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Abstract: For n x n systems of conservation laws in one dimension without source
terms, the existence of global weak solutions was proved by Glimm [1]. Glimm
constructed approximate solutions using a difference scheme by solving a class of
Riemann problems.

In this paper, we consider the Cauchy problem for the Euler equations in the
spherically symmetric case when the initial data are small perturbations of the trivial
solution, i.e., u = 0 and p = constant, where u is velocity and p is density. We show
that this Cauchy problem can be reduced to an ideal nonlinear problem approxi-
mately. If we assume all the waves move at constant speeds in the ideal problem,
by using Glimm's scheme and an integral approach to sum the contributions of the
reflected waves that correspond to each path through the solution, we get uniform
bounds on the L^ norm and total variational norm of the solutions for all time.
The geometric effects of spherical symmetry leads to a non-integrable source term
in the Euler equations. Correspondingly, we consider an infinite reflection problem
and solve it by considering the cancellations between reflections of different orders
in our ideal problem. Thus we view this as an analysis of the interaction effects at
the quadratic level in a nonlinear model problem for the Euler equations. Although
it is far more difficult to obtain estimates in the exact solutions of the Euler equa-
tions due to the problem of controlling the time at which the cancellations occur,
we believe that this analysis of the wave behaviour will be the first step in solving
the problem of existence of global weak solutions for the spherically symmetric
Euler equations outside of fixed ball.

1. Introduction

We consider the Euler equations of the compressible gas dynamics in Rn,

pt + V - (pit) = 0 ,

(pu)t + V ( p w < g > M + P) = 0, (1)
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here t £ R, x £ Rn, p is the density, u is the velocity, and P = P(p) is the pressure.
In particular, this models an isothermal gas, i.e., P(p) — p which can be viewed as
a model problem obtained by linearizing the pressure. We consider here spherically
symmetric solutions of (1) in three dimensions outside a ball of radius 1. As is well
known, Glimm's method [1] applies in the case n = 1 ([9, 10, 11]), but when n > 1,
there is no general existence theory for weak (shock wave) solutions of (1) and there
is only short time existence of classical solutions ([2,3]). Recently, the authors in [4]
proved that there exists a linear growth rate for a system of spherically symmetric
solutions in Lagrangian coordinates. In the spherically symmetric case, Eqs. (1) can
be reduced to one dimensional equations in the radial variable x, but there is a
non-integrable source term of order l/x. As a result, it is an open problem to show
that spherically symmetric solutions of (1) remain bounded for all time. It was
observed in [12] that waves moving out to infinity will generate an infinite amount
of wave strength due to the reflection of waves by the non-integrable source, and
this occurs when the strength is measured in the norm that preserves the outgoing
and incoming wave strengths to the leading order with respect to the amplitude of
the perturbation. (The explicit definition of reflection will be given in Sect. 6.)

In this paper we show that the above problem can be reduced to an ideal
nonlinear problem approximately. To overcome the geometric effects in the Euler
equations, we attempt the resolve an infinite reflection problem by taking a func-
tional integral approach to summing the strengths of the reflected waves in the
ideal problem. The idea is to reconstruct wave strengths at time t > 0 from the
wave strengths at time zero by summing the contributions of the reflected waves
that correspond to each path through the solution. In this way we can account for
the "sign" of reflected waves, and thus take account of cancellations that occur
due to mutiple reflections of waves. This procedure is analogous to the Feynman
path integral approach to quantum mechanics. Our result is that, assuming that the
wave speeds are constants, the total wave strengths remain uniformly bounded for
all time in the solutions of the ideal problem. Although this is just a model for
wave propagation in spherically symmetric solutions of (1), this analysis resolves
the non-summability problem observed in [12] in the simplest setting where it oc-
curs. Moreover, we believe that this gives a quantitative explanation for why the
total wave strengths remain bounded for all time in the presence of a non-integrable
source term. In particular, when the wave speeds are allowed to be nonlinear, it is
difficult to obtain sharp estimates for the net cancellation of waves due to mutiple
reflections because of the problem of controlling the time at which the cancellations
occur. Nevertheless, although it is far more difficult to obtain estimates in the exact
problem, we suggest that the underlying mechanism that bounds the wave strengths
in the full nonlinear problem is essentially the same as in the model problem con-
sidered here. Our analysis leads to an interesting new norm for the initial data in
which the total variation of the approximate solutions is bounded by the initial data
in this norm.

Throughout this paper, we consider the case when n = 3. How to prove a similar
result for «Φ3 is still an open problem. But the 3-dimensional case is interesting by
itself because we know that Huygen's principle holds for wave equations in three
dimensions. Furthermore, it is pointed out in [13] that n = 3 is a critical value when
we consider the asymptotic behaviour as time tends to infinity. That is, the nonlinear
effects will dominate the geometric ones for n < 3 and shocks form at algebraic
rates in asymptotic analysis. But for n > 3, the geometric effects are so strong that
they will smooth out the nonlinear sigularities in the asymptotic states. While at
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the critical value n — 3, shocks form at an exponential rate asymptotically, Another
reason why we choose n = 3 is that when we calculate the reflected wave, there is a

factor ^γ~ in the strength of the reflected wave. Thus the factor becomes (^j^-)* for
an /-times reflected wave. Since we are going to calculate the cancellation between
/-times reflected waves and those reflected /-f 2 times, it is easier to let ~ = 1,
i.e. n — 3.

Under the assumption of spherical symmetry, Eqs. (1) can be rewritten as

(ap)t -f (apu)x = 0 ,

(apύ)t + (apu2 -f ap\ = a'p, x ^ 1, / > 1 , (2)

with initial and boundary data

u(x, 0) - uo(x)9 p(x9 0) = p0(x), x ^ l ,

u(l9 0 = 0, t ^ 0, (3)

where a = x2, x ^ 1.
We linearize the pressure by assuming p — σ2p. Without loss of generality, we

assume the sound speed σ = 1. If a — constant, (2) can be rewritten as

Pt + (pu)x = 0 ,

(p«)ί + (pM2 + p)x = 0, (4)

and for smooth solutions, (2) be rewritten as

ίu2 \
ut + ί — + l n p j = 0 ,

or

2ρu
x

By (5), we know that the strength of the source is of order 1/x, and the L\ norm
of this strength is infinite as c tends to infinity. Thus the method used in [5,6] does
not apply to this case.

Remark L By splitting variables, Eqs. (5) imply some kind of exponential growth
locally for p. Actually, we can prove that there exist a lower bound CΓlnΓ and
an upper bound Ceτ for the total reflections at time Γ, if we do not consider the
cancellations between them, where C is a constant independent of T. Thus we
believe that because of the boundary conditions we choose, the uniform bound for
the sum of the total reflections is a global property, and this problem can not be
localized.

We will show that the Cauchy problem (2) and (3) can be reduced to an ideal
nonlinear problem approximately. To do this, we will solve the following generalized
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Riemann problems, i.e., Eqs. (2) with initial data

f (w/, p/, α/), x < 0,
(u,p,a)=< (6)

((ur, pr, ar\ x > 0,

where p/, w/ and α/ / = /, r are constants. It is straightforward to check that when
a — constant, Eqs. (2) have two eigenvalues λl = ±1 + u with corresponding eigen-

vectors ^ = ((1 -h λ?)~3,λ/(l 4- A?)"5),ί = 1, 2 respectively. Thus for small |w|,
(2) is strictly hyperbolic and genuinely nonlinear in the sense of Lax, i.e., λ\ < λ^
and @ti Vλ/ΦO, z — 1, 2 respectively. It is well known that there exist two fami-
lies of hyperbolic waves in the solutions of the Riemann problems. From here on,
we call the waves corresponding to // as hyperbolic waves of the /th family.

The solutions to the Riemann problem (2) and (6) will be constructed in Sect. 4.
In the construction, we modify a(x) by a family of step functions as a duct modified
by discontinuous diameters. To resolve the jump of a(x) in the Riemann problem
at x = 0, we need following definitions.

Definition 1. We define a standing wave at x = 0 with strength \ur — u\ to be a
solution of the Riemann problems (2) and (6), satisfying

(aρu)x = 0 ,

in the weak sense, i.e.,
= arρrur

As shown in [7], we can solve the Riemann problem by hyperbolic waves on
x < 0 and x > 0, and standing waves at x = 0. Since we assume u is small, it
was proved in [7] that the solution is unique.

Throughout this paper, we use a new norm to measure hyperbolic waves. It was
shown in [12] that this norm preserves the strengths of the outgoing and incoming
waves to the leading term with respect to the amplitude of the perturbation.

Definition 2. For any hyperbolic wave y sitting on a(x) = x2 with left state (w/,p/)
and right state (ur,pr), we define the norm o f y by

\\y\\ = \χ(ur-ul)\9

while for any wave, Glimm's strength is defined by

\y\ = \ur - HI .

In this paper, we consider a model problem for (2) and (3) in which the 1st

and 2nd family of hyperbolic waves move at — ξ and ξ respectively, where ξ is a
positive constant. We introduce the following norm:
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for any function φ(x) for which \\\φ\\\ is defined, where the variation is taken in
the interval [x, oo).

Now we can state the main theorem in this paper.

Theorem 1. For our model problem, there exist positive constants p and δ such
that for x ^ 1, //

\pQ(x) - ρ\ < δ, Var{p0(x)} < δ ,

|*MO(*)| < δ, Var{xuo(x)} < δ,

\\\u0(x)\\\ < (5, \\\p0(x)\\\ < δ, (A)

HwoOOlnxll^^oo) < δ, (B)

where δ is sufficiently small, such that within the leading term of δ we have

\p(x, 0 - P| < Gδ, \xu(x9 01 < Gδ ,

Var{p( . ,t)},Var{u( •,/)}< Gδ ,

for all x ^ 1 and t ^ 0, where G is a positive constant independent of time.

Remark 2. Actually, we can assume the hyperbolic waves of the 1st family move at
speed- ξ\ and those of the 2nd family at ξ2, where ξ\ and ξ2 are positive constants.
If \ζι ~ ζ2\ = O(δ) and the random sequence {fl/ly*^ is equidistributed, then we
can follow the proof in this paper and get the same result as Theorem 1.

Remark 3. The conditions (A) and (B) are reasonable in the following sense. If
there exist only standing waves initially in the difference scheme for x > 1, then
within the leading term UQ(X) = -̂  for some constant c > 0, x > 1. The condition
(A) and (B) are obviously true in this case when c is small. For sufficiently small
<5, condition (A) and (B) give a small perturbation of this case.

Now we consider a case when there exists only a hyperbolic wave γ of the
1st family emitting from (JCQ, 0). As shown in [12], the total norm of the reflected
waves of y created by crossing the standing waves is | |y | | ln XQ if time is large
enough. This family of waves will be defined as the 1st reflection of y in Sect. 7.
In this case, the initial data MO 00 can be chosen as

for some constant c > 0. We have

Since ||y|| = O(xoc2\ then by condition (A) and (B), we have

£ O(δ).
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Note 1. Throughout this paper, we use O(b) to denote \O(b)\ ^ Kb, where K is a
positive constant independent of N, ra, ί and Δx which will appear later.

Thus under condition (A) and (B), we can conclude that the first reflection of a
hyperbolic wave of the 1st family is bounded in the norm defined in Definition 2. As
we will see later, the higher order reflections are bounded due to the cancellations
between reflections of different orders.

2. Definition of the Ideal Problem

In this section, we define an ideal nonlinear problem. And we will prove that the
Cauchy problem (2) and (3) can be reduced to it approximately in Sect. 5.

The ideal problem is an implicit hyperbolic system

P(a(x),u(x, t),p(x, 0) - 0, x ^ l , t ^ 0 . (7)

Any Riemann problem with (u, p) components of the left and right states lying in a
small neighborhood of a constant state (MQ, Po) can be solved uniquely. The solution
consists of three families of waves: the 1st family moves at negative speed, while
the 3rd family moves at positive speed, and the 2nd family moves at zero speed.
As usual, the waves of the 1st and 3rd families are called as hyperbolic waves,
i.e. rarefaction waves and shocks; and the waves of the 2nd family are called as
standing waves. For a hyperbolic wave, we define a norm to measure its strength,
denoted by || ||.

The waves interaction satisfies the following conditions. We use yl (y2) to denote
the waves of the 1st (3rd) family and y° for the 2nd family, and use

to denote that the interaction of y's, / = 0, 1,2, will create three new waves yz s,
/ = 0, 1, 2. Then for a standing wave y° with a component of the left and right
states being a(x\) and a(xr\ we have

l l y ' U H I r ' l l , \\f\\ = L \ \ Ϋ \ \
%l

Furthermore, if y1 is a rarefaction wave (shock), then y1 and y2 are rarefaction
waves (shocks).

y2 + y° -> y ! 4- y ° + y 2 ,

~ xl ι

Furthermore, if y2 is a rarefaction wave (shock), then y2 is a rarefaction wave
(shock) and y1 is a shock (rarefaction wave).
• Hyperbolic waves of different families can cross each other with their norms and

families unchanged.
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For any hyperbolic wave yl of the 1st family impinging on the boundary x — 1,
the rebounded wave y2 is of 2nd family which is shock (rarefaction wave) if y1

is shock (rarefaction wave), and

Remark 4. In this paper, we choose a "solid wall" boundary condition on jc = 1.
Under this condition, we have to consider the cancellation between reflected waves
of a same original wave. We may choose other boundary conditions, but the analysis
here applies only to the one we choose.

Actually, we will solve such an ideal problem corresponding to the model prob-
lem in Theorem 1. That is, we solve a model problem for the Cauchy problem (2)
and (3).

3. Derivation of Equations (2)

In this section, we will derive Eqs. (2) in two physical models: The first model is a
compressible fluid flow in a variable duct, and the second is a fluid flow in spher-
ically symmetric gas dynamics. As pointed out in [12], Eqs. (2) are approximate
conservation laws of mass and momentum for fluid flows in a variable area duct
with the area of the cross section being a(x), which satisfies \a'(x)\ <C 1. And they
are exact conservation laws of mass and momentum for spherically symmetric flow
inR3

The following derivation is borrowed from [12].
Firstly, we consider fluid flow in a variable area duct. In particular, we assume

the boundary of the duct is a revolution of a curve y — R(x) about x axis, see
Fig. 1. Since the area a(x) is no longer constant, the pressure at the duct wall
exerts a force normal to the wall onto the fluid. And this gives a contribution to
the momentum in the central axis direction.

Let R(x) G C2 be the radius of the cross section, a(x) = πR2(x) be the area of
the cross section. For any fixed JCG, we denote the disk bounded by the duct and
the plane x = x$ by DXQ. Then for any point on the boundary of Dx, we can use Fx

to denote the x component of the force exerted by the wall on the fluid in the x
direction. It's easy to see it does not depend on which point we choose. Similarly,

Fig.l.
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the x component of the unit normal vecto nx is also well defined on the boundary
of Ac- By simple calculation, we have

and so we get
Fx = nxp

Further, the total force acting on the boundary of the disk Dx is given by

2πRFx = 2πRR'(\ + (R')2Γ* P

Keeping these in mind, we can now derive the equations for the conservation
of mass and momentum. For any x\ < jc2, consider the mass in the region bounded
by DXl and DX2. By conservation of mass, we have

— fpadx = -{(pua)\X2 - (ρua)\xι}
χι

= f(pua)xdx,

where ( )\XQ denotes the value of " " at x = XQ. Since x\ and ;c2 are arbitrary, we
have

(pά)t + (pua)x = 0, (9)

in the weak sense.
By the conservation of momentum and (8), we have

d XΊ *2 _ι
— fpuadx = -{(pu2a + pa)\X2 - (ρu2a + pa)\Xί} + fpa'(l + (/?') ΓΊdx

X2 ^= —f{(pu a -f pa)x — pa\\ + (R1) ) 2 jίfo ,
x\

or
(pwα), + (ρu2a + pa)x - pa'(\ -f C^)2)"^ = 0 , (10)

in the weak sense.
Now if we assume that R'(x) is sufficiently small, we have (1 -I- (R')2)~ϊ « 1,

then Eqs. (9) and (10) are Eqs. (2) when a(x) = x2, i.e., R(x)'=x. Since when
R(x) = x, the assumption of R'(x) being sufficiently small is violated. That is,
Eqs. (2) are not good mathematical approximations for this physical model.

Now we consider spherically symmetric flow in 7?3. As we will show later,
Eqs. (2) are exact conservation laws of mass and momentum in this case. Here
spherical symmetry means that the scalar quantities (pressure, density, etc.) are
functions of radius r and time t only, while the velocity u points radially outwards
or inwards.

In order to derive the equations easily, we consider the fluid in a region D
bounded by two co-centered hemispheres with radii r\ and r2 respectively and x-y
plane, where r\ < r2. Without loss of generality, we assume this region is above
the x-y plane. Let p be the density function of the gas; by the conservation of
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mass, we have

D S2 Si

where dV and dA are volume element and the area element respectively St is the
surface of the hemisphere with radius r/, / = 1, 2. By the spherical symmetry, we
have

Since r\ and TΊ are arbitrary, we have

in the weak sense. And this is the first equation of (2).
Now we consider the conservation of the momentum. By spherical symmetry,

we can only need to consider the conservation of its z component. For any radial
vector r, let θ be the angle between r and z axis. For any point in the region /),
the z component of the momentum is pucosθ, 0 ^ θ ̂  |. Thus we have

H + pcosθ)dS
at D S2

- ff(pucosθ u + pcosθ)dS -
s} B

where B is the base of D on the x-y plane. Since p, u and p are independent of
θ, and //5 cosθdS = πrf, i = 1, 2, we have

r2 r2

f{(r2pu)t + (r2pw2 + r2p\}dr = f2rpdr .
r\ Π

Since TI and Γ2 are arbitrary, we have

(r2pu\ -h (r2pw2 + r2p\ = 2rp ,

in the weak sense. This is the 2nd equation of (2).
Thus Eqs. (2) are just the conservation laws of mass and momentum for the

spherical symmetric flow in J^3.

4. Solutions to Generalized Riemann Problem

In this section, we will construct solutions to the generalized Riemann problem (2)
and (6) when \u\ is sufficiently small and p(ρ) = p. The solutions for general cases
were discussed in [7], and the following construction follows from [7] also.

Before solving generalized Riemann problem (2) and (6), we review some basic
results about Riemann problems when a(x) is constant, i.e., Eqs. (4) with initial data
given by

, Λ > ,
(u9p)=< (11)

(ttr, pr\ X > 0 .
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By transforming (u, p) to the Riemann invariants (r(u, p), s(u, p)), which are
defined by ^2 Vr = 0 and $\ Vs = 0, we have

st + ̂  = 0 ,

where r = ^=f^, 5 = ̂ ,̂ and ̂  , Λ are defined in Sect. 1, i = 1, 2.

By the definition of rarefaction wave, we can define the 1st and 2nd rarefaction
wave curves as follows:

R\(UI, p/) = {(u,p)\r ^rι, s = sι} ,

R2(ur, Pr) = {(u,p)\r = rr, s <; sr} ,

where (r, 5-) = (r(w, p), s(u,p)\ (r, , s,-) = (Γ(M,, Pi), s(ui9 p,)) with z = /, r. Here
R\(UI, Pi) is the set of states (w, p) which can be connected to the left state (w/, p/)
by rarefaction waves of the 1st family, and R2(ur, pr) is the set of states (u, p)
which can be connected to the right state (ur, pr) by rarefaction waves of the 2nd

family.
If (X p) is connected to (MQ, Po) by a single shock, by Rankine-Huguniot jump

condition, we have

[pu] = σ(u,

[pu2 + p] = σ(w, p)[pw] ,

where [ ] denote the difference between value " " on the right of the shock and
the one of the left and σ(u, p) is the speed of the shock. To satisfy the entropy
condition, we have to ensure that the /th characteristics enter the shocks of the
/th family from both sides, i.e., λt(ur9 pr) < σ(u, p) < Λ(w/, p/) for the /th shock,
i = 1,2. Thus, we can define the 1st and 2nd shock curves as follows:

Sι(«,, p,) = («, p)\u, - u = (•£-} 2 - (?L\ 2 , p! g p 1 ,

^ P

where Sj( , ) has similar meaning as Rt( , ), i ' = 1, 2. To solve the Riemann
problem (4) and (11), we define

T\(UI, pi) = R\(UI, p / ) U 5 ι ( w / , p / ) ,

^("r, Pr) = #2θr, Pr) U S2(wr, pr) -

It is well known that T\ and Γ2 are C2 contact at points (w/, p/) and (wr, p r)
respectively, and Tl defines In p as a monotonic function of u for / = 1, 2. Further-
more, the TΊ curves are reflections of the T\ curves with respect to axis u = 0, and
any T\ curve always intersects any T2 curve precisely once. Thus solution for the
Riemann problem (4) and (11) is well defined and it consists of two hyperbolic
waves (including waves with zero strengths).
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Now we come back to the generalized Riemann problem (2) and (6). In order
to construct solutions to (2) and (6), we need to consider smooth stationary flow,
i.e., (u, p, a) satisfies

(apu)x = 0 ,

y + l n p ) -0,
/ x

or

In a + In p + In u — constant,

u2 ,
h In p = constant.

Keeping the area and state at jc_ = 0~ being α/ and (HI, p/); at x+ — 0+ being
ar and (ur, pr), we vary the area smoothly and monotonically between a\ and ar.
And we construct a smooth stationary flow between ;c_ and ;c+. A straightforward
computation shows that smooth stationary flow cannot become sonic, i.e., | w / | < 1
if and only if \ur < 1. Now if we define J(uι, pi, a\\ a) as the set of states (u, p)
that can be connected to (u\, p/) by a smooth stationary flow with a(x) = α, we
have

(Inp + In M| + In a) — (In p/ -f In | w / | + h iα/) = 0 ,

It is easy to show that J(u\, p/, a\\ a] is a curve which can be parametrized by a
in the range (0°, oo), where

o f 1 -a — exp < In a\ + In \u\| H

As a tends to α°, |u| tends to 1. As a tends to infinity, \u\ tends to zero if | w / | < 1
and it tends to infinity if | w / | > 1.

Since our discussion is valid irrespective of how close ;c_ and jc+ are, in our
generalized Riemann problem, the standing wave can be defined as x+ - x- tends
to zero of the solution corresponding to a smooth monotonic interpolation of a.
Based on the above discussion, we define the 1st wave curve Cι(ι//p/) as a curve
in the phase plane (u - Inp plane), which consists of a continuous succession of
components with increasing speeds. The components would be the 1st shock curve
Si, 1st rarefaction wave curve ^i and standing wave curve J. Any state on CI(M/, p/)
can be connected ot (u\, p/) by hyperbolic waves of the 1st family or standing waves
or both. The 2nd wave curve Cι(ur, pr) can be defined analogously.

To solve the generalized Riemann problem is equivalent to finding the intersec-
tion of CI(M/, pi) and C2(wr,pr), i.e., to find the set {(um, pm)} such that

{Om, pm)} = Cι(M/, pi) Π C2(ur, pr) .

In order to locate the standing wave, the following rule must be satisfied: if um > 0
the standing wave curve is on the 1st wave curve, and if um < 0 it is on the 2nd

wave curve, and it vanished for um—^.
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Throughtout this paper, we assume \u is sufficiently small and a\ < ar. The
we only need to find C\(u\, pi) when w/ < ! , # / < αr, and Cι(ur, pr) when ur >
— 1, ai < ar. It is easy to see such C2(ur, pr) curves are reflections of CΊ(w/, p/)
curves when HI < 1 and <?/ > ar with respect to axis u = 0. So we only need to
find CI(M/, p/) for two cases.

Firstly, we consider the case when u\ < 1 and α/ > αr. It was proved in [7]
that Q(M/, p/) consists of three parts, i.e., βi, β2 and g3, where

βι(w/, p/) = {(u, p)|(M, p) G ΓI(M/, p/)wi thw < 0} ,

βzO/, p/) = {(w, P)|(M, p) =/(M_, p_, α/; α r)withO < w_ ^ M} ,

CM"/, P/) = {(", P)|(M, P) G Γι(l, pOwithw > 1} ,

here (w_, p_), (w, p) G ΓI(M/, p/) and (1, p i) = J(ΰ, p, «/; βr) Figure 2 shows an
example for this case. It is straightforward to prove that CI(M/, p/) defines In p as
a monotonically decreasing function of u.

Similarly, for the case when w/ < 1, #/ < 0r, the curve C/(w/, p/) consists of
four parts, i.e., Q\, ^2? βa and ^4, where

βι(w/, P/) = {O, P)|(M, p) E ΓI(M/, p/) withw ^ 0} ,

QΊ(UI, p/) = {(M, p)|(M, p) =J(w_, p_, α/; α r) withO < M_ ^ I , M < 1} ,

CM"/, P/) = {(", P)|(w, P) = J(u+, p+, a\ ar) withα/ < α < αr} ,

β4("/, P/) - {(«, P)|(w, P) € Γι(ι?, p7) with u > u\] ,

where (w_, p_) E ΓI(M/, p/)( l , p i ) E ΓI(M/, p/), (M, p) = J(l, pi, β/; a) with α/ <
α < ar, (M+, p+) = ^(M, p) with M > 1, (wr, p7) = .7(1, pi, α/; ar\ (u\, ρr

+) =

5f((wr, pr) and ^(WQ, Po) denotes the state (M, p) which can be connected to the
left state (UQ, po) by a shock of the 1st family with zero speed. Figure 3 shows an
example for this case.

I n p

Fig. 2.
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It can be proved that CI(M/, pi) defines Inp as a monotonically decreasing func-
tion of u. For \m\ and \ur\ being small, it can be shown that any CI(M/, p i )
when M/ < 1, aι < ar and any C2(ur, pr) when ur > -1, α/ < ar always inter-
sect precisely once. Thus the Riemann problem can be solved by two hyperbolic
waves and one standing wave. An example of this construction is shown in Figs. 4

and 5.

Λnp

Fig. 3.

*

Fig. 4.

0

Fig. 5.
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Now we can restate a theorem from [7].
Given two states (t//, p/, α/) and (ur, pr, αr), if a\ < ar and (u^ pi) is in a δ

neighborhood of constant state (0, p0) for a small constant δ, i — /, r. Then the
Riemann problem of (2) and (6) can be solved by two hyperbolic waves, and one
standing wave uniquely.

Theorem 2. Given two states (uι, pi, a\) and (ur, pr, ar\ if α/ < ar and (M/, pi)
is in a δ neighborhood of constant state (0, po) for a small constant <5, i — /, r.
Then the Riemann problem of (2) and (6) can be solved by two hyperbolic waves
and one standing wave uniquely.

5. Reduction to the Ideal Problem

In this section, we will prove that the problem (2) and (3) can be reduced to the
ideal problem diefined in Sect. 2 within the leading term of δ. As shown in Sect. 4,
the Riemann problem (2) and (6) can be solved uniquely by three waves, i.e., two
hyperbolic waves and one standing wave. Thus we only need to prove that the wave
interaction satisfies those conditions for the ideal problem. By the definition of the
standing wave, we can estimate its Glimms's strength. If we assume two states of
the Riemann problem (2) and (6) are connected by only one standing wave and

ai — XQ, ar = (XQ -f Ax)2 ,

δ and Ax are sufficiently small, within the leading term with respect to δ and Ax,
we have

Pi = Pr ,

\ur - uι\ = - ur .
*0

As shown in Sect. 4, the hyperbolic waves are defined in the usual sense. Within
the leading term with respect to δ, we have 1st wave curve given by

and the 2nd wave curve given by

where r and s are the Riemann invariants defined in Sect. 4 and the subscript "/"
denotes the left state of the wave. By the entropy condition, when u > HI we have
rarefaction waves while when u < HI we have shocks.

Now we can estimate the results when a hyperbolic wave interacts with a stand-
ing wave.

We consider a standing wave y° sitting at c = JCQ with

Γ Jfg, X < XQ
a(x) = <

( Oθ + Ax)2, X > XQ .

The following theorem was proved in [12].



Shock Wave. Solutions of Euler Equations 621

Fig. 6.

Theorem 3. Within the leading term wίίh respect of δ and Ax, if there is a hy-
perbolic wave of the Ist family y1 on the right of y°, after interaction we have

l|yΊl = l|y'll, \\f\\ = — II?1 II
*0

Similarly, if there is a hyperbolic wave of the 2nd family y2 on the left 0/7°, after
the interaction, we have

AΎ

1/11 = 11/11, l l f 1 II = -11/11-

Proof. The proof is based on a case by case study; here we give a proof of one
case for illustration.

Consider a rarefaction wave of the 1st family y1 interacting a standing wave y°,
we have

Since all the estimates are within the leading term, as shown by Fig. 6, we have

i °ι - i - i - 2Ax

XQ -\- Ax

, -π, , 2 Ax
XQ -i- Ax

Then

i.e.,
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Since

then

\\f\\ =-\\f\\ = -\\yl\\
XQ XQ

Note 2. All the equalities are within the leading term by assuming δ and Ax being
small.

Note 3. It was pointed out in [12] that shocks (rarefaction waves) of the 2nd fam-
ily reflect rarefaction waves (shocks) of the 1st family, while shocks (rarefaction
waves) of the 1st family reflect shocks (rarefaction waves) of the 2nd family. Thus
the cancellation will occur due to the reflected waves of a same wave. And this
kind of cancellation might overcome the generation of the reflected waves grow-
ing logarithmically. And we will prove that this is true under the assumptions of
Theorem 1.

Since we assume u(l, t) = 0 for t ^ 0, in [8] the unchanged strength of the
rebounded wave was proved in Lagrangian coordinates. It's easy to see that this
is true for Euler coordinates by the symmetry of the shock curves with respect to
u = 0 for Eqs. (4 ). And it is obviously true when we consider the leading term
with respect to δ. Thus, we have shown that the Cauchy problem (2) and (3) can
be reduced to the ideal problem within the leading term of δ.

6. The Difference Scheme

In order to get a uniform bound for the solutions of the ideal problem, we will
repose the problem in Glimm's scheme by solving a class of generalized Riemann
problems (7) and (6). In this section, we define Glimm's scheme which can be
used to construct solutions for the ideal problem. By assuming that the hyperbolic
waves move at constant speeds, we can modify Glimm's scheme such that the
cancellations between reflections are easier to calculate.

We assume that the absolute values of the speeds of the hyperbolic waves
lie between [ξ\9 £2]. Let h be a mesh length in t, and let k = -j*- be the corre-

sponding mesh length in t, CQ > ξ2. Let a be any equidistributed sample sequence,
aΞΞ {fl/jvg}, 0 < aj : <; 1. For t = 0, we define

pg(0, x) = pQ(mh) ,

wj(0, jc) = uo(mh), l+(m-l)h < x < 1 + (m + 1)A ,

ιιJ(U) = 0 , t^09

a(x) = ( l + ( w + l ) / z ) 2 , I + ( / H - l)h < x < l + ( / w + l ) Λ ,

where m ^ 1 is any odd integer. At mesh points (1 4- (/n -f l)λ, 0) and (1, 0), we
can solve the Riemann problem by hyperbolic waves and the standing wave.
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Assume for induction that (ph(x, t), uh(x, t)) has been defined for t < ik, when
/ -f m is odd, we define

(/Λ uh)(x, ik) = (ph, uh)(2mh + ath, ik-) ,

1 -f 2mh < x < 1 4- (2m + 2)h ,

(ph, uh)(x, ik) = (ph, uh)(2mh - a,h, ik-) ,

1 + (2m + 2)h < x < I + (2m -f 4)A ,

and

where m is any integer such that / + m is odd and c ^ 1 .
By the above construction of the approximate solution, we have the following

lemmas.

Lemma 1. If all the hyperbolic waves are sitting at (I + 2mh,(i — \)k) for m ^ 0
when ί -f m is odd, then we have

• // al G (0, 1 — vi), then every nonvanishing hyperbolic wave will cross the cor-
responding standing wave and reflect another hyperbolic wave.

• if al G (1 — V2, 1], then the strengths and positions of all the waves in [1, oo) x
[ik, (i -h l ) k ) are the same as those in [1, oo) x [(i - \)k, ik),

where v\ — ̂  and V2 — ^T. A similar statement holds when i + m is even.

Lemma 2. If we denote the hyperbolic wave of the Ist (2nd) family sitting at
(1 -f mAx, 0) by yl

m 0 (y2

m 0), where Ax = 2h, then under the conditions (A) and
(B) we have, for any fixed n > 0, when Ax <^l,

Λr ( n Ί _ CXD Ar f n >
Σ l!^''011 = ~δ> Σ T^ΛX Σ ii^'-oii N * .[l=l ) m=Q\+mΔx [l=l )

and

oo _ oo

Σ \\7m ollinO + WAX) ^ δ, Σ \\y2

m ol|in(i ~t~

where δ = O(δ),

The Glimm's scheme given above can be used to prove the case correpsonding
to the one mentioned in Remark 2. And we suggest that it may be useful when
we consider the full nonlinear problem. But for the ideal problem correpsonding to
our model problem in Theorem 1, we can use a simplifed scheme: If we denote
the mesh length in the x direction by Ax and the one in the t direction by At, then
for any hyperbolic wave sitting at (1 -f- mAx, ίAt), it will move to (1 -f (m ± I)Ax,
(i + I)At) at the next time step if it is of the 2nd (1st) family. That is, all hyperbolic
waves of the 1st family move at speed —Ax/At, and those of the 2nd family move
at speed Ax/At. We will use this simplified scheme in the following discussion.
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7. Analysis of Cancellation in Reflections

In this section we consider an ideal problem defined in Sect. 2 corresponding to
the model problem in Theorem 1, and we will derive a formula showing how the
hyperbolic waves on T — NΔt depends on those t — 0. In order to define reflections
clearly, we introduce the concept of path in the solutions of our model problem.
From now on, we use (m,i) to denote the mesh point (1 4- mΔxJΔt) in the simpli-
fied scheme. We assume TV can be arbitrarily large but fixed and we consider the
region ^^t^NΔt,x^.\. Now we give the following definitions.

Definition 3. We define two kinds of elementary time like paths, denoted by z+

and ι_, where ι± are straight lines connecting (mj) and (m± ! ,/+ 1). And we
denote the end points and starting points of ι± by

Definition 4. An ordered sequence of elementary paths i = [iq}^=l is called a time-
like path if

(tq)o = (Vn)°, q= 1,2,. ..,/?- 1 .

The product of [z9]f=1 denoted by i or ι\ i^ - ιp is a polygonal line by connect-
ing ιqs at their common points. We define

(0° = 0ι)0, (ϋo = 0p)o.

Obviously, the product of an ordered sequence of timelike paths can be defined
similarly.

Definition 5. For any timelike path i, we define the degree of i by

d(ι) = d,

if
I — ll 12'" ld+1 ,

where ιq is a timelike path consisting of the same kind of elementary timelike
paths, but ιq and ιq+\ consist of different kinds. Also we define (ιq\ as the qth

turning point of i, denoted by Tq(ι\ q — 1,2, ... ,d, and

d

T(ι)=\JTq(ι).
q=l

Now we can define the reflections of any hyperbolic wave. And we will classify
all the reflections by their orders according to the degrees of the paths to which
they correspond.

Definition 6. For any hyperbolic wave y emitting from the mesh point (m,i\ and
any timelike path i with
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d

d ( ι ) = d and T(i) =
q=\

then we define a wave R(y,ι) at (m,i) with norm being {\\ =1 1+^J^}||y|| as a

dth reflection of y corresponding to the path i. If z^+i = [ι+]([ϊ_]), then R(y,ι)
is of the 2nd ( I s t family. Further, if y is a rarefaction wave (shock) of the I s t

family, then R(y, i) is a rarefaction wave (shock) when d is odd, and it is a shock
(rarefaction wave) when d is even. Similarly, if y is a rarefaction wave (shock) of
the 2nd family, then R(y, i) is a shock (rarefaction wave) when d is odd, and it is
a rarefaction wave (shock) when d is even, "d" is also called as the order of the
reflection R(y, i).

To classify reflections of a hyperbolic wave, we need the following definitions.

Definition 7. For any hyperbolic wave y emitting from the mesh point (m,i), we
define

*(y>o> (*?)* = U R(y>^>

and

U= Σ \\R(yJ)\\,
{M(ΐ)=q}

where the unions and the sum are taken over all tίmelίke paths i and ϊ, with
(ϊ)°,(F)° = (m,i) and (F)o = (m,i) in the region bounded b y x ^ 1 and 0 ^ /
^ Nk.

Definition 8. For any hyperbolic wave y emitting from the mesh point (m,i) and
any mesh point (m, i ), we define

Then at the mesh point (m,i), we define (Rq

y\Rq

y

+2)1^ as a hyperbolic wave which

is of the same family and same kind as (Rq)1^ and

And we define

for all possible (m, ί ).
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Definition 9. For any hyperbolic wave y emitting from (m, i\ we define

q,n>0

where the sum is over all (Rγ\Ry+ )% are of the I s t family, and

q,n

where the sum is over all (R^\T^+2)^ is of the 2nd family, and the sums are taken
over all possible q,j and n.

Now we assume that there is only one hyperbolic wave y in the simplified
scheme for the ideal model problem initially. Since we consider the behaviour
of y and its reflections for any time, the orders of reflections due to y can be
arbitrarily large. As pointed out in Remark 1, the sum of the total reflection cannot
be bounded unless cancellations between reflected waves are taken into account. In
order to calculate this kind of cancellation, we will introduce reflection potential. In
fact, the estimation of the reflection potential is crucial to prove the following main
lemma.

Lemma 3. We consider a hyperbolic wave y emitting from mesh point (m, 0) in
the simplified scheme. For any given N > 0, if Ax <C 1 and y is a hyperbolic wave
of the 2nd family, then

RΓ(y)^G\\y\\, / = 0,1,2.

If y is a hyperbolic wave of the I s t family, then

RΓ(γ) ^ G{2 + ln(l + mz)jc)}||y||, i = 0, 1,2 ,

where G > 0 is a constant independent of N,m and Ax.

Before defining the reflection potential, we give two more remarks on the can-
cellation.

Remark 5. For any hyperbolic wave emitting from t — 0, we consider the reflected
shocks and rarefaction waves separately. Since they will cancel each other if they
reach a same mesh point, we can estimate the remainder of this kind of cancellation.
That is, we estimate how much strength of shocks and rarefaction waves can reach
t = Nk, x ^ 1 and 0 ^ t rg M:, x = 1 after cancellation.

Remark 6. We notice that the /th reflected shocks (rarefaction waves) will make
cancellation with the (/ -f 2)nd reflected rarefaction waves (shocks) of a same orig-
inal wave, if they meet at a same mesh point. We will prove the upper bounds for
the remainders of this kind of cancellation due to a 2nd hyperbolic wave form a
geometrical series. Thus the sum can be bounded uniformly.

We consider a hyperbolic wave y of the 2nd family emitting from the mesh
point (w,0) initially, where m ^ 0 is any integer. In order to estimate the reflection
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of higher order, we define reflection potential at any mesh point (m,i) on which
e!)|J ΦO. It represents how strongly R]\R* will reflect again.

Definition 10. If the hyperbolic wave y is of the 2nd family, we define the reflection
potential of y by P(y), where

= Σ 7
ι,m^2 *

here m ^ 0 and 0 ^ / rg N.

We are going to prove P(y) ^ ^||y|| for some constant η < 1, where η is inde-
pendent of N and Ax. Now we prove some lemmas first.

Lemma 4. If y emits from the mesh point (0,0), when Ax <C 1, we have

pAx ^ 0.9 ,

where p = sup{z: ||(

Proof Let αp £ R(y,io) be the hyperbolic wave of the 1st family with d(io) = 1,

Γι(ϊo) = (p,p) and (z0)o = (1,2/? - 1). We divide (Λy)^"1 into two families:

• The first family consists of those R(y, i) with T2(ι) — (0, ). We denote the total
norm of this family by Il

p Q\\y\\.
• The second family consists of those R(y,ι) with 72(0 = (j\ ' \ j = l The total

norm of this family is denoted by /p 0 | |y | | .

We have

2Ax p~
l
 Ax

2 + pΔx I £t 1 + iΔx

(12)

-(p + i-j)

P'
1
 (Ax)

2
 Ax P^ Ax

,t2 (1 + (P - i)Δx)(\ + iΔx) 1 + (p - 1 )Ax £2 1 + iΔx
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Combining (12) and (13), we have

AT 4/1 Y

Δx
+ ln(l + pAx) -f O(Δx)2 . (14)

We can check that when pAx ^ 0.9, Ax <C 1, the right-hand side of (14) is less
than —ε\Δx9 where εi > 0 is a constant independent of TV and Ax. Thus, we can
choose pAx = 0.9. QED

Lemma 5. When Δx < 1, \\(R\\R]jm\\ = 0 for (mj) e Ωc, where

Ω = |(jc,0 : 0 g t ^ 2pΔt9 1 ̂  jc ^ 1 + \-j-\ Ax

or t > ΊΌ At, 1 + ί — — 2 p ] Ax < x < 1+ — M* r >
^ \lAtl ) ~ ~ ιΔt\ i

p is defined in Lemma 4, [ ] denotes the largest integer less than " " and Ωc

is the complement of Ω.

Proof For n ^ p, we calculate the cancellation between un£R(y,io), with

rf(io) = l,Γι(ι0) = (n,n) and (IQ)O = (n — p+\9n-\- p — \\ and (^)"ΐ^+}. As in

the proof of Lemma 4, we also divide (Rγ)n

n^
p

p~^\ into two families, with their norms

denoted by 7^11711 and 7^11711. The meaning of 7^ and 7^ are similar as 7n

!

0 and

7 0̂ in Lemma 4 respectively.

+
2 + nAx i=l [ 1 + iΔx 1 H- (π — z)^^

^ ' - + ̂ ) + In <! ^ "M \ \ + —Vθ(^)2 . (15)1 1 -f (n - p)Ax J J ! • - > « -

42,. =
y=2

+ "
fp 1 -h7^ S (1 + ίΔx)(l +(n + i-j

l~l (Ax)2 -1 Ax
= _Σ ϊ

+jΔx ,tί (1

Δx
v-> v^ /v j ^J /v -̂\

£—* (\ i /,Λ , Λ λ^\i Λ i ,' y<^\ 1 i (γ, 1 \λγ ^—^
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Ax ( / Λ A , Λ ( 1+nAx
> < ln(l + pAx) + In

O i ,Λ A -.,- I v Γ '2 + nΔx [ v ^ ' 11 +(« - p)Δx

Ax , ( 1+nAx 1 . 1

1+nAx [ I + (n - p)Δx j 1 + nΔx

Let

Ln(nΔx) = |[α

(16)

Ax 2Ax / Λ A x t< ——— - ——- < ln(l + pAx) + In

-f nΔx

nAx { " ^ ' { 1 -f (n -

, 1 + ̂ j \ __l_n( A \ι

+ ( '

To prove the lemma is equivalent to prove that Ln(nΔx) < 0 for n ^ p and

Jz <̂ C 1. By calculation, we can prove that ^n(nΔx) < γ^£ for n ^ p, where
ε2 > 0 is a constant independent of N and Ax. QED

Since we have proved that ||(^VφίJ Ξ ° for (w

?0 ̂  βc τhlιs ^00 is eQual

to the total norms of the set of hyperbolic waves reflected by the nonvanishing
R]\R3, in Ω,

Firstly, we estimate R*\R?, at each point in Ω.

Lemma 6. For any mesh point (m,2i — m) G Ω, and Ax <C 1, we have

Λr

where q = i — m.

Proof For 0 ^ qΔx ̂  0.5,

< 1 + iΔx jtΊ (1 +jΔx)(l 4- (i-j -

2JΛ: ^(Zl c)2

-f iΔx (1 4- //4#)(1 + qΔx)

Ax

(l+qΔx)(l+iAx)
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For 0.5 rg qήx ^ 0.9, we have to consider the cancellation from all R3, not just
from the rebounded waves. By (15) and (16), we have

Ax 2Ax Γ ίt , , , ί 1 +iΔx
< ——r - T—-— \ In(l + qΔx) + In

1+iAx 2 + iAx [ ^ * ' \ 1 + (/ - q)Δx

1Ax ) f 1 + iΔx \

1 + iAχ[n \l+(i-q)Δx! + T

Δx 2Δx i(Δx)2 f 1+iΔx
In J

1+iAx 2 + iAx ^ ^ ' (I + iAx)(2 + iAx) [l+(i-q)Δx

< - — — — - — — In(l -f- qΔx) -f - — — O(Ax)
1 -f iΔx 2 + iΔx 1 -f ί^

Ax 2.5q(Ax)2

1 + iΔx (2 + iΔx)(l + qΔx)

(1 + iΔx)(2 + iΔx)(\ -f

QED
Now we can use the above lemmas to estimate P(y).

Lemma 7. There exists a constant 0 < η < 1 which is independent of N and Δx
such that the reflection potential o f y emitting from the mesh point (0,0) is less
than η\\y\\ when Ax <C 1.

Proof We calculate P(y) by two parts, denoted by B\\\y\\ and B2\\y\\ the corre-
sponding total norms. #ι||y|| denotes the reflection potential due to those (^\^)7

1?

and ^21|71| denotes the reflection potential due to those (R}\R^)l

m with m ^ 2. Let
pΔx = 0.9, qΔx — 0.5, we have

P Ax
B < Y^1

j - i + l)Δx)
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?-2 Ax J Ax

(J + l)d

Δx

0' + ^Δx ,tt (1 + ίΔx)(\

3 'L,2 Δx ^ Δx

-(j-i+l)Δx)

^ oo Λ -y p—1 A γ+ ί £ — V —
4j=p-ι 1+0'+ 1)4* ̂  (1 +/4jc)(l +(/-* + O^

?-' Δx 3 P-'
< Σ

ztl 1 + ϊ4x 4 ,ti 1 + J

< 0.583,

when Δx ^C 1. Thus

= In 1.9 + 0.583 -7,

where

0.9

> 2 / l n
o

Thus when Δx <^ 1, we have

5ι +52 < lnl.9 + 0.583 -0.23

= 0.995 ,

i.e. we can choose η = 0.995.

Note 4. It's not important what exactly B\ + 82 is. What is important is that B\ +
B2 < η < 1.

Now we will give a technical estimation of the reflection potential for y emitting
from the mesh point (m,0).
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Lemma 8. There exists a constant η < 1 which is independent of N, m and Ax
such that the reflection potential for a 2nd hyperbolic wave y emitting from the
mesh point (m,0) is also less than η\\y\\ when Ax <C 1.

Proof. Consider the mesh point (m -f« — /,« + /), where 0 rg / ^ m, we have

>

•TO (1 + (m + z +y - /)d*)(l + (m + « + i - l)Δx)

ί (Δx)2 1 I i \+(m+j)Δx \

n - j)Δx \ \ 1 + (m +j - l)Δx J(m + j)Δx (

_ t _ι
(m + w - v 7

Now we need the following lemma.

Lemma 9. When m and n are fixed, 0 < x < nΔx,

1 + mAx + x Ί

nΔx — x

is a decreasing function of x.

Proof.

(nAx-x)2

λin i ~ i in

Let

mAx(nAx — x)

I -h nΔx

then

β'W = 77— 7̂ mAx + x)

Since 0 < c < nAx, then /^(x) > 0. Since lim^^βCx) = 0, then β(x) < 0,
i.e., £e'(x) < 0. QED
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Now we come back to the proof of Lemma 8. Since

lim _L; l n < ; - V- . ~ -7Γ , l n

1 + (m + w - / - 1)4* J [ 1 + (m + π -

(1 + (m + n)Δx)(\ +(m + n- l)Ax) '

then we have

lΔx(l+(m + n- l)Δx) (Δx)2

(m + «)Jjc)(l + (m + n - l)Δx) f^(\ + (m + z)

> ^̂  + l 0(Δx)2 .
(1 + mΔx)(l + (m + n)Δx)(\ + (m + n — l)Δx) 1 + mΔx

If we choose N(Δx)2 g (^)2, since n < N we have

Ax nm{Δxγ

(m + w)^JC (1 + mΔx)(l +(m + n)Δx)(l

-f
1 + mΔx

(17)

j Δx nl(Δxγ

(w + «)Jjc (1 + /wJjc)(l + (m + /ι)Jj:)(l + (m + n - l)Δx)

-f mΔx)(\ +(m + n~ l)Δx) 1 + mΔx
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We estimate the reflection potential P(y) by two parts, denoted by /^(y),
i — 1,2, where

(
ΩI ΞΞ <j (x,t): 0 ^ t ^ mAt and t ^ razlί,

ι + Γ / - '
At \ ~ ~

Ω2 = \(x,t): t ^ mAt, 1 ̂  * ^ 1 + Γ ~Γ Ί
I L Λ f J

By (17) and 1+fl

1

1+^ < 1+/+z? for <2,Z? > 0, it is easy to prove that the reflec-
1 + + z ? )

tion potential in Ω2 due to y is less than the reflection potential of a 2nd hyperbolic

wave y emitted from the mesh point (0,w) with the norm being ί l+^m^.

Since all the lemmas are true for arbitrary time, by Lemma 7 we have

By (18) we have

Ax

-f 0(JΛ) Hvll . (20)
1 + mAx

But (19) and (20) are not sufficient to prove that the reflection potential is less
than 771|y| | for some fixed η < 1. Because the constant in front of ||y|| in (20) will
tend to 1 as m tends to infinity. In order to get a η < 1 which is independent of
N,m and Ax, we have to refine the estimate of Pβ}(y). Now we need the following
lemmas.

Lemma 10. For / ^ ^mAx, mAx ^ 100, Ax <C 1, there exists constants D and
η\ > 0 which are independent of N,m and Ax, such that if w ^ Dm, 0 ^ n ^ m,

\+(m + n}Ax i I 1 + (m + n)Ax \ / 1 + (m + w).

1 -f (w - 77)zh: \ \ 1 + (m + n - l)Ax ) \ 1 + (m 4- w -

1 -i- (m -+- w — /)Jx
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Lemma 11. There exists a constant η2 > 0 such that if I ^ (1 - r\ι)m, n ̂
Dm, mAx ^100 and Ax <C 1, we have

The proofs for Lemma 10 and 11 are omitted. Thus when mΔx 3; 100, we have

Λι,ω
Γ mΔx °° ™ 1 + (m - l)Δx Λ

~ ~ mΔx)(\ +(m + w- l)Δxγ + ( X}2

τl | (22)

where η?. > 0 is a constant independent of N,m and Λx. By (19) and (22), we
know that when Ax <C 1, there exists a constant 77 < 1 such that

PΩl(γ) + Pa2(y) ^ η\\y\\ ,

where ^ is independent of TV, w and Ax. QED

Now we can conclude the proof of Lemma 3. Before doing this, we give the
following definitions.

Definition 11. For any hyperbolic wave y of the 2nd family emitting from the mesh
point (m, 0), we define

and

Let

and

>7 = sup{P(y)/|M|| for all y on t = 0, | |y | |φO}.

By the above discussion, we know that ?J||y|| is a uniform upper bound for P(y),
where y is any hyperbolic wave of the 2nd family in the simplified scheme and in
the region 0 ^ t ^ NΔt, x ^ 1. And it is easy to prove the following lemma.

Lemma 12. There exists a constant 0 < ζ < 1 which is independent of N,m and
Ax, such that

θ\ Θλ ^ In2 + £, when Ax < 1 .

Proof of Lemma 3. Since U^(#y\K+2) and ^(^"V^"1) will approach zero

when / approaches IJ approaches [|] and Ax, approaches 0, where / is defined by



636 T. Yang

Rl

y

+l = ψ, where φ is the empty set. Then for any hyperbolic wave y of the 2nd

family emitting from the mesh point (w,0), we have

and

E ll(4\*;.+2α ^ Σ θ'\\β\\,
/=odd, m>0 z— odd

RT2(γ) ^

By the reflection potential estimate in the last section, we have

θl+2 < ήff, θl+2 < ήθl, i > 0 .

Thus we have

=o

Since U^(Ry\R^) is equal to the reflection potential of y, then

— η
(24)

Since the total norm of the reflections on Λ: = 1, O ^ ί ^ Nk is equal to the total
norm of the reflections approaching x = 1 , 0 ^ t ^ Nk, then

(25)
- n

If y is a hyperbolic wave of the 1st family emitting from the mesh point (m,0).
When Ax <C 0, it is straightforward to prove that

RTl(y) < {l
ί - η

||y||, (26)

RT2(7) < {2 + ln(l + m A x ) } \ \ γ \ \ , (27)

RT°(y) <{2 + ln(l + « ^ ) } | | y | | . (28)
i — η

By (23) to (28), Lemma 3 is proved by choosing G — -^-z.

Now we can derive the formula relating the hyperbolic waves on t = NΔt and
those on / = 0. Before stating the theorem in this section, we introduce some nota-
tions: For our reduced model problem, we use yj

m l to denote the hyperbolic wave

of the /h family on the mesh point (ra, /) in the simplified scheme, where j — 1,2.
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Theorem 4. For the waves evolution in the simplified scheme, if Ax <C 1, there
exists a constant G\ which is independent of N and Ax, such that

Σ l l y Ull ^ G' Σ{{2 + ln(l + m/bONI^oH + H^oll) , (29)
j,m m

i> 0 m

where the sum are taken over all possible mj and i.

Proof. By the simplified scheme, we have

- Σ
j, m, k

.
'm,0 ' m,0

^ Σ ll
y, m

^ (2G

Similarly, we have

7,m,z

\ z?/+2 v I!
,./ V\,/ ) θ l l
' m, 0 ' m, 0

Let GI = 20 + 1, we get (29) and (30).QED

8. Proof of Theorem 1

Now we can conclude the proof for Theorem 1. That is, we will prove that there ex-
ists a uniform bound for the L^ norm and the total variation norm of (u(x, t), p(x, t ) )
for and time, where (u(x,t),p(x,t)) is the solution for the model problem.

Proof of Theorem L As shown in Sect. 2, the model problem in Theorem 1 can be
reduced to the ideal model problem discussed in Sect. 7. Thus by Theorem 4 and
Lemma 2, if Ax <C 1, we have

E\\ym,N\\ ^ G2δ, Σ \\yl\\ ^ G 2 δ ,
j,m i

\p(\,T)-β\ <G2δ,

where GI is a constant independent of TV, Ax and T = NΔt.
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By the definition of standing waves, we know that p is constant and \u\ is
decreasing while crossing a standing wave from left to right in the ideal model
problem. Since u(\9t) = 0, the strengths of the rebounded waves of x — 1 are equal
to those of the impinging waves. Thus we have

\xu(x,T)\ < G3δ, \p(x,T)-β\< G3δ, x^l,

where G^ is constant independent of TV and Ax.
Furthermore, if a left state ( p / , w / , α / ) and a right state (pr,ur,ar) are connected

by only a standing wave 7° in the solutions of the Riemann problem, where a\ — XQ
and ar — (JCG -f Ax)2, the Glimm's strength of 7° satisfies

Since the LI norm of \ is bounded when x e [l,oo), we have

Var{u(x,t)}9 Var{p(x,t)} < Gδ, x ^ l ,

where G is a constant independent of N and Ax. Since N can be arbitrarily large,
then the bounds obtained above are uniform with respect to any time. And the proof
for Theorem 1 is completed. QED
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