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Abstract: We diagonalize the transfer matrix of the inhomogeneous vertex models
of the 6-vertex type in the anti-ferroelectric regime directly in the infinite lattice.
For this purpose we have introduced new types of ^-vertex operators. The special
cases of those transfer matrices were used to diagonalize the s-d exchange model
[23,1,6]. New vertex operators are constructed from the level one vertex operators
by the fusion procedure. Using this construction we determine the commutation
relations among new vertex operators which play a crucial role for the diagonaliza-
tion. In order to clarify the quasi-particle structure of the model we estabish new
isomorphisms of crystals. The isomorphisms figure out, representation theoretically,
the ground state degenerations.

1. Introduction

In [2] the anti-ferroelectric XXZ hamiltonian, or equivalently, the transfer matrix
of the 6-vertex model has been diagonalized directly in the thermodynamic limit
based on the quantum affine symmetry. The method is powerful enough, on the one
hand, to give the integral formulas for correlation functions and form factors, on
the other hand, to determine the physical space as a representation of a quantum
affine algebra Uqfjsh).

A similar approach is possible for several two dimensional lattice models such
as the ABF model [11,4]. Among them a direct generalization of the 6-vertex model
is the vertex models associated with the perfect representations of any level [15,16].
Although there are technical problems of bosonization in the case of higher levels,
at least the strategy is clear and everything we need is in our hands.

In this paper I want to add one more class of vertex models which can be
solved by a similar method and are not contained in the class of directly gen-
eralized models above. The models which we study here are the inhomogeneous
vertex models of 6-vertex type with the inhomogeneities in the spins. Namely, on
the infinite regular square lattice, with each horizontal and vertical line except a
finite number of vertical lines / ! , . . . , / „ , we associate the vector space C 2 . With
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/i,...,/„ we associate CSι+ ,...,CSn+ι for arbitrary non-negative integers s\,...,sn.
To each vertex the Boltzmann weight is defined by the corresponding trigonomet-
ric 7?-matrix acting on C 2 ® C 2 or C 2 0 C ί ; ' + 1 . The rational limits of those models
with n = 1 had been used to diagonalize the s-d exchange models (Kondo problem)
[1,23,6,22].

The central object in the symmetry approach is the g-vertex operator which
was introduced by Frenkel-Reshetikhin [5]. In the case of the 6-vertex model the
g-vertex operator makes it possible to identify the infinite tensor product (C 2 )® 2 ^ 1

with the irreducible representation V(At) of Uq(sl2). Using this identification, the
transfer matrix, the creation-annihilation operators, correlation functions and form
factors are all described in terms of ̂ -vertex operators.

Similarly, in our case, everything is described by ̂ -vertex operators. But here
a new phenomenon appears, the degeneration of the ground states. To take this
effect into consideration is crucial in the theory. To treat this situation correctly we
introduce new kinds of ̂ -vertex operators. Those new operators can be considered
as a mixture of type I and type II vertex operators in the terminology of [2]. They
are shown to be obtained by a fusion procedure from level one vertex operators. In
particular new operators have the description by free fields. Hence physical quanti-
ties of our models can be written down in the form of integral formulas. We study
these formulas in a subsequent paper.

Let us describe our idea more precisely. The total quantum space which is acted
on by the transfer matrix is

Θ ViAO^Vs^.-^Vs^ViAj-r, (1)
z,y=o, i

where Vs ~ Cs+ι and is considered as the representation of Uq(sl2). In order to
give the description of the correlation function or form factors we must know the
structure of eigenstates of the transfer matrix. The insight comes, as in the case of
the XXZ-model [2,7], from the decomposition of crystals

B{Ai) ®BSι®-' ®BSk® B(AjT . (2)

The result is surprisingly simple (see Corollary 1). With the aid of the decomposi-
tion we find that the physical space of our models can be written as

CSn

(c 2
2 H

| = 1

where sym is some symmetrization. In this tensor product the second term which is
described by a bracket is isomorphic to the physical space of the XXZ model. On
the other hand the former tensor component CSn ® <g) CSι describes the ground
state degeneration. In the case n~\ the dimension of the degeneracy of the ground
states coincides with the results of Fateev-Wiegman [6] in the rational limits. This
picture of the structure of the space of quasi-particles suggests that it is natural to
consider the space

* β . (3)
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The relation between two spaces (1) and (3) is given by the new vertex operators

s-xO iz): (Vs-ι)z <g> V{Λi) -> V(ΛM)®(VS)Z, (4)

s-ιOs(z): V(Λi)®(Vs)z -> {Vs.i\ ® V(Λi+ι). (5)

On the space (3) descriptions of the model and physical quantities take very sim-
ple forms. For example the transfer matrix is, up to a scalar multiple, equal to
1 (g) Γχχz(z), where Tχχz(z) is the transfer matrix of the 6-vertex model act-
ing on 0 / y = o ! V(Λi)<8> V(Λj)*a. The peculiarity of our model comes from the
definition of the local operators which are defined using vertex operators
(4) and (5).

The present paper is organized in the following manner. In Sect. 2 we review
necessary preliminaries and notations. In Sect. 3 we prove new isomorphisms of
crystals which are considered as a generalization of the path realization of the
crystals with highest weights. Applying this isomorphism we determine the decom-
position of the crystal (2). In Sect. 4 we introduce new vertex operators and prove
their existence. The fusion construction of the representations and i?-matrices are
briefly reviewed in Sect. 5. In Sect. 6 the fusion procedure is carried out for level
one vertex operators and construct new vertex operators. The well defmedness of
the fusion procedure is the main result here. We calculate necessary commutation
relations of newly defined vertex operators using the fusion construction in Sect. 7.
In Sect. 8 we propose the mathematical settings for our models. In Appendix 1
the integral formulas for the highest-highest matrix element of the composition of
type I and type II vertex operators are given. In Appendix 2,3 the description of
level one vertex operators in terms of bosons and their OPEs are given. These are
used to derive the integral formulas in Appendix 1.

2. Notations and Preliminaries

2.1. Definition of Quantized Enveloppίng Algebra. Let us recall the definition

of Uq{sh) and fix several notations related to it. Let P — ZΛ0 0 ZΛ\ 0 Zδ,

P*=Zh0 0 Zh\ΘZd be the weight and the dual weight lattice of sl2 with the

pairing (Λi9hj) = δij9 (Λhd) = 0, (<5,Λ, > = 0, (δ,d) = 1. Set αi = 2ΛX - 2Λ0, α0 =

δ — (x.\, p = ΛQ + Λ\. The symmetric bilinear form on P normalized as (αz ,α/) = 2

is given by (Λi9Λj) = - ^ , (Λi9δ) = 1, (δ9δ) = 0. Through (, ) we consider P*
as a subset of P so that 2p = h\ +4d. Let us set F = Q(q) with q being the com-
plex number transcendental over the rational number field Q. In Sect. 8, we assume
that the q is real and — 1 < q < 0.

The algebra Uq(sl2) is the F-algebra generated by eufu (i = 0,1), qh (h e P*)
with the defining relations

? o = 1 > 0*10*2 = ? * i + * 2 , qheiq-
h=q^eh qh'fiq~

h = ?"<*-«-) ft ,

[eι,fA = <%^rτ> Σ (-l)m4"Vf~m) = 0
1 — 1 m=0
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where we set t{ = qhi and

xm am — a~m

" W {X = 6 j X [ m ] = i '

We denote by U' = Uq(sl2) the subalgebra of Uq(sl2) generated by e,-, /}, Z^1

(j = 0,1) and by U{ the subalgebra of Uf generated by ei9 fi9 tfx which is iso-
moφhic to Uq(sl2).

We use the following coproduct and the anti-pode for U ,

A(ei) = et ® 1 + ti®ei9 A{fi) = fι® trι + 1 ®/ ί s Δ{qh) = qh \

a{et) = -trιei9 α(/ί) = -/-if, a(qh) = g-Λ .

The */ module ( ^ ) 2 = Θ ^ o ^ ^ " 1 ] ^ i s defined as

fxvf = [π -yjt^, βn f = [ 7 ] ^ , ί !^ = <Γ2hf ,

/ o = z " 1 β i , eo=zfι, tQ = t^1,

where z is a non-zero complex number. As a module over U[, (Vn)z is isomorphic
to the irreducible n + 1 dimensional representation which is independent of the
parameter z. We denote by Vn this representation of U[ except in Sect. 8, where Vn

is used for (Vn)\. In the following sections, for the sake of simplicity, we simply
write F instead of F[z9z~ι] as far as no confusion occurs.

For a left U -module M, we define the left module M*a by

M*a = Homp(M,F) as a linear space ,

(xw9v) = (w,a±ι(x)v) for w e M*a \ v eM and x e u' .

Here the linear dual of an integrable module with finite dimensional weight spaces

should be considered the restricted dual. By definition M, M*a*a and M*a *a

are canonically isomorphic. For these dual modules the following properties hold,

~ Hom^/(Afi,Af3 (g)M2*
α), (6)

~ HomI//(Af2,Af1*
e"1 0 M 3 ) , (7)

where Hom^(M\,M2) is the vector space of U linear homomorphisms. Let {υj1 }

be the dual base of {vj1 }, (vj1

 9v£ } = ^ Then the following isomorphisms hold,

n]

L.^,
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2.2. Level One Vertex Operators. The details of this section can be found in

[2,8]. Let V(Ai) be the irreducible highest weight U-module with highest weight

Λi (i = 0, 1), V(Λi) its weight completion F(Λ ) = UvePV(Λ&> v(Λ0v =

{v G V(Λi)\qhv = q&^υ for any h G P} and u\ the highest weight vector of the

right module V(Λi)* such that {U\.,UΛ) — 1. We often use the notations (v\,\u)

for the elements of V(Ai)* and V(Aj). In that case the value of the dual pairing

is denoted by (v\u). For the sake of simplicity we sometimes use (Λz|, \Ai) instead

of u\., uΛi and write \xυ) instead of writing x\υ) for x G U .

Let us denote Φ(z) and Ψ(z) the U intertwiners

n o r m a l i z e d a s 1_2l /1Λ

(u*AM,Φ(z)uΛi) = (u*Ai+ί, Ψ(z)uΛ,)=z-t-vγli .

Here we set V(Λfi®(Vn)z = (Uv€PF[^'1] ® K(yl,) v)® J Π ; z > z-i ](^)z. In fact the
images of Φ(z) and Ψ(z) belong to smaller spaces [2].

The components of those operators are defined by

Φj(z) = {vf\ Φ(z)}, ψj(z) = (υfϊ*, Ψ(z)) .

_ j _ | — 1

We shall also introduce the intertwiners Φv*" (z), Ψv*" (z), Φγ{z) and Ψy(z)

Φv*a±λ (z): ± '

defined by

(z) = (C(y

The commutation relations of those vertex operators are, on V(Λi),

*Λ R ί?Λ Φ{zλ)Φ{z2) = Φ(z2)Φ(zι),

Z£j r (^ R {^j Ψ(z2)Ψ(Zι)=

- 1 / 2 0 4 ( )
^ ^ ψ{zχ )Φ(Z2) = Φ(Z2)Ψ(Z1 ) .
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We shall rewrite the first and second relations for the sake of later use as

a

Here

υ<g)u

(z\\

-;(ιΓ'(
R{z) = PR(z),
and

Z\

ΦZ2,

Ryy

?(z)(ί

)

«(z)

4 υ ®

Kyy*

* β - l

4 υ

δ)
,,-, (z) = PR^-i (z), P(a ® «) =

for j = 0,1 ,

= c'υ{

o

l)

\-q2z \-q2z \-q2z

where ( z ) ^ = ΠJΞoO
Let us, in general, denote by Pp the dual pairing map (Vn )*a 0 ( ^ )z —̂  F or

(JΛ)Z 0 (^)* α —> ^ which are U linear. Then we have

Pι

FΦ
v*\z)Φ(z) = (-iYqι/2g-ιidv{Λι) , (9)

Pι

FΦ(z)Φv*° (z) = (-l)i+ιq-ι/2g-ιidv(Λi) , (10)

RQsz^Z2Ψ(z2)Ψv*a~\zι) = {-\)ίq-λl2z2g(C{l) 0 \)w 0 id r ( y l / ) , (11)

where g = |^°° and

Note that (Cί_i:> ® l)w = Σj^ofj 1 '* ® vψ. Equations (9) and (11) are equivalent,

respectively, to

Φκ(z)Φ(z) = (-iyql/2g-lidViAl) ,
(13)

Ί=g2Zψ(z2)ψ(zλ) = (-i)ic;"'

2.3. Crystal We shall review here the definitions and fundamental properties of
crystals which we need in the subsequent sections. The details of the contents in
this section can be found in [15].
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Definition 1. An affine crystal B is a set B with the weight decomposition
B = \_\λePBχ and with the maps

satisfying the following axioms:

(1) SiBλ C Bai+λ U {0}, fBλ C B^ι+λ U {0},

(2)^-0=^.0 = 0,

(3) for any b and i, there exists n such that en

tb = ft

nb = 0,

(4) for b\,b2 G B, b2 = / ^ i if and only if b\ ~ efa,
(5) if we set

φt(b) = max{n\fi

nb G B}, εt(b) = τmx{n\^b G B} ,

then ψi(b) — ει{b) = (hi9λ) for b G Bχ and i.

We denote wtZ? = λ if b G Bχ. Let us set Pc\ = P/Zδ and cl the projection
P —* Pc\ Then a classical crystal is defined using Pc\ instead of P in the definition
of an affine crystal. In this paper crystal means affine or classical crystal.

A crystal has the structure of colored oriented graph by

b\ -^ b2 if and only if b2 = ftb\ .

A morphism φ : Bι -> B2 of the crystals is a map Bx U {0} -> B2 U {0} which
commutes with the actions of et and ft and satisfies Ϊ^(O) = 0. A moφhism of crys-
tals is called isomorphism (injective) if the associated map is bijective (injective).
A crystal Bι is called a subcrystal of B2 if there is an injective morphism of crys-
tals Bι —> B2. More general definition of the concept of crystal and its morphism
is introduced in [13,14].

For a crystal B and a subset / C {0,1}, the /-crystal B is the set B with the
same weight decomposition as the crystal B and with the maps ey, / y (j G /) which
is a part of the maps of the crystal B.

For two crystals Bι, B2 we can define the tensor product in the following manner.

Definition 2. (I) As a set Bι ®B2 = Uλep(βl ® βl)λ, (Bι®B2)λ = Uμ+v=λ

Bμ x Bl
We denote (b\,b2) by b\ (&b2.

(2) The actions of e^ and fx is defined as

\ ψiibx) > a(b2)

ψi(b\) = £i(b2)

Among the crystals we need, in this paper, three kinds of crystals. The first one
is the classical crystal Bs associated with the crystal base of the representation (Vs)\.

Definition 3. (1) Bs = (\J]\ 0 g j ^ s\ as a set.

(2)/I|71=[7HΠΠ ( 0 = y = ^ - l ) , /om = Γ ^ η (1=7=5), M=0 (otherwise).
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(3)wt\j\ = (s~2j)(Λι-Λ0).

We often use the notations B\ = {[]£]> ED} ^y * n e correspondence [+] <-» [o],
2 <-» Q] and identify ± with ±1.

The second one is the affine crystal Aff(Z?5) which is called the affinization
of ft.

Definition 4. (1) Aff(ft) = {b(n)\b G Bs, ne Z} as a set.

(2) /.(6(/i)) = {fib){n + ^ o), *,•(&(*)) = (etbXn - 5lΌ), w/zere we set 0(n) = 0.

(3) wtδ(/ι) = wtb-nδ.

For example the graph of Aff(Bi) is

1 0 1 0 1 0

The third one is the crystal B(Λi) associated with the crystal base of the rep-
resentation V(Λi). It is known that B(Ai) is described in terms of the set of paths
[15,9]. The set of paths ^(Λ) is defined as

i) = {(pU))jZι\PU) e BU p(k) = (-iy+* for k » 0}

and has the structure of an affine crystal [9,15].

Theorem 1. (i) There is an isomorphism of classical crystals,

BW-BiAx-dQBL (14)

(ii) The isomorphism (14) induces the bijective map B(Aj) ~

The weight of a path through the above bijection can explicitly be written in
terms of the energy function [15,9].

For a crystal B we define the dual crystal Bv of B as

Definition 5. (i) £ v = {by\b e B} = Uλep
B-λ> B-λ = {bv\b e Bλ},

(ii) βibw = (ftb)v, fibv = {eφY, 0 v = 0.

The map (b\ (8) 62 ) v •"* b% 0 ^i7 gives the isomorphism

Since 5^ ~ B\ by [+] ι—> \^\ and [^] i—> \+\, we have the description of B(Λj)v in
terms of paths,

B(Λ,y = {(PU))°J=-OO\PU) € Si, /K*) = (-l) ί+* for * « 0} ,

where //(0) = 6, /(y) = /*/ + 1) (y ^ -1).

2.̂ /. 77ze Morphism of Crystals Induced from the Dynkίn Diagram Automorphism.
Let i be the isomorphism of the Z module Pc\ defined by ι(Ai) = A\-ι (i — 0,1).
For a classical crystal 5, we define the classical crystal ι*B by

ι*B = UλePa(ι*B)λ, (ι*B)λ = {ι*(b)\bGB,w}, ι(0) = 0, (15)

f,ι*(b) = !*(/,_,&), β,ί (6) = ι*(β,_i&) (16)
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It is easy to prove that (15), (16) actually defines a classical crystal. For this crystal
the following properties hold.

Proposition 1. (i) ι*B(Λi) ~ B(Λι-i).

(ii) fBs ~ Bs by \j\ t-+ \s-j\.

(iii) For crystals B\B2, BX ~ B2 if and only ifΊ*Bι ~ ι*B2.

(iγ)For crystals B\B2, ι*(Bι (g>£2) ~ fBι <g> ι*B2, by ι*(bχ ®b2) h-> f{bx)®

The properties (ii)-(iv) can be checked directly using definitions. The property
(i) follows from the corresponding property of the representation V(At).

3. Isomorphisms of Crystals

The structure of the space of the eigenvectors of the XXZ hamiltonian is, in the low
temperature limit, described by the decomposition of the crystals of B(Λj) <g> B(Λj)*
[2]. In this section we shall prove new isomorphisms of crystals which generalize
Theorem l(i) and give a predicted form of the structure of the space of eigenvectors
of our transfer matrix in the low temperature limit.

The problem is to decompose the crystals of the form

The main results in this section are

Theorem 2. There is an isomorphism of classical crystals,

for s = 1,2,3,

Corollary 1. For j = 0,1, we have the isomorphism of classical crystals,

ι S k ® B(Λj)y

i=0,1

l , l j
z=0,1

The decomposition of U / = o λ B{Aι) ® B(Λj>)v into connected components were
described in [2]. Using the diagonalization of the XXZ model by vertex operators
we are also able to give another description of this crystal in terms of crystalline
spinons [19,20].

We remark that the isomorphisms of Theorem 2 includes (14) as a special case
s = 1. But the proof of Theorem 2 uses the isomorphism (14).

It is sufficient to prove the theorem for / = 0. Since the i — 1 case is obtained
by applying the map 1 in Subsect. 2.4.

Let us define the map

ψ : Bs-χ 0 B(Λ0) -> B(Λλ )®BS9
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first and prove that it is well defined and commutes with the action of Si andjj . In
order to define the map φ we need

Lemma 1. There is an isomorphism of {0,1} crystals,

ψι:Bs®Bι~Bι®Bs.

The isomorphism is given explicitly by

+] —> \^\ ® [71 for 0 ̂ j ^s — 1 ,U+i

for 0 ̂  j ^ s —

Using the map φ\ let us define the isomorphism

ι// R ® ®

by
ψn = ( l Λ _ i ®ψι)' '(h®ψi® ln-2)(Ψ\ ® 1Λ-1 ) ,

where 17 is the identity map of BfJ. We denote by τ^ the isomoφhism

Now let us define the map φ in the following manner. Take any Π\ ® b G

Bs-\ ®B(Λo). For 6 there exists n e Z^\ which satisfies

b = (bk)£l9 bk = {-\f ϊoτk^ln.

Take any such n and set

(17)

where bA0 is the highest weight element of B(ΛQ) and the subscript of Γ/l specifies

to which crystal the element belongs, [/] £ Bs. The well definedness of φ follows

from

Lemma 2. The definition of φ does not depend on the choice of n which satisfies
the condition (17).

Proof It is sufficient to prove

for 0 ^ y ^ 5 — 1, « e Z ^ i and any Z?r e 5fΛ. These equations follow from
Lemma 1. D

Lemma 3. The map φ commutes with the action of S\ and f\.
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Proof Let B be the connected component, as a {l}-crystal, of Bs_\ <g>B\ which

contains \s_ι [+]. Then

and is isomorphic to Bs as a {l}-crystal by the map

B->BS

\ [7] for O^y ^s - 1

Let [7] _ ® 6 G 5 s -i ®B(Λo) and « be as above. Now we shall describe the

as a compo-restriction of φ to the {l}-crystal connected component of m

sition of {l}-crystal morphisms. First of all

Bs-ι

J . s - 1

~Bs-i ®B(Λ0)®Bf2n

•-> [ 7 L , 0 bΛo (g) [+] 0 6211-1 )bλ=:b

is an isomorphism of classical {l}-crystals. The crystal B®Bf2n ι is a sub {1}-

crystal of £ 5 _ ®Bf2n, by the map

n-\

The element b is in this subcrystal. Next, as we already showed,

^ D
— U 5

as a {l}-crystal and

as a {0,1}-crystal. Finally we have the injective {l}-crystal moφhism

n-\ )BX

b' bΛo
) bf .

It is easy to check that the map ψ is the composition of the above maps and
T2n-\ 0 I. Since we can take sufficiently large n such that the condition (17) holds

for [7] 0 b, f\ ί Vj\ 0 b) and ̂ 1 ([71 ® b), ψ is a {l}-crystal moφhism. D

Lemma 4. The map φ commutes with the action of e0 and / 0.

Proof Let us define a map φ in the following manner. For Γ/j 0 b £ Bs^ \ 0

B(Λo), take « G Z ^ such that

b = (bk)%Ll9 bk = ( - 1 / for * ^ 2/i + 1 .
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Then

In a similar manner to the φ case, we can easily check that the definition of φ is
independent of the choice of n.

Sublemma 1. φ = φ.

Proof. We use the above notations. Take n as in (17). Then

= Φln (\j

is equivalent to

for 0 ^ y ' ^ 51 — 1. This follows from Lemma 1. D

Now the commutativity of ψ and the actions of /o and e0 is similarly proved
as before. Namely let us set

B'= m
Then this constitutes, as a {0}-crystal, a connected component of Bs-\ ®B\ iso-
moφhic to Bs. The map is given by

Bf

Js-\

Js-l

j +J for 0 ^ y ^ j - 1

Using this description it is easy to show that the φ is described as a composition of
{0}-crystal morphisms from any {0}-crystal connected component as before. Hence
the lemma is proved. D

Lemma 5. φ is a bίjectίon.

Proof. We shall prove the injectivity first. Suppose that

0,-1 Θ 6 ) = ^ (0,-1

By the definition of φ this is equivalent to

Φln-\ (\j]s ® bln-\ <8> <8> ftl) = φln-X ( [ / ] , ® b2n-\ ®

for sufficiently large «. Since φin-x is bijective, we have

j=f9 bk = b'k for 1 ̂  k S 2n - 1 ,
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which means b = b'. The surjectivity easily follows from Lemma 1:

=|71.®Ξ forOgy ^ ί - l ,

39

tJ®lΛU = J+ι foro^ g ί -

This lemma completes the proof of Theorem 2.

4. Existence of New Type of Vertex Operators

In this section we shall prove the existence of new types of ^-vertex operators,
one of which is conjectured to induce the crystal isomoφhisms of Theorem 2. For
sets of non-zero complex numbers zi,...,Z£, non-negative integers «i,...,W£ and
(ij) G {0,1}2 let us define the F[zf\...,z±λ] module by

x |wt(ϋ) - Λi - Λj9 efhAj)+λv - 0 for / = 0,1} .

Our aim here is to prove

Theorem 3. (i) Hn>m

 3 (/,/ + 1) and Hn+λXn

3 (ίj + 1) are free F[zf\zfλ]mod-

ules and their ranks are given by

(ii) There are isomorphisms of F[z^1 ,z^] modules

^

λ V(ΛM)®(Vn+ι)Zι

From this theorem, using (6) and (7), we have

Corollary 2.

o/ Theorem 3. Let us prove the first statements of (i) and (ii). Other cases
are similarly proved. The proof is similar to that of Proposition on p. 53 of [3].
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Note that, from (6), (7), (8),

Let U'(b+) be the subalgebra of U' generated by eu tfx (i = 0,1). Then we have

Here we used the following lemma which can be proved in a similar way to
Lemma 3.1 in [3].

Lemma 6. Take any ί and fix it. Let u e (Vn)z 0 F(Λ|) 0 (Vm )z be a weight vector
of U. If u satisfies e\u — 0 for some /, then ffu = 0 for some N.

The following lemma is easily proved.

Lemma 7. There is an isomorphism of U'(b+ )-modules,

(Vn)zΘFuΛi ~FuΛi®(Vn)q-ιz

given by the map

This lemma and (6) imply

Vm)zι ®FuΛί,(Vn)Z2)

~ / ^ _ 3 ϊ i ( i , i + l ) , (18)

which proves (ii). In order to prove (i) let us write explicitly the conditions satisfied
by the vector v of Hn'm _3 (/,/ -f 1) according as / = 0,1;

wt(v)=:ΛQ-Λu e2

lv = e0v = 0, if / = 0 , (19)

wt(ί ) = A\ - ΛQ, eiv = elv = 0, if / = 1 . (20)

Let us determine the vectors which satisfy the condition (19) and (20). Note
first that the condition (19) or (20) implies \n — m\ = 1. In fact the vector satisfying
(19) or (20) must lie in the two dimensional irreducible representation of Uf.

Let Wj be the highest weight vectors of Vn 0 Vm with the weight (n + m — 2j)Λ\
as a U[-module. They are explicitly given by

yj=Σlc
{

k

i\n)o^®υf2k, (21)
*=o

[^] cf{n) = 1 . (22)
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(1.1) / = 0 and n — m + 1 case. The vector satisfying the condition (19) is propor-
tional to f\wm. Let us calculate eof\wm in the tensor product (Vm+\)Z2 0 ( ^ ) ^ - 3 ^ .
The result is

4
k=0

= (Z2 - Z!) J: c[m\m
k=0

Hence ^0^ = 0 is equivalent to zi — z2.

(1.2) z = 0 and m = n + I case. The vector satisfying the condition (19) is propor-
tional to f\wn. We have

/!«-» = Σ ^ ( Λ K - ? - 1 ! * ] + [k + i])vf ® ^ / Λ .

βθ/lW» = (21 - Z2) Σ ^ V k
Λ : = l

Hence eof\wn = 0 is equivalent to zi = z2.

(1.3) i — 1 and « = m + 1 case. The vector satisfying condition (20) is proportional
to wm. Then

e2

0wm = (z! - z 2 ) E 1 4 m V + 0(^1 [w - 1 - *] - z2[m + 1 - *])4+21} ® ί Λ
A:=0

Therefore ^w m = 0 if and only if z\ = z2.

(1.4) z = 1 and m = « + 1 case. The vector satisfying condition (20) is proportional
to wn. Then we have

= q~\z, -z2)t 4n\n)q-2"+4k(zdk + 1] - z2[k - l])vf ® ^ +

k=\

Consequently e\wn = 0 iff z\ = z2. D

Remark 1. By Theorem 3 there are uniquely determined £/ intertwiners

VnΦ
Vn+ι(z) : ( F w ) z

under the normalizations

I conjecture that the vertex operator VnΦ
Vn+ι(z) preserves the crystal lattice and

induces the isomorphism of crystals of Theorem 2. Some part of Miki's conjecture
[18] is a special case of this conjecture.

5. Fusion of Representations

Let us briefly recall the fusion construction of representations and i?-matrices in
order to fix notations. Let Mi=Fw be the trivial representation of U[ in V\®V\,
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where w is the vector defined in (12). In (V\)q2z 0 (V\)Z9 M is the trivial represen-

tation of U' too for any z. Let us set Ni• = V\ 0 0 Mx• 0 0 Fi C F®w, where

Mz is on the /,/+ 1th components. We define the U' modules

Wn(z) = (KiV- V g
I 1=1

^ )^(Λ-3)z (8) (8) (Fi V - i z .

Then the following proposition is well known.

Proposition 2. Wn(z) ~ ίΓΛ(z) - (FΛ) 2 .

In order to describe the isomorphism explicitly we shall introduce the following
definitions.

Definition 6. (1) (ε 1 ? . . .,εw) e {0,1}" is oftype j if and only if #{k\εk = 1} = /

(2) For (εi,...,επ) let us define its inversion number by

inv(fii,...,εΛ)= X) #{k\εk = 0, * < / } .
ί:ε/=l

Then the isomorphism is given by

for (εi,...,εw) of type 7.
Let us give the description of Wn in terms of i?-matrix for the sake of later

use. Let R(z^) be the U intertwiner {Vx)Zχ ®(VX)Z2 -> (V\)Z2 0 (Fi)Zl such that

2 Consider the intertwiner

at zy = ^-2-/+1z (1 ύjύn) defined by the composition Rn(z) = R " ( ^ i

). Here

and R(γ) acts on the component (V\)z. ®(V\)ZJ. We sometimes omit the upper

index ij and consider, for example, R(γ) as the operator acting on (V\)z. <8>(V\)Zj

nontrivially as explained here. It is well known (and easily proved) that

Proposition 3. ImRn(z) = Wn{z\ KerRn(z) = X^lJ Nk.

U intertwiner (V\)qn-ιz 0
n-ιu. Then
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Proposition 4. Rnι(ξ;) induces the U linear map Wn(z) ® (V\)w —> (V\)w <S> Wn(z)
such that the following diagram is commutative'.

I I
Wn(z)®(Vx)w —> (Vι)w®Wn(z).

Here the downarrows are the natural projections.

Proof It is sufficient to prove

Nj®(yλ)w)<z{vι)v®nγtNk.

By Proposition 3 this is equivalent to

(1 ®Rn(z))Rnl ( ^ ) (Nj ® (Vλ)w) = 0 ,

which follows from the Yang-Baxter equation. D

We use the same symbol Rn\{^) for the induced map. This map is also

characterized as the U intertwiner (Vn )Zχ ® (V\ )Z2 —> (V\ )Z2 0 (Vn )Zχ satisfying

W* ) V(Q\ Similarly let R\n(ψ) be the U intertwiner (V\)Zχ

(Vn)Z2 ^{Vn)Z2®{Vλ)Z1 normalized as R\n(%)

R\n(z) = Rn\(z~ι)~ι. They are explicitly given by

1 \-q
k+x
z + q

n
-
k

1 - q
n+ι
z [ l-q

2

υk+\ .

Then

- q2n~2k)z

<Ίn—kn

J 1 )

6. Fusion of ^r-Vertex Operators

In this section we shall give a construction of the L^-intertwiner

V(Λi) -+ (Vn)q2z 0 V(ΛM) 0 (KΛ + i) z

whose existence and uniqueness up to scalars are proved in Corollary 2. For the
sake of simplicity, hereafter, we omit writing the symbol " of the extended tensor
product. The idea is to consider the composition

V(Λ,) (V1
V(Λi+ι (F,
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The vertical arrow is the U -linear projection defined by Proposition 2. Unfor-
tunately the composition of vertex operators Φ and Ψ which gives the horizontal
arrow is not well defined in general. So we must carefully proceed in the following
manner. Let us define the operator 0(z|u), (z,u) G C*n + 1 x C*n, acting on V(Λi)
by

O(zι,...,zn+ι\un9...,uι) = j

where C* = {z e C|zφO} and

f(zu...,zn+ι un,...,uι)= Π ~3ς Π

As usual the operator O(z\u) has a sense as a set of matrix elements which are ana-
lytically continued to meromorphic functions in (z,u). The operator O(z|u) satisfies,
on V(Ai), the symmetry relations

x-l/2 v /

zJ+ι)

( _ J _ ) Λ ( - ^ - O(z|u) = O(z|σyu),
\uj+\J \uj+\J

where σ, is the permutation exchanging z, ,z/+i or Uj,Uj+\. Let

be the ^//-linear projection normalized as

and similarly for Pr(u)jk, Pr(u). Although those projectors are irrelevant to the
arguments z and u, we write them to clarify on which space they act. Since Pr(z)
and Pr(u) is determined uniquely under these normalizations, we have, for j < k,

(23)

The Pr(z) in the right-hand side is the U[ linear projection

To simplify the notations we use the same symbol Pr(z) although the space acted
by it is different from that of Pr(z) in the left-hand side. Note that there is an
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U[-linear projection Pr(z)jk such that

( V ι ) 2 ι ® <8> ( V ι ) 2 j <8> {Vχ)Zk <g> <g> ( K I ) Z J I + 1 > (Vι)z

is a commutative diagram.

Proposition 5. (1) The operator O(z|u) Aαy /?0fes at most simple at Zj = q2Zk

(j < k) and uj = q2uk (j < k).

(2) The operator Pr(z)Pr(u)O(z\u) has no poles.

Proof. (1) The integral formula of (Λi+ι\O(z\u)\Λi) (Appendix 1) implies that
<9(z|u) has poles at most at zj = q2zk (j < k), Uj = q2uu (j < k) and uj = qzk,q

3Zk
for any j9 k. Because there is a possibility to occur a pinch of the integration contours
only in those cases. Moreover it is easy to prove that these poles are at most simple.
Hence it is sufficient to prove that there are no poles at uj = qzk,q3zk for any j,k.
But again this follows easily from the integral formula of {Λi+\\O(τ\u)\Λi) by the
following reason. Consider a component of (/Li+i|O(z|u)|/L^). Let us decompose
each integral as

Γ dξd c dξd * f dwa , dwa

where Co, C^ are the small circles around 0, oo going anti-clockwise and clock-
wise direction respectively. Here, for the sake of simplicity, we omit writing the
integrands. Then the integral which we consider now is a sum of terms of the form

where D\ and A\ is a subset of {a} and {d} respectively. Since there is a

term Πα<α'O ~ ~^)Πd<d'(^ ~ ~f~^ m m e numerator of the integrand, we can

assume that j p ι φjp2(pιφp2)9 ilχ =M,2 (Λ + / 2 ) . In Res^/ = W i / - R e s ^ ^ the pos-

sible poles at wa = qujk are cancelled out by Y[a Π/=iO ~ ^ ) Hence after taking

residues in w'a s9 there does not appear poles at uj = qzk. Since there is the term

Πd Y[n=\ (1 —XT) m * n e numerator, the poles at uχp = q3Zjk which appear after

taking ResWα =q2z ResWβ =q2z. are also cancelled out. Finally in the remaining

integral UdeD, Ic0 ^M UdeA, ICoo Έa t h c r e d o n o t o c c u r P inches of the integral

contours at Uj = qzk,q3Zk. Hence it has no singularities there.

(2) It is sufficient to prove that Pr(z)Pr(w)O(z|u) is regular at zj = q2Z]ς (j < k)

and Uj = q2Uk {j < k). Let us consider the composition

Φ(zι)Φ(z2) : V(At) - , V{Ai)®(Vx)Zx ®(VX)Z2 .

By the explicit formula of (Λi\Φ(z\)Φ(z2)\Λi) (p. 116 of [2]), Φ(z\)Φ(z2) is regular

at z\ = q2z2. Since there is no non-zero U intertwiner V(Λf) —> V(Λi+\)
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Pr(z)ι2Φ(q2z2)Φ(z2) = 0. Hence

for any 1 Sjύ n> Using the commutation relations of the vertex operators Φ(z)
and the relations (23), (24)

Resz. 2zPr(z)O(z\u)

L 1

κzιj \zj+λ

O(zi,...,z/ ,Zjt,...,zΛ+i|u)

z.—p2z -i'\Z)jk^'\Zl> iZjiZfc, . . . ,Zw_|_i |U^ — U .

Hence Pr(z)O(z|u) is regular at zj = q1Z]i (j < k). We can similarly prove that

Pr(u)O(z\u) is regular at uj = q2Uk (j < k). D

Definition 7 (Fused vertex operator).

nOn+ι(z) =

Theorem 4. (i) ΓAe operator nOn+ι(z) is not zero as a linear map.

(ii) The operator nOn+x(z) gives a U -linear map

V(At) -> (Vn)q2z 0 V(ΛM) 0 (Kw + 1)z .

Proof, (i) The integral formula of (i4 ί +i|O(z|u)|Λ ) gives (see (44), (45) in
Appendix 1.)

For the definition of nOn (z), see Appendix 1. Hence nOn+x(z) is not zero as a
linear map.

(2) By definition nOn+x(z) is {//-linear. Therefore it is sufficient to prove that
nOn+1(z) commutes with the action of eo and /o
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Let us prove the commutativity of nOn+ι(z) with eo. The case of /o is similarly
proved. From the intertwining properties of O(z|u) we have

(υ'\O(z\u)\e0Ό) = (e0 0 l)(v'\O(z\u)\v) + (t0 0 l)(υ'e0\O(z\u)\v)

+ (t0®e0)(v'to\0(z\u)\v) (25)

for any \v) € V{At),

at Zj

Pr(u)Pr(z)(e0

Pr(u)Pr(z)(t0 <g

Pr(u)Pr(z)(t{) 0

rtn—2{j—\)rr (\

(1/ G

+ (*ί)

0 l)(t

\){vfe

eo)(v't

V(Λi+x)\ It
ux® • ®(V\

'|O(z|u)|t;} =

o|0(z|u)|») =

o|0(φ)|»> =

;« + i), uj =

is

(eo

(/o

«d

= ί"

sufficient to prove, modulo
! ®ΣNj, that

® l)/>r(M)Pr(z)(ϋ/|O(z|u)|t;) ,

®l)Pr(u)Pr(z)(v>e0\O(z\a)\v)

0 βo)JPr(w)Pr(z)(z;/ίo|0(z|u)|f)

—2(y—1)+1_ /i < , < WΛ TT/p
z \L = J = n) we

(26)

, (27)

> , (28)

remark
that the left-hand sides (LHS) of Eqs. (26)-(28), after removing appropriate
power functions of {zj,Uk}> are regular functions in {zj,Uk}. This follows from
Proposition 5(ii) and Eq. (25). Hence we can specialize variables as above.

Since t0 acts on (V\)Uχ 0 <g> (V\)Un as t^x and Pr{ύ) is U[ linear, (27) holds.
Let us prove Eq. (26). According as the decompositions (V\)Uχ (g> 0 (V\)Un ~ Vn Θ
Σ (^i)^i ^ ' ' * ̂  (*ί k+i - F«+i Φ Σ ^ / a s ^ ί modules, let us write

(v'\O(τ\w)\v) =

BeVn+u

where Â  is defined in the beginning of Sect. 5. Then

Pr(u)Pr(z)(e0 (8> l)(i/|0(z|ii)|t>) - (e0 0 l )Λ (

= (Pr(u)e0A -e$A)®B + Pr(u)e0A' (8)5 . (29)

Since Pr(u)e§A — e$A = Omod Σ ^ / ? ^ is sufficient to prove

Pr(u)e0A' ® B = 0 , (30)

at z7 = qn-2V-i)z (1 g y ^ w + 1), My = ^ - 2 ( ^ 1 ) + 1 z (1 Sj^n).

Lemma 8. Pr(u)eoAf 0 5 /zα̂  no poles.

Proof. By Proposition 5(i) it is sufficient to prove that Pr(u)eoA' 0 B is regular
at Zj = q2Zk (j < k), uj = q2Uk (j < k). The LHS and the first component of
the RHS of Eq. (29) is regular at zj = q2zk (j < k), uj = q2uk (j < k) by the
remark above and Proposition 5(ii). Hence Pr(u)eoAf 0 B is also regular at the same
place. D

Now let us decompose (v'\O(z\u)\υ) in the following manner:

(υ'\O(z\u)\v) = E ° X 1 U ) + O(z\u),
j=\ Uj - qΔu



Oj(z\u) = <ι/|O(z|u)|»)-'
Γ = 1 uk - q2uk+ι

;\u) = ReSui=q2u2{v'\O(z\u)\v).

Then

Lemma 9. (i) 0/(z|u) Gj]Λi®(^i)Z l 0 • • 0 ( ^ ) Z Λ + 1 ,

(ii) O(z|u) is regular at Uj = q2^k~^Uk (j < k),

(iii) O/(z|u) is regular at ur — qzr (1 ^ r ^ «),

(iv) O7 (z |u) | W r = ^ r (i^r^») = 0.

c. (i) This follows from (13).
(iii) This is obvious from Proposition 5(i).
(iv) It follows from

π π
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for y ^ 2 ,

(31)

π;=,+ 2d - ^

and (13) that Re S | l / = g 2 | l / + 1 (vf\O(z\u)\v) has Ur=,ιlΓkt\^ ~ ^ ) as a factor of its
zero divisor. Taking further residues does not produce poles at us — qzk (1 ίk$Λύn)
by Proposition 5(i). Hence Oj(z\u)\Ur=qZr ^^r^n) = 0.

(ii) Let us prove, for 2^j ^n, that

(υ'\O(z\u)\v) -Σ i s r e g u l a r a t u x = q 1 { s ~ l ) u s (/ < s,l^lg>j- 1 )
r=l

by the induction on j . The j = 2 case is obvious from Proposition 5(ii).
Suppose that the statement is true for 1 ^ j ^ k. We have

r = 1

- q2ur+\

By the induction hypothesis O ( 1 )(z|u) is regular at uι =

Hence

^us (/ < s, 1 ^ / ̂  A:— 1).

u) and consequently O ( 1 )(z|u) ^ (2 a r e regular at uι =
y H J V I ) uk-q2uk+ι

 &

qi{s-i)Us (/ < 5 ? i ^ / ̂  ^ _ i). The definition of a residue and Proposition 5(i)

imply that O ( 1 ) ( z | u ) - u °^ is regular at uk = q2(s~k)us (k < s). Hence the

statement is proved for j = k -f 1. •
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Using the decomposition (31) we have

Pr(u)e0A
f®B = Σ \ Pr(u)Pr(z)(e0

7=1 Uj ~ 4 U

+ Pr(u)Pr(z)(e0 <S> 1)(1 - /V(tι))O(z|u) .

Note that, in(Vι)Uι ®(Vλ)U2,

Since O(z|u) has no poles at Uj — q2(s~j)us (j < s) we can conclude that

Pr(u)Pr(z)(e0 <g> 1)(1 - Pr(u))0(z\u)\Uj=qn-2U-i)+ιz = 0 .

Since each O/(z|u) has a zero divisor of the form Π ί i O ~ ^Γr) ^ 0 Γ s o m e h
we have

Σ P r ( ^ ) ^ Φ ) ( ^ 0 l)O7 (z|u)|w , z ( 1 ^ ^ w ) = 0 .
J JΣ

Taking into account that Pr(u)eoA' ®B has no pole at all we can conclude that

Pr(u)eoA'® B\Zj=(fl-2u-i)z ( l ^ ^+i),^^-^-!)* (izj^n) = °

Hence (26) is proved. Equation (28) is similarly proved. D

7. Commutation Relations of Vertex Operators

Using the fusion construction in the previous section, we shall determine the com-
mutation relations of new vertex operators. Here we give only commutation relations
which are relevant to the later applications. We shall introduce the following variants
of the vertex operator nOn+ι(z).

Definition 8. The intertwiners

nO
n+\z): (Vn)z ® V{Λi) -> V(Λi+i) ® (Vn+ι% ,

nOn+λ{z): V(Λi) ® (F n + 1 ) 2 -> {Vn)z ® V(Λl+i),

nOn+u{z): V(Λ,) - {Vn\ ® V(Λi+λ)® (Vn+iχ
a ,

are defined by

ί iO"+1(z)(^") Θ ) = (vfKiC^ ® l)"O"+1(z)) ,

® υf+l)) = {υf+ι\(l ® C?+1))"O"+1(^-2z)) ,

Let us set (z; p)n = Π/ΓoΌ ~zPl) Recall that the highest weight vector wn with
weight zero in the U[ module Vn ® Vn is explicitly given in (21) and (22). Then
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Theorem 5.

nOn+ι(z)nO
n+ι(z) = (-

(-l)n+ιRn+u (-) "On+\z)Φ(w) = Φ{w)nOn+\z),
w

n+x ( j ) Φ(w)nO"+\z) = nO"+\z)Φ(w),

A. Nakayashiki

Λi), (32)

, (33)

(34)

(35)

where

Rn+u(z) = z2rn+ι(z)Rn+n(z), R\n+ι(z) = J

βn =
{qln)o

{qln+2)oo'

Proof. Let us prove (32). Define

O(z', z|u;, u) = Φv*\z[ )Φ(zx) ΦF*α(z^+1 )Φ(zπ +i)

X

This is the U -intertwiner

K(Λ ) - ~ !

7 { \ ( x (λ)Zn+ι
1 n+1

Using the commutation relations of the vertex operators Φ(z) and Ψ(z), we have

h (z Ψ ίu'ψ ' ^β

xR
q2un q2u2 <+

(36)

V Γϊ
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where / ' = /(z ' |u '), q~2τ! = (q~2z[,...,q-2z/

n+ι) etc. Note that

"+1 / zΛ ~

,2 / 4 /

oo \ / σo— ̂  1 1

4 ^

xΠ

Specializing the variables to Uj = q3zJ+\, Uj = q3Zj+ι (1 ̂ j^n) in both sides of

Eq. (36), after that setting zj = Zj (1 Sj ύ n + 1) and using (see (11))

lim ( 1 - Z-ί J ( d 0 " 1 0 U y ^ O ^ ^ ' ί z y ) = (-l)i+ιq~ι/2gw®idviΛi) ,

we have

4 ^ π (ZJ-T π
\zkj 2^j<h^n+

Λ+lΛ+1 //7 Z .\ 1 / 2

«ΠΠ P Π r -
j=2k=\ \ z k J 2^j<k^n+\ 1 —

= O(q 2z\qzn+\,...,qz2)O(z\q3zn+ι,...,q3Z2) , (37)

where

n+\
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fa)
n U j

; 2 \ :

and w =

Lemma 10. Let Prn be the U[ linear projection V®n 0 V^n -> Ĵ  0 Vn normalized

as Prn(v(

0

m2n) = υ^®2. Then we have

1 -

Proof. Since PrnRn(τ)w®n is in the trivial representation of Vn <S) Vn, we have

PrnRn(τ)w®n — cwn for some scalar function c. The function c is the coefficient of

V{Q] (8) v{n} in the right-hand side. Let us calculate the coefficient of v(

o

mn 0 i?^®11 in

Rn(τ)w®n. It is easy to see that this coefficient is the same as that of v^®" 0 v^®"

in Rn(z)(v0 (8) v\ *)®n. The latter coefficient is easily calculated and coincides with

the function in the statement of the lemma. D

Let (/* )®<Λ+1> be the U linear map (Vx X
a

χ®(Vλ)Zχ 0 0 ( * ί )*Λ

β

+1 ®(*ί )zπ+1 -* ^

defined by (P»® ( Λ + 1 ) (®tί(^ ! } * ® 4J})) = Πί ί<W, and P f ^the dual pairing

map (Fw + 1)* f l 0 (^+i)z -> ^ We set

*rn+\ — V^+ Qs) IJ/^Γ^+i^C^ 09 L)

Lemma 11. There is an equation

n+lRn+l
- r(Pl \®(n+ι) r - r
-c(PF) , c - q

at Zj = q»-2U-Vz (1 g ; ^ π + 1).

Note that the 7?-matrix ^ ( ^ ) (7 < *) is regular at 2- = ^2^~» and ^ ( ^ ) " 1 =

which is also regular at ZJ- — q2(k~J'\ Hence there exists the inverse of
qj

Rn+\(i) which is regular at zj = qn~2U~ι)z ( l ^ y ^ Λ + 1 ) . Let us set φ(z) =
1

Z1 0 ( ) * ( ) ( P

(Ki)*β 0 • 0 ( ^ ) * ; + 1 ® (fί )Z1 0
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If we set N* = C^n+ιNJ9 we have

(vn+ιχ
a * w)p2 0 0 (vxyq

a_nz I ±NJ
using the isomorphism

Then

Sublemma 1.

; 0 F ? « ^ - 0 vq-nz) = φ(z)(v;n

a

z 0 0 κ;_% 0 ty ) = o

/or all 1 ^ J ^ Λ + 1.

Proof. Since φ(z) is a £/ linear map we have

= 0<t£* ® ' ' * ® ί^^π+iίzXt f 0 0 v<£+l)) , (38)

for some scalar function β. Here Rn+\(z) is defined by setting zy = qn~2^~ιh (1 ^

y ^ w + 1 ) in the £/' intertwiner (^) Z l 0 0 (Vχ)Zn+ι -> (Fi)Z| i+1 Θ 0 (^) Z l

normalized as ̂ W + I(Z)(Ϊ;Q ) = UQ . In fact, for generic values of zjs for which

{Vλ)Z{ ® - ® (Vι)2n+ί is irreducible, the U linear map (^)z*
α (g) 0 (^1)*n

α

+1 0

(^Oz! 0 0 (^ί)zw+1 -^ ^ is unique up to a scalar factor and given by Rn+ι(z) as

in the right-hand side of (38). Since β = φ(z)(4 1 } * Θ ( " + 1 ) 0 v(

o

ιmn+l)) and ΛΛ+1(z)

is regular at zj = q2^k~^Zk (j < k), β is also regular at zj = ̂ k~^Z]ί (j < k).

Hence (38) holds at zj = qn~2(J~ι)z (1 ̂  j g n + 1). By Proposition 3 we have

kn+ι(τ)(Nj) = 0 and hence φ(τ\VqTz 0 0 V^ΘNj) = 0.

Let us prove the remaining equation. Note that the base of the trivial represen-

tation in FM*α 0 V™2u is given by v^* 0 ι # } * - qυ^* 0 ϋ ^ * . Taking into account

the fact that, in the left part of the right-hand side of the equality (38), the order

of the tensor product is reversed, we set w* = VQ 0 v\ — qv\ *̂ 0 v0 . Then,

by calculations, we have

(w\fΐυ(

0

m2}=0 foτ0Sk^2.

Since, by Proposition 3, Im/?n+i(z) ~ (Vn+\)z which is generated by ̂ 1 ) < g ) ( w + 1 ) over
U[, we have

φ(τ)(Nj 0 Vqnz 0 0 ^_ Λ 2 ) = 0 . D

Let us continue the proof of the lemma. By the sublemma the map φ(z) induces

the U linear map
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Hence φ(z) is a scalar multiple of the canonical pairing map Pp~ι, that is,

φ(z) = cPn

F

+xPrn+ι. Let us determine the scalar c. Note that c = φ(z)((v[l)* )®(n+ι) <g>
M y W e c a n p r o v e easiiy

Recall that

with z, = ^ - ^ ' - ^ z (1 g y g w + 1
From those descriptions we have

Now taking (1 <g>P£+1)(l Θ ( C ^ + 1 ) 0 l))((Prn ®Prn+λ) in both sides of
Eq. (37) and using Lemma 10, Lemma 11, Eq. (9), we have the Eq. (32).

Next let us prove (34). Using the commutation relations of Φ(z) and Ψ(z) we
have

x R (^j "-R ( ^ ί ) O(z\u)Φ(w) = Φ(w)O(z\u). (39)

Similarly to the proof of Proposition 5 and Theorem 4, we can prove that both

of the operators (Pr(z)®Pr(u))R(%)' R(^τ) O(Z|U)Φ(W) and (Pr(z)®Pr(u))

Φ(w)O(z\u) give well-defined U -intertwiners at zj = qn~2j+2z, uj = qn~2j+2>z.
Hence, by Theorem 3, we have

\(Pr(z)®Pr(u))R (-) R (—\ O(z|u)Φ(w)l , (40)

= c(z,w)Rn+u ( ^ ) [(Pr(z)0Pr(t/))O(z|u)Φ(w)]Z 7^-27 +2Z5M.=,«-27+32 (41)

for some scalar function c(z,w). Comparing the coefficient of v^ <g> v^ we con-
clude that c(z,w)= 1. Taking Pr(z)®Pr(u) of both sides of Eq. (39) and sub-
stituting ZJ = qn~2(<J-λh ( 1 ^ 7 ^ w + l ) , Uj = qn~2J+3z (1 ^j ^ n), we obtain
the desired equation. Equations (33) and (35) follow from (32) and (34)
respectively. D
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8. Inhomogeneous Vertex Models of 6-Vertex Type

In this section we denote (Vs)\ by Vs for the sake of simplicity and assume
— 1 < # < 0, 1 < z < q~2 which corresponds to the antiferroelectric regime. Let us
consider the two dimensional regular square infinite lattice. Fix a positive integer N
non-negative integers s\,...,sN and vertical lines l\,...JN. Then the vertex model
which we study here is defined in the following way. We associate the representa-
tion V\ with each edge on horizontal lines and on vertical lines except l\,...,lN.
With each edge on the line lj we associate the vector space VSj. For each vertex the
Boltzmann weight is given by the corresponding i?-matrix, R\\(z), R\Aj{z). We can
assume that the lines / ! , . . . , / # are successive by including 1 in the set of sj. Let
us first give the mathematical objects and after that explain the validity of them.

The representation theoretical formulation of the model is given by

Space. The space acted by the transfer matrix is

^ — VJ7 t71 sχ 'S\,ij •>
i,j=OΛ

*SN Sι,ij = VSN-ι 0 0 Vsι-λ ® V{At) ® V(ΛjTa .

Transfer matrix. The transfer matrix is given by

Γ(z) = id(g>7χXz(z),

where Γ x x z (z) is the transfer matrix of the 6-vertex model acting on 0 i y - = o x V{At) 0

V(Λj)*a. Explicitly, on V(Λi)®V(Λj)*a,

Tχχz(z) = {-\)j+XqXI2gtΦV^\z)Φ{z) ,

where l<Pv*a~\z) : (Vx)z ® V(Ai)*a -> V(Λi+ί)*a is the transposition of Φv*a~\z).

Ground state. The space of vacuum vectors F v a c is

Fvac = Θ VSN-i 0 0 J V l ®F\v*c)xXZ,i ,
ϊ,y=o,i

where |vac)χχz,; is the vacuum vector of the XXZ-model [2] in V(Λi)®V(Λi)*a.
As an element of ΈnάF(V(Λi)) we have

|vac)χχZ,* = idv(Λι) .

Excited states. The creation and annihilation operators are given by

ψj(z) = 1 (8) φlχχz(z), ψj{z) = 1 0 φ/,χχzθ) ,

where φj 5 χχ z (
z ) ? <Pj,xxz(z) are the creation and annihilation operators of the XXZ

model,

~\ ) = (i J1^, Ψ(z)) .
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Local operators. For L £ End( VSN ® Θ VSχ) the corresponding local operator <£
is defined by

= (-If+-^-+Vi 2
7=1

Here Φ^' ^ K ^ , . . . , ^ ) " 1 is defined on

V ( Λ i + N ) 0 ^ ® ^

Correlation functions. The expectation values of the local operator ££ is given by

• sNtrviΛι)(q-2P)

where p = Ao + A\ and 1 is the identity operator acting on VSN-ι 0 0 F ί r i .

Let us explain why we have given the mathematical setting as above. The less
obvious definition is that of the transfer matrix. If it is accepted then others are
rather natural from the formulation of the case of the XXZ model [2]. So we shall
explain the reason for our definition of the transfer matrix. Since we consider V{At)

and V(Λj)*a as half infinite tensor products Vx - and Vλ -° , the natural space
on which our transfer matrix acts is

φ V(Λi) <8> VSN Θ <S> VSχ <8> V{AjYa , (42)

and the natural definition of the transfer matrix T(z) on this space is

T(z) = tΦv"~\z)RlSN(z)-'Rlsι(z)Φ(z) .

We identify the space F(Λ) ® VSN ® - ® VS{ ® V(Λj)*a with 3#f

SN...Sliij by the

map ΦSN' >Sι(l,...,l) and its inverse. Let us determine the map f(z) for which
φSN,...,sιn n

• (8) VSΛ 0 V(AjYa

Γ(z)

is a commutative diagram. Using the commutation relations (35) we have

f(z) = φ ^ ' '*i(l,..., iyιT(z)ΦSN> >si(\,..., 1)

= Φs»-si(l,...,lΓuΦv*a~\Z)RUN(Z). . .Rlsι(z)Φ(z)Φs"> >si(l,...,
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Hence, up to a scalar factor, the transfer matrix coincides with 1 ® Tχχz(z). If we
normalize the eigenvalue of the vacuum vectors is equal to one, then the transfer
matrix is given by 1 0 Tχχz(z).

Now we summarize about the eigen-vectors and eigen-values of our transfer
matrix as

T(z)φ*(z') = τ ( p ) φ*(z')T(z) ,

= |vac)χχz,, ± |vac>χχz,i-, , τ(z) = z= z~1/2 q

Remark 2. If n ^ 2 and — 1 < q < 0, there is no value of the parameter z for which
every coefficient of R\n(z) is positive. Hence it will be better to regard our model
as an inhomogeneous XXZ spin chain rather than a two dimensional vertex model.
Then the hamiltonian H should be defined by

l z = 1

Since we consider the thermodynamic limit and almost all spins of this spin chain
is of 1/2, H can be written as a sum of local hamiltonians. Our calculation shows
that the excitation energies of H over the ground state in the thermodynamic limit
coincide with those of the antiferromagnetic XXZ model. This is consistent with
the results of Bethe-Ansatz [1,6,22,23].

9. Discussion

In this paper we introduce new kinds of ^-vertex operators and using them propose
the mathematical model of the inhomogeneous vertex models of the 6-vertex type.
One of our vertex operators nO

n+x{z) already appeared in Miki's paper [18] in the
simplest non-trivial form n = 1 in a different context.

It follows from our mathematical setting of the models that the excitation
energies over the ground states are the same as that of the 6-vertex model. In
our approach the impurity contributions to the several physical quantities may be
calculated through the correlation functions. In the case N = 1 and s\ ^ 1, our re-
sults on the dimension of the degenerate ground states coincide with the known
results [6,22].

As in the case of the other solvable lattice models [4,10] the trace of the compo-
sitions of the new vertex operators satisfy certain ^-difference equations. Except the
case of the form XxV(Λι)(q~2pΦ(z\) Φ(z/ζ)Vs_ιΦ

Vs(z)), those equations are different
from the q-KZ equation with mixed spins. Hence the situation is rather unexpected
from the point of view by the rough pictorial arguments [10,4].

The new vertex operators can be considered as non-local operators acting on the
physical space of the XXZ-model. This fact may open the door to study the fusion
model [21,17] of the 6 vertex model using the vertex operators defined here.
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Obviously we can mtroduce the inhomogeneities in the spectral parameter (or
the rapidities). This corresponds to consider the space (VSN-\)ZN 0 0 (VSχ-\)Zχ 0
V(Ai)®V(Aj)*a

9 etc.

Acknowledgement. I am grateful to N. Reshetikhin for stimulating discussions.

A. Appendix 1

In this section we give the integral formula for the matrix element
Let us set, on V(Aj),

and

Φ(z) = z ^ φ( z ) ,

O(z|u) = jΦBι(zλ). • Φεn+ι(zn+ι)Ψμn(un) Ψμι(uλ).

Then we have, on V{At),

7=1 7=1

where k = 0,1 according as & is even or odd. We set

nOn+\z) = [Pr(z)Pr(u)0(z\u)]Zj=qtl-2j+2z

Then

We have

nOn+\z) =

I (Λ +l |Φε,

Π i-
j.odά

τi+1

Π (~q
y even

3 Z y )2 Yl
7=1

ft (-
&:even

χΠΠ(-^ΠΠΠH«^ΠΠH

Π wj1 Π w.ΠC1 Π C1 Π
a<b a<a' d d>c d>d'

b j<b

Π / ~
ίl d z π ιa Ca

 LΊίl d Cd
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Here r\,r2,s\,S2,a,b,c,d is defined as follows.

{α} = O1βy = 0}, {ft} = {y | β y = l}, {c} = {j\μj = 0}, {d} = {j\μj = 1} ,

rι = Ha}, r2 = 9{b}> Sι = He}, s2 = %{d} .

wa and ξd are the integral variables. The integral contour Ca and Q are taken in
the following manner:

q±ιζd (all d) are inside,

zj U = a) a r e outside.

(k ^d) are inside,

ŵ  (A: ̂ d) and q±ιwa (all α) are outside.

The special components are given by

y: even y=l

Π (-?«*)* ft (-9"*)^ , (44)
A::even A : = l

f.odά y=l

π (-w)2ft(-wy"5. (45)
t.odd t=l
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B. Appendix 2

A. Nakayashiki

We give the description of the level one vertex operators Φ(z) and Ψ(z) on the
free field realization of the representations [8].

= «P Σ fe Σ (-&

n=\ \ lzn\

= exp g (-^W) exp g feί"*«
V L2wJ / \L2wJ

\-l+i

where the contour C\ and C2 are specified by

C\ : qΛz is inside and q2z is outside ,

C2 : u is inside and q2u is outside .

C. Appendix 3

Here we give the OPE of the level one vertex operators. Notations are the same as
that in [8] except that the normal orderings are carried out for en0ί and <9α,

Φx(zx)Φγ(z2) = 7 (jλ (-
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qZXl 2
Φi(zi)Φ0(z2,w) = 7 (-

= γ h-λ W ( ^ 4 z

Z

2 ' ) 2 : Φo(zi,w)Φi(z2)

22

x,ξ)%(u2) = β 0£\ ξ '1

(~^ l ) 2 : Ψ{(uuξ)Ψ0(u2)

Ψ\{uuξχ)Ψχ{u2,ξ2) - β (Ί

Φχ(z)%{u) = α (^) (-

Φo(z,w)Ψo(u) = a (-) w{-q2zyl2 (l - ^ ) : Φ0(z,w)Ψ0(u)

(1 _ 2H)(i L)

= ω (^) (-

Ψ0(u)Φ0(z,w) = ω (-) (-ίiι)i f 1 - — ) : lPro(«)Φo(z,>v):,
Vz7 V qujqu

( )( )
,w) = ω (-) ξ-\-qu)l2—-^—-f- : Ψ,(u,ξ)Φ0(z,w)
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