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Abstract: We give explicit formulas for the branching rules of the conformal embed-
dings su(n(n -f l)/2)ι D su(n)n+2, su(n(n — l)/2)ι D su(n}n-2, sp(n)\ D so(ή)^ Θ
su(2)n, and so(m -f n)\ D so(m)\ ® so(n)\ with m and n odd.

Introduction

The theory of affine Lie algebras has found very useful applications in Theoret-
ical Physics. Our work is related to the models found in Conformal Field The-
ory.

In [K-P] a set of functions called string functions were introduced to describe
the branching rules of an integrable highest weight representation of an affine Lie

algebra g with respect to its homogeneous Heisenberg subalgebra h. There it was
observed that those functions were modular functions with respect to a congruence
subgroup of SI2 (Z). In [K-W], the problem of describing the branching rules for
an arbitrary pair g D p was considered, proving modular properties and finding the
asymptotic behaviour of most of them.

A special case of pairs g D p comes from the so-called coset construction,
[G-K-O], given an irreducible highest weight representation L(Λ) of g one constructs

the Sugawara operators Tm that give a representation of the Virasoro algebra on
L(A), similarly for the restriction to p one obtains a representation of the Virasoro

algebra by operators T£. Taking the difference of the Virasoro operators, a new
representation of the Virasoro algebra is obtained and it commutes with p. Thus
we get the decomposition:

= φU(Λ,λ)®L(λ).
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The central charge of the Virasoro algebra acting on U(Λ,λ) is z^(g) — zχ(p),
where

h(g) being the dual Coxeter number, k the level of L(Λ) and z^(g) (resp. z;t(/?))
the central charge of the Sugawara representation of the Virasoro algebra act-
ing on L(A) (resp. L(λ)). Let h and h denote Cartan subalgebras of g and p.
One can choose them so that h C h. Let H — {τ £ C|Imτ > 0} be the upper-
half plane. The normalized character χΛ of L(Λ) is the holomorphic function on
Hxh:

χA(τ,z) = ^-^(^)/24trL(yl)exp2/π(τLo + z) , (0.1)

where as usual g denotes exp2/πτ. Suppose that z G /i, then from (0.1) we
get:

τ)χ;.(τ,z), (0.2)

where the branching function b4 is

*ίW = q-WWW trί/(/, ;/« . (0.3)

The modular transformation properties of the characters are given by [KW]:

χΛ(τ + l,z) = e2m^-z^/24)χΛ(τ,z) (0.4)

with

is called the ίrαce anomaly, and

z) . (0.6)

is the set of dominant highest weights of level k, and

a(Λ,M) = i\A+l\P/P*\~l/2(k -h h(g)Γn/2

x Σ det(w) exp ~2^ (>ϊ + /δ|w(M + p)) . (0.7)

\A+\ is the number of positive roots of g, P is the weight lattice, P* its dual,
W the Weyl group, and A and p denote the "finite" parts of A and p, i.e.
Λ = kΛ0 + Λ, p = h(g)AQ + p, see [K].

Set β(yl) = a(Λ9kΛo). By the Weyl denominator formula,

a(Λ) = |P/P* -'/2(* + Ato))-"/2 Π 2 sin ̂ Λ t ' . (0.8)

Hence α(/l) is a positive real number, it is called the asymptotic dimension of
), and appears in the asymptotic behavior of χ/ι(τ, 0) as τ — » 0. It turns out
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to be:
χA(τ,0) ~ a(A)emz^ll2τ . (0.9)

From (0.2) one easily deduces the transformation law of the branching function:

-- = Σ a(Λ,M)ά*(λ,μ)tf(τ) (0.10)

(dotted quantities refer to the subalgebra p).
We say that g 3 p is a conformal embedding when U(Λ, λ) is finite-dimensional,

or equivalently when zΛ(g) = z χ ( p } . This implies that the level of g is one. In this
case b f ( τ ) — dim U(Λ, λ) = b(Λ, λ) is a constant and (0.10) reads:

b(Λ,λ)= Σ fl(ΛM)ά*(/,μ)6(M,μ), (0.11)
M,μ

i.e. the rectangular matrix b(Λ, λ) commutes with the action of the modular group
on the characters of g and p. This matrix obeys also the important identity:

= Σ b(Λ,λ)ά(λ), (0.12)

obtained by inserting (0.9) and its analog for p in (0.2).
Conformal embeddings were classified in [B-B, S-W and A-G-O]. The problem

of finding the branching rules for them was considered in [K-P, K-W, K-S, W, V and
A-B-I]. We will give the branching rules for the families:

su(n(n + 1 )/2) D su(n) index n + 2 ,

su(n(n — l)/2) D su(n) index n — 2 ,

S7?(«) D 5θ(w) 0 sw(2) index (4,π) ,

jo(2(/w -f- n + 1)) D,y0(2/H+ l)θ^(2«+ 1) index (1,1) .

The paper is organized as follows: we compute in the first four sections
the decompositions corresponding to each of the cases mentioned above. Finally
Sect. 5 contains some conclusions and remarks concerning modular invariant parti-
tion functions.

1. Branching Rules for su(n) C su(n(n + 1)12)

The description of b(Λ,λ) will be obtained from the study of the conformal pair

u(l)®su(n) Cso(n(n+ 1)), (1.1)

which comes from the symmetric space

Sp(n)/U(n) .

The link of (1.1) with

su(n)n+2 C su(n(n +
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is provided by

u(l)®su(n(n + l)/2) C so(n(n + 1)) , (1.2)

which is also conformal, with known branching rules (see below).
To compute the branching functions b(Λ,λ) in the cases (1.1) and (1.2), we use

the following theorem from [A-B-I], which is a generalization for the reductive case
of the main theorem in [K-P] (with a correction by Nahm, see [N] ), and gives the
decomposition of the half-spin representations s and t. It is in fact a generalization
of the finite-dimensional analog, which was proved in [P].

Theorem 1.1. Let h be a simple Lie algebra, p C h a reductive subalgebra of
the same rank, such that h = p 0 V defines a symmetric space, i. e. [V,V] C p
and p C g = so(V). Then the decomposition of s Θ / of g into irreducible p-
modules is

sθt= 0 L(w(p)-p), (1.3)
w^W/W

where the dots refer to p, W is the affine Weyl group of h, p is the affine Weyl
vector of h, and W/W is a set of coset representatives such that w(p) - p is a
dominant weight of p.

In the case (1.1) we have h = sp(n), p = su(n) Θ u(\). The Weyl vector
of h is given by p = (n + l)Λo + p with the (finite) Weyl vector p = nε\ -f
(n— 1)^2 H ---- + β« (where the ε7 are orthonormal vectors); in the case of p
we have p — nλo + p with p = (n — 1 )ει -h (n — 2)ε2 + ---- h εΛ-ι - ^y^ Σ"=ι ει

and the fundamental weights are/ί, = ΛQ + Λ with Al — Σ)=ι εj ~~ „ Σ"=ι εj The

Weyl group is given by W — W n T, where T are the translations {4}αe/, with L —

Σ"=l 2Zεi = JTΓ/ 2Zαz + Zu.n({<*>ι}"=\ = {εi - ε2, . . . , επ_ι - επ, 2εn} are the simple
roots of h), and JF = Snn(Z2)

n, where £„ is the permutation group on the set
{ε/}^! and (Z2)" acts by ε/ — > ±ε/; in the case of /?, W = Snn f , where T are

the translations by α G / = X)"^1 Zάz. Observe that /? is included in A in such a
way that oc^ = α^, 1 ^ A: ^ π — 1, see [K].

In order to get a dominant weight w(p) - p we have to use as representatives
of Γ/(Γ Π Γ) in ^F/PF, not the translations ^α/ί by multiples of αw, but the powers
of σ04w, where σ0 is the permutation

l _ + 2 - ^ ---- >n-+\ (1.4)

since, if μ is the automorphism given by

then

σotΛn( w(p)) -p = μ(w(ρ) - p) . (1.5)

The restriction of λ — Σ"=1 α/ε/ a weight of /z to /? is λ — Σ"Ξι (al — al+\)Λl

and λ is a (strictly) dominant weight i f f# z > α/+ι. Thus we see that a suitable choice

for W/W is the following: for each s G (Z2)
w we take σs the permutation which or-

ders the coefficients of s(p) = Y^i={ α/ε^ decreasingly. Then we take W/W — {σss}.
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For example, if n = 3 and s = (-1, 1, 1) then s(p) = —3c\ + 2ε2 + Iε3, so σs =
1 -» 3 — > 2 — > 1, and σXp) - p = 2/i0 + Oyij -f 3yi2.

Therefore, we get the explicit form of the decomposition (1.3) in the case (1.1):

* θ f = 0 Θ L(μk(σss(p)-p))®F(hStk). (1.6)

s^k) is an irreducible Fock space representation of the w(l) Heisenberg algebra
with conformal weight hs^.

Recall that the decomposition (1.3) in the case (1.2) is (see [K-W]):

(1.7)
/I€Z

where h/ι = (Λ — n(n + l)/4)2/(«(« -{- 1)), and we identify the weights /I with the
corresponding elements of Zn(n+\) .

In order to compare both decompositions we introduce some notations. For each
s = (s},...,sn)e(Z2)

n

9 (Si = ±l), we define

Φ)= Σ (n-i+1),
ι ; ί/=ι

i.e. c(s) is the sum of the positive coefficients of s(p) = ΣLi sι(n ~ i ~^~ Oε/5 in me

previous example c(s) = 3.
We will need the following lemma:

Lemma 1.1. The trace anomaly of the weights in (1.6) is

_ (φ) + t(/ι + 1 ))(/!(/» + 1 ) ~ 2(φ) + fc(/ι+l))) ._

- - - - modz

Since h; = ( λ \ and μk(σss(p) - p) = (μk(σss(p)) - p, it follows that

p) | μk(σss(p))\2 - (p|p)

and it is easy to see that (p|p) = π^12" . By definition we have oss(p) —

(n -f I)yi0 H- Σ^=ι α/ ε/ (where {fl/}^ = {^/(« - « -f l)}"=ι in decreasing order).
Now we restrict σss(p) to the Cartan subalgebra of su(n},

= 2(n -f

- (2(/ι
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Thus we have

k-\
μ (σss(p)) = Σ (dn-k+i ~ an-k+ι+\ M/ + (2(n -f 1 ) + an + a\ )Λk

/=o

4- Σ («/-*-«/-*+! )A , (1.9)
i=k+\

and writing Λ/ as [εi + ---- h ε/ - ^(Σy=ι εy)l anc* taking 6 = Σ"=ι β/» we obtain

the following, modulo AQ

= Σ-(nan,k+i-b + 2(n+l)(n-k))εi+ £ -(na^k - b - 2(n + l)*)e, .
/=! w /=£+! w

(1.10)

Therefore |/(Mp))|2 = £{Σf=ι[4(* + 1X*(« + 1)4- /!*„-*+, - b - 2(n + 1)*)]

+ Σ?=ι(Λfl« - * - 2(/ι + l)^)2} - 4(/ι + l)[*(/ι +1)4- Σf=ι «ι.-*+/l + ̂ [4(^ + 1)*

(k(n - 1 ) - b) + w ΣLi />2 - *2]> hence

* 1
Σ «Λ-*+ι

Λ - ι 4 y g ( π + 1 )

and since c(s) — n^n+^ -f | we prove the lemma.

Observe, that since hs + ht = n(n + I)/ 16, with Lemma 1.1 we can determine
A5,* in (1.6):

hStk = (φ) + k(n + 1) - /I(Λ + l)/4)2/(«(/i + l))modZ . (1.11)

For each s = (s\,...,sn) G (Z2)
n and σ G Sn, we denote by σ(s ) the action of

Sn on (Zi)11. Let — 5 be given by (-s)i — —Si. The following lemma obtains the
repetitions of the weights in (1.6), with an additional condition:

Lemma 1.2. Let σ\ be the permutation defined by σ\(i) = « — / + ! . Then

a) σss(ρ)-p = μk(σσι(-s)σι(-s)(p)-p) and φ) = c(σ{(-s)) + k(n + 1)

mod "̂  , wz/A A: = #{ι : s, = 1}.

b) If σss(p) — p = μk(σss(p) - r), with φ) = c(^) + A:(w + l)mod n(n+l\ then
s = 3, k = 0 or s — σ\(—s) with k — #{i : Si = 1}.

Proof, a) Given s G (^2)", let α/ be as in the proof of Lemma 1.1, i.e. σss(p} =
(n + l)Λo + Σ"l==ι a^i (where {α/}"=ι — {^(^ ~ z + ^)}?=ι ^n decreasing order). We
define A = {i : st = 1} = {/ι,...,4} with i\ < < 4 and take the complement
Ac = {4+1,...,/„} with 4+1 >•••>/„. Then

-// + ! /=!,...,* / t ιnλ
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We also have that A = {« — / / + 1 : / = k + 1, ...,«} and ^ ={« — // + ! : / =
!,...,&} (where "refers to σ\(— s)), and

α/_£ = // / = £+! , . . . , « ,

«/!-*+/ = -*/ / = ! , . . . , £ .

Thus (a) follows from (1.8) and (1.9).
b) With the same notation as the previous lemmas, c(s) = c(s) + £(« + l)mod

^ψ^ implies f = \ + *(w + l)mod ̂ .̂ Then, using that μk(σss(p)- p) =

μk(σss(p)) - p.
n 1

σss(ρ) = 2(n + IMo + Σ ~(wβ/ " 6)ε/ >
/=! w

and from (1.10), we obtain that for some integer j

-*+/ + (7 + 2)(π + 1) ϊ = !,...,£ π n,

Using that {a/}f=1 = {^?(« — / H- l)}!Lι ^n decreasing order, it is easy to see that k
must be the number of Γs in s and that

. Γ - l i f £ φ O
7 I 0 or 1 if A: = 0 '

Thus the lemma follows from (1.13).

By Lemma 1.2.(b) it is natural to define the relation s ~ s if s = s o r£= σ\(—s)
and take S a set of representatives in (7,2 )n for the quotient of (Z^ J1 by this relation.
Finally, we take ns — n if sή^σ\(— s) and ns — n/2 otherwise. The next lemma gives
the relation between the asymptotic dimensions.

Lemma 1.3. Let Λj be the fundamental weights of su(n(n+ l)/2). Then

n(n+\) !

Σ β(Λ )=Σ ( Σα(/(σXp)-p)) (1-14)
/=o ses k=o

Proof. Using the decompositions (1.6) and (1.7) and taking the character on both
sides, we obtain

Σ Σ 1μk(σss(p}-p)XF(hs,k} •>
kζZ s<E(Z2)n

n(n+\) i

Z^ Δ^%ΛkXF(hk+jn(n+ιy2)
 = L^ L^

*=o yez /c

(1.15)

Λ"1

Z^ %μk(σxs(p)-p)
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Recall that, in general,

where as usual q stands for e2πιτ, with τ e C, Im τ > 0, and η is the Dedekind
ff-function.

Given α, b G \Z, a > 0, let (see [K, p. 259])

Then we obtain from (1.11) and (1.7),

Σ%F(hk+/n(n+l)/2)
y<ΞZ

and

with £ = 2φ) + 2k(n + 1 ) - n(n + 1 )/2.
Noting that, as τ — > 0, we have

we compute the asymptotic behavior of both sides of (1.15),

ll("+ I ) i

Σ β(/l,)βπ/z^/12τ+π/yi2τ ,
A:=0

R.H.S. - (2n(/ι + 1))~1/2 Σ Σ a(μk(σss(p) -
*=O

Therefore we obtain the formula

i
«(Λ ) = Σ Σ a(μk(σss(p)-p)). (1.16)

In order to prove the lemma, we have to see that each one of the weights
in the right-hand side of (1.14), appears twice in (1.16). First observe that, by
Lemma 1.2.(a),

{μk(σss(p) - p)}£lo = {μk(σσι(-s}σι(-s)(p) - p)}^ O 17)

Therefore, when sή=σ\(—s), ns — n and the asymptotic dimension of the weights in
(1.17) are repeated in the right-hand side of (1.16). Finally, if s = σ\(—s) then n
must be even and (with the notation of Lemma 1.2) k = |, because — s must have
the same number of — Γs as s. Thus we have

σss(p) — p = μΐ(σss(p) — p) .



Branching Rules for Conformal Embeddings 9

So in the set (1.17) the weights μk(σss(p) — p), 0 ^ k < \ — ns appear twice,
completing the proof.

Now we are in a position to state our first basic result

Theorem 1.2. Let A G Z,?(/,+i) denote a level one highest weight of su(n(n + l)/2).

Let λ G P("+2\ Then the multiplicity b(Λ,λ) of L(λ) in L(A) satisfies:

£>(/!, λ)φO iff λ = μk(σss(p)-p) for some k G Z, s £ (Z2)
n

and yl = φ) + &(« -f- 1) mod

and in this case b(Λ,λ) = 1.

Proof. The center Zw of ,sw(«) is embedded in the center Zn(n+\) of su(n(n + l)/2)

by the map v —>• v(π + 1) in the additive notation. Since the elements of Zn and
Z,,(/H-I) act as automorphisms of the corresponding algebras, this implies that

). (1.18)

Observe, that since hA = 2n\n+\}—> ^en

hλ=hA,modZ iff A' = A or A' = "^^ ^ -A. (1.19)

If 6(/U)φO, one derives (see, e.g., [K-W]) that

/ M - A G Z , (1.20)

and by the decompositions (1.6) and (1.7), λ = μk(σss(ρ) — p) for some keZ.se

(Z2)". We have to see that A Ξ φ) + k(n + l)mod n("2

hl). We prove this in two

steps. If k — 0, (i.e. λ = σss(p) ~ p) by Lemma 1.1, (1.19) and (1.20) we have

Λ = φ) or A = φ).

Observe that from (1.18) and (1.20) we get

then, due to Lemma 1.1 and (1.19) we have

Λ + (n+ l) = φ) + (/z+ 1) or Λ + (Λ + 1) = —-—- - (φ) + (n + 1)),

therefore A — φ). And the case & Φ O follows immediately from the previous case
and (1.18).

Conversely, if λ = μk(σss(ρ) - p) for some k G Z, s G (Z2)
n, the decompositions

(1.6) and (1.7) imply that there exist A such that 6(/L,/ί)φO, and by the previous
considerations we have that A must satisfy A = φ) + k(n + l)mod n^l\

Finally, it follows from the asymptotic behavior (see Lemma 1.3), Lemma

1.2.(b) and (0.12), that b(Λ,λ) = 1 if *(Λ,A)ΦO, completing the proof.
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Example. To illustrate the use of the theorem, we will compute in the case n — 3,
i.e. the conformal pair

su(3)s C su(6),

the decomposition of L(A\). By Theorem 1.2 we are interested in s — (^1,^2,^3) G
(Z2)

3 and 0 ^ k < 3 such that 1 = φ) + 4fcmod(6), where φ) = £)/•*,.=ι(4 ~
/). If k = 0 then φ) = 1 and the only possibility is s = (—!, — !, 1); if k = 1
then φ) = 3, and we have s = (—1,1,1) or s = (!, — !, — 1). Finally, if k = 2
then φ) = 5, and $ = (1,1,-1). But (-!,-!,!) ~ (-1,1,1) and (!,-!,-!) ~
(1,1,—1). Therefore we must take σss(p) — p (k = 0) with s = (—1, — 1,1), and
μ(σss(p) — p) (k = 1) with s — (1, — 1, — 1). So we obtain

L(Λλ) - L(3A0 + 2Λl) + L(2Λl

2. Branching Rules for su(ri) C su(n(n — 1)12)

The idea is essentially the same as in Sect. 1. Here the description of b(Λ9λ) will
be obtained from the study of the conformal pair

w( l ) Θ JM(Λ) C so(n(n - 1)) (2.1)

which comes from the symmetric space

SO(2n)/U(n) .

And in this case the link of (2.1) with

is provided by
u(l)®su(n(n- l)/2) C so(n(n - 1)), (2.2)

which is also conformal.
We use Theorem 1.1 to obtain the decomposition of s and t in the case (2.1).

We have h = so(2n) and p = su(n) Θ u(\ ). The fundamental weights of h are AI =

Σ/=ι εj 0 = l = n~1\ ^n-\ = ^(εi H ----- h ε n _ ι -εΛ), Λ = j(ei +... + εΛ),
and the Weyl vector is given by p = (2n — 2)/to + p with the (finite) Weyl vector

p = (n — l)ε\ + (n — 2)ε2 + + βΛ-ι (where the ε/ are orthonormal vectors). The
Weyl group is given by W — W n Γ, where Γ are the translations {ία}αe/, with L =
Σ"=1 Zα/ ({α/jJL, = {β} - ε2, . . . ,επ_ι - εw,βπ_ι + εΛ}), and ^Γ the semidirect prod-
uct of the permutation group and (Z2)even = {(si,..., sn) E (Z2)" : #{/ : sl = — 1}

is even}. In the case of /?,Λ/, Λ^p9 p and ^Γ are as in Sect. 1.
In order to get a dominant weight w(p) - p we have to use as representatives

of Γ/77 in fΓ/JF, not the translations t\^n by multiples of αn, but the. powers of σo^J?

where σ0 is the permutation σ\ (see (1.4)), since, if μ is the automorphism given
in Sect. 1, then

P = μ2O(p) - p) -

As in Sect. 1, the restriction of λ = Σn

i={ β/ε/ a weight of h to /? is λ =

ί=Ί (flί ~ f l /+ιM/ an(i ^ is a (strictly) dominant weight iff #/ > α/+ι. Thus we
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see that a suitable choice for W/W is the following: for each s G (Z2)even

 we

σs the permutation which orders the coefficients of s(p) — Σ"=l α/ε/ decreasingly.
For example, if n = 3 and s = (-1, 1,— 1) (even number of sign changes), then
s(p) = —2ε\ -f Iβ2 — 0^3, soσ 5 = l — > 3 — » 2 — > 1 .

Remark. 2.1. In this case the coefficients of the εz in p are different from those of
Sect. 1, and εn has coefficient 0. Since we are taking s(p), then we can think that
an s G (Z2)

n with an even number of sign changes, belongs to (Zι)n~λ and acts in
{cι,. . .,εΛ_ι}.

Therefore, we get the explicit form of the decomposition (1.3) in the case (2.1):

). (2.3)
keZ s<Ξ(Z2)'e

7

Ven

As in Sect. 1, the decomposition (1.3) in the case (2.2) is:

(2.4)
Λ€Z

where HΛ = (A — n(n — l)/4)2/(n(n — 1)), and we identify the weights A with the
corresponding elements of Zn(n-\) .

In this case the numbers φ) are defined as follows. For each s = (s\ , . . . , $ „ ) G
(Z2)even> (si = ±1), we define

Φ)= Σ("-0>
1:^=1

i.e. φ) is the sum of the positive coefficient of s(p) — Σ"=\ sι(n ~ Ofi/
We will need the following result, which is similar to Lemma 1.1:

Lemma 2.1. The trace anomaly of the weights in (2.3) is

, (φ) + 2k(n - 1 )χH(/ι - 1 ) - 2(φ) + 2fr(κ - 1 )))
- = - - modz

See Lemma 1.1.

For each s G (Z2)even, we define /?(s) = σι(— s i , . . . , — SΛ_I,,$Λ). The following
lemma obtains the repetitions of the weights in (2.3), with an additional condition:

Lemma 2.2. a) If n is even and 0 g k g f , /Aen σ^(p) - p = μ2h(σss(ρ) - p),

wzrA φ) = φl + 2k(n - I) mod ^—^ iff s = s. k = 0 or s = σ^-^) w/ίA 2^ =
#{1:^ = 1}.

b ) I f n is odd and 0 ^ k < n, then σss(ρ) - p = μ2k(σss(p) — p), w/ίA φ) Ξ

c(ί) 4- 2t(/ι - l)mod ^^y^ iff ^ = β'CO Wί'ίA ^ = 0, 1,2 or 3, αwrf 2A: + JΛ = #{/ :
*, = !} ι / r = l .

The proof is similar to that of Lemma 1.2. Now by this result, it is natural to
define that s ~ s, in the case n even, if s = s or s = σ\(—s), and we take ns = w/2
if 5=|=ai(— 5), ns = w/4 otherwise; and in the case w odd, s ~ s if s = βr(s) with
r = 0, 1,2 or 3 and we put ns — n. Finally, we define S a set of representatives
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in (Z2)even for the quotient of (Z2)even by this relation. The next lemma gives the
relation between the asymptotic dimensions and the proof is basically the same as
that of Lemma 1.3.

Lemma 2.3. Let Λl be the fundamental weights of su(n(n — l)/2). Then

Σ α(/t,)=Σ Σ «(/ΛσXp) - p)) -
/=0 s£S k=\

Now we are in a position to state our second basic result

Theorem 2.1. Let A G Z/^-p denote a level one highest weight of su(n(n - l)/2).

Let λ (E P(1~2\ Then the multiplicity b(A,λ) of L(λ) in L(A) satisfies:

b(Λ,λ)ή=Q iff λ = μ2k(σss(p} - p) for some k e Z, s G (Z2f~
}

and A ΞΞ φ) + 2k(n - 1) mod ~^——- ,

and in this case b(A,λ) — 1.

Proof See Theorem 1.2.

3. The Branching Rules for sp(n) D so(n)4 0 su(2)n

We consider Cartan subalgebras h,h and h of sp(n),sb(n) and sϊι(2) respectively,
such that, h D h 0 Λ. We take a triangular decomposition ?/>(«) = «_ + h 4- «+ and
in the same way ή± and fi±9 such that they are contained in n±. In this section,
single dots refer to so(n) and double dots to su(2). With respect to these Cartan

subalgebras we have the systems of simple roots. Let {AJo? {Alo an(^ ί^'lo me

respective dual root basis.
When n — 2m let

A = 2/ίι

λi =Λ-ι + Λ * e {1,/w- 1}
λl—λl 1 < / < m - 1

For n = 2m -h 1 let

./
AO = 2/lo /o = 2yij

λi — Ai \ < i < m — \

(3 2)
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Now we can state our third main result:

Theorem 3.1. For the conformal embedding sp(n) D so(n)% Θ su(2\ we have the
following decompositions of the representations of level one of sp(n):

a) If n — 2m and j φ m, then

L(Aj).= £ L(λf + A,,_, |) ®L((n - 2i + j)Λ* + (2ί -y'

, (33)

L(Λm ) - £ L(λi + Λ | W _, | ) 0 L((n - 2i + m)AQ + (2/ - wMi )

b) If n = 2m + 1 αw^f j = 2k or j = 2k — I, then

= Σ^i + V;|) ® L((π - 2/ +7Mo + (2ϊ -7
i=k

-7)^0+ A)- (3-4)

Remark, 3.1. If n = 2m, the sum is over the integers between j/2 and m+y/2,
so we will have another term if 7 is even. Observe that all the weights in the
decomposition are different, so the multiplicities are one.

In order to prove the theorem, we will need the following lemma:

Lemma 3.1. The trace anomalies of the weights in (3.3) and (3.4) are the
following:

Λ*) "Λj — 4(^+2)

M h . . . . -
> '\n-j}Λ0+jΛ} 4(w+2)

h - l'(|ϊ~0+^(Λ-^+2) 0 < A: < z < mΛΛf+;^ — 2(11+2) ' u = κ = l = m

Proof. Given A G P+ ($), the number Λ^ can be calculated as follows. Let A =

Σ/=ι ^ ί̂ an(^ ^et (%) ^e me inverse of the Cartan matrix of g, then

hλ = Σ 5i/*i(iy + 2)/2(w + A(gf)) .
',7=1

Now, the lemma follows from this formula.

Proof of Theorem 3.1. First we show that the right-hand side of (3.3) and (3.4) is
contained in L(Aj). For this we use the decompositions (see [K-W], p. 212)

(3.5)
Jt=0 s£Z
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of sp(n) D su(n}2 x w(l), in this case Ak are the fundamental weights of su(n). Also,
we have su(n) D sb(n)2-> and the restrictions of the fundamental weights of su(n) to
sb(n) are given by the λt in (3.1) and (3.2). From (3.5), there are weight vectors
in L(Aj) that are highest weight vectors in L(Aj) as sΐ/(/7)-module, with weights

Ak 4 Ak-j, with 0 ^ k ^ « — 1. And therefore, they are highest weight vectors in

L(Aj) as ώ(/?)-module, with weights I/ 4-Λ | I _ / |, with y'/2 ^ / ^ (n+j)/2, which
are all the different weights that appear in the restrictions. Since the action of su(2)
commutes with the action of sb(n), applying elements of ή+, we get a highest
weight vector for sb(n) x su(2), with weight λl -\- ^|/-/| and (n — A: Mo 4- kA\ for
some k. Now using Lemma 3.1, we see that the only possibility for k that satisfies
(1.20) is (2i — j). Finally, using the automorphism that comes from the Dynkin

diagram, we obtain the terms involving λk in (3.3) and (3.4).
In order to finish the proof we show that the asymptotic dimensions of both

sides of (3.3) and (3.4) coincide. For this we make use of the formulas:

« 4 2

If n = 2m a(h 4 i, ) = sin sin —
n + 2 n + 2 n + 2

0 < i ^ j < m,

if o , 1 f i . i Λ 4 -If n = 2m + 1 α(λ/ 4- Ay ) = — — - sin - — - sin
n+2 n+2 n+2

0 < / ^ j < m ,

which are proven by induction from the definition. Recall that a(A) = a(σ A)
for any automorphism σ of the Dynkin diagram, then we obtain the asymptotic

dimensions of the weights involving λk.
So we must show, in the case n = 2m + 1,

m+k .,

Σ a(λt 4- λ|/_y i )α((/ι - 2ι + j Mo + (2ί - j Mi ) 4 α(λy 4 A0 X(« ~ 7 Mo 4 jΛλ )
/=fc

^ 4 . ( 2 / - y 4 l ) π .— \ - sm - sln

£kn + 2 n + 2 n + 2 \l n + 2 n + 2

n 4 2 ^ n 4
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« + 2~ n + 2 = a(Λj)

Notice that in the first equality the dimensions corresponding to L(/ί0 + //) and

L(/lo -f λj) have already been added, which accounts for the coefficient 4. The third
equality is classical, see [K-W], p. 179.

In the case n — 2m, the proof that the asymptotic dimensions of both sides
coincide is similar.

4. Branching Rules for so(2m + 1) 0 so(2n + 1) C so(2(m + n + 1))

As in [K, p. 213], all the decompositions are easily derived by using (1.20) and
asymptotics (0.11), (0.12):

L(Λ0) = L(Λ0) <g> L(Λ0) + L(A}) 0 L(Λ}),

L(Λ}) = L(Λo) <g> L(Λ}) H- L(Λλ)

5. Conclusion

We list in the following table the infinite families of conformal embeddings together
with their index and the references where the corresponding branching rules were
computed.

Embedding

su(m) x su(n) x u\ C su(n + m)
so(m) x so(n) C so(n + m)
su(n) x u\ C so(2n)
so(n) C su(ή)
u(n) C sp(2n)
h C so(dimh)
su(n) C su(n(n + l)/2)
su(n) C su(n(n — l)/2)
su(m) x su(n) C su(nm)
sp(2m) x sp(2n) C so(4nm)
so(m) x so(n) C so(nm)
so(n) x su(2) C sp(2n)

Index

(i,ι,-)
(1,1)
(i,-)
2
2
h(A)
n+2
n-2
(n,m)
(n,m)
(n,m)
(4,n)

References

[K-W]
[K-W], this paper
[K-W]
[K-W]
[K-W]
[K-W]
this paper
this paper
[A-B-I], [W]
[K-P], [V]
[K-P], [V] (nm even)
this paper

All the cases when g is exceptional were computed in [K-S].
Now it is possible to apply some well known methods to construct modular

invariant partition functions. Using the branching rules found in & 1 and & 2,
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we get by restricting a partition function built from the level one characters of
SU(N(N ± l)/2)ι partition functions for SU(N) of level N ± 2 respectively. Notice
that from the classification of level one partition functions for SU(N) we have that
in SU(N(N + l)/2) there are always off-diagonal representatives, since N(N -f l)/2
is not prime for N > 2.

Using the decompositions from Sect. 3, we can restrict a partition function
attached to level one characters of Sp(N) and then contract with a level N partition
function of 577(2) and in this way we obtain partition functions for SO(N) of level
four.
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