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Abstract: We relate in a novel way the modular matrices of GKO diagonal cosets
without fixed points to those of WZNW tensor products. Using this we classify
all modular invariant partition functions of su(3)k Φ su(3)\/su(3)k+\ for all pos-
itive integer level k, and su(2\ ®su(2)ι/su(2)k+ι for all k and infinitely many
/ (in fact, for each k a positive density of /). Of all these classifications, only
that for su(2)k & su(2)ι/su(2)k+ι had been known. Our lists include many new
invariants.

1. Introduction

It is believed that a large subset of all rational conformal field theories can be
generated from the Goddard-Kent-Olive (GKO) coset construction [11]. In the
prototypical example, the minimal unitary series can be identified with the cosets

This paper is concerned with the classification of modular invariant partition
functions for the diagonal GKO coset theories gk 0 #//#&+/, where gk is an untwisted
aίfine algebra, at positive integer level k, with horizontal subalgebra g. We classify
what are known as physical invariants: those modular invariants with non-negative
integer multiplicities, and a unique vacuum; no further conditions are imposed. The
connection between this problem and the WZNW one of finding partition functions
for gk 0 gι 0 g£+l (where g£+l is the dual of #*+/) is well known, as is the method
of constructing some of the partition functions for the coset by tensoring together
partition functions for #£,#/, and #£+/. But by means of a simple trick the coset clas-
sification is shown in Sect. 2 to be equivalent to a small subset of the classification
for gk 0 gι 0 gk+ί (this is more convenient to work with than gk θ g\ 0 gc

k+l-e.g.
for finding exceptionals), that can be very easily identified (see Eq. (2.8c) below).
In Sect. 3 we apply this to classify the coset physical invariants for certain levels
kj and g = su(2) - half of these partition functions are not listed in e.g. [21,4].
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Finally, in Sects. 4 and 5 we classify the su(3)k ®su(3)\/su(3)k+\ coset theories,
and find several not included in e.g. [1,5].

The classification proofs follow a general strategy developed by one of us (T.G.)
in several studies [6,7,8,10]. Modular invariants of rational conformal field theories
are of two types: (i) automorphism invariants of the unextended chiral algebra,
and (ii) those with non-identity fields coupling to the identity [6] (these can be
interpreted [20] as invariants involving extensions of the original chiral algebra). The
first are shown (in the cases under consideration) to be "locally outer automorphism"
invariants. That is, all fields are composed of holomorphic and anti-holomorphic
parts related by an outer automorphism (conjugation and/or simple current) of the
unextended chiral algebra. The invariants of type (i) are then shown to be of a
simple "global" form, and all possibilities are found.

The first step in classifying the type (ii) invariants is to find all fields that
can couple to the identity field, the so-called "p-couplings." These possibilities are
severely limited by Γ-invariance and the parity rule of [6,22], and correspond to
the possible extensions of the chiral algebra. The well-known simple current ex-
tensions are always included, and the automorphism invariants of these must be
calculated. But other extensions of the chiral algebra can exist, and when they do,
their automorphism invariants must all be found.

We include one table, which gives the exhaustive list of all physical invariants
for su(3)k ®su(3)\/su(3)k+\, V&. All previously published lists seem to miss several
of these, though from a "modern" perspective none of these invariants should be
surprising. That our table is complete is proven in Theorem. 2.

2. Cosets and WZNW Tensor Products

The point of this section is to make precise the connection between the coset
theories g^ Θ gi/Qk+h without fixed points, and the WZNW tensor product theories
Qk θ 9 1 θ gk+ι F°r / = 1, we show how one can restrict attention to g^ Θ gk+\ We
will limit this discussion to g = su(n\ but similar comments should apply to all
algebras.

2.1. Field Identification. Let P+ + ( g , k ) be the fundamental alcove of positive high-
est weights of 0£. We will write k' for the height k + n. We will be interested only
in the "horizontal" parts of these weights, λ £ P(g), the weight lattice of g. Let
βl9 i = 0, . . . ,« — 1, be the usual fundamental weights (so β\,...,βn-\ spanP(g)).
We will identify a weight λ — Σa λaβa with its Dynkin labels λa. So λ £ P+ + ( g , k )

iff each λa > 0, and ̂ I,1 λ<* < k'- Write P = ( 1» » O
First define the following quantity, called w-ality [17]:

tn(λ) = Σ aλa = nλ J8Π_, (mod n) . (2.1)

Then tn(λ) = 0 iff λ £ P(g)*9 the root lattice of g. tn(λ) is meant to generalize the
trίality of su(3).

Let Ak denote the level k simple current [12] = outer automorphism [3] which

operates on P+ + ( g , k ) by the formula Akλ = (kr - £^Iι λa)β\ + Σα=2 λa-\βa

Usually there will be no ambiguity and we can drop the subscript k on A^.
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Choose any λ,μ G P+ + (g,k\ and let S^ denote the modular S-matrix of g^.
Then:

tn(Aaλ) = ka + tn(λ) (mod ή) (2.2a)

(Aaλ)2 = λ2- 2k' a tn(λ)/n + k'2a(n - a)/n (mod 2£') (2.2b)

S(A»\A*, = exp[2π/(ifΛα) + atn(μ) - (a + fe)Ί,(p) + teft)//i]^} . (2.2c)

Define

Pk! ={(λ,μ,v) G P+ + (0,*) x P+ + (#, /) x P+ + (#,£ Hr /) I

ίΛ(λ) + α/0 = tn(v) + αp) (mod «)} . (2.3)

For any (λ,μ, v) G P*/, define Λβ(A,μ, v) - (Λμ, Λ«μ, Λ£ + / v). We see from (2.2a)
that (Λ,,μ,v) G Pjt/ iff A(λ,μ, v) G P^/. This means P^/ is the disjoint union of
^-orbits. Let P^ denote P^i after modding out by A, i.e. it contains one and only
one triple (λ,μ, v) from each ^4-orbit {Aa(λ,μ, v)} C P^i-

The characters of the coset theories are essentially the branching functions bμ

}v

[13] (notice, however, we use positive weights to label the g^ representations, rather
than non-negative ones). We know (e.g. [5, 13]) that Z ^ V Φ O iff (/,μ, v) G /\/, and

for (λ,μ,v) G PA-/, ^v = M/v, iff (A',/, v') = Aa(λ,μ, v) for some a.
(λ9μ9v)ePki is called a fixed point if Am(λ,μ,v) = (λ,μ,v), for some 0 <

m < n. Fixed points occur iff the greatest common divisor gcά(n,k, /) > 1. So
for n prime, there will be no fixed points unless k = I = 0 (mod/?). Fixed points
present certain complications, and we will restrict attention in this paper to the
simplest case, where there are no fixed points (e.g. 1=1).

Let G denote the simply-connected Lie group with Lie algebra g. Since the
centre of G is diagonally embedded in the centre of G (g) G, there are field identi-
fications [20,18,23]. That is, we must identify different triples (λ,μ,v) G P # / . For
g — su(n) the identifications are quite simple (at least for unitary cosets1, when no
fixed points are present). The characters of the coset model can be taken to be the
branching functions, and (λ,μ,v) is identified with A(λ,μ,v)9 so that the characters
are in one-to-one correspondence with the elements of P^.

2.2 The correspondence gk 0 gι/gk+ι <-> 9k θ gι 0 gk+ι Let χf } denote the gk char-
acter with highest weight λ. As before, let its S and T modular matrices be denoted

and T(k). For (λ,μ,v) G P^ define

Claim 1. The branching functions [bμ

λv \ (λ,μ, v) G P//| transform modularly

exactly like {ch;μγ \ (λ,μ,v) G P//}. /« ^ί/zer words, their S and T matrices are
equal

1 For nonunitary diagonal cosets there are more field identifications, some not directly related
to the centre of G [19].
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Proof. The S and T matrices for the branching functions are computed in [15] and
given in [5]. We find that

- (2.5)

The S-matrix for (2.4) is no harder to calculate; from (2.2c) we get a factor

Σ e*p[2πia{tn(λ'} + tn(μ') - tn(V) - tn(p)}/n] , (2.6a)
α = 0

which equals 0 unless (Λ/,μ7, v) G /*#/, in which case it equals n. Thus the S-matrices
are also equal, with entries

QED

Let Qc£f denote the coset commutant, i.e. the space of all modular invariant
combinations

Σ ^/luvv'^v (2 7a>

Let °̂/ denote the set of all coset physical invariants, i.e. all functions lying in
the coset commutant with all coefficients MλμVt^/μfv/ non-negative integers, and with
Mppp^ppp = 1.

Let Ω™fw denote the WZNW tensor product commutant, i.e. the space of all
modular invariant combinations

(k}* y ( / )* y

(*+/)* (2 7bϊ;/ Λ » / Λ v / » ^ Z . / D J
^

the sum being over all λ,λ' e P+ + (g,k\ etc. Let 0>™fw denote the set of all WZNW
tensor product physical invariants, i.e. all functions lying in Ω%fw with all coeffi-

cients M; / l v ?;/μ/v/ non-negative integers, and with Mppp,ppp = 1.
The claim allows us to define immediately a map j*f£y from Ω^0/ into Ω%fw

9

as follows. Given the coefficients Mχμv ?;/ ;/v/ of some coset modular invariant

(2.7a), define Mλμv tλ/μtv/ —Mλμv>^λ>μιv (note the v,v ; switch2). Then M will de-
fine a WZNW tensor product modular invariant (2.7b). Equivalently, this amounts

to replacing each b^v with ch^μv. From the claim, modular invariance is assured.
This map is one-to-one; it takes the coset physical invariants into the WZNW tensor
product physical invariants; however it is not onto. In particular, the image of J^£7

consists of all modular invariants Z in Ώ^fw satisfying:

(0 M λ μ V ί λ / μ * v f = 0 unless

tnW + tn(μ) - tn(v') = tn(λ') + tn(μ') - tn(v) = tn(p) (mod n) (2.8a)

2 Perhaps the simplest way to see the necessity of this switch is to write a nonzero element of the
WZNW T matrix as exp{2π/((//; + hμ +hv)- (hλ> + /y + /v))} = exp{2π/((/z/ + /^ - / z v / ) -
(hλt +hμt -hv))}. Here hλ + hμ + hv is a WZNW conformal weight, while hλ + hμ-hv' is a

coset conformal weight (mod 1).
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(ii) for all 0,6 = 0, . . . ,w- 1,

^AaλAaμAbv,AhλfAhμ'Aav/ = ̂ λμ\\λ'μ'v' - (2.8b)

From the equation M = S^MS, it is not difficult to show that (i) holds iff (ii)
holds, iff

MAkpAlpp,ppAk+lf) — M ppAk+lp,AkpA[pp = ̂  ppp, ppp (2.8c)

holds, for any physical invariant M. For example, that (2.8c) implies (i) follows
by looking at the (AkpAipp, pp4t+/p)-entry of M — S^MS, and using (2.2c) and
the fact that Spppίχμv > 0.

Z G Ω™fw can be written as a sesquilinear combination of chχμv over (Λ,,μ,v) £

P^/5 iff (2.8) is satisfied. Call this subspace Ω™W'A. Then &™ defines an isomor-

phism between Ωc

k°f and Ω™ZW'A, and a bijection between the physical invariants
OfiCOS p n rj tfpWZW,A _ φwzW p| Q W Z V V , Λ

Ά / anα Ά / — •Λ / M w* /
The same "switch" of weights works in establishing a bijection between the

physical invariants (and commutants) of g Θ h and 0 θ hc ', where g, /z are any chi-
ral (e.g. affine) algebras and // c denotes the dual of /z, corresponding to modular
matrices which are complex conjugates of those of h. This bijection is difficult to
establish by other means, since most physical invariants Mgh of g θ h cannot be
factorized as M0 ®Mh. This switch is helpful in generating coset modular invari-
ants which would be difficult to find otherwise, though as we saw further conditions
must be satisfied in order that this correspondence be extended to coset theories.

Incidentally, it was shown in [6] that the Roberts-Terao-Warner lattice method
succeeds in generating any WZNW commutant. The mapping =£7£}v tells us then
that the lattice method can be successfully extended to the diagonal cosets without
fixed points, where it will also be complete.

Thus to find all physical invariants of su(n)k ®su(n)ι/su(ri)k+ι when gcd(w,fc, /)
= 1, it suffices to find all physical invariants of su(n)k ® su(n)ι ®su(n)k+ι which
satisfy (2.8c).

2.3. Simplification when 1=1. When one of the levels, say /, equals 1, the cor-
respondence given above relating the cosets to WZNW tensor products simplifies.
The reason is that A\ acts transitively on the n weights in P+ + (g, 1), so modding
by A essentially removes that factor.

When / = 1, there can be no fixed points, regardless of the value of k or n, so
the comments in this section apply to any level k and any su(n).

Define Pk = {(λ,μ) G /%+(<?,£) x P++(g,k+ 1) | tn(λ) = tn(μ) (mod n)}. There
is an obvious bijection between P^ and P£λ : identify (λ,μ) with the γ4-orbit contain-
ing (Λ,p,μ). Each A-orbit in P^\ contains exactly one triple of the form (Λ,p,μ),
so we may identify the orbit, and hence the corresponding element of P^l5 with
such a triple.

Define Ω™zw to be the WZNW commutant for the direct sum su(n)k θ su(n)it+\.
Define a map, &c

k

w, between Ω£? and Ω%zw as follows: let

Z= Σ Mλpμ,κpvtfλμbr; (2.9a)
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be any modular invariant in Ω^5, then define

M V Ύ Ύ y(A°* γ(A'+1)* (2 9bϊ~ £ W / — ^ lvlΛpμ,κpv 2^ X.Aaλ%Aav f-Aaκ %Aa μ ' {^.?O )
λμ,κv£Pk a = 0

(Notice again the switch: μ <-» v.)

Claim 2. j£f£w(Z) w a modular invariant.

Proof. The arguments here are similar to those used earlier in proving Claim 1,
except that here we must transform the partition functions, instead of simply inves-

tigating the modular behaviour of the characters b and ch as was done there.
Γ-invariance follows as for Claim 1 . S-invariance is also similar to Claim 1 : the

calculation produces the sum

Σ exp[2πϊ α{fΛ(λ) + tn(v) - tn(κ) - tn(μ)}/n] , (2.10)
a = 0

which equals 0 unless tn(λ) + tn(v) = tn(κ) 4- tn(μ) (mod rc), i.e. unless there exists
an a such that both Aa(λ, μ), Aa(κ, v) G Pk, in which case the sum equals n. QED

As before, <gc

k

w is one-to-one. It also is not onto; its image is the subspace of

Ω%zw containing those modular invariants Z = Y^Mλμ^vXλXμXκX\ satisfying:

(a) MA μ, i c v = 0 unless

tn(λ) + tn(μ) = tn(κ) + tn(v) (moan) i (2.1 la)

(b) for all α = 0,l, . . . ,n- 1,

M λμ,hv = MA<*λAaμ,AaκAav - (2.1 lb)

For any physical invariant M, (a) holds iff (b) does, iff

(2.1 Ic)

As before, this follows from looking at M = S^MS.

Let Ω^ZW'A denote this subspace; then £fc

k

w is an isomorphism between Ω™*

and Ω^ZW'A, and a bijection between &cff and those physical invariants in Ω%ZW'A.
Thus to find all physical invariants of su(n)k ®su(n)\/su(n)k+\9 it suffices to

find all physical invariants of su(n)k 0 su(n)k+\ which satisfy (2. lie).

3. An Illustration: The Cosets su(2)k ® su(2)ιlsu(2)k+ι

As a simple illustration of the results of the previous section, we will read off from
known results for su(2)k ®su(2)k+\ and su(2)k ® su(2)ι 0 su(2)m the complete list
of su(2)k φsu(2)ι/su(2)k+ι partition functions, for certain choices of & and /. In
Sect. 3.1 we give a new argument, based on Sect. 2.3 and [7], for the 1=1 proof
in [4]. In Sect. 3.2 we write down all the "obvious" su(2)k θ su(2)ι θ su(2)k+ι par-
tition functions for general levels k, /, that satisfy (2.8c). In Sect. 3.3 we prove
this list is complete whenever the three greatest common divisors gcd(& + 2,
/ + 2), gcd(£ + 2, /) and gcd(£, / + 2) are all ^ 3.
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The completeness proof for all k and / may now be within sight, thanks to
[7] and recent work by Stanev [24]; here we only prove it for the k, I mentioned
above.

3.1. su(2)k Θ su(2) \/su(2 )£+ι. The easiest cosets are of the form su(2)k®su(2)\/
su(2)k+\, and were classified in [4]. These constitute the minimal series. We will
give an alternative argument here.

From Sect. 2.3 we know we must find all physical invariants of su(2)k Θ
su(2)k+\ which satisfy Eqs. (2.11). Using [7] we can easily find for example all
physical invariants for su(2)k} 05ί/(2)jt2, when gcd(&ι +2, k2 +2) ^ 3. Here we
have k\ = k, k2 = k -f 1, so this gcd condition is indeed satisfied. The only physical
invariants turn out to be:

(1) ^(g>^+ι, for all k\

(2) sέk 0 @k+ι, for all odd k\

(3) ®k ® ^Wi? for all even k\

(4) the exceptίonals A?> ® $ 10, Ao Θ ̂ 11, ^15 0 Aό» <^i6 ® ̂ π, ^2? 0 <^28, and
<?28 ̂  ̂ 29-

The physical invariants £0k>@k (f°r & even), and ̂  (for & = 10,16,28) are
the physical invariants for su(2)k (their subscript is their level); they can be found
in [4].

It is straightforward to check that (2. l ie) is satisfied by all the invariants in
(l)-(4). Thus to each of the WZNW physical invariants given above, there is a
coset physical invariant.

This example is uncharacteristically simple: for one thing, relatively few physical
invariants of su(n)k Θ su(n)k+\ or su(n)k θ su(n)ι θ su(n)k+ι will be tensor products
of physical invariants of su(n); for another thing, (2.8) and (2.11) will usually be
violated by most physical invariants (e.g. (2.8) cannot be satisfied by any diagonal
invariant).

3.2. su(2)k θ su(2)ι 0 su(2)k+ι> Now let us write down the "obvious" invariants for
su(2)k θ su(2)ι θ su(2)k+ι, for all k, L Some of these are included in [21], but some
are not. For completeness, we will include here the invariants when k and / are both
even (in which case there will be fixed point), without discussing the resolution of
those fixed points. We will begin by listing the "simple current invariants" [12]. If
either k or / is odd, we find exactly 2 of these; if both k and / are even there are
exactly 6.

A simple current for su(2)k Φsu(2)ι θ su(2)k+ι can be written as a triple J =
(c/ι,./2>«/3)? each Ja — 0 or 1. It acts on a weight λ = (^1,^2^3) by

λa if Ja = 0
, (3.1a)

ka + 2 - λa if Λ = 1

where we define k\ = k, ki — I and £3 = k -f /. Define also the quantities J2 and
J λ by

J2~ ΣJaka (mod 4), J λ= ΣJaλa (mod 2). (3.1b)
a=\ a=\
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A simple current invariant [12] M of su(2\ ®su(2)ι ®su(2)k+ι obeys the
"local" selection rule

Mλμ*0=>μ=Jλ for some J. (3.2)

More precisely, any simple current J with J2 even can be used to define a simple
current invariant M(J), in the following way:

[M(J)]λμ = Σ δjm^μ δ2[J (λ - p) + mJ2/2], (3.3a)

where δn[x] = 1 for x = 0 (mod w), and vanishes otherwise. The only other simple
current invariant we will need we will call M110; it is an invariant iff k = I =
0(mod 4), and is defined by

110 f l i f μ = J'λ, where J' = (λ2 + 1,/ίι + 1,0) (mod 2)
11(κ ,

1 0 otherwise.

All simple current invariants were explicitly found for all levels and arbitrary
numbers of su(2) factors, in [7]. In our case, there will be either 30 or 6 of them,
depending on whether or not both k and / are even. We are only interested here in
those which also satisfy (2.8c). The complete list of solutions is:

(sc.l) k, I both odd: M(l l l ) and M(111)M(001);
(sc.2) k odd, / even: M ( l l l ) and M(111)M(010);
(sc.3) £Ξ/Ξθ(mod4): M(ll l), M(111)M110, M(111)M(100), M( l l l ) M(010),

M(111)M(001), and M(100)M(010)M(001);
(sc.4) k even, / = 2(mod4): M(ll l), M(111)M(100), M(111)M(010), M(l l l )

M(001),M(111)M(100)M(010) and M(111)M(010)M(001).

In the special case where k = /, we may take the conjugations Mc of each of
these, defined by

(Mc)λμ=Mλ,μ2μιμ3. (3.4)

M will obey (2.8c) iff Mc will.
It is curious that the numbers of invariants in (sc) are precisely the numbers of

(unconstrained) simple current invariants for su(2}k φsu(2)ι.
The importance of simple current invariants (and their conjugations) is that

in all cases we know, they represent "almost all" of the physical invariants. The
remaining invariants are called the exceptionalsi most of these can be built up from
the <fιo, <^i6 and <^28 exceptionals of the su(2)k classification [4]. Those of this form
which satisfy (2.8c) are:

(e.l) /H=10, noάά: (dn O ^ιo0Λ/,,+ιo)M(lll) and ( j?/π 0.5/10-,, (8) ̂ ιo)Af (111);
(e.2) m= 10, πeven: (^10 0 */„ Θ «δ/ Λ +ι 0 )Λf(l l l) , (<?ι0 0®Λ 0 J/Λ +ιo)Af(lll),

(<fιo0^ Λ 0^ r t +ιo)^ r ( l l l) 5 (<ίΊo®®ιι^®/ι+ιo)Λ/(l l l) and the four addi-
tional invariants obtained by interchanging the first and third components here;

(e.3) m = 16 or 28, noάά: (s/n 0 <$m 0 «δ/w+Λ)M(101) and (dn® #/m-n®δm)

(e.4) m = 16 or 28, n even: (δm 0 j/n 0 ^/m+w) M(011),(^OT 0®Λ 0«s/w+Λ)
M(011),(j/ I I®Λ/Λ I_Λ®ίw)Af(110), and (® Π ΘJ/ W _ Λ 0^)^(110);

(e.5) m, n £ {10, 16, 28} (say w ^ «): the additional invariants in this case are
l) and (if/w < /ι)(^m 0
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Of course the first and second components can be interchanged, and the conjuga-
tion (3.4) can be taken if k = /. This lists (sc) and (e) will almost certainly exhaust
all but finitely many of the physical invariants for su(2)k ®su(2)ι Θ su(2)k+ι satis-
fying (2.8c).

The exceptionals for su(2)kλ θ^w(2)^2, not built from the $m occur at (k\, #2) =
(4,4), (6,6), (8,8), (10,10), (2,10), (3,8), (3,28), and (8,28) (see Ref. [9]). Call
these (^4,4, etc. These can be used to construct further invariants for us:

(sp.l) k = l = 4: (T4,40^8;
(sp.2) k = l = 6: <£6t6®®a',
(sp.3) k = I = 8: A, 8 ® @i6, and <?8>8 <g> ̂ J6;
(sp.4) k = 1= 10: <f 10,10® ^20;
(sp.5) k = 2,l= 10: ^2,10^12;
(sp.6) k — 2, / = 8: <^2,10 ® ̂ s; (interchange second and third components);
(sp.7) * = 3, 7 = 8: (<f'3,8 0 ̂ Π)M(101);
(sp.8) k = 3, / = 5: (<^3j8 ® j^s)M(lOl) (interchange second and third compo-

nents);
(sp.9) £ = 3, 7 = 28: (<f3,28 ® ^3i)M(101);

(sp.10) k = 3, / = 25: (<?3j28 0 «^25)Af (101) (interchange second and third com-
ponents);

(sp.ll) t = 8, 7 = 28: <f8,28®^36;
(sp.12) k = 8, / = 20: <f8,28 ® ^20 (interchange second and third components).

When / = 1, we get the invariants listed in Sect. 3.1. with no redundancies. However
the identity Q>ι — j/2 means we do get some repetition when / = 2 (the / = 2 cosets
include all of the N = 1 superconformal minimal models). We conjecture that this
list gives all physical invariants of su(2)k φ,sw(2)/ ® su(2)*+/ satisfying (2.8); in
the next subsection we prove this for certain k, I (we have also done this for all k,
when 1 = 2).

3.3. The small gcd Case. The only class of su(2) cosets which is classified is
that with 7 = 1 [4]. In this subsection we will exploit other results from [7]
which will permit us to obtain many more classifications. In particular, there
we found (among other things) all invariants of su(2)k} Θ ® su(2)kr when for
each /Φy,gcd(£ι 4-2, &7 4-2) ^ 3. So from this we immediately get the list of
all su(2)k Θ su(2)ι/su(2)k+ι physical invariants when the greatest common divisors
gcd(& 4- 2, 7 4- 2), gcd(A: 4- 2, /), and gcd(£, 7 + 2) are all g 3. (The relevant prop-
erty of the numbers a g 3 is that the only numbers coprime to 2a are = ± 1 (mod
20).) Note that for a given k, there are infinitely many 7 satisfying those three gcd
conditions - in fact a positive density of such 7.

This argument in [7] makes use of some additional properties WZNW partition
functions must satisfy [20]. We can avoid using these here, because we have only
three copies of su(2\ and because (2.8) holds. As usual, we will restrict attention
here to the cosets without fixed points, i.e. where at least one of k and 7 is odd.
With a little more work, this restriction can be lifted.

The proof of the following theorem makes use of certain useful lemmas and
techniques (e.g. the parity rule} developed in several earlier papers. We state these
explicitly in Sects. 4 and 5, in the context of su(3), in the course of proving the
more difficult Theorem 2, but to avoid unnecessary duplication we will not give
their su(2) translations here. For that, see in particular [7].
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Theorem 1. Choose any k, 7, not both even, for which gcd(& -f 2, / -f 2), gcd(& +
2, /), gcd(&, 7 + 2) are all ^ 3. TTzew the complete list of all physical invariants
of su(2)k ®su(2)ι @su(2)*+/ satisfying (2.8) is (sc.l), (sc.2), (e.l) and (e.3).

Proof. The argument will follow as closely as possible the proof of Theorem 7 in
[7]. Since the detailed argument is so similar to others (e.g. analyzing the special
cases k\ = 10, 16, 28 reduces to arguments found in Sect. 5.3 below, and Sect. 6
of [10]), we will be somewhat sketchy here.

Exactly one of k, 7, k + / will be even; let k\ denote this even level, and let
&2 ^ £3 denote the other two, and write k( = £/ + 2. Let M denote any physical
invariant of su(2)/C[ φ su(2)#2 ®su(2)k3. Write a — (a\9 a2, #3), etc. for its weights,
p for the weight (1,1,1) and Sab for the iS-matrix. In particular we first find in
Sect. 6 of [7] the consequences of the so-called parity rule (in fact the reason for
our gcd conditions is precisely to maximize the effectiveness of this parity rule).
We get the following selection rules:

Mab*0 ^b2e {fl2, k!

2 - a2}, bi G {03, £3 - «3J (3.5a)

MabΦθ => a\ = b2

}(moά k() (3.5b)

M f l /7Φθ, fll - 1, Λ ί Φ 10,28 =*&ι e {!,*{-!}; (3.5c)

M^ΦO, Λ, = 1, i, = 10 =» 61 <Ξ {1, 5, 7, 11} (3.5d)

M f l6Φθ, a{ = 1, *ι = 28 => it G {1, 11, 19, 29} . (3.5e)

Equation (3.5a) is Lemma 3(a) in [7], (3.5b) in Γ-invariance using (3.5a), and
(3.5c)-(3.5e) are Lemma 3(b) in [7], using (3.5b).

Let ML = {a\MapφQ}9&R = {b\Mpb*ϋ}. Write /L for the set of all simple
currents J such that Jp G ̂  define /& similarly. Much is known about the sets
$L,R and /L,R - see e.g. [7,10], and Lemmas 4 and 5 in Sect. 5 of this paper. For
instance the cardinalities \\/L\\ and \\/R\\ must be equal, and /LίR both are groups
(under componentwise addition mod 2). Also each norm J2 (see (3.1b)) in /LιR

must be 0, and MJatJ,b=Mab\/J G Λ,/x € /*. Also, 5α?J^ = -lj'(ί/-^^, and
for J G /L, J *(a — p) = Q if Mαft ΦO for some b. Recall the definition of simple
current invariant, given in (3.2); all simple current invariants for su(2)ι{ 0 0
su(2)ιr are explicitly known, and in our case will lie in (sc.l) or (sc.2).

Case L Consider first the case where all a G ̂  U $R satisfy a\ G {1, k{ — 1} - i.e.
/Lp — MI and /Rρ = MR. By (3.5c), this is the case most of the time, a is called a
fixed point of /L if Ja = a for some J <E //,,,/φO. Note that /^ has a fixed point
iff (1, 0, 0) G ,/L, in which case a is a fixed point iff a\ = ^[/2. Similar comments
apply to //?.

Suppose Mα£φO, and a is not a fixed point of /L, and & is not one of /R.
Without loss of generality suppose Sap ^ Sbp. Then from the various results about
/L,R an<i S given earlier, we get

\\/R\\MabSbp ^ (MS)ap = (SM)ap = \\/L\\Sap (3.6)

Since \\/L\\ = ||/Λ||, this tells us that Afβί/ = 1 iff d G /Λί>, otherwise it equals 0. It
also tells us that Sbp — Sap, i.e. (using (3.5a)) b\ G {a\, k{ — a\}. Similarly, we get
that Mcb = 1 iff c G /ιa, otherwise it equals 0. Thus if there are no fixed points,
M must satisfy (3.2) and we are done. We may assume then that k\ = 0 (mod 4)
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and (1, 0, 0) G /&, say. We may also assume k\ > 4, since (3.5a), (3.5b) force
(3.2) if A! =4.

Now put x = (3, 1, 1) and choose y so that M^φO. x is not a fixed point
of //,; for now assume y is not one of /R. Then by the previous paragraph,
y\ G {3, k( — 3}. Using this, we can prove (3.2) holds for all α, b, as follows.
Suppose M f l£φO, where a\ φ£[/2, but 6 is a fixed point of /%. Then SM = MS
applied to (a, p) and (a, y) gives us

1 =2sin(πflι/A{), ±1 = 2sin(3παι/A 1

/), (3.7)

which are incompatible. This implies M is a simple current invariant, and we are
done.

If instead y defined in the previous paragraph is a fixed point of /R, then
y\ = k{/2, and (3.5b) forces k\ = 16. Suppose M^φO. Then (3.5b) tells us that if
a} g {3, 9, 15}, then bλ G {aλ, k( - a}}9 and if aλ G {3, 9, 15} then /^ G {3, 9, 15}
(incidently, by Lemma 4(b) this forces (1, 0, 0) G /ι). Suppose a\ = 3 but b\ φ9;
then from (SM)xb = (MS)̂  we get 25^ = ±Say, Le. 2sin(9π/18) = ±sin(27π/18),
which is impossible

This proves (using Lemmas 4(b) and 5(a)) that a\ and b\ are related to each
other independently of the values a^ 03, &2> £3- The reverse can also be seen to
hold, using Γ-invariance, (3.5a), and (2.8). Thus M will be the tensor product
of <ίi6 with some simple current invariant of su(2)k2 Θ^w(2)^3, and will be listed
in (e.3).

Case 2. By (3.5c), Case 1 handled all values of k\ except 10 and 28. These ex-
ceptional levels use familiar arguments (see e.g. Sect. 5.3) and we will not repeat
them here. The idea is to first find the possibilities for the values of Mpb and Map

(this is done in the proof of Theorem 7 in [7]), and then use Lemmas 4(b) and 5
and modular invariance (particularly the relation SM = MS) to find the other values
ofM. QED

4. The Physical Invariants of su(3)k θ su(3)\lsu(3)k+\

The last section was an illustration of carrying over known WZNW classifications
directly to the GKO classification. Unfortunately, there are few examples of WZNW
classifications, even for simple g. One of these is g = su(3). Our goal in this section
and the next is to prove the following theorem, which we learned in Sect. 2.3 solves
the classification problem for the cosets su(3)k ®su(3)\/su(3)k+\,Vk:

Theorem 2. The list of all physical invariants of su(3)k (& su(3)k+ι satisfying
(2.lie) is given in the table.

In the table and throughout the remainder of this paper, j/^,^ and<f^ denote
the physical_invariants of su(3)k, and are explicitly given in [8]. The simple current
invariants M(AkAk+\) are defined in (4.4), and their conjugation c[M(AkAk+\)]c is
defined in (4.10a). The invariants of su(3)k θ su(3)\/su(3)k+\ were discussed in
[1,5], but their lists are very incomplete.

Sections 4 and 5 are devoted to proving Theorem 2. Our task in this section
is to find all physical invariants which are automorphisms of the unextended chiral
algebra, but we will begin with some general observations which will also be useful
in the following section.
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Tablel. Physical invariants of su(3)k ®su(3)\/su(3)k+\.

Level Physical invariants

k Ξθ(mod 3) j/k

k=\(modl) t<jt

k = 2(mod 3) j/k

k=4 j/4

(j*
k = 5 /s

k = 8 eβ/g

ft = 9 4

& = 20 '8/20 ® <^21 ~^20 ® ^21

k = 21 <^2l Θ<£/22 ^21 0 ^22

4.7. General Comments. As usual write A = ( A i , ^2) for an su(3) weight, k1 =
k + 3 for the height, /(/I) = λ\ — λ2 (mod 3), ̂  for the simple current taking λ to
^Λ, = (k1 — λ\ — /2, A I ) and C for the conjugation Cλ = (λ2, λ \ ) . Write 0>(k) for
P++(5 M(3), &) x P++(su(3\ A: + 1). Together, Ak (which is order 3) and C (which
is order 2) generate the order 6 group of outer automorphisms Θk of affine su(3).
Let Θkλ denote the orbit {CaA\ λ \ a = 0, 1; b = 0, 1, 2} of λ by this group. Also,

let Θ^λ be the orbit {Ab

kλ \ b — 0, 1, 2} of λ by the simple currents. For example,

What we need to consider is su(3)k ®su(3)k+\. Note first that the heights k'
and k' + 1 are coprime, so the two summands are almost independent. For example,
Γ-invariance implies that if M;^ i /vVΦθ for any invariant M, then

3λ2 = 3/c2(mod 2k')\ 3μ2 = 3v2(mod 2k' + 2). (4.1)

Also very important is the parity rule of [6] (= the arithmetical symmetry of
[22]). For su(3)k ® su(3)k+\ it reduces to the following. Let λ G P(su(3)). There
exists a unique weight, call it [ λ ] k , lying in both ^+(^(3), k + 3) and the orbit of
λ by the affine Weyl group. If [λ]k also lies in P++(su(3), k), then there exists a
unique (finite) Weyl automorphism ω and vector α G ̂ (^^(3))*, the root lattice of
^(3), such that [λ]k = ω(λ + &'α); in this case we can define the parity pk(λ) of
λ to be the parity ε(ω) = det(ω). The parity rule tells us that for any invariant M,
any integer / coprime to 3k'(kf + 1), and any (λμ),(κv) G 3P(k\ we have

where λ1 = [lλ]k,μ' = [/μ]*+ιX = [lκ]k and v' = [lv}k+{.
Because k' and kr + 1 are coprime, this simplifies a little. Given any l\ and /2,

there will be an / satisfying

/ = /i(mod 3k1) and / = /2(mod 3(kf + 1)), (4.2b)
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iff 1 1 Ξ /2 (mod 3). Let l\ be any integer coprime to 3&', and choose /2 = ±1
so that / i = /2 (mod 3). Find any / satisfying (4.2b). It is easy to see that, for
any μ, v 6 P++(jw(3), £ -f- \),pk+\(lμ) — h — Pk+ι(lv) Then (4.2a) implies the
following equation, familiar from [8]. Let M be any physical invariant, and suppose
M ̂ K v Φ O . By {jc} we mean the unique number y satisfying both 0 ^ y ^ k' and
y =x (mod k'). Then for all integers l\ coprime to 3/τ',

{/ιλι} + {M2}<*' i f f { / ι f c , } + {/,ιc2} <k'; (4.3)

a similar statement holds for μ and v, with k' replaced with kf -f 1. We will later
need other consequences of the parity rule (4.2a).

Two consequences of (4.1) and (4.3) have already been drawn in the literature.
In [16] in a completely different context (this paper was "discovered" and brought
into the context of modular invariants by [22]), it was proved that:

Lemma 1. When k' is coprime to 6, λ and K satisfy (4.3) iff K E &kλ.

Of course an analogous statement holds for μ, v and k' + 1. Equation (4.1) was
not used in this derivation. This remarkable result has the flaw that it only holds
for some k. When k' and 6 are not coprime, the situation becomes considerably
more complicated, and no classification of the solutions A, K to (4.3) is known for
general k (it would likely be very messy and probably useless). However, if we
also use (4.1) and restrict ourselves to the special case K = p, all λ solving (4.3)
are known, for all k (this is Prop.l in [10]):

Lemma 2. The set of all solutions λ to (4.1) and (4.3), for κ — p, is:
(a) for k = 0, 2, 3 (mod 4), k* 15 : λ G 0gp;

(b) for k = 1 (mod 4), J fcφ9, 21, 57 : λ G 0Jp U 0*((Jfc + l)/2, (k + l)/2);
(c) for k = 9, 15, 21, 57, respectively, λ lies in

U 0 ( 5 , 5) U Θ\Ί, 7) U tf2

0

l(l 1, 11) ,

U^ 7(ll, 11)U^7(19, 19)U0j57(29, 29).

Some useful results concerning the modular ^-matrix S^ of su(3)k are Claims
1,2,8 in [10]:

fp

} = (k}

K e (9kλ.

Lemma 3. (a) Suppose sfp

} = S(

κ

k

p

} and { A j , A2, £' - A I - A2} Π {κ:1? κ:2, ̂  - KI -

(b) For any A, α, 6 , ^ ^ - s /// C^^A = A.

(c) ίbr ̂  A, α, b c a A h } - 5(

(^4U (̂  C^A e {A, ̂

Finally, we will define [12] the physical invariant M(J) of 5i/(3)yt ® su(3)k+\
associated with the simple current J = A^Ab

k+l, for Λ, b not both divisible by 3
(compare (3.3a))r

,,V - £ ̂ (̂ U,,(53[^(A) + *ί(/ι) - m(^2 + (A: + l)^2)] . (4.4)
w=0
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4.2. The Automorphism Invariants of su(3\ θ su(3)k+\. A natural first step is
to find all automorphism (= permutation) invariants corresponding to that direct
sum. The hardest part of this (Claim 3 below) will be to show that "locally" the
automorphism invariant acts like an outer automorphism.

By an automorphism invariant we mean a physical invariant M = Mσ with

(^fσ)λμ,κv — °κv,σ(λμ) >

where σ is a permutation of 0*(k). The entries of Mσ will be a bunch of O's and
Γs, with exactly one "1" on each row and column. Of course, M^p^pp = 1 means
that σ(pρ) = (pp).

Commutation of Mσ with S<*'*+1> = S(k} ® S(k+l} means that

where (λμ),(κv),(aβ) G 3?(k\ where σ(λμ) = (λ1 μ'\ σ(κv) = (jcV) and σ(%β) =
(α'/J'X and where N(k^ are the fusion coefficients for su(3\ (similarly for su(3)k+\ )•
By Verlinde's formula, we know (4.5a) implies (4.5b).

The entries of S^ are given by the Kac-Peterson formula [14], while those of
(for su(3)) were computed in [2]. Two important special cases are:

... o δ
> 0, (4.6a)

V3kf

where ΛO = &' — /i - ^2 and .φc) = si^π c/^7)- From (4.6a) we see that V3S is

a polynomial over Q in ξk> = exp(2πi/k'). But we know (see e.g. [25]) that the
roots of unity ξm and ξn are algebraically independent over Q, whenever m and n
are coprime. Using (4.5a) and the fact that kf and k' + 1 are coprime, what this
means is that

o(A') £(#+1)

Q. (4.6c)

Another convenient formula for the ^-matrix of su(3)k is, for any weights λ, K,

sfl = (S?ϊr. (4.6d)

Our first task will be to prove:

Claim 3. Any automorphism invariant Mσ for su(3)k θ su(3)k+\ acts locally like an
outer automorphism. In other words, choose any (λμ) e 3P(k) and write σ(λμ) =
(λ1 μ')\ then both λ' G Θkλ and μ' G &k+{μ.

Proof. Suppose (λμ) has λ' e (9kλ. Then Eqs. (4.5) and (4.6) tell us that

c(*+l) _ c(*+l) \τ(k+\) - /U(/:+1) ( Λ Ί Λ
*pμ ~^pμ' ' Nμμμ ~ "μ'μ'μ' ' ^'' '

Lemma 3(a) then tells us that μ' e (9k+l μ. Thus λ' e Okλ iff μf G &k+lμ.
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But for k Ξ 2, 4 (mod 6) Lemma 1 tells us that λf G Gk λ, and for k =
1, 3(mod 6) it tells us that μ' <E (9k+l μ. This concludes the proof of our Claim
for k = 1,2, 3, 4 (mod 6). It remains to consider k = 0, 5, 6, 11 (mod 12). For this
purpose, we will make use of the following important fact:

For any (λμ), (KV) G ,Φ(k) and integers a, b

σ(pμ) = (Aap, v) and σ(λp) = (K, Ab p) => σ(λμ) = (Aaκ, Abv) . (4.8a)

Equation (4.8a) holds for any level k, and analogues will hold for all algebras g.
To see it, write σ(λμ) = (λ'μ')ι then λ1 ', μf are the unique weights satisfying

for all (αj8) G 0*(k\ where σ(αβ) = (α'β7)- (This follows eg. from orthogonality
of the rows of S(k>k+l\) Using (2.2c), the two hypotheses in (4.8a) tell us

(Λ v^

^ ^where ω = exp(2πz'/3). Multiplying these and dividing by the corresponding equa-
tion for σ(pp)~(pp) gives us (4.8b) with (λr μ') = (Aaκ, Abv), completing the
proof of (4.8a).

One immediate consequence of (4.8a) is that if we know that Claim 3 holds for
(λ p), and (p μ), then it holds for (λμ).

Look first at k = 11 (mod 12). Choose any (λμ) e &>(k), and write σ(λp) =
(λ1 p'} and σ(pμ) = (p" μ1). By Lemma 2(a) we read that pf e (9k

Qp and p" G

@Q+} p. By the conclusion of the paragraph containing (4.7), this forces both λ' G

Θkλ and μ' G (9k+l μ. By the previous paragraph, this concludes the proof of Claim
3 for these k.

The identical argument and conclusion applies to k = 6 (mod 12). For k =
0, 5 (mod 12), respectively, we have to consider the additional possibilities that
p' G ®Q+l((k + 2)/29(k + 2)/2) and p" G Ok

Q((k + l)/2, (k + l)/2). Consider with-
out loss of generality the latter case. Then (4.6c) becomes the statement that

o(^) ^\r\(ττ(k -4- 1 ΛUk'Λtύ nίTΓίk 4- 1 V?^/^Qτn^9ττ /JrM 1 4- rrW?^/^7^,\ . oill( / C t Av 7^ 1 // Z«Λ/ lollll /Ll /V Π̂  -I // -^/v /δlUl^/C/A- I 1 Π̂  V^Uδ(Z//L/Λ- I

pp"

(4.9a)
is a rational number. In other words, A:7 must satisfy

^ ) G Q . (4.9b)

For n > 2, the degree [Q(cos(2π/«)):Q] of the extension of Q by cos(2π/rc)
equals [Q(exp(2πz»): Q]/[Q(exp(2πz/n)): Q(cos(2π/w))] - φ(w)/2, where φ(«) is
the number of 1 ^ / < n coprime to n. Therefore (4.9b) holds iff φ(k') ^ 2,
le. iff k1 = 1,2, 3,4, 6.3

But none of these solutions to (4.9b) satisfy fc'= A; + 3 = 8(mod 12). This
contradiction means that p" must lie in (9kp. The familiar argument now forces
μ' G @k+l μ, completing the proof of Claim 3 for k = 5 (mod 12). The argument for
k = 0(mod 12) is identical. QED

We thank Antoine Coste for this proof that (4.9b) implies k' = 1, 2, 3, 4, 6.
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Given any physical invariant M, define the conjugations Mc, CM, CMC by

(Mc)λμ, κv = Mfa κCv, (cM)λμ^ κv = Mλμι GCV, (cM°)λμt κv = Mλμt CκCv (4.10a)

Then each of these conjugations will also be a physical invariant.

Claim 4. M is an automorphism invariant of su(3 )k Θ.sw(3)/t+ι iff one of the 4

conjugations (4.10a) of M, call it Mσ , satisfies:

V(λμ) G 0>(k\ σ'(λμ) = (Aat(λ)+bt(μ)λ,Act(λ)+dt(μ)μ) , (4.10b)

for fixed (a, b, c9 d\ independent of λ, μ. Moreover,

(a) for k = 0(mod 3),(a,b,c,d) <Ξ {(0,0,0,0), (1, ±1,^1,0), (0,0,0, 1),
(1,±1,±1,1)},

(b) for k = I (mod 3), (a,b,c9d) G {(0,0,0,0), (0,0,0, -1), (1,0,0,0),
(1,0,0,-!)},

(c) for k = 2(mod 3), (a,b,c,d) G {(0,0,0,0), (-1,±1,±1,-1), (-1,0,0,0),
(0,±l,τl,-l)}

Proof First, it is necessary to verify that all the quadruples (a,b9c9d) listed in
Claim 4 give rise to automoφhism invariants. It suffices to verify Γ-invariance and
that ,̂0° = ^(IXl/ocvr This is straightforward using Eqs. (2.2b),(2.2c).

Let M=M σ . Since Cp = p, Claim 3 tells us σ ( p , ( l , 2 ) ) = (Awρ,CuAx(l,2))
and σ((l,2),ρ) = (CvAy(l,2),Azp). Consider the conjugation M' of M with u =
i; = 0. Equations (4.5a) and (2.2c) give us the following conditions of w9x9y9z:

. 2)

y + z\k + 1) Ξ 0(mod 3) ,

W +xz(t + 1) - z = 0(mod 3) .

(4.11)

Here we are exploiting the facts that S^ΦO (see (4.6a)) and ^((^(i 2)^^ (see

Lemma 3(b)). It is easy to find all solutions (w9x9y9z) to (4.11), and to verify that

each one corresponds to some Mσ listed in the Claim.

In other words, the automoφhism invariant Mσ = M'(Mσ )-1 has σ"(p,(l,2))=
(p,(l,2)) and σ"((l,2),p) = ((l,2),p). By Claim 3 we may write σ"(λ,μ) =
(CeAJ'λ,CCJAhμ). Then by (4.5a),

But Lemma 3(b) and the fact that S^ΦO gives us μ = C^V A = CeAfλ- i.e.

σ"(λμ) = (λμ). Thus M' = Mσ/ . QED
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Thus, for each k there will be 24 or 16 automorphism invariants. Of these, the
only ones satisfying (2. l ie) (so that they correspond to coset invariants) are:

(1) k =
(2) k = 1 (mod 3): (0,0,0,0), (0,0,0,-l)c, c(l, 0,0,0), c(l,0,0,-l)c;
(3) k = 2(mod 3): (0,0,0,0), (0, l,-l,-l)c, c(-l, 0,0,0), c(-l,-l,-l,-l)c.

5. The Physical Invariants of su(3)k © su(3)k+ι Involving Chiral Extensions

In this section we complete the proof of Thm. 2. We will begin by finding all possi-
bilities for the maximally extended chiral algebras, and then find all automorphisms
of those chiral algebras.

5.1. The Weights which can Couple to (pp). In this subsection we begin the
search for all possible chiral algebra extensions by finding the possible weights
(λ, μ) G &(k) which can couple to (pp\ i.e. those (λ, μ) which satisfy the norm
condition (Γ-invariance)

as well as satisfy the parity rules (4.3) (with K = v = p). Any weights (λ,μ) for
which Mp^ i μ φ O for some physical invariant M, must necessarily satisfy (5. la) and
(4.3). We will also impose the condition (2. 11 a), namely that

t(λ) + t(μ) = Q (mod 3). (5.1b)

For arbitrary algebras, this step (i.e. enumerating the possible rho-couplings)
is quite tedious. Fortunately the hard work has already been done by [8], and all
we have to do is collect the pieces. Let us begin by reviewing some observations
from [10].

For a given physical invariant M of su(3)k θsw(3)/t-H, write ̂  = {(λ,μ) £
TOI^/VV-VΦO for some κ,v}, and /L = {Aa

kA
b

k+l |M^W/?ΦO}. »R and /R

can be defined similarly. /ι(λμ) denotes the orbit, and ||//,(Λμ)|| its cardinality.
Then we have

Lemma 4. (a) For each (λ,μ) G &>(k\ define s(λ,μ) = Y,KVMPP^vS(S( Then
each s(λ,μ) ^ 0, and s(λ,μ] > 0 iff (λ,μ) 6 &L.
(b) For any a,b,c,d, MAapAhptAcpA<ιp = 1 holds iff MAa)Λbμ,AcvAdκ = Mλμ,vκ for all
A, μ, v, K, iff at(λ) -\- bt(μ) = ct(v) + dt(κ)(mod 3) whenever M^> V KΦO. In parti-
cular, VΛμf+ 1 E Λ, MAaλAbμtKV = Mλμ^v.

The same comments apply to ,ΦR and /R, of course. Lemma 4 holds for gen-
eral g, and more generally, any rational conformal field theory with a centre. It is
proven in [7] (see also Lemma 1 in [10]). (a) follows from S(*'*+1)M = MS(k>k+l}

and the fact that all SppίKV are positive, (b) follows from calculations from M =

S(k,k+ικMS(k,k+\)9 along the lines of how (2.8c) implied (2.8a) and (2.8b). Note
that (b) implies /L^ are (Abelian) groups.
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A final useful result concerns the eigenvalues of M. Write M as the direct sum

/MI o . . . o \
0 M2 0

M = @Mi = . . (5.2)
/

V 0 0 MyJ

of indecomposable submatrices Mt. Each weight (λ,μ) G 0*(k) will be "contained"
in one and only one Mt. For convenience always choose M\ to contain (pp). Because
every entry of each M\ is non-negative, then M, has a non-negative eigenvalue
r(M/), called the Perron-Frobenius eigenvalue, with many remarkable properties.
The most important is that if s is any other (possibly complex) eigenvalue of Ml

then |^| ^ r(M/). See e.g. [10] for more details. These M/ will usually turn out to
be an m x m matrix of the form

(5.3)

for some l,m. It is easy to see that r(B(^m^) = Im.
Define sets .*L and &R by (/l,μ)G^L iff Mλμtppή=09 and (/,,μ)e^Λ iff

^pp,/ίμΦθ The following result comes from Lemma 3 in [10].

Lemma 5. (a) Suppose M has M\ = #(i,m) for some m. Then for each /, either

M = (0) or r(M) - m. Also, for each (l,μ) G ^(*),Σκv^κ-v ^ w2/||Λ(^)ll-
(b) TVow suppose $L = A(pp) αnrf ^/? = //?(PP) Suppose M;^M,φO. TTzew

!!. ///« αrfώYw/ι (/,μ) w w/ a fixed point of
/ι (i.e. J G /L? ί/Φθ, implies J(/,μ)Φ(/,μ)) «wrf αfeo (/cv) w «o/ a fixed point
of /R, then M^κv = 1; moreover, Mλμ^βΦθ iff (<x,β) G /R(KV\ and M^κvή=0 iff

We are now ready for the main result of this subsection:

Proposition 1. Let M be a physical invariant of su(3)k θ^w(3)^+ι, satisfying
(2.11), so that a coset invariant can be obtained from it. Then Mpp^4l = M^pp G

{0, l},/or all (λ,μ) G 2P(k). Thus 3ft,L — $R and /L = /R. Putting p' — (̂ , ̂ ~],

p" = (^r, ̂ ), the possibilities for $L are given by.

(i) k ΞΞθ(mod 3),k*9,2l:either3lL = {(pp)} or

(ii) k= 1 (mod 3), k φ4 -.either &L = {(P,P)} or
@L = { ( p 9 p ) 9 ( A p 9 A p ) 9 (A2p,A2p)};

(iii) jfc = 2(mod 3),A:Φ5,8,20:eϊίAer ^£ = {(p,p)} or

(iv) A: = 4: .̂  is either given in (ii), or equals {(pp), (ppx/)} or {(Aap,Aap),
(A"p,Attp")\a = 0,l,2} ,

k = 5: &L is either given in (iii), or equals {(pp), (p;p)} ^r {(P?^αp)?
(^flp)l« = 0,1,2};

^ = 8: 3tL is either given in (iii), or equals {(ρ,Aaρ\(p,Aap")\a = 0, 1,2};
& = 9: <%L is either given in (i), or equals {(Aap,p\(Aap',p)\a — 0, 1,2};
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k = 20: 0tL is either given in (iii), or equals

k — 21: 0tι is either given in (i), or equals

{(Aap,p),(Aap',p),(Aa(S,5),p),(Aa(7,7),p)\a = 0,1,2} .

Proof. Consider first k = 0(mod 12). We see from Lemma 2 that (λ,μ) G $ι means
/ = Aap and μ = Abp or μ = Abp"', for some 0, ft = 0,1,2. Equation (5.1b) forces

Now put / = p, μ = (1,4) in Lemma 4(a):

(mi -f mL) sin — -f (WL — m^) sin — — (m^ -f m[) sin — ^ 0.

(5.4)

From Lemma 4(b) and Mpf)jpp = 1 we know mi — 1 or 3: mi = 1 corresponds to
/L = {A®}; mL — 3 corresponds to #L = {A°k,Ak,A

2

k}. In either case, (5.4) forces
mi > m'L (since k > 9), while Lemma 4(b) implies that if ra^φO then mi ^ m'L.
Together these tell us that m'L — 0.

Similar arguments apply to mR and m'R. That we have 3%ι = MR here, follows
from S^kίk+^M = MS^k+}^ evaluated at (pp,pp): it says mi — m#.

The other k are all handled similarly. (See especially Claim 7 in [10].) QED

5.2. Simple Current Chiral Extensions and their Automorphisms. Write 3% for
$L = $R^ and / for /ι = /R. In this subsection we find all M for which $ C
(0Qp,0Q+1p) We see from Prop. 1 that indeed all M satisfy that condition, except
at the six exceptional levels k — 4,5,8,9,20,21.

Note that either \\/\\ = 1 or 3. If it equals 1, then M must be an automorphism
invariant (see Thm. 3 in [6]), hence is listed at the end of Sect. 4. The argument
for 11/11 = 3 will closely follow that of Sect. 4.

Consider first the easiest case: k= 1 (mod 3)(£Φ4). Then / = {J0,/1,/2},
where J = AkAk+\. Lemma 4(b) tells us that & := 0>L = 0>R = {(λμ) G 0>(k)\t(λ)
ΞΞ -f(μ)(mod 3)}. For each (λ,μ) G ̂ , define the J-orbit (λμ) = {(λ,μ)9J(λ,μ),
J2(λ,μ)}, and

(λ'μ')Z(λμ)

The special thing here is that there are no fixed points of /. So Lemma 5(b)
tells us that there exists a permutation σ of the J-orbits (λμ) C 0* such that the
partition function Z associated to M can be written

uΛω - (5 5b)

So our task reduces to finding all bijections σ such that (5.5b) is a modular invariant.
Define a matrix Se by
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Then Se is unitary and symmetric, and M commutes with £(*»*+ Π iff σ is
symmetry of Se. We may formally define "fusion rules" by Verlinde's formula:

Ne -ιy

ice

(W'W-= _ -
(λμ},(λμ),(λμ) ' L^ ~e Z^ Z^ (£) c(£+l) ^ λλλ^ μμμ

<κ-v) %p),<κv) <κv)*,6=0 S^AaKSpAbv

(5.6b)
where the second equality arises by using (5.6a) and (2.2c) (the cube cancels the
extra phases which appear), σ will also be a symmetry of these Ne .

Either k' or k' + 1 will be odd - that one will be coprime to 6 for k = 1 (mod 3).
Say k' is odd. Write σ(λμ) = (λ'μf). Then Lemma 1 says λ' 6 Φλ. As in the proof
of Claim 3, Eqs. (5.6) imply Eqs. (4.7), so Lemma 3(a) gives us μ' £ Φμ.

Now Cp — p, so σ(p(l,4)) must equal (p,Cfl^(l,4)) for some a, b; but
f(CM*(l,4)) = -/(p)(mod 3), so b = 0. Conjugating if necessary (see Eq. (4.10a)),
we may suppose σ(p(l,4)) = (p(l,4)}. Similarly, conjugating if necessary, we
may suppose σ((l,4)p) = ((l,4)p>. Write σ(λμ) = (CwAxλ,CyAzμ) (5.6a) gives

us S^l = $u}]
}cyAzμ,Sί$l}ίλ = Sg), c^z;.. Lemma 3(c) then requires μ - Λ'μ' and

/I = A>λ' for some /, j. t(λ) + ί(μ) = ί(/O + /(μ;) Ξ 0 (mod 3) then forces / = j, so
σ(λμ) = (λμ).

The final result (reintroducing the conjugations and ensuring σ(λμ) G ̂ ) is that
either σ(λμ) = (λμ)V(λμ), or σ(λμ) = (Cλ,C/ι)V(λ/x>.

The arguments for k = 0 and Λ = 2 (mod 3)(A:φ5, 8, 9, 20, 21) are identical to
each other, and similar to k = 1 (mod 3) except for the presence of the fixed points
( ( k ' / 3 9 k ' / 3 ) , μ ) and (λ,([kf + l]/3,[^; + l]/3)), respectively. Consider the case k =
0(mod 3). Here, ^ := 0>L = 0>R = {(λ,μ) e 0>(k)\t(λ) = 0(mod 3)}. Write / -

Then as before,

Choose any (A,//) G ̂ ,/lφ/, such that M^μj v = 0 for all v. Then Lemma 5(b)
says there exists a map σ such that

Suppose we have σ((λ}μ) = (λ'}μr and σ((κ:)v) - (κ')v'. Look at S(k>k+l)M =
^\ we get an equation resembling (4.5):

By Lemma 2, Mpμjv = 0 for all μ,v, so we may write σ ( ( p ) μ ) = (λ')μ'. Lemma 2

tells us that λf G (p> or (p1 = (ψ, ψ)} (when £ = 9, 15, 21, 57 we have addi-
tional possibilities, but they all succumb to similar arguments).

Suppose for contradiction that λ' — p f . Apply (5.8b) with v = K — p: we find

(see (4.6c)) that S^k]/Spkp must be a rational number. But we proved in Claim 3

that this could only happen for k' ^6, yet Lemma 2 and k = 0(mod 3) tells us
k' ^ 12. Therefore σ ( ( p ) μ ) = (p)μ'.
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Equation (5.8b) now tells us (choosing λ = K = p) that S$+1) - S(*,+,l\ Thus

the map μ ̂  μ' defines an automorphism invariant of su(3)k+ι, so equals^+i or
or their conjugations. Multiplying M by (Λ/*® this automoφhism invariant)

allows us to suppose that σ ( ( p ) μ ) = (p)μ, for all μ.
Now choose any λ with t(λ) = 0. Then

α,j8 α,/J

holds for any v. Multiplying this by SγK

+ for any K and summing over v, we
have

\~^ <?(k) n/f ι O(Λ) £ / c πu. \
2_^^ooί %κ λμ = η ^μ ( j .VDj

By positivity, we see from this that Mα^;LμΦθ requires β = μ.
The remainder of the argument is as in Theorem 3 of [10]. Namely, M(2,2)p,fμ — 0

for all μ (unless k = 3, which can be worked out by Γ-invariance, and & = 9,

which gives us the exceptional (̂  0 ^10); from this we get σ({2,2)p) = (2,2)p;

Mfμ^,μ = Q for any Λ,Φ/ because otherwise S^kJrl^M = MS^k+{^ evaluated at
(pp,λμ) and at ((2,2)p,lμ) yield two incompatible equations. Therefore the fixed
point behaviour is trivial: MfμjlV = 3 δ f χ δ μ v . σ can now be extended to all (λ)μ by

defining σ((/)μ) = {/)μ. Then (5.8b) holds VΛ,μ,v,κ G 0>. Looking at N[k

f

}

fN^l\

and using Lemma 3(c), completes the argument.
The final result, reintroducing the automorphisms and imposing (2.lie), is that

M = e/^ ® .Ĵ  +i, where Jί^ — ^k or ̂ , and Jί^\ =j3^+i °r ^k+\ Thus
together with Prop. 1 and Claim 4, we have proven Thm. 2 for all k, except for
k = 4, 5, 8, 9,20 and 21.

5.3. The Exceptional Levels. In this subsection we complete the proof of Thm. 2
by considering the remaining levels k = 4, 5, 8, 9, 20, 21. We know the values of
Mϊμ)f)p and Mppt^μ for these levels (Prop. 1); the task is to go from these to all
^fλμ,κv We have many tools for doing this: most notably Lemmas 1,2,4 and 5,

as well as direct use of Γ-invariance and the relation MS(k>k+l} = S(k'k+^M. The
arguments for each level are all essentially the same; we will explicitly give the
one for k = 4. See Thm. 3 of [10] for more details.

Let us begin with k — 4, and $ = {(p,p),(p,p//)} Then by Prop. 1, Mpp^χμ =
Mλμ,pp = 0, for all (A,μ) G £?(k\ except for Mpp^pp — Mpp?pp// — Mp p//? p p = 1. Now
suppose M; t / ί p p//φO. Choose / coprime to 3 7 8, such that / = ±1 (mod 3 7)
and / = 5 (mod 3 8) - e.g. / — 125. Then [/p]4 = P,[lp"]5 — P, so by the parity
rule (4.2a) we get M;/^pp = Mλμtppn φ 0, where λr = [lλ]4 and μf — [lμ]$. Thus
Mλμtpp» = 1, and (λ1 μ1] = (pp) or (ρρ"\ i.e. (λμ) = (pρ;/) or (pp).

What we have shown is that M\ = #(1,2) (see (5.3)). By Lemma 4(a), 3^ —
P++(^w(3),4) x (β?0p U β?0(3,3) U 0(1,3)). Equations (4.1) and (4.3) tell us Mλμ^κv

φO requires K G (9λ and either μ, v G $oP U ^o(3,3), or μ, v G 0(1,3). Now, compu-
ting (S&k+»M)λμjP = (MS^k+l^λμ,pp for any (/,μ) G ^ gives us Σ^Mλμ,™ = 2,
and if μ G @op U 0o(3,3) we get further that there exist weights (λ'μ')9(λ"μ") G &
such that μ1 G $0P and μ" G 0o(3,3), and Mλμ^λ,μ, = Mλμ^λuμ» = 1.

For each α, there exist Z?, c such that MpAap AbpAcp Φ 0. Then (2.11 a) and T-
ίnvariance force b — 0 and a — c. Thus by Lemma 4(b) and (2.lib), M^κv —
MAaλAb AaκAbv, and M^> K : VΦO implies ί(/l) = t ( κ ) and ί(μ) = ί(v).
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We can now completely determine M, once we know the values of MP(\,3),p(i,3),

Mi,2)p,(i,2)p5^(i,2)p,(i,2)(3,3),^f(i,2)(i,3),(i,2)(i,3) and M(\t2)(\t3),(i,2)(4,3) By multiply-

ing M by ^4 0 j/5 if necessary, we can force M(i > 2)p,(i,2)p — l The relation
S(k,k+\)M = Afs^U+0 evaluated at certain weights now forces M = jjf4 0 <?5.

The other anomalous possibility for .̂  when A: = 4 is & — {Aa(p,p),Aa(p,p")\
a — 0,1,2}. Here / has order 3 and Λ/i =5(1,5), but otherwise the argument is
very similar to the one just given.

6. Conclusion

Our main results are already pointed out in the Introduction. We conclude with a
brief discussion of possible future directions of research.

The correspondence of Sect. 2, between the physical modular invariants of diag-
onal coset theories and WZNW tensor products, was the starting point of this work.
We restricted attention here to diagonal cosets without fixed points, because of the
simplicity of their field identifications. The switch of weights should also yield a
correspondence for more general classes of GKO cosets. We hope to address this
in later work. The correspondence might be helpful in calculating other quantities
of interest in coset theories, such as correlation functions.

The ultimate goal of any modular invariant classification such as ours is a deeper
understanding of (rational) conformal field theories in general. There are two ways
progress may be made. First, the truths used to complete a particular classification
can be shown valid in more general contexts. Since coset theories comprise (at
least) a large part of all rational conformal theories, it would be worthwhile to
try to prove some of our results for an arbitrary rational theory, perhaps with a
centre. Second, a pattern may emerge in the completed classifications that can be
extended to other theories. Presumably, such a pattern would be some generalisa-
tion of the famous A-D-E results of [4]. Perhaps the connection with [16] points
the way.
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