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Abstract: We construct affinization of the algebra gl; of “complex size” matrices,
that contains the algebras gl, for integral values of the parameter. The Drinfeld—
Sokolov Hamiltonian reduction of the algebra gl; results in the quadratic Gelfand—
Dickey structure on the Poisson—Lie group of all pseudodifferential operators of
complex order.

This construction is extended to the simultaneous deformation of orthogonal and
symplectic algebras which produces self-adjoint operators, and it has a counterpart
for the Toda lattices with fractional number of particles.

1. Introduction

As a rule quadratic Poisson structures appear as either the Poisson bracket on a
Poisson—Lie group or as a result of Hamiltonian reduction from the linear bracket
on a dual Lie algebra.

This paper is devoted to a relation between these two approaches to the classical
W,-algebras (called also Adler—Gelfand-Dickey or higher KdV -structures), natural
infinite-dimensional quadratic Poisson structures on differential operators of n™ order.

The noncommutative Hamiltonian reduction (see [2, 22]) for the Gelfand—
Dickey structures (associated to any reductive Lie group) is known as the reduc-
tion of Drinfeld and Sokolov ([7]). They showed that those quadratic structures on
scalar n™ order differential operators on the circle can be obtained as a result of
the two-step process (restriction to a submanifold and taking the quotient) from
the linear Poisson structure on matrix first order differential operators. The latter
object is nothing but the dual space to an affine Lie algebra on the circle ([13, 23]).

On the other hand all Poisson W, algebras can be regarded as Poisson sub-
manifolds in a certain universal Poisson-Lie group of pseudodifferential opera-
tors of arbitrary (complex) degree ([16]). In such a way differential operators
DO, = {D" + u;(x)D"™' + uy(x)D" "% + - -- + u,(x)} for any n turn out to be
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included as a Poisson submanifold to a one-parameter family of pseudodifferential
symbols ¥DS; = {D* + u1(x)D*~" 4 up(x)D*~2 + - - -}. Moreover, all commuting
flows of the standard nKdV hierarchies are Hamiltonian with respect to the Gelfand—
Dickey Poisson structure on DO,. They are interpolated by a complex-parameter
family of generalized KP-KdV hierarchies on ¥DS; ([9, 16]).

At this point we bump into the following puzzle. While a natural description of
the Gelfand—Dickey structures on the above Poisson—Lie group exists for symbols
of every complex degree 1 , the Drinfeld—Sokolov reduction is defined essentially
for differential operators, that is for integer A = n and first n coefficients {u.(x)}.
The latter restriction is due to the very nature of the Drinfeld—Sokolov reduction:
it starts from the affine gl, algebra, and to find its counterpart for complex 4 one
needs to define algebras of A x A matrices.

Actually the definition of gl;, A € C has been known all the time since represen-
tation theory of sl, appeared. It is simply the universal enveloping algebra of sl
modulo the relation: Casimir element is equal to (4 — 1)(4+ 1)/2. It was Feigin,
however, who placed this object in the context of deformation theory and applied
it to calculation of the cohomology of the algebra of differential operators on the
line, [10] (see also [5]).

For technical reasons we have here to replace the algebra gl, with its certain
extension g§l;. We further construct an affinization of the latter gl;. This gives a
family of algebras, A being the parameter, such that for integral 1 the algebra has
a huge ideal and the corresponding quotient is the conventional affine Lie algebra
gl,. We prove the following conjecture of B. Feigin and C. Roger.

Theorem 1.1. The classical Drinfeld—Sokolov reduction defined on §l, admits a
one-parameter deformation to the Hamiltonian reduction on §l;. As a Poisson
manifold the result of the reduction coincides with the entire Poisson—Lie group of
pseudodifferential operators equipped with the quadratic Gelfand-Dickey structure.

It should be mentioned that, unlike the integral A case, for a generic 4 we
can not use the formalism of the Miura transform (cf. [20]) or embedding of scalar
higher order differential operators into first order matrix ones by means of Frobenius
matrices. Both the operations are the main tools in the classical gl,-case.

This reduction admits quantization (see [25]) which in the case of gl; leads to
the algebra constructed in [11].

Feigin constructed also a simultaneous deformation of the symplectic and or-
thogonal algebras. We show that the corresponding deformation of the Hamiltonian
reduction results in the Gelfand-Dickey bracket on self-adjoint pseudodifferential
symbols.

In conclusion we construct a continuous deformation of the Toda lattice hierar-
chies.

The paper is essentially selfcontained. Section 2 is devoted to basics in Poisson
geometry and Drinfeld-Sokolov reduction. Then we outline the construction of the
Poisson—-Lie group of pseudodifferential operators and define the Adler—Gelfand—
Dickey structures explicitly (Sect. 3.1). Further we recall the definition of gl; and
define its extension and affinization (Sect. 3.2) which we believe is of interest by
itself. We remark that a similar interpolating object appears as a sine-algebra and
the algebra of “quantum torus” (see [3]). In Sect. 3.3 we construct the univer-
sal reduction of that algebra, resulting in the structure on the Poisson —Lie group.
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Section 4 is devoted to proofs. We conclude with discussion of sp-, so-cases of the
reduction and with consideration of a deformation of the Toda lattices.

2. Poisson Manifolds and Drinfeld-Sokolov Reduction
2.1. Preliminaries on Poisson Geometry and Hamiltonian Reduction

1. Poisson algebras. A symplectic manifold is a pair (M, ®), where M is a manifold
and w is a symplectic structure, i.e. a non-degenerate skew-symmetric 2-form on
M. The symplectic form can be viewed as a non-degenerate fiberwise linear map,

w: IM - T*M , )
where TM (T*M) is a tangent (cotangent resp.) bundle over M. For any f,g €

C>®(M), set
{f,g} =dg(Q df),

where Q = w™!: T*M — TM. The bracket {.,.} makes C®(M) into a Poisson
algebra, meaning that the following holds:

the space C°°(M) is a Lie algebra with respect to {.,.}, 2)

the Leibnitz identity {f,gh} = {f,g}h + g{f,h} is fulfilled. 3)
Let Vect,(M) be a Lie algebra of Hamiltonian vector fields on M:
Vect,(M) = {X € Vect(M) : Xw =0} .
Then the map Qod: C®(M) — Vect,(M) is a Lie algebra homomorphism.

2. Hamiltonian reduction. Let a Lie group G act on a symplectic manifold M
by symplectomorphisms, i.e. by diffeomorphisms preserving the symplectic form w.
Then there arises a morphism of Lie algebras: g — Vect,(M), where g is a Lie
algebra of G.

The action of G on M is called Hamiltonian if in addition the latter morphism
lifts to a Lie algebra morphism g — C°°(M). Denote by H, € C*(M), a € g, the
image of a in C*°(M), i.e. the Hamiltonian function corresponding to an infinitesi-
mal action a.

Denote by g* the space dual to g. The group G naturally acts on g* (via coadjoint
action). For any Hamiltonian action of G on M there arises a G-equivariant mapping
called the momentum map:

p:M—g", < px)a>=H,x), forxeC®WM)acg.

Fix a € g* and denote by G, C G its stabilizer. Obviously, the set M, = p~!(a)
is preserved by G,. Assume now that, first, M, is a manifold and that, second, so
is the quotient space F, = M,/G,. One can show that F, is a symplectic manifold
with respect to the symplectic form & defined by setting

(&) = w(&n) ,

where ¢ and # are arbitrary preimages of & and 7j with respect to the natural pro-
jection TM, — TF, (see [22]).

The described passage from a symplectic manifold M to a symplectic manifold
F, is called a (noncommutative) Hamiltonian reduction.
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Example 2.1. T*M is canonically a symplectic manifold for any M. T*G is a sym-
plectic manifold with a Hamiltonian action of G by left translations. The momentum
T*G — ¢g* = T;G is given by right translations to the unit (e) of the group G. The
result of the Hamiltonian reduction with respect to the element a € g is the orbit
@0, of a in the coadjoint representation equipped with the celebrated Lie—Poisson—
Kirillov—Kostant symplectic form.

3. Symplectic leaves. We saw above that for any symplectic manifold M its algebra
of functions is a Poisson algebra. More generally, M is called a Poisson manifold
if C*(M) is a Poisson algebra with respect to a certain bracket {.,.}.

The bracket {.,.} determines a Lie algebra morphism C®(M) — Vect(M). It
follows that {.,.} can be regarded as a fiberwise linear map Q : T*M — TM, where
€ already does not necessarily come from a symplectic form (1). Corank of restric-
tion of Q to a fiber measures how far {.,.} is from being induced by a symplectic
structure. A notion of a symplectic form has the following substitute for a generic
Poisson manifold.

The assignment M > x — Q(T*M) C TM defines a distribution on M. The inte-
gral submanifolds of this distribution are called symplectic leaves of M. One shows
that each symplectic leaf is indeed a symplectic manifold (and, therefore, is also a
Poisson manifold). A Poisson submanifold is a manifold being a union of symplectic
leaves. The embedding of a Poisson submanifold of M into M is a Poisson mor-
phism, meaning that the induced morphism of algebras of functions is a morphism
of Poisson algebras (see [24]).

Example 2.2. The dual space g* is a Poisson manifold, the bracket being defined
by:
{f’g}(x) = <[dxf,dxg],x> b

where f,g € C*(g"), d,f signifies the value of the differential of a function at
the point x; therefore d, f, d,g € g, and so the right hand side of the equality is
understood as a Lie bracket of a pair of elements of g. Symplectic leaves of g* are
exactly orbits of the coadjoint action, see Example 2.1.

Suppose a Lie group G acts on a Poisson manifold M by diffeomorphisms
preserving the Poisson structure. Such an action is called Hamiltonian if, first, it
preserves all symplectic leaves and, second, the induced Lie algebra morphism of g
to Vect(M) lifts to a Lie algebra morphism g — C°°(M). In this case one can define
a momentum p : M — g* so that its restrictions to the symplectic leaves are exactly
momenta of the above discussion. Assuming further that for some a € ¢* , M, and
F, = M,/G, are manifolds one shows that F, is naturally a Poisson manifold and
that its symplectic leaves are exactly symplectic manifolds obtained via Hamiltonian
reduction applied to symplectic leaves of M.

Example 2.3. Let n be a subalgebra of g and N be the (connected) Lie group related
to 1. A coadjoint action of N on g* is Hamiltonian, the momentum being the natural
projection p: g* — n*. If A € n* is a character of N (i.e. the orbit of A consists
of one point) then p~'(A)/N is a Poisson manifold.

An explicit calculation of the Poisson bracket of a pair of functions on F,
can be carried out as follows. Let n : M, — F, = M,/G, be the natural projection.
Let f,g € C*(F,). Then n*f, n*g are functions on M,. Choose an arbitrary
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extension of each of the functions on the entire M and denote it also n* f, n*g. Set

{f,9}(n(x)) = {n"f,n"g}(x), for any x € M, . 4)

What was said above is enough to prove that, despite the obvious ambiguities in
this definition, the result is uniquely determined .

2.2. Drinfeld—Sokolov Construction. Drinfeld-Sokolov reduction is the procedure
outlined in 2.1.3, especially in Example 2.3, in the case when g is an affine Lie
algebra and n is its “nilpotent” subalgebra. To make a precise statement let us fix
the following notations:

C[z,z7!] is the ring of Laurent polynomials, C[[z]] is the ring of formal power
series, C((z)) = Clz,z~ '] + C[[z]];

g =gl,, n € g is the subalgebra of strictly upper triangular matrices;

a(z) =a ®C((z)) for any Lie algebra a; a(z) is called a loop algebra; its
elements can be thought of as “formal” functions of z € C* with values in a;

g = g(z) ® C is the corresponding affine Lie algebra, the universal central ex-
tension of g by the cocycle being given by ¢(f(z),9(z)) = Res.—oTr(f(z)dg(z));

A, N, G, A(z), N(z2), G(z2), G are Lie groups related to a,n,g,a(z),n(z),
a(2), 6.

The dual space g(z)* is naturally isomorphic to g(z) by means of the invariant
inner product (“Killing form”)

(f(2),9(2)) = Res,—Trf(z)g(z)z~" .

The dual space §* = g(z) ® C can be identified with the space of 1st order linear
differential operators on the circle with matrix (n x n) coefficients DO, .
The correspondence §* — DO, ., is established by

d
(S@hk) = —kz + [ (2) - ()

Proposition 2.4 ([13, 23]). The identification above makes the coadjoint action of
the group G(z) on §* into the gauge action on differential operators:

I(z) + (f(2),k) = (—keT(z) T(2)"" + T(2) f(2)T(z)" k)

/9

here and elsewhere means the application of the operator d/dz.
Remark 2.5. The operators above can be viewed as differential operators on the
circle z = -\/IT—I exp(v/—17):

kj—r +f (% exp (ﬁﬂ)) . (6)

Solutions to differential equations with matrix coefficients are vector functions.
Natural action of G(z) on solutions induces the gauge action of G(z) on differential
operators.
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Further we fix a hyperplane in §* by fixing a cocentral term: &7 = {(f(2),1),
f(z) € g}. Obviously, §; C " is a Poisson submanifold: the Lie—Poisson bracket
on the dual space §| admits restriction to the hyperplane.

The coadjoint action of the subgroup N(z) on §j is Poisson. Consider its mo-
mentum map

p:d = ().
If the space n*(z) is identified with lower triangular matrices then the momentum
map p is nothing but the projection of (functions with values in) matrices onto their
lower-triangular parts.

To start Hamiltonian reduction we need to fix a point in the image of the
momentum map. Regard the (lower triangular) matrix

00 0 0 0
1 0 0 0 0
01 0 0 0

A=119 0 1 0 0 M
000 ... 10

as an element of n*(z). The preimage p~'(A) is a manifold. It is, in fact, an affine
subspace: p~!(A) = —zd/dz + A+ b (z), where b € g is the subalgebra of upper
triangular matrices.

To perform the second step of the reduction we notice that the quotient space
p Y (A)/N(z) is also a manifold. Indeed, one can show that each N(z)-orbit contains
one and only one element of the form

bi(z) baz) bi(z) ... bu_1(z) ba(2)
1 0 0o ... 0 0
L4 0 1 0o ... 0 0
iz 0 0 1 .. 0 0
o 0 0 .. 1 0

The space of first order differential operators of this form (the corresponding
matrices are sometimes called Frobenius matrices) is in 1-1 correspondence with
(ordinary scalar) differential operators DO, of order n on the circle:

bi(z) ba(z) bi(z) ... bu—1(z) bu(2)
1 0 0 0 0
0 1 0 0 0
Tl o0 o 1 ... 0 0
o 0 0 .. 1 0
dn _ dn——l _
oo +b1(f)(d—fm)+ o ba(T)

where bi(t) = bp(exp(v/—17)/v/—1), T € R.

The Hamiltonian reduction of Sect. 2.1.3 of the Kirillov—Kostant structure on §;
equips DO, with a structure of a Poisson manifold.

On the other hand the space DO, is known to carry a Poisson structure — the
celebrated “second Adler—Gelfand—Dickey structure”.
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Theorem 2.6 ([7]). The Poisson structure on DO, obtained as a result of the
Hamiltonian reduction described above is the second Gelfand-Dickey structure.

It is appropriate at this point to give a definition of the second Gelfand—Dickey
bracket in the way Adler, Gelfand and Dickey did it, i.e. by explicit formulas. We
give those in the next section in a slightly more general setting allowing n to be an
arbitrary complex number.

3. Differential Operators of Complex Order and Matrices of Complex Size

3.1. Poisson—Lie Group of Pseudodifferential Symbols. In this section we describe
the main underlying structure, the Gelfand—Dickey bracket on the group of pseu-
dodifferential symbols of complex degrees following [16] (see also [9]).

Points of the Poisson manifold under consideration are classical pseudodifferen-
tial symbols, i.e. formal Laurent series of the following type:

G= {D’i + i ue(2)D"H luy € C((2)), 4 € C} )

k=—00

This expression is to be understood as a convenient written form for a semi-
infinite sequence of functions {uy}.

This (infinite dimensional) manifold can be equipped with a group structure,
where product of two such symbols is a generalization of the Leibnitz rule Do
f(z) = f(z2)D + f’(z) (that explains the meaning of the symbol D = d/dz). For an
arbitrary (complex) power of D one has:

: . ] N
D'o f(z) = f(2)D" +/§ (/) FOD ®

where (;) = M The number A is called the order of a symbol. It is

easy to see that every coefficient of the product of two symbols is a differential
polynomial in coefficients of the factors.

Definition. The (quadratic generalized) Gelfand-Dickey Poisson structure on G =
{L=01+ Z,:_DQ ur(z)D¥)D*} is defined as follows:

a) The value of the Poisson bracket of two functions at the given point is
determined by the restriction of these functions to the subset WDS; of symbols of
fixed order 1 = const.

b) The subset A = const is an affine space, so we can identify the tangent space

to this subset with the set of operators of the form 5L = (Ek_:lﬁoo SupD*) o D

We can also identify the cotangent space with the space of operators of the
Jorm X = D~% o DO, where DO is a purely differential operator (i.e. polynomial
in D) using the following pairing:

Fx(6L) =< X, 6L >= Tr(SLo X) .

Here the product 5L o X is a symbol " py(z)D* of an integer order, and its trace
Tr is defined as the residue at z =0 of p_i(z).
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c) Now it is sufficient to define the bracket on linear functionals, and
{Fx,Fy} = Fy(Ve (L)) , %)

where Vi, is the following Hamiltonian mapping Fx — Vg, (L) (from the cotangent
space {X} to the tangent space {dL}):

Vie(L) = (LX)y L —L(XL)4 . (10)

Remark 3.1. Usually this definition is given only in the case when A is a fixed
positive integer and L is a differential operator (L, = L, here and above “+” means
taking the differential part of a symbol of integral order), cf. [1, 6]. The set DO,
of purely differential operators {L} of order n is of special interest because it is the
phase space of the so called n-KdV hierarchy

9L _ [L,(LY),1, k=12,...,

oty
which is an infinite system of commuting flows on the coefficients of L. This equa-
tions are Hamiltonian on DO, with respect to the Gelfand-Dickey Poisson structure
and the Hamiltonian functions Hy(L) := Tr(L¥").

One can regard the set DO, of differential operators as a Poisson submani-
fold in the Poisson “hyperplane” ¥DS,_, of all pseudodifferential symbols of the
same order. Indeed, for any operator L = D" +u_1(z)D" "' +--- + u_,(z) and an
arbitrary symbol X = DO oD™" the corresponding Hamiltonian vector Vg, (L) =
(LX)y L—L(XL), is a differential operator of the order n — 1, and hence all
Hamiltonian fields leave the submanifold DO, of such operators L invariant.

Exactly those Poisson submanifolds arise as a result of Hamiltonian reduction in
the classical Drinfeld—Sokolov construction. For an arbitrary (noninteger) 4 one has
no counterparts of “purely differential operators” (what would be the differential part
of u(z)D'/? ?) and of the suitable Poisson submanifolds in the hyperplane ¥DS;. The
corresponding commuting Hamiltonian flows have the same form (upon replacement
n+— 4) and interpolate between the KP and nKdV hierarchies, see [9, 16].

As we noted, regardless of A, there is a natural homeomorphism between ¥DS),
and semi-infinite sequence of coefficients {u,(z)}:

¥DS, =~ [[ C((2)) , (11)

11

The Poisson structure on the group induces a family {.,.}, of Poisson structures
on Hi;l C((z)), with polynomial dependence on A (combine formulas (8-10)).
The following filtration of the space Higl C((z)) will be used later.

Represent it as Hf;l C((2)) X IT,2441 C((2)) and let i; be the projection on the
first factor. This gives an embedding of the spaces of functions

iy © Fun <ﬁ C((z))) — Fun (H C((z))) .
i=1 121
Set W, = i,’(‘(Fun(I—[f.‘=1 C((2)))). The sequence {W}} forms the filtration

Wy C W, C - C Fun <H C((z))> , Uiz 1 W; = Fun <H C((z))> . (12)
1=1 1=1
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Proposition 3.2. This filtration satisfies the condition:
Wi, Wit C Wy (13)

Proof. Reformulating the statement one needs to extract from the definition above
that for Ly € ¥YDS; the bracket

{a(z)D"™" %, b(z)D/ ™ Y (Lo + Ly)

does not depend on Ly if deg Ly < A—i—j, Ly € ¥DS,.
It follows from the explicit formulas (9-10) :
d
T 0{A,B}(Lo + eLy) =Tr((LoA)+ LB —Lo(ALy )+ B+ (L14)+ LoB—Li(ALo)+B) .
£=
Calculation of the degrees shows that the right-hand side vanishes under the condi-
tiondeg Ly £ A—i—j. O

It should be mentioned that an analogous grading is basic for “quantum” coun-
terparts of the Gelfand-Dickey Poisson structures (called quantum W -algebras).

Remarks 3.3. (i) It is proved in [16] that the Lie group structure of G is compatible
with the Gelfand-Dickey structure and makes the group into a Poisson—Lie one. Its
Lie algebra g = {372, wx(z)D™* + 1 - log D|us € C[z,z"'], . € C} is a Lie bial-
gebra. The formal expression /ogD can be regarded as the velocity vector to the
one-parameter subgroup D*:

djd . D*=logDoD"| =logD ,
2= /=0

and the commutation relation for the log D and any symbol can be extracted from

(8),

[logD, f(z)D"] = 3 F® D,

(_ 1 )k+l
iz k

The dual space to g is also a Lie bialgebra. It is nothing but the unique central
extension DO of the Lie algebra of all differential operators DO = {Z;':O aj(z)D’}
on the circle ([15]), known also under the name of Wi ,... The 2-cocycle describing
this extension can be given in terms of the outer derivation [log D, ]:

c(4,B) = [res([logD,A] o B), (14)

where 4 and B are arbitrary differential operators (see [19]). The restrictions of this
cocycle to the subalgebra of vector fields gives exactly the Gelfand—Fuchs cocycle,

c(u(z)D,v(z)D) = —é—fu”(z)v(z)’dz ,

which defines the Virasoro algebra.

Note that a quantum deformation of the Poisson—Lie structure on the group G
in the language of vertex operator algebras has been constructed in [8].

(ii) Introduction of the fractional power D” is a particular (Heisenberg algebra)
case of the formalism of fractional powers of Lie algebra generators, see [21].
This formalism has been used for purposes of representation theory. It would be
interesting to find its Poisson interpretation for other Lie algebras.
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3.2. Definition of gl;, A € C, and its Extensions

3.2.1. What is a Matrix of Complex Size? Recall that sl, is a Lie algebra on gen-
erators e, h, f and relations [e, f] = h, [h,e] = 2e, [h, f] = —2f. There are different
ways to embed sl, in gl, and, hence, there are different structures of an sl,—module
on gl,. Generically, however, the structure of an sl,—module on gl, is independent
of the embedding (see [17]) and is given by

glL,=Vi®oV® &V, 1s)

where V; stands for the irreducible i-dimensional sl;-module. The image of a generic
embedding of sl in gl, is called a principal sl,-triple. We do not discuss what ex-
actly the genericity condition is and confine ourselves to mentioning that an example
of a generic embedding is provided by sending

00 0 00
10 0 0 0
01 0 0 0

=10 01 0 0 (16)
000 ... 10

and continuing this map on the entire sl,.

In view of the decomposition (15) it is natural to ask whether the space
@,>0V2+1 admits a Lie algebra structure consistent with the existing structure of an
sl,-module on it. A construction of a 1-parameter family of such structures is as
follows.

The universal enveloping algebra U(sl,) is a Lie algebra with respect to the
operation [a,b] = ab — ba. The element C =ef + fe + %hz generates the center of
U(sly). The quotient

U(sly)/ (C - -21-(,1 ~ DA+ 1)) Usly), 1€C

is naturally a Lie algebra containing sl,. The fact that its sl,-module structure is
given by (15) is a consequence of much more general results of [18]. We point
out that in our case:

the elements h'e/, h' f/ form a basis of the algebra, and 17)

the component V5, is generated as an sl,-module by e'. (18)

B. Feigin classified Lie algebra structures on @;>¢Va41; in particular he
proved that under a certain natural assumption there are no families of Lie algebra
structures on @;»oV24; different from the one mentioned above, see [10]. One
proves (see Remark 3.5 below) that if 4 is not integral the quotient is the sum
of C and a simple (infinite dimensional) algebra, and if A = +n, n € {1,2,...}
then

U(s[z)/<C - %(,1 — DA+ 1)) U(sly)
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contains an ideal and the quotient is isomorphic to gl,. For this reason the algebra

U(s[z)/<C — %(}. - DA+ 1)) U(sly)

is denoted by gl; for an arbitrary complex 4. Note that our notations are inconsistent
in the sense that gl, is obviously different from the conventional gl, if A =n. It
is unfortunate but seems unavoidable; we will denote the finite-dimensional algebra
by gl, in the sequel.

3.2.2. gl and extensions of gl,. Here we define 2 extensions of gf;, both being
related to gl and one of them incorporating a formal variable.

Fix once and for all an infinite dimensional space ¥~ with a basis {v, i =
0,1,2,3,...}. This space carries a 1-parameter family of sl,-module structures de-
termined by:

JUi = vy, hv; = (A —1 =20, ev; = i(A — i1, L€ C. (19)

This, of course, makes 7~ into a Verma module M (A — 1). Hence there arises the
map

U(sly) — gl » (20)

where gl is the algebra of all linear transformations of #". Direct calculations

show that Cv; = %(l — 1)(A + 1)v; for any i. Therefore (20) factors through to the
map

gl, =gl - (21)

Lemma 3.4. The map (21) is an embedding.

Proof. The map (21) is a morphism of sl,-modules. Therefore it is enough to
prove that each irreducible component of gl; is not annihilated by (21). But this
is obvious: V5,41 is generated by e’ (see (18)) and ¢' is a non-trivial operator on
M(—-1). O

From now on we will identify gl; with its image in gl_,. The passage from a
specific 4 to a formal parameter  makes (20) into the map

U(sly) — gl @ C[1] . (22)
M(A — 1) 1s irreducible unless A = 1,2,3,... and if the latter condition is sat-
isfied then it contains the unique proper submodule I; spanned by v;,v,41,... the

corresponding quotient being ¥;. This along with the definitions implies that the
image of U(sl) under (22) consists of matrices 4 = (a;;), i,j = 0 satisfying the
following conditions:

(i) for any matrix 4 = (a,;), i,j = 0 there exists a number N such that a,, =0
ifi > j+N;

(ii) for any fixed n, a;,1, is a polynomial in i;

(iii) if A =1,2,3,... then a;;(4) =0 once i < 4 and j = A. (We naturally iden-
tify matrix elements with polynomials in ¢.) In other words, in this case 4 has the

following block form:
B 0
( v % ), Beagl, .



124 B. Khesin, F. Malikov

Remark 3.5. The property (iii) explains why, under the integrality condition A = n,
gl; “contains” the usual gl,: gl, =~ gl;/J, where J = {4 € gl : Im(4) C I}.

Denote by gl the subalgebra of gl ® C[¢] satisfying the property (i) above and
the following weakened version of (ii) and (iii):

(x) for any matrix 4 € gl the properties (ii) and (iii) can only be violated in a
finite number of rows.

The algebra gl is one of the algebras we wanted to define. Definition of the
other is based on the following general notion which will be of use later.

Let W be a vector space and 4 a subset of W ® C[¢]. The image of 4 in W under
the evaluation map induced by projection C[¢] — C[¢]/(t — ¢)C[t] = C, ¢ € C, will
be denoted by A, and called specialization.

We now define gl; to be a specialzitaion of gl when ¢ = A. The following is an
alternative description of gl; (it will not be used in the sequel): gl; is obtained from
gl; by, first, allowing infinite series of the form ). ae', a, € C[h], (see (17))
and, second, extending the result by the ideal of operators with finite-dimensional
image.

3.2.3. Affinization and Coadjoint Representation of gl;

1. Trace. The following simple and crucial construction was communicated to us
by J. Bernstein. Observe that for any 4 = (a,)) € gl; the sum

N—1
P(4,N) = Z aiji
i=0

is a polynomial in N (this is a consequence of (x)). Set
TrA = P(4,2) . (23)

It follows that both gl; and the loop algebra gl;(z) = gl; ® C((z)) carry an
invariant non-degenerate inner product defined by

(4,B) =TrAB ,
(A(2),B(z)) = Res,—oTr A(z)B(z)z " 'dz . (24)

Observe that the restriction of the trace to gl; and gl;(z) is degenerate if 4 is a
positive integer.

2. Affinization and coadjoint representation. The loop algebra gl;(z) admits a central
extension determined by the cocycle

(A(z),B(z)) = Res,—o Tr A(z)'B(z) dz .

This provides the central extension gl; = gl;(z) & C - c.

Using trace we make identifications (g;)* ~ gl;, (3l;(2))* = gl;(z), (§l,)* ~
al;(z) @ C and extract subspaces (gl;); C (81,)*, k € C, where (gl;); consists of all
functionals equal to k on the central element c. The third identification implies that
elements of (§l,); are pairs (4(z),k), A(z) € gl;(z). It follows from the definitions
that

ady(A(2),k)) = ([X(2),4(2)] — kzX (2) k) . (25)
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3. Nilpotent subalgebra and subgroup. Let n; C gl; be a subalgebra of strictly upper
triangular matrices and n;(z) the corresponding loop algebra. Set N;(z) = id & n;(z),
where id stands for the identity operator.

Lemma 3.6. N;(z) is a group and the map
exp: w;(z) — N;(z)
is a homeomorphism.

Proof is an easy exercise.
Exponentiating (25) one obtains that the coadjoint action of the group N(z) is
given by

Ady o ((A(2),k)) = (—zkX (2) X (2) ™" + X (2)A()X (2) 7', k) . (26)
3.3. Drinfeld-Sokolov Reduction on §l,. The general theory (see Sect. 2.1.3 and
Lemma 3.6) give the following:
(i) (81,)* and (n,(z))* are Poisson manifolds;
(ii) action of N;(z) on (gl)* is Poisson;
(ii1) the natural projection (momentum)
pi: (GL)" — (n(2)"

is Poisson and N;(z)-equivariant.
Analogously to what we did above (see Sect. 2.2), consider the matrix

S = OO

000 0 0
1 00 00
f=]l010 0 0
0 1 0 0

as an element of (1;(z))*. (To justify the notation observe that from the sl,-point
of view the matrix above is simply the image of f € sl, in gl .) Restrict the
momentum p; to (§l;). It is obvious that, first, p{l(f) ~ f + b,(z), where b;(z) is
the subalgebra of uppertriangular matrices, and, secondly, that N;(z) is the stabilizer
of f. Hence there arises the quotient space p;’( f):/N;(z), A€ C.

Proposition 3.7. (i) Each N,;(z)—orbit in p{l( f) contains one and only one Frobe-
nius matrix, i.e. an element of the form

bi(z) ba(z) b3(2)

1 0 0
0 1 0
0 0 1

(i) Action of N;(z) has no fixed points on p/.fl(f).
(iii) For any A the quotient space p;’( f)/N;(z) is isomorphic to the direct
product Higl C((z)) equipped with the topology of projective limit.
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Again the general theory says that p;fl( f)/N,(z) is a Poisson manifold with the
Poisson structure being reduced from the Kirillov—Kostant structure on (gl;)*. It is
isomorphic to ¥DS; as a topological space, the isomorphism being independent of
A (cf. (11)). Now the main theorem sounds as follows.

Theorem 3.8. The spaces p;'( f)/N;(z) (equipped with the reduced Poisson struc-
ture) and VDS, (equipped with the quadratic Gelfand-Dickey structure) are iso-
morphic as Poisson manifolds for any .

Remark 3.9. The (finite dimensional) gl,-quotient of the algebra gl; (for integral
A =n) over the maximal ideal J corresponds precisely (via affinization and the
classical Drinfeld-Sokolov construction) to the Poisson submanifolds DO, of purely
differential operators in the affine space ¥DS;. Indeed, functions vanishing on a
Poisson submanifold form an ideal in the Lie algebra of functions on the entire
Poisson manifold. The corresponding quotient is nothing else but the Poisson algebra
of functions on the submanifold.

Remark 3.10. The first (linear) Adler-Gelfand-Dickey structure is defined by the
formula V(L) = (LA — AL).. Unlike the second (quadratic) structure above the first
one exists not on the entire group of ¥DS, but only on the subspaces of integral
degree A([1, 7]). Drinfeld—Sokolov reduction represents the linear Poisson structure
on scalar differential operators of n” order as the reduction of a constant Poisson
structure on gl (i.e. on first order matrix differential operators). This constant Pois-
son structure on the dual space is obtained by the freezed argument principle applied
to the Kirillov—Kostant structure at the point (0,¢ey,) € gAl:. Here 0 is the coefficient
at zj—z, and ey, is the current on S' with the only nonvanishing entry equal 1 at
(1,n)-place.

One can literally repeat the arguments for the Hamiltonian reduction from gl;.
Then the finite matrix e, is to be replaced by an infinite matrix, an element of §I*
with the only nonvanishing entry at the same place (1,n). This entry is singled out
by the block structure of gl; for integer 4 = n. However, for a generic 4 no such
element is specified, and no linear Poisson structure exists on the spaces ¥DS; after
reduction.

4. Proofs

4.1. Affinization and Coadjoint Representation of gl. Proposition 3.7 says what
canonical form of a matrix under the action of the group N,(z) is. In our case, as
it sometimes happens, it is easier to find a canonical form of a family of matrices
than to do so with a single matrix. In order to realize this program we need to
extend some of the above introduced notions to the case of the algebra gl.

4.1.1. Affinization. The algebra gl (incorporating the formal variable ¢) admits the
trace: replace specific A by formal ¢ in (23) setting Tr A = P(4, t). Now both gl and
the loop algebra gl(z) = gl ® C((z)) carry an invariant non-degenerate C[¢]-valued
inner product defined by the same formulas (24). The cocycle

(A(z),B(2)) = Res,—o Tr A(z)'B(z) dz . 27)

provides the central extension gl = gl(z) @ C[r] of the loop algebra gl(z).
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4.1.2. Coadjoint Representaton. Let as usual C[[¢]] be the ring of formal power se-
ries, C((1=")) = C[t,t~"14 C[[t~']]. C((t")) is a C[¢]-module and C[¢] C C((t™'))
its C[t]-submodule. We identify ¢~!C[[+~']] with the quotient C((¢z~'))/C[¢]. This
equips ¢~'C[[t~!]] with a C[¢]-module structure coming from C((¢~'))/Cl[¢].
Existence of a nondegenerate invariant C[¢]-valued inner product on gl gives

that
gl" ~ ¢~ 'Cll~11/Cl @y, ol - (28)

The isomorphism is established by assigning to the pair (g(t),A(?)), g(¢) €
t~1C[[t~"1],4(t) € gl a functional by the formula

((g(1),4(2)), B(2)) = Res—og(t)TrA(t)B(z) .

Similarly, gl(z)* ~ t~'C[[t~']] ®¢y, 9l((2)) and (§1)* ~ tIC[1]] B¢y @) ®
t~'C[[t~']], where element (0, g(t)) sends (A(t,z),h(t)) to Res;—og(t)h(t).
For any g(¢) € t7'C[[t™']] set

(8Dg(y = {(9(DA4(1,2),9(1)), A(t,2) € 8l((2)) -

It is tempting to say that the dual space gl for a fixed g(¢) is in one-to-one
correspondence with gl((z)). At least there is a map

gl((2)) = (8D)z0)> A(1,2) = (9(DA(1,2),9(1)) - (29)

Properties of this map, however, essentially depend on the properties of g(t).
Call an element of t~'C[[¢t~']] rational if it is equal to Laurent expansion at oo of
a rational function of ¢; otherwise an element of —'C[[¢t~']] is called irrational .

Lemma 4.1. (i) If g(¢) is irrational then the map (29) is a one-to-one correspon-
dence.

(i) Let g(t) = p(t)/q(t) for some mutually prime p(t),q(t) € C[t). Then the
map is a surjection with “kernel” equal to the set of all matrices with entries
divisible by q(t).

Proof. View elements of (§1),, as matrices with coefficients in g(#)C[¢]/(g()C[f] N
C[¢]) (see (28)). Such a matrix determines the zero functional if and only if all its
entries are equal to 0, lemma follows. [J

The definitions imply that the coadjoint action of gl(z) preserves affine subspaces
(81);,)- Lemma 4.1 implies that the space (gl);,, is always identified with gl((z))
in the sense that in the case (ii) elements of gl((z)) have to be viewed as matrices
with entries in the quotient ring C[¢]/¢q(¢)C[¢]. Having this in mind one obtains that

ady . (A(%,2)) = [X(4,2), A(1,2)] — zX(t,z),  A(t,z) € (8D - (30)
The specialization map gl — gl; induces emebddings
(8L — (8D
Direct calculations show that in fact
(L) — (éI)T/(z—x)a (31)

where 1/(t — 1) is viewed as a series )., A/t
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The left dual to (31) is as follows:

1 1
<t —A(12), x) s A(Lz) . (32)

Indeed, Lemma 4.1 implies that gy, , is in one-to-one correspondence with
gl((z)) modulo the relation ¢ =~ 4; this produces the desired evaluation map.

In exactly the same way as in the gl;-case one defines the nilpotent subalgebra
n C gl, the corresponding loop algebra n(z), the corresponding group N(z) = id @
n(z) and proves that this group is exponential.

Exponentiating (30) one obtains that the coadjoint action of the group N(z) is
given by

Ady((A1,2)) = —2X'X 7' + XA@)X ™', X € N(2), A(tx) € (§D)gery > (33)

where, as always, if the assumption of Lemma 4.1 (ii) is satisfied, then all ma-
trix entries are considered modulo the relation g(¢) ~ 0. In particular, when g(¢) =
t — 1 one obtains the coadjoint action of N;[z,z!] on (g;)}. This also means that
the embedding (31) is N(z)-equivariant, where N(z) operates on (gl;)] via the
evaluation map N(z) — N;(2).

4.1.3. Conversion of a Matrix to the Frobenius Form — Proof of Proposition 3.7.
Fix g(¢t) € t7'C[[t~']]. Consider the natural projection

p (@) = ((2)),

and denote its restriction to the subspace (gl )ary DY Pg@r)- As above, consider the
matrix

00 0 0 0
10 0 0 0
f=lo10 0 0
00 1 0 0

as an element of (n(2))y,)- The following is a natural generalization of Proposi-
tion 3.7.

Propeosition 4.2. (i) Each N(z)-orbit in pq_(tl)( f) contains one and only one Frobe-
nius matrix )

bl(taz) bz(l‘,Z) b3(t,Z)
1 0 0
0 1 0 e 1,
0 0 1

where if g(t) is rational then bi(t,z) is understood as an element of an appropriate
quotient ring.
(ii) Action of N(z) has no fixed points on pg"(})(f).
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Items (i) and (ii) of Proposition 3.7 follow from Proposition 4.2 as an easy
consequence of properties of maps (31, 32). Item (iii) follow from (i) and (ii)
because all Frobenius matrices by definition belong to p;‘( f). The rest of this
section is devoted to proving Proposition 4.2.

Suppose for simplicity that g(¢) is irrational. Element X € N(z) converts 4 €
gl(z) to the Frobenius form if and only if the following equation holds:

—zX' + XA = BX (34)

for some Frobenius matrix B, see (33). We will show that for any 4 € gl(z), the
Eq. (34) can be effectively solved for unknown X and B and that the solution is
unique. This is achieved by the following recurrent process.

Let X = (x;(%,2)), A = (a;;(t,z)) and B be as above. (Note that all matrix entries
are “functions” of z and ¢.) By definition, x;(z,z) = 1. Therefore (34) for diagonal
entries gives

x01(t,z) = =b1(t,z) + aoo(t,2), a;(t,z) +xiip1(t,z) =x-1.(t,z), i=1.

This implies that
xiH—l(t’Z):_Zajj(tsz)_bl(z7z)a i g 1.
j=0

The condition (x) in the definition of gl means that x,_; ,(n,z) = 0 for all sufficiently
large positive integers n. So,

n—1
bi(n,z) =Y a;(t,z) .
J=0

But the sum in the last expression is a polynomial in #z, due to the definition of gl,
and this uniquely determines b;(¢,z) as a polynomial in 7.

Suppose we have found by(t,z),...,b,—1(t,z) and x,j(t,z), 0 £ i < o00,i < j <
i+n—1 for some n > 1, so that x;,,4(%,z) is a polynomial in i for all sufficiently
large k. Equation (34) implies

—2%0n-1(6,2) + aon—1(5,2) + x01a1 p—1(£,2) + - - - + Xop—1an—11—1(£:2) + Xon
=bi(t,z)x0n—-1 + ba(t,2)x1 1 + - + by 1 (8, 20201 + bu(1,2) ,
—2Xip4i-1(6,2) + @ingic1(62) + X1 @t =1 (B2) - Xy i1 Gpgi— 1 npi—1(6,2)
FXinti = Xi—1pti-1, L > 0.

As above we see that solving the i equation for (the unknown bold) x;,.; we
obtain

Xingi(t,2) = q(i,1,z) + by(t,2)

for some polynomial q(i,7,z) and all sufficiently large i. Again the definition of
gl implies that x;,_,(n +i,z) = 0 for all sufficiently large positive integers n, and
hence b,(t,z) = —q(t — n,t,z).

The described process shows that for any 4 € p&})( f) there is at most one
element of N(z) converting it to the canonical form. It is easy to see that the
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infinite matrix (x;;) calculated above is an element of N(z). Proposition 3.7 follows
in the case of irrational g(¢).

As to the rational g(t) case, observe that, although the value of an element of
the quotient ring at a point does not make sense, vanishing of an element of the
quotient ring at a point does make perfect sense in our case (see again property
(%) in the definition of gl), and so, the same conversion process completes the
proof. O

Remark 4.3. We point out another consequence of the conversion process. For any
A, gl, embeds naturally into gl; by means of matrices with only finite number of
non-zero columns and rows. This gives rise to the embedding of the algebra of
loops in the upper triangular matrices and to the embedding of the corresponding
loop group. It is easy to see that this embedding is equivariant if 1 =N for all
sufficiently large positive integers N. In particular it induces an embedding of the
quotients DO,, — ¥DS;. Note that the last embedding is not Poisson if 1 > n.

4.1.4. Proof of Theorem 3.8

A. Filtrations of [[,., C((z)) and pzl(f). Recall that there is a filtration (cf.
(12)) -

Wy C W, C---C Fun (]:[1 C((z))) , _L)Jl W; = Fun (]:[1 C((z))) .

Similarly one represents p~'(f); as p~ (/) x p~N(f)7*, k = 0, where p~!

(f)*F is the set of matrices f + (a;;), where a, =0 if j <i+k—1 (> i+
k — 1 respectively). Again let j, be the projection on the first factor and set Uy =
Ji(Fun(p~'(fY)), k = 1. The result is the following filtration

Uy CU C-- CFun(p~'(f)), U Ui =Fun(p~'(f)) .

i>1

Consider the projection @ : p~'(f); — [[,», C((z)). The group action is compati-
ble with the filtration and therefore B

(W) C U .

B. Proof of Theorem 3.8. Let {.,.} be the Poisson bracket on (§l;)*, {.,.};" be
the Poisson bracket on [].., C((z)) obtained as a result of hamiltonian reduction,
{.,.}, be the second Gelfand-Dickey structure on [],., C((z)). We have to show
that {.,.}> = {.,.}, for all 1. -

Let f € W;, g € W;. Recall that {f,g}>", {f,g}; are polynomials on A. There-
fore it is enough to prove that

{f>g}]r\\// = {f’g}N

for all sufficiently large N.
By definition,
{U,U;}7 C Uy -

Recall also (see (13)) that
(W, W}, C Wi .
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The last formula along with compatibility of = with the filtrations implies that
W, W;}; C Wiy

It follows that functions n* f, n*g and their commutators are uniquely deter-
mined by their restrictions to gl,(z) C (81)* (see Remark 4.3) for sufficiently large
n. Let x € gl (z) C (§1)*. One has

{f9}3 (mx) = {=" f,n"g}n(x) (35)

= {7"flat,» 7"l }v = {/> 93w (nx) (36)

where (35) follows from (4), (36) follows Remark 4.3, Theorem 2.6 and (4).
Theorem 3.8 has been proved. [J

5. Two More Examples of Deformation of Poisson Structures

The algebra gl, plays a universal role in mathematics for the reason that almost
any algebra maps into it. The algebra gl; is expected to play a similar role in the
deformation theory. Here are a few examples.

5.1. Deformation of Drinfeld-Sokolov Reduction on Orthogonal and Symplectic
Algebras. In this section we construct 2 involutions: one on the space of ¥YDS;,
another on the algebra gl,, such that the Hamiltonian reduction sends a certain
invariant subspace of one to a certain invariant subspace of another.

1. Gelfand-Dickey sp,so-brackets. To describe the Gelfand-Dickey structures cor-
responding to the Lie algebras sp and sp we introduce the following involution *
on the set ¥DS; of pseudodifferential symbols:

( i uk(z)D“") = i (=D u(2) .

k=—o00 k=—00

Definition. A pseudodifferential symbol L is called self-adjoint if L* = L.

The set of self-adjoint pseudodifferential symbols DS can be equipped with
the quadratic Poisson structure in the same way as the set WDS;. Having restricted
the space of linear functionals to self-adjoint symbols one can use the same Adler—
Gelfand-Dickey formula (10).

We would like to emphasize that the traditional definition of the sp,,- ( $02,41-)
Gelfand-Dickey brackets confines to the case of self-adjoint (skew self-adjoint)
genuine differential operators of order 2n (2n + 1, resp.).

2. The simultaneous deformation of the algebras sp,,,s0,+1. Define the antiinvo-
lution ¢ of sl; to be the multiplication by —1. Observe that ¢ preserves the Casimir
element C =ef + fe+ %h2. Therefore ¢ uniquely extends to an antiinvolution of
gl;, which will also be denoted by the same letter ¢. It is easy to see that the
eigenspace of o related to the eigenvalue —1 is a subalgebra. Denote it by po ;. The
family of algebras po;, A € C is a deformation of both the families sp,,, $0,41:
if 2=2n (A=2n+1) the algebra po, contains sp,, (s02,41) as a quotient, see
[10].
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Remark 5.1. The algebra gl; is a direct sum of sl;-submodules @;»oV241. The
involution ¢ acts trivially on the subspace @,>V44+1 and it acts by multiplication
by —1 on the subspace ®,>0Va+3.

A direct calculation shows that if the embedding of sl, into gl, is given by the
image of f (16):

0 00 0 0
1 0 0 0 0
£ 010 0 0
0 0 1 0 0
000 ... 10

then the involution ¢ acts on gl, in the following way. It transposes a matrix with
respect to the “second diagonal” (not the main diagonal, but the opposite one), and
changes the sign of all entries that are situated on every other shortened diagonal
counting from the main one: o(a,,) = (—1)"/ay—;—1 n—i—1. Unlike the definition of
o we used previously, the latter can not be carried over to the case of gl;.

One can extend the notions of trace, affinization, nilpotent subalgebra, etc. to
the case of the algebra po;.

Theorem 5.2. The Hamiltonian reduction of the Kirillov—Kostant Poisson structure
on the algebra po ; results in the quadratic Gelfand-Dickey structure on the space
of pseudodifferential symbols WYDS3.

Proof. This is an equivariant version of the Main Theorem 3.8. Again, the result
holds by virtue of the finite dimensional analog proved for sp,, and soj,4; by
Drinfeld and Sokolov ([7]) and polynomial dependence on A. [

Remark 5.3. Note that in the approach above it is possible to treat the cases of
self-adjoint and skew self-adjoint operators on the same footing.

5.2. Deformation of the Toda lattice. Recall the construction of the classical non-
periodic Toda lattice. Let £;; be the matrix whose only non-zero entry is situated at
the intersection of the i row and ;™ column and is equal to 1. Let b, C gl, be the
subalgebra of upper-triangular matrices and b, C gl, the algebra of lower-triangular
matrices. Identify b,* with b,” by means of the trace. Set

n—1
Ay = EEi+lz € bn* .
1=1

Let 4, be the orbit of A, in the coadjoint representation. The Hamiltonian
dynamical system on 4, generated by the Hamiltonian function

n—1
i(n—0)E;j i+

i=]

Hy(4) = Tr(4 + ©)*, where A€ 0y, and O =

(with respect to the Kirillov—Kostant symplectic structure on the orbit (4, ) is called
the Toda lattice. Note that the element ® can be replaced by any linear combination
of E,;;; with non-zero coefficients; our choice is motivated by the generalization
to the §l;-case, see below. The function H, includes in the family Hy, 2 < k < n,
where H;(A4) = Tr(A + @)*. Functions H; are gl -invariant, they Poisson commute
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as functions on gl, = gl, and, moreover, their restrictions to b, also Poisson com-
mute, see [1, 12]. Calculations show that dim 04, = 2n — 2. So, the Hamiltonian of
the Toda lattice has been included into the family of Poisson commuting functions,
the number of functions being equal to half the dimension of the phase space. This
proves complete integrability of the Toda lattice. (In fact one also has to establish
the independence of the functions, see [1].)

This all immediately carries over to the case of gl;, 1 € C:

Let b; C gl; C gl be the subalgebra of upper triangular matrices, b,” ~ b;*
subalgebra of lower triangular matrices.

Proposition 5.4. The subalgebra b; can be exponentiated to a Lie group.

Proof. Cf. Lemma 3.6 and the Campbell-Hausdorf formula. [

Set -
A = ZEH-U S b;.
1=1
(We denoted this element f in Sect. 3.) Denote by (@, the corresponding orbit.
Take the element @ = e € gl;.
In suitable coordinates on the orbit ¢4 the deformed Toda equations correspond-
ing to the Hamiltonian function H,(4) = Tr(4 + ©)* have the form
a; = ai(b, — biy1), b =20 1A —i+ Dd, —2i(h—i)d’

i
where a9 =0, i=1,2,...

Now we have infinitely many invariant functions Hy(4) = Tr(4 + @), k = 2,
their restrictions to (/4 are again independent and Poisson commute (this is an
obvious corollary of the corresponding finite dimensional result), cf. [12]. Therefore
we have exhibited a family of infinite dimensional integrable dynamical systems,
“containing” classical Toda lattices at the points A = n € Z, and being approximated
by the latter as n — co. Notice, that for a non-integral 4 no finite-dimensional
subsystem can be split from the system above.

Acknowledgements. We benefitted a lot from discussions with many people. We are sincerely
grateful to Joseph Bernstein, who explained to us a simple construction of the trace on gl;
(Sect. 3.2), to Claude Roger and Boris Feigin for sharing with us the conjecture, to Pavel Etingof,
Laszlo Feher, Igor Frenkel, Edward Frenkel, Mikhail Kapranov, Vladimir Rubtsov, and Gregg
Zuckerman for numerous fruitful conversations. The authors are deeply indebted to the Max—Plank
Institut fiir Mathematik in Bonn and to Kyoto University where the final part of this work was
accomplished. F.M. is also grateful to the Mathematics Department of Kyoto University for the
opportunity to give a lecture course on the subject of this paper.

References

1. Adler, M.: On a trace functional for formal pseudo differential operators and the symplectic
structure of the Korteweg-de Vries type equations. Invent. Math. 50, no. 3, 219-248 (1978/79)

2. Arnold, V.I.: Mathematical methods of classical mechanics, Berlin, Heidelberg, New York:
Springer, 2nd ed. 1989

3. Golenishcheva-Kutuzova, M., Lebedev, D., Olshanetsky, M.: Between gl(oco) and $ly affine
algebras 1. Geometrical actions. Preprint ITEP-MO-94/1

4. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation group for soliton equations.
Publ. RIMS 18 1077-1110 (1982)



134 B. Khesin, F. Malikov

5. Deligne, P., Milne, J.S.: Tannakian categories. Lecture Notes in Math., Vol. 900 (1982), pp.
102-229
6. Dickey, L.A.: Soliton equations and Hamiltonian systems. Advanced Series in Math. Physics,
Vol. 12, Singapore: World Scientific, 1991

7. Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. Current
problems in mathematics (Moscow), Itogi Nauki i Tekhniki, Vol. 24, Akad. Nauk SSSR,
Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. (1984), pp. 81-180 (Russian)

8. Enriques, B.: Complex parametrized W -algebras: The gl-case, Lett. Math. Phys. 31, 15-33
(1994)

9. Enriques, B., Khoroshkin, S., Radul, A., Rosly, A., Rubtsov, V.. Poisson-Lie aspects of clas-
sical W -algebras. Preprint, Ecole Polytechnique, 1993

10. Feigin, B.L.: Lie algebras g/(4) and cohomology of a Lie algebra of differential operators.
Russ. Math. Surv. 43 no. 2, 169-170 (1988)

11. Feigin, B.L., Frenkel, E.: Integrals of motion and quantum groups. To appear in Proc. CIME
Summer School, Montecatini Terme, June 14-22 (1993), hep-th 9310022, pp. 66

12. Flashka, H.: On the Toda lattice 1. Phys. Rev. B 9, 1924-1925 (1974)

13. Frenkel, I.B.: Orbital theory for affine Lie algebras. Invent. Math. 77, 301-352 (1984)

14. Gelfand, I.M., Dickey, L.A: A family of Hamiltonian structures associated with nonlinear
integrable differential equations. Preprint, IPM AN SSSR, Moscow, 1978

15. Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras
and groups. Proc. Nat. Ad. Sci. USA 78, 3308-3312 (1981)

16. Khesin, B.A., Zakharevich, 1.S.: Poisson-Lie group of pseudodifferential symbols and fractional
KP-KdV hierarchies, C.R.Acad.Sci. 316, 621-626 (1993), Poisson-Lie group of pseudodiffer-
ential symbols. Commun. Math. Phys. 171, 475-530 (1995)

17. Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex
simple Lie group. Am. J. Math. 81, 973-1032 (1959)

18. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 86, 327402 (1963)

19. Kravchenko, O.S., Khesin B.A.: Central extension of the algebra of pseudodifferential symbols.
Funct. Anal. Appl. 25, no. 2, 83-85 (1991)

20. Kupershmidt, B.A., Wilson, G.: Modifying Lax equations and the second Hamiltonian structure.

Invent. Math. 62, no. 3, 403-436 (1981)

. Malikov, F., Feigin, B., Fuchs, D.: Singular vectors in Verma modules over Kac—Moody

algebras. Funkec. Anal. i ego Pril. 20, no. 2, 25-37 (1986)

22. Marsden, J.E., Weinstein, A.: Reduction of symplectic manifolds with symmetries. Rep. Math.
Phys. §, 121-130 (1974)

23. Reiman, A., Semenov-Tian-Shansky, M.: Lie algebras and nonlinear partial differential equa-
tions. Sov. Math. Doklady 21, 630-636 (1980)

24. Weinstein, A.: Local structure of Poisson manifolds. J. Diff. Geom. 18, no. 3, 523-558 (1983)

25. Malikov, F.: Vanishing theorem for BRST cohomology, to appear

2

—

Communicated by M. Jimbo





