section Then [ Aw =0 Furthermore w goes to a constant and dw — 0
(j = 1,2) at infinity and such a w is unique

Proof From (31) we have

- 4Ke/‘+w A ) A
A(OJW) = m(0]f+ﬁa/b3+0jw)—(01g)
4Kef+w .
= O 1 Kerm o) + O] 1+8) )

Since we have shown that d,w € L? the L?-estimates applied in (59) gives us
dw € W2 In particular dw — 0 as |x| — oo as expected. Besides the well-known
Sobolev embedding theorem tells us that d;w € W' for any ¢ > 1 since we are in
two dimensions.

On the other hand we can use the cut-off function ¢, defined earlier to get the
integral bound

lfépAW‘ = f|VfP'VW| = HVéPHSHVWHI

IIA

Cp~ 28| Vwl,, (60)

where s, > 1 are conjugate exponents Of course, in (60), we can choose s > 2
Then, letting p — oo in (60), we arrive at the desired result [ Aw = 0.
Therefore integrating (31) and using (33) we immediately find that

Ke/+w

T e = 5N~ M) = ). (61)

Next we denote the right-hand side of (31) by F. Then [F =0 and we can
apply the argument in the proof of Lemma 13 to show that w indeed approaches
some constant at infinity.

Finally let wi,w; be two solutions of (31) which go to their respective limiting
values at infinity Then using the maximum principle in the equation

Kel+<

m;g)‘z(wl —w2),

A(w) —wy) =

where ¢ lies between wy and w,, we conclude that w; = w; and the lemma follows
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When we recover a solution (¢, A) of (8) from w we can get the decay estimates
stated in Theorem 3. (The procedure of recovering a solution of (8) follows the
standard path that first one assigns the phase angle of u, hence defines the complex
field u itself, and, the gauge vector field A in the solution pair (u,A) of (21)
according to the prescription

k !
0(z) = = arg(z — pj) + Zl arg(z — q;),
=

j=1
u(z) = exp (%v(z) + i9(z)) ,
A1(z) = R{2i0" Inu(z)}, Ax(z) = ${2i0" Inu(z)},

z=x1 +ixy, 0= %(31 —ids),

and, then, one obtains the solution pair (¢, A) by converting the formula (17).) In
fact recall that

[u]? = e* = Ke/*" = O(|x| %) for |x| large (62)

is sharp because w tends to a finite limiting value at infinity. Thus the first two results
in (16) are verified. The last one involves some tedious algebraic calculations. Here
we will be sketchy.

First we have the relation

4 .
D¢ = mleulz, j=12, (63)

where the operators D;’s mean different things on the two sides.
Besides it can be verified that

1
|Djul* = Ze”]vmz : (64)

Using (62)—(64) we see that the third result in (16) follows because |Vv| — 0
as |x| — oo. We choose not to elaborate on the decay rate of |Vw| (Lemma 14).
Thus the asymptotic estimate for |D;p|> (j =1,2) stated in (16) is rather
crude.

Equation (61) easily leads to a calculation of the magnetic flux. In fact
recall that |ul> = Ke/*". Therefore the second equation in (21) and (61) yield
that

B = 21N 1 ! M §
[ B =2nNo, a=1- ( + 2) .
Hence (14) and (15) are derived. Furthermore inserting (35) into (15) we obtain
the range (12) for the flux parameter «.
We leave the verification that deg(¢) = N to the next section.
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5. Calculation of the Degree of the Map

Let (u,A) be a solution of (21) constructed in the previous sections so that there
are points pi,..., px € R? and ni,...,n; € N to make (23) hold. Put

N=Yn=n+ +n.

With u = u; +iu; we can invert the transformation (17)—(18) to obtain a map
¢ = (1. d2.$3) : R* — 5% so that ¢p~'(s) = {pi,.... px} =P (see (22)). Then,
counting algebraic multiplicities, we have #¢~'(s) = N In the following we will
show that N = deg(¢) when ¢ is viewed as a map from S? to S

In fact, near the set P, we have the inversion of (17)—(18) from u to ¢ in the
form

21/11 2142

it S = 65
u +ul + 1 & ud +ud+ 1 (65)

¢1 =

For convenience we use the reciprocal of u,

1 U . [Z5) .
u uytu; uy +uj

to study ¢y, ¢, near the preimages (the set P) of the south pole under ¢. It is easily
seen from (65) that

2U1 2l]2

— — = - . 66
UZ+UZ+1 92 U+ U2 + 1 (66)

o

It is clear that, at a pole p € P of u, we have U(p) =0 and ¢,(p) = ¢2(p) =0.
Thus by virtue of (66) we have the expressions

0P, oU, 0 oU,

6)(/ (p) ax/ (p)? axj (p) 6xj (p)’ J >
Since U satisfies the equation DU = —iD;U therefore we obtain the Jacobian of
(66) at p in the form
6 2
et~ avui + VPP, (67)

o(x',x%) —p

which is nonvanishing if p is a simple zero of U or a simple pole of u# In this
situation p is a regular point of ¢.

For simplicity we assume first that the points in P are all simple zeros of U
or simple poles of u Then P ={py, p2,. .,py} and ny =ny =- - =ny =1 Thus
P = ¢~'(s) implies that the south pole s is a regular value of ¢. Furthermore, at

any p € P, we have
,\':p> .

Hence by (67) we sce that ¢ also preserves orientation at each p. This observation
enables us to conclude that

(1, ¢2)

T O(x!,x?)

6,4) X 62(]5 = <0,0

deg(¢) =#¢p '(s) =N (68)
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Next we consider the general case that the poles can have multiplicities. For this
purpose we still use pi, pa,..., py to denote these points but we also understand that
some of the points may coincide to form multiple poles. Then the solutions obtained
are labelled by the multidimensional parameter vector p = (py, p2,..., pn) € R,
We will show that the solutions continuously depend on p. As a consequence of
the homotopy invariance of the Hopf degree, the result (68) will follow naturally
in general because the case of multiple poles may be approximated continuously by
solutions of simple poles.

Lemma 15. Let w be the solution of (31) obtained earlier and p € R*" the para-
meter vector indicating the locations of the poles. Then w depends on p continu-
ously in the C(Q)-norm for any bounded subdomain Q of R

Proof. We denote the dependence of w on p explicitly by wp. The uniqueness
established in Lemma 14 means that such a notation has no ambiguity. Consider
the set B, = {p € R*" | |p| < r} with » > 0 arbitrary. We show that w, depends
on p continuously for p € B,.
In fact we can find p-independent Lipschitz continuous functions 4,4, = 0 on
R? so that
h<e <h inR (69)

for any p € B,. For example we may define

h(x) = ing {e/®} for x| < r+1lor|x| =r+2,
pES,

hy(x) = sup{e/®} for x| S r+1or|x| =r+2,
PEB,

and in the region » + 1 < |x| <r + 2 we make suitable interpolations. Then we see
as before that there are solutions U and V to the equations

4Kh1eU
AU = TrKhel ~ g1 (70)
and
AV = 4Khe” — g (71)

respectively which approach their finite limiting values at infinity. Note that Egs.
(70) and (71) are p-independent. By virtue of (69) we have in addition that

4Ke/ U
AV = ket Y 72)
and S+V+
4Ke ¢

for any ¢ < 0. Hence by choosing ¢ < 0 in (73) suitable we obtain from (72)—(73)
a pair of upper and lower solutions of (31) for any p € B,, U and V. = V + ¢, which
we still denote by V, so that U > V everywhere. Thus the uniqueness established
in Lemma 14 implies that there hold the uniform bounds:

V<w, =U inR. (74)
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In particular {w,}pep is bounded in C(R*) Applying this property in (57) and
using the argument there we see that {|Vwp|} is also bounded in Z?. By this result
and (59) we conclude that {d,wp} (j = 1,2) are bounded sets in W>?

Suppose that there is an 2y C R* and a point Py € B, such that a sequence {p,}
may be found to make

wo, = wpollcc@y = €0, k=1,2,... (75)

for some number ¢ > 0 but p, — p, as k& — oo.

However since the boundedness properties of {w,} and their derivatives under
the appropriate norms found above enables us to conclude that, without loss of
generality, we may assume that w, — w as k — oo weakly in J# so that w is a
solution of (31). Using Lemma 14 we have w = wy,.

On the other hand, since {wy,} is weakly convergent to w in W>%(Q), the
compact embedding theorem says that the strong convergence holds in C(€y). Such
a result violates (76) because w = wp, already.

The lemma is proven.

Recall that, as a component of the solution to the system (21), the complex
function u, is related to the solution wy of (31) by

|up|? = Ke/

Since K = O(|x|~") is independent of p and e/ is uniformly bounded for p € B,
(see (74)) it is clear that |uy|? goes to zero uniformly fast as |x| — oo for p € B,.
Returning to the original map ¢, we see that ¢, goes to the north pole n uniformly
fast as |x| — oo for all p € B,. In fact there holds the uniform rate of convergence

|p(x) —n| < Clx|™F, vxecR?,

where C > 0 is an absolute constant This result indicates that the map B, — C(S5?),
p — ¢, is indeed continuous. Consequently (68) must hold in general where a
preimage with multiplicity k£ is counted % times.

In summary we have identified the integer N, the number of the prescribed poles
of the complex function u in the solution of the Bogomol’nyi system (5), to be the
topological degree of the map ¢ as expected

6. Proof of Nonexistence

The condition (35) says that we need N = M + 2 to ensure the cxistence of a
solution of (26) that gives rise to a solution (¢, A) of the Bogomol'nyi system (8).
Recall that the integer N is actually the number of the preimages of the south pole
s under the map ¢ and M is the number of the preimages of the north pole n
under ¢, both counting algebraic multiplicities In this section we show that this
condition is also necessary In other words we prove that whenever N < M + 2 (or
N < M + 1) there can be no solutions over R? for Eq (26) We will see that such
a result implies the important conclusion that the system (8) has no solution with
deg(¢) =1

Suppose otherwise that the Bogomol’nyi equations (8) have a multisoliton so-
lution (¢, A) over R so that #¢ " '(s) =N, #¢p~'(n) =M, and N < M + 1 Then
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the stereographic projection (17) and the variable v = In |u|* leads us to (26) with
N=>n;20and M =) m; = 0. In (26) set now
k !
v(x) =—=2> " njln|x — p;| +23 In|x — g;| + w(x).
j=1 j=1

Then (26) becomes

aw="K ey ke =Tk — p k- g™, (76)
1+Koew - 5 0 = J i J .

Recall that
Koe” = e’ = |uf*. (77)

By virtue of (17)—(18) we have for any

r> mjax{ipjl} (78)

a bound C(r1) > 0 for |u|*> away from the points pi, pa,..., px in the form
lux)? < C(r), x€R%, x| 2. (79)

For (76) we now proceed as in [14].
Consider the polar coordinates (p, 6) for RZ. Integrating (76) in the region 0 <
p =r0 =<6 <27 we have

r 2n r 2n
J [ (4aw)pdbdp = [ [hpdbdp. (80)
00 00
Set
1 2n
Wr)= E()fw(r,@)d@. (81)

With the notation (81) we are led from (80) by the 2n-periodicity of w the following
equation:

1 r2n 1 *w 1
)= o [ 1 (1wl + 1550 ) avap= 3 [ Froavap, s

where W, = dW/dr. Differentiating (82) with respect to » > 0 we find

1 1 2n
;(rWr)r = fhd@ (83)

On the other hand, choose , > 0 such that
Ko(x) =4 H |x — p;|~ n, H|x - ~|2”’f > ]x]'z(N_M), x| = 7. (84)
J=1

Note that our condition means that N — M < 1.
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We next restrict ourselves in (83) to the region |x| =r = ry = max{r,n},
where | and », are determined respectively by (79) and (84). In view of (76),
(77),(79), and (84) we have

hx) 2 —— x| 2V M x| = 85
O e LRI (83)

Consequently we derive from (83) and (85) the inequality

c w

I . >
r2(N—M)e s =T, (86)

1
—(}”VV, )I ;
r

where we have used the Jensen incquality

1 j" "d0 = 1 2[ do v
— | e Zexpl—/|w =e¢
2wy =P 2y
To study (86) it is convenient to introduce the new variables ¢t = Inr,a(¢) =
W(e') = W(r), and the initial point o = Inr. Then (86) becomes
oy g CeZ(l*[N—vzW])tAo' g Coeg, ¢ g t. CO = CeZ(l—-[‘\»’—M])zo (87)

because | — [N —M] = 0 Here g, = do/dt

Recall that in (76) the function h is positive except at x = ¢1,¢2, ,q; Hence
rW,(r) > 0 for all » > 0. Returning to the variables #,6 we have ag,(¢) > 0 for
all ¢.

Multiplying (87) by g, > 0 and integrating we have

a2(1) — ol (ty) = Co(e”) — 7))

Using the fact g, > 0 again and setting 1y = af(to) — Cpe®™) we obtain then

oi(t) = Vo + Coe®), t = 1,

or
a(t) do

[
a(to) vV o -+ Coe“
However the left-hand side of (88) has an upper bound since
x do

[ — < 0
6(1[1)) Vilo + Coe?

Thus (82) cannot be valid for all # = #y This contradiction shows that our assump-

t =t (88)

tion that (8) has a finite-energy solution with N < M + 1 must be false.

For a solution (¢, A) of (8) with deg(¢) = N the transformation (17) gives us
(22) and (23) with N = > n; (see [1,2] and the study in the last section). Thus by
(26) again we conclude that N > M + I, M = 0 In particular there is no degree
one solution whatsoever.

To conclude this paper we make a few remarks

The nonexistence theorem for degree one solution is quite interesting Note that
such a result is only proven for the self-dual system (8) and it is not known whether
the same conclusion holds for the Euler—Lagrange equations of the model Indeed it
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is not clear whether the energy functional (3) permits the existence of any critical
points whose energies are greater than those given by formula (13). The absence of
degree one solutions of (8) already indicates that (13) is never attained at N = 1.
Thus if one could prove that the energy (3) has a minimizer, or a critical point,
among all degree one field configurations it would mean that the system allows non-
self-dual solutions as SU(2) instantons [15]. At this moment the question in either
direction is open. A comparable situation is the Abelian Higgs self-gravitating strings
on S2. There we know that a nonexistence result holds for N = 1 solutions [16].
For the O(3) sigma model here a possible approach is to first try to obtain radially
symmetric “hedgehog” solutions as minimizers or critical points of (3) directly.

It is not clear whether the result on the number of parameters of the self-dual
solutions for the case N = 2 stated in Theorem 2 is optimal, although it seems to be
exhaustive. As pointed out by Schroers in [3] one could hope to obtain more infor-
mation by using index theorems to calculate the dimensions of fluctuations around
a degree N solution, as was done, for example, for the Abelian Higgs vortices [17].

The result on fractional values of the magnetic flux stated in Theorem 3 says
that the parameter o is confined in the range (12). The interesting fact is that a
larger N (or M) leads immediately to a larger (or smaller) range of the flux @
given in (14). Thus, magnetically, we could imagine that the points ¢’s in ¢~'(n)
counter-balance the points p’s in ¢~!(s).

Note Added 1 am indebted to Haim Brezis who showed me that the technical
assumption (35) is, in fact, more or less, necessary and informed me that a class of
equations of a related flavor to (26) appear as well in the Thomas—Fermi model in
R’ (see Lemma 3 in Brezis [18]). Note that (26) also contains a sector for which
the existence fails.

To see why (35) is almost necessary, it is most convenient to look at Eq. (28).
Recall that the finite-energy condition stated in Sect. 1 implies that

V(x) - —co as |x| — o0 (89)

and
4e——l)1 +uv4+V

Define now H(x) = the left-hand side of (28) and introduce the Newton potential

W)= o in b ~ |~ In YDAy o1

We first show that ¥ = W 4+ ¢, where c¢ is a suitable constant.

In fact we already have A(V — W) =0 in R%. On the other hand, by (89),
we may assume V < 0 everywhere (otherwise we can shift V' in AV =H by a
large negative constant). Thus the entire harmonic function 2 =V — W satisfies
h(x) < —=W(x) £ C(In|x| + 1). So a Liouville theorem type argument shows that
h must be a constant.

Therefore, using (90) and (91), we find directly that

Y@ _ o W)

m = = —
[x|—oo In le |x|—o0 In |x| 2n

N — MY = —
JHG) = 5-—2N-M)=-f,  (92)
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where we have also used (29). Inserting (92) into the condition (90) we obtain
p =2 (if p <2, then V(x) > —2In|x| for |x| large, which would imply the di-
vergence of the integral (90)). Applying y > 0 in (92) we get f < 2(N — M).
Consequently (35) is recovered
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