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Abstract: We calculate the (1, 1) curvature of the Beilinson Schechtman connection
for the determinant bundle associated to a family of Riemann surfaces with ordinary
singularities. As consequences we obtain generalizations of theorems of Bismut and
Bost.

Introduction

In this paper we calculate the (1,1) curvature of the Beilinson Schechtman connec-
tion Vs [BS] for the determinant bundle Az associated to a vector bundle £ over a
family n : X — S of Riemann surfaces with ordinary singularities. Given smooth
connections V¢ on E and V,, on wy;s which then induces a connection V-1 on
TZ (tangents to fiber outside singular set), we show that the connection form of
Vs is L! on S and its distributional derivative is

| — k(E
LGV = [ [TUT29,0) ch (B V)], + 5 Db, (1)

s 12
where [ ], denotes component of bidegree (2,2) and 0rz) is the delta function of
the singular locus (with multiplicities).

In case V, and Vg arise from hermitian metrics, we showed in [TTs] that
Vs specializes to Vo the Quillen connection. Thus as a consequence we obtain a
generalization of the main theorem of Bismut Bost [BB, Theorem 2.1], where they
established (1) for V.

The proof in [BB] relies on global methods to estimate analytic torsion and
first nonzero eigenvalue of the Laplacian. Furthermore it requires a reduction to the
projective case. By contrast Vg is expressed in terms of fiber integrals of paramet-
rices which have local differential geometric formulas in terms of V-1, Vg and
liftings of vector fields from § to X. It turns out that upon expanding these local
formulas near singular points one finds rather directly (cf. Lemma 2.3) the terms
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with highest order poles which give rise to the correction 1‘1%5—)5,[( ). Thus it seems
that the Beilinson Schechtman connection is particularly suited to dealing with the
singular case. To justify the calculations we need to incorporate the following. First
of all, in Sect. 1, we extend the Beilinson Schechtman trace complex to families
with ordinary double points. Using local coordinates fitted to ordinary singulari-
ties we find a natural complex whose cohomology gives the Atiyah algebra </,
with logarithmic singularities at n(2) (cf. [BS, 6]). Another point concerns the fact
that the formula of Vs in [BS] and [TTs] contains vector fields, kernel functions
and forms. To justify applying 0 to such a sum, we find it convenient to present
Vs as the sum of a holomorphic action and a pure fiber integral of a form. This
lends things easier to justification at the expense of slightly lengthened calculations.

As a by-product of (1) we obtain a precise description of the singularity of Vpg
at the singular locus. This is based on an argument similar to that of [BB, 12c].
From this behavior of Vzs we obtain as a corollary [BB, Theorem 2.2] which
describes the degeneration of Quillen metric near the singular locus. It is some-
what surprising now this degeneration is proved by local methods independent of
the estimates on holomorphic torsion and Quillen metric that went into the proof
of [BB, Theorem 2.1]. In [BB] it is mentioned that another proof of (1) for the
Quillen connection can be derived using the isomorphism theorem of Deligne [D].

It should finally be remarked that (1) depends on the particular way a connection
is chosen on TZ. We also calculate the curvature of a Vjg where the Vrz is
induced by a metric on 7X which is locally Euclidean at the singular points. In
that case

- rk(E)

=0sVhs = | [TU(TZ,Vrz) ch(E,VE)), + = 0us). @)

X/S

Using (2) we immediately deduce the holonomy formula of [BB, Theorem 6.3]. We
refer readers to [BB] for beautiful discussions of other applications of their main
theorem, as well as thorough treatment of various background material.

In principle the methods utilized in this paper should extend to degenerate
families of higher dimensional varieties by using the connection in [T] which is
constructed from local parametrices. We hope to discuss this elsewhere.

1. Trace Complex with Singularities

We use the abbreviation f.s.0. to denote a holomorphic family of Riemann surfaces
with ordinary singularities ([BB]). More precisely if 7 : X — S is a proper surjec-
tive holomorphic map between complex manifolds such that the fiber z~!(s), s € S,
is a reduced curve with only ordinary double points as singularities then the family
of Riemann surfaces so parametrized is said to be an f.s.o.

It is well known ([BB, 3]) that for any x € X there exists local holomorphic co-

ordinates (zg,z,...,2,) at x and (wy,...,w,) at s = 7(x) such that = is expressed by
wi=z i=1,...,n
or by
Wy =202y, W;j=2, I=2,...,n. (1.1)

Thanks to the existence of such coordinates without loss of generality for purposes
of discussing (1,1) curvatures, it will be sufficient to take a coordinate slice, or that
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dimension of S is one in (1.1). Since the subject matter of the discussion will be
of local nature we can further assume that § = 4, = {z € C||z| < &} and that
D ="' (0) is the only singular fiber with the set  of ordinary double points.

Let £ — X be a holomorphic vector bundle, and Az the Knudsen—-Mumford
determinant bundle associated to the direct image complex R'7m.E.

Let Jx be the tangent sheaf of X, 9y = @Eél be the sheaf of holomorphic
differential operators of order < 1 acting on E, then the Atiyah algebra o/ is the
subsheaf of &y consisting of elements whose symbol is the identity. 7, C Iy is
the subalgebra of projectable vector fields, and we shall need the following notations.
Let s »p) C I s be the subalgebra of vector fields that preserve n(D) (cf. [BS, 6]).
Let

jﬂ.D = dn_l(fs,n(D)) C 77‘[

be the projectable vector fields tangent to D, and

.9.)(/&0 =kerdn

TnD -
Let ¢: g — End(E) ® 7 be the symbol map. Then
/g n(logD) =" (T rp) C Ak,
Ags(logD) = ¢ N (Txsp) C A r,
ot (log (D)) = ¢ (T s,np)) C A, -

All of these are coherent analytic sheaves. Further define the following com-
plexes with obvious differentials (inclusions):

. Iap 1=0 g (logD), i=0
Tup = ) g (log D) = .
T xisp, 1= —1 Aps(logD), i=-—1.

Lemma 1.1. Let n: X — S be an f.s.0.
(i) The sequence

0— Ixsp—T xp— Isup) —0

is exact, and we have R, 7 "5 p = ROn..of *g o(log D) = Ts np) -
(ii) For a given p € X and local coordinates (zo,z)) at p in U such that
(z9,21) = 20z = 5, then

0 0
o —zla—zl>‘f€(9x(U)} :

Proof. All assertions follow readily from the definitions and the formulas

S S N G R
\z) Zlazl =90

Lemma 1.2. Let n: X — S be an f.s.0. Then X x5 X is a normal variety.

T xs,p(U) = {f (Zo

Proof. X xsX is imbedded as an irreducible hypersurface in the smooth variety
X x X. Further the set of singularities of X xg X is exactly 2, seated in the diagonal
of X xs X, and hence X x5 X is a nonsingular in codimension 1. The assertion then
follows from the standard criterion for normality (cf. [Mum.]).
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Let (29,21, {0,{1) be local coordinates in X x X, then the hypersurface X xg X
is given by

2021 — (o1 =0 (1.2)

with p € 2 corresponding to the origin.
Let 4: X — X xs X be the diagonal map, #(24) be the ideal sheaf of 24
and Oxx,x(24) be the sheaf associated to the presheaf:

U {f = 2] € Oxxx(Uva(f) 2 =2},

where v, is the valuation at 4. Let w = wy ® n*w;' be the relative dualizing sheaf,
where wy and wg are canonical sheaves on X and S respectively. Put E° = E* ® w
and define E X1 E°(24) = n{E ® n;E° ® Oxx(x(24), where 7;’s are projections of
X Xg X onto its factors. Put

EX E°(24)|24 = E X1 E°(24)/E X1 E°
and denote by r the natural map:
EXE°Q24) 5 ERE°(24)|24 — 0. (1.3)
Taking residue along 4 — X gives a canonical isomorphism outside X:

ERE°(28)as = D5 .

Lemma 1.3. There exists a sheaf homomorphism :

0 — Pi5(log D) 5 E B E°(24)|24

such that ¢ restricts to the preceding canonical isomorphism outside X.

Proof. Fix p € 2 and let (zp,z;) be the coordinates in U 5 p as in Lemma 1.1.
It suffices to specify ¢|y. Put Uy = {z9+0} U; = {z; £0} and choose coordinates
adapted to the fibration 7: X — S:

z =2z Z=z
{ on Up; { ! on U .

§ = 2021 EzZOZl
Then in U
o 0 oz 0
0z - (320 A 621 ’
0 1 0
= = 14
0s 290z’ (1.4)

and there are similar formulas on U;. Write C,Z for the corresponding coordinates
in the second factor of X xgX.
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On the vector part of @E/;(logD)(U ) we define ¢ to be

6 0 ® Zd(

[ _ EXIE°
3 Zlazl — 27 mod(E X1 E°) on Uy,

20

0 0 (p ZdC

_._Z__

620 621 (C — Z)2

mod(E X1 E°) on U .

To see that ¢ is well defined on Uy N U; we have first of all as relative differentials

dTCZ—ég OnUoﬂUl
¢ ¢

(since %ﬂ + dT‘Il = n*%), furthermore by (1.2) it follows that

Lozo _ {1z
(Lo—z20) (Li—z1)
We thus have

€ 024)U - p) (= 0Q24)(U)) .

zd(
((—-2)
Next on the endomorphism part of QE/S(logD)(U ), define ¢ by

&d
o2 CTCZmod(EE") on Uy,

S € ERE°QA)U).

o5 fpdE mod(E X1 E°) on U, .

{—Z

Again one has by (1.2)

L =
lo—z0 G-z € 02A),

and it follows that on Uy N U,

d¢ _® d¢ ——qﬁégzOmod(EEol

(-7 {-z ¢
For 0 € 9gs(logD) along 4 — X we have Res,(0) = 0 by using (1.4). This com-
pletes the proof of the lemma.

Let tr: EX] E°|;, — @ be the trace map. Via # and ¢ the exact sequence

=

0— E X E°/E R E°(—4)— E R E°(24)/E R E°(—4) 5 E R E°(24)4 — 0

is pushed into

0 — o — "5 " (log D) X% oy s(logD) — 0,
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where we define ./ '(log D) to be 7' (¢ (/g/s(logD))) modulo the traceless
elements in End(F) ® w. Now we can define the trace complex to be

" ot (log D) = { A q(logD), i=0
oy (logD), i=-—1
with the differential given by Res.
Proposition 1.4. Rz, (".o/*g(log D)) is canonically isomorphic to </ ;,(log(n(D))).
Proof. The proof follows [BS, Theorem 2.3.1]. Assume first that R'n,E = 0. Put
Br(logD) = r~" (p(4gs(log D))) C E X E°(24)

_ Ag(logD), i=0
Cone'(log D) = { ,
Bre(logD), i=-1

where 7 and ¢ are the maps in (1.3) and Lemma 1.3. Then taking direct image of
the exact sequence

0 — EXIE°[1] — Cone’(log D) — & gr(logD) — 0
one gets
0 — End(n.E) — R(n x n).(Cone’(log D)) — T sapy — 0.

One can then define action of R%(n x 7),(Cone’(logD)) on m.E by using Cousin
resolution of Cone’(log D) as in [BS], noting that the action is well defined outside
2 and can be extended (uniquely) across 2 since X is of codimension 2 in X.
Therefore one concludes that

R%(n x m),Cone’(log D) = A, ¢ (log(n(D)))

and upon taking traces one gets Proposition 1.4 in the case R'n.E = 0.
The general case follows from above by considering

0— E(—Z) — E — i,E|; — 0,

where Z - X is a divisor étale over S and ZNZ = ¢. Put Ez = (nn|2)«(E|z), one
has the isomorphism

RO ("o g(log D)) = R'n.(" " b~ z)(log D)) + A et £, (log n(D)) .
For further details we refer to [BS].

Remark. We have not pursued the Lie algebra structure on ”o/*g(log D) in this pa-
per. This would require the introduction of one more term in the complex as in [BS].
2. Beilinson Schechtman Connection for Degenerate Families

We shall first put the Beilinson Schechtman connection in a simpler complex than
that described in [TTs, 1]. Starting with smooth families n: X — §, the push
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forward of
0—0s — oA;, — Ts—0

by Os — Cs gives
0———>C5—>CJZ(;_E———>.9'S—>O, (2.1)
whose splittingé correspond to (1,0) connections on Ag. The cohomology

Rn ("t p ®cg Cs) = A5, ®¢g Cs

can be computed using the 0, (0 along fibers) resolution of ”.e/"r ®¢ Cs and is
represented by

{G+mlte e @QX), ne" ;' @ Q% (X), dr=Resy}  (22)
modulo the subset
{(x+n)|t=Resyy, n=20.y, for some y € ".o/;' ® QO’O(X)} ,

where Q79 is the sheaf of bigraded relative smooth forms.
Given C* connections Vg, V7 on X for E and Tys we have the expressions
in local coordinates

0
v = — 4 &rdz VE;=—6—+(DEdz,

LT oz 0z
where z is a holomorphic coordinate along the fiber. We put
C(Vr) = d(Prdz) € QY @ Q'(End(E)),

C(Vg) = 0,(Ppdz) € Q" (End(E)),

A
ei(Ve) = 5-1rC(Vp) € A e\,

- i~
c1(Vg) = E;trC(VE) e Qb

and similar notations for V7. Let v = 5‘5 be a local holomorphic vector field on S
and let

_ 0
7= a0l L Be s, 0 0%
os 0z ’

be any C* lifting of v. Further set

1
Ao = §¢T+¢Ea
1 1 1 1 1
A = E‘P/T - EQD% — 5%+ E% - 5‘15125,

TEVE(IVJ) =7- VE,SG) . (2.3)
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Now the Beilinson Schechtman connection is expressed as follows:
Visy = [t + 1] € Rn(" ok © Cs),

1=7€ Ap, ®QUX),

n=p"'(0.0)+ p°() € "' ® Q¥ (X), (24)
where in local coordinates
pU(@D) = 2; {(ca__z‘i)z + C_a—z_BZ 1]}dC,
PE) =V, ("‘(E Yo (V) + cl(vw)
—tmr [nvE(E) (%E(VT)-F E‘(VE)H . (2.5)

Vs, is independent of the lifting v of v.

Remark. For later purpose we note that p~'(d,7) is the image of p~!(07) via the
projection induced by 901 Q?(/IS Similarly in p%(®) with all tildas replaced by
bars one gets an element of .o/ Q%I(X ) also denoted by p°(?) whose image
in "o/ ;' @ Q% is the above p°(v).

To get holomorphic connections we use Cech complexes so that RO, (" )
is represented by

{("+c)| e CU, Apy), ' eC(U"A5"), 5¢° =Resc!, o' =0}
modulo the subset
A+ e[ =Res??, ¢! =629 for some ¢ e CO (w4, " 7)Y,
E

where % = {U,} is a relative Stein covering of X and & is the Cech coboundary.
Let {p,} be a partition of 1 subordinated to %, then the maps

() =2pacy  pc') = Tpp0:pacyy
o€ 1,ﬁ

embed the Cech complexes into the 0, complexes and induce a map in cohomology:
p:Rn,. ("ot g) — Ron, ("l '5) @ bs .
Now let
[1 +n€bt;,, c=["+c'led;,

be liftings of v = &. Since 7 — p(c®) € A5 ® Q*(X) there exists Y € "A5' ®
Q%0(X) such that
Resy =1 — p(c?). (2.6)

Similarly -
y=n-p(c') -y e Q" X), (2.7)
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since Resy = 0. Combining (2.6) and (2.7) we have

T+n =7+ p(c)+Resy + 0.y,
and therefore in cohomology:

[t+nl= [y+[p(c)) € bty .
X/S

We shall apply this to the case [t + ] = Vps,.

Lemma 2.1. Let ¢ = [¢° + c!] be a holomorphic lifting of v = % in </ ,,, then
Vese = [ (P°(@) + p~'(90) — p(c") = ) + [p(e)] .

X/S

Remark. This representation of Vps, with the inclusion of a ¢ and y appears to
be more complicated than that in [TTs,(1.10)] and [BS,5]. However, the latter
expressions are hard to work with when one tries to compute the (1,1) curvature as
they combine both forms and vector fields. Lemma 2.1 expresses Vpg, clearly as
the sum of the holomorphic action [p(c)] and the fiber integral of a smooth form.

Proposition 2.2. (Grothendieck Riemann Roch for smooth families).

5=05Vas, = vl [ [Td(Tys, V) eh(E, Vi), -
n X/s

Proof. By Lemma 2.1 and the fact that dp(c') = £p(dc') =0,

0sVese = [0(p°@)+ p~'(@D)) .
X/s

The calculation then proceeds as in [BS, p. 685].

We now come to degenerate families. As in Sect. 1, let 4,) = {s € C||s| < &},
n:X — A, be an fs.0. Let Z, =n~!(s) and Zy = D is the only singular fiber.
2 ={p1,..., pa} C Zy denotes the set of singular points. The local discussions will
be the same at all points of 2 so we just consider p = p;. Employing again the
local coordinates (zo,z;) in neighborhood U of p we choose a particular C* lifting
of v= ;—S in U - p:

i 0 Zg 0
W= LR TR (28)
where |z|? = |zo[* + |21 . me(vo) = £ follows from =, (‘—) =z14 and 7, (ﬁ) =

('ZO
2o 4. Differentiating (2.8)

= Zodz1 — Z1dZg 0 0
avo = IZ|4 (Z() aZ() Z1 aZI> (29)
which checks that dvy € s ® Q%! ie. the vector part is tangent to fibers. Let
V and Vg be C*°(1,0) connections on wys and E, V,, induces a C°*° connection
V,-1onTzinX — X Interms of V-1 and Vg we have the formulas (2.3) (2.5).
We proceed to estimate their singularities in U using the coordinates in the open
subset Uy (Lemma 1.1). We also choose v = Vg, so that nyg(v) = 0.
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Lemma 2.3. The following estimates are valid in U:

(i) 0v = dvy + |€‘4, & € QMY End(E))(U),
(ii) 4o = 5; & e C(U),
(iii)A1—1212+é, & e C2(U),
() P°G) = Tf%dz", &e oMUY,

where

&) < 0(zP), |&] < 0(2)),
&) < 0(z]),  [&] < O(z).

Proof. By our choice of v

20

0% = V5 —w]CE),

(i) then follows from (2.9). We next consider (iii). Let 6 be the smooth connection

1 form in U:
d d
v, <_o) _ g%
VA

20

then acting on the section dz, we have by a gauge change
dZo
Voldzy) = (0 + Z—)®d20 .
0

. 0 0 Z) 0
By th lity of dzp = = — h
y the duality of dzy = dz and % B zom we have

0 dZo 0
Ve () = (0 %) o
. 0 .
Thus with respect to the frame 5, In U

1
(DT:—f——3

20

where f = £]6 and

;o 6 216 _ __1_ _i_
(DT—<620 20 021 S Zo —2(2) I

Clearly |f| £ O ( )[fz|<0<”>and
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where |a| £ O(Jz]). In the same way we have
_B
&y = . where || < O(|z]) .
0

The assertion (iii) now follows from the formula of 4; in (2.3). These arguments
also immediately yield the simpler case (ii). Finally to verify (iv) note that

= d
(brdz) = g=2
zp
where ¢ is a smooth form and
d d d
Vou (gﬂ> = (Lie(10)g) > + gV oy <—°) .
20 20 20

This result then follows since vy has singularity of order 1.
Now in the expansion (2.5) of p~!(dv) we restrict the zero order term to the
diagonal (in X xgX) and consider its most singular part at p € U.

Corollary 2.4. Let v = Vg, then we have on U

r(E) 7oz -7z dz & dz

tr{0.BAy + d,ad,}dzo = =
A =

where ¢ € Q%N (U) and |&] < O(|z]?).
Proof. From (2.9) and Lemma 2.3 (i)

= Zodz —ZidZg

A

and

78— é"z with |&1] < O(z]).

The corollary then follows by the estimates in Lemma 2.3 (ii) (iii).

3. Curvature of Determinant Bundle in Degenerate Case

As in Sect. 2 let n: X — A4, be an fs.0. with 77!(0) = Zy = D the only singular
fiber, X the singular set in Z;. Let V,, and Vg be C°°(1,0) connections on wyys
and E. V,, induces a C* connection V1 on Tz in X — 2. Let Vjps be the
Beilinson—Schechtman connection of Ag associated to V-1 and Vg on 4, — {0}.

Theorem 3.1. With notations as above Vs extends as an L' connection of ig
over A, and its curvature computed in the sense of currents is given by

- k(E
Vs = [ [Td(T2, Y, )eh (£, Vo)l + o)
2n XS 12
where 0 is the delta function supported at 0 and n is the number of singular points
in 2.
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Since our local arguments are the same at all the points of 2, for simplicity we
assume that Z consists of one point p. We choose a Stein covering # = {U,} of
X such that p € U,, and p ¢ U, if a=ay. { p,} is a partition of 1 subordinated to
U. Let

@ +cYHY e ox(logD))

be a cocycle such that 7, (e(c?)) = s% Put

1. 1.
c°=—cO, clz—cl, c=co—|—cl.
s s

We may assume that ¢) is holomorphic in U, if a#ap. p(c!) are defined as before.
(20,z1) and (z,s) are the coordinates in Lemma 1.1. On U, let U= VEy,, Vo as in
(2.8) and

iy = [ S }dc €" o/ (log D) & 0

T2 -2

be a smooth lifting of sv — p(c°) (outside p). For a4ay choose ¥, to be any
smooth lifting of ¥ — p(c®)|y,. Set

l//ao = %"/\/’a(y Y= Zpd‘//a .

Lemma 3.2. On U,

iy Y= ((C_Z)m%{_g) dzo €" A5 (logD)® Q%,  where &€
C*(Uy,) and &s = 0 in a neighborhood of p.

(ii) sp(c') = (”;1+f—'“—+ﬂ) dz €7 o7 (log D) ® Q0 where p € C®(Uy,)

(=22 =20 %0

and py = 0 in a neighborhood W of p.
Proof. (i) > B ppYp is smooth and vanishes in a neighborhood of p. The possible

pole in goi arises from the fact that if local expressions are given in U; coordinates
(cf. Lemma 1.1) and one transforms it to Uy coordinates via z; = %, s =s, then

the gauge change formulas of [BS, p. 683] show a possible factor % (i1) The proof
can be done in the similar way as (i).

We now prove that Vg is L'. Since [p(¢)] gives a class in .2/, (log n(D)) and
therefore [p(c)] is L' it suffices to show, in view of Lemma 2.1, that

Ig)= [ [(P°@)+ p~'(00) — p(c") — dY)ds A d5| < oo (3.1)
Bs(q)

for all points g € D, where B:(q) is an e-ball centered at g. For g ¢ U,,, we have

&/\ds/\dE

I(g) < const. [ .

Be(q)

< o0, (32)

where f; € Q' (B.(¢)) because p°(v), oy and p~'(07) are smooth at ¢. Note that
ds = zodz| + z1dzy so that

?Admdhdzomz]/\dg.
0
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Using this, Lemma 3.2, Corollary 2.4 we have for g € U,, g= p:

I(q) < const. [
B.(q)

%/\dzo/\dzl/\cﬁ < 00, 3.3)

where f, € Q?\gl(Bc(q)), and for g = p:

I(g) < const. [
Be(q)

Thus (3.1) follows from (3.2)—(3.4).

We now compute 0sVps in the sense of currents. First of all since C(V,-1)
and C(E) are smooth on X, the fiber integrals in Theorem 3.1 exist as currents on
S by [BB, 2(a)] (it follows from the proof of Proposition 4.1 that the singularity
at 0 is no worse than log|s|). Let v = % and @ = ¢(s)ds be a (1,0) smooth form

with compact support on 4. Then the distributional derivative 0sVps is given by

ANdzy Ndzyg Ndzy ANdzy| < 00 34)

(R

0sVasu(@(s)ds) = — [Vs(0s@) = — [ Vs, A 0n* 0, (3.5)
5 X

where Vg, in (3.5) stands for its formula in Lemma 2.1 without the fiber integral.
Let T,(D) be an e-tubular neighborhood of D in X, then by the fact that Vg is L'

—fVBsL A on* Q= —gm(x) f VBS,U/\_érc*(p
“YX~Tu(D)

=-—lim [ 0{Vgs,An* o} +1lim f (0Vpsp) A"
=0y 7.(D) =0y _T.(D)

=lim [ Vg, An" (P"‘ f v] [[Td(Txs,V-1)ch(E, V) p Ao,
e=0o7,(D) i X/s

(3.6)

where in X — Ty(D), 5V35,,, is its usual derivative hence the last term in (3.6)
follows from Proposition 2.2.
Lemma 3.3.

lim [ Vgs,An"e=1lm [ (p°@)+ p~'(00) — 0, )o(s)ds .
=0%rp) =038,(p)

Assuming Lemma 3.3 for the moment we use (2.5), Corollary 2.4, Lemma 2.3
and Lemma 3.2 to evaluate its right-hand side, and we obtain

2 k(E 2n rk(E
lim =~ [ (r( ) o2(s) + PO gz n a2 ) ’”"( )o0), (37
=0 1 gy \ 12 |z|* i
1 zods — zidz
where o = Zodz1 — Zidz dzg A dz, is the Bochner kernel in dimension 2,
@u)y |

and B € Q*(U,). |Bl £ O(|z|*). Theorem 3.1 thus follows from (3.6) and (3.7).
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We turn now to the proof of Lemma 3.3. Let W be the neighborhood of p given
in Lemma 3.2 (ii). Let y € C§°(W) be such that 0 < y < 1, and y = 1 in a smaller
neighborhood W, of p. Let &(s) denote the connection matrix of [p(c)] and y =
P°@) + p~1(00) — p(c')y — Oy as in (2.7), then we rewrite lim,_ fan(D) Vs A
n*Q as

lim [ yyn*e+1lim [ (1 —y)yn*¢ +Resd(s)p . (3.8)
“=007(D) “=001,(D) s=0

By Lemma 3.2 (ii) lim,_q féT;(D) 1y @ = I}(p), where I;(p) is the right-hand side
of Lemma 3.3. Next note that the zero order part of ( P°@) + p~1(07) — 0y)ds is
smooth in X — Uy, and (1 — x)(p°(?) + p~'(90) — dy)ds is smooth in U,,. We
conclude that K, = lim,_o f&Tg(D)(l — x)yn*@ depends on p(c') and y but is

independent of p°, p~! and . When ¢ ¢ W, and x(q) +0 we must have p(c')(q) =
0 since supp y C W and p(c') =0 in W. Thus K, does not depend on y. Now
from (3.8),

lim [ Vgso A" @ =1L(p)+ Kyc)p + Res P(s)gp . (3.9)
e—»OaTE(D) s=0

The left-hand side and /;(p) do not depend on p(c), while K, + Ress—g D(s)¢
depends only on p(c) (and ¢). Since p(c) is an arbitrary action on ir we must
have K + Resg—o @(s)¢ = 0 and this proves Lemma 3.3.

4. Some Consequences of the Curvature Formula
Assuming the notations in the beginning of Sect. 3. Let 65 be the connection form
of Vs with respect to a nonzero holomorphic section ¢ of Az in 4.

Proposition 4.1.

nrk(E) ds
55 = "5 % 4 sl + ilsP log bl

where i are C* functions on A,

Proof. The argument is similar to [BB, 12(¢)]. By Theorem 3.1

— k(E)d
aS |:QBS - nrl(z ) SS] =

(=2mi) [ [ Td (TZ,V,-1) ch(E, V)], . (4.1)
X/s

By a partition of unity argument we can write on X
(—27i)[Td (TZ,V,-1) ch(E, V)], = 00no + 11

where #, are smooth on X and #; vanishes in a neighborhood of the singular points
2. Then fX/s"/l is smooth on 4, and hence by (4.1),

nrk(E) ds
— =0
2 5 SXLWO

OC=035—
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must be smooth on 4,, since é_s(oc) = fX/S 1. By [BB, Theorem 12.3]

S no=yo+ yils)* logls| ,
X/s

where 79, 71 are smooth and this proves the proposition.

Note that ds{¥o + y1|s|* log|s|} is continuous in 4. Proposition 4.1 can be
generalized to the case when dimS > 1 by using formulations analogous to [BB,
Theorem 2.2].

Assume now V,, and Vg arise from hermitian metrics || ||, and || ||z, so that
Vs coincides ([TTs]) with the corresponding V associated to the Quillen metric
Il llo on Ag. In this case

Ops = dlog|lallg ,
and we conclude immediately from Proposition 4.1.

Corollary 4.2. [BB, Theorem 2.2] There are C*™ functions y; on A such that:

log |s| + wo + Y1 |s|* log|s| .

nrk(E)
log lollg = “

1

As remarked in the introduction, we have derived this estimate of the Quillen
metric purely by local considerations. We compute next the curvature of a slightly
different connection on Ag.

In the neighborhoods U of points of X consider the metric on 7X which in
local coordinates (zg,z;) (cf. (1.1)) has the expression

[dzo* + |dz; | . (42)

By partition of 1 one then gets a metric || ||7x on X with the desired behavior
at each p; € 2. As in [BB, 6] denote the restriction of this metric to 7Z|y_z by
“ ” TZ- Then

2 2

S A | I ] (43)
620 Ay) 621 17 20
and the curvature is
R = 30log 0 _and| _ (fld’ZE—Z‘odZ-l)(fldzo—Zodzl)
0z 20 021 ||y ||

In particular R’ A R™ = 0 in a neighborhood of the p, and so Td(TZ,|| ||7z) exists
as a locally L' current on X. Let Vg be the Beilinson Schechtman connection on
/g associated to || |7z and V.

Proposition 4.3. V)¢ is an L' connection on ig and its curvature as a current is

0.

%55?7}“ = [[Td (TZ]| |l1z) ch (E,VE)] +

nrk(E)
X/s 6
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Proof. Let || ||, be a smooth metric on wys in X such that in a neighborhood of
each of the p, € X and using the coordinates (1.1) we have

2
dZo

20

=1.

w
| |lo induces a metric on 7Z in X — X denoted by || ||,-1, and in particular

2

0

[—— - ~2
|, =l (44)

Let V¢ be the Beilinson Schechtman connection associated to || ||, and Vg,
then by Theorem 3.1,

nrk(E
—8SVBS = [ITd (TZ]| ||,-1) ch (E,VE)] + ( )5 4.5)
XIS 12
Consider the family of metrics || ||, = €| ||,—1 such that || ||y = || [zz. From
(4.3) and (4.4) we have in a neighborhood of p;,
§ = tog -1 _ tog(jzof? + | ) (4.6)

Il
Now by the Bott Chern variation formulas [TTs, (2.3)]

i
E(V}BS — Vis)

i {rk(E)
B 6

rk(E )

aqb A c,(Vw_n ) +

a¢A—aa¢+ 8¢A01(VE)}. (4.7)

2n XIS

Using (4.6) and the fact that ¢;(V -1), ¢i(Vg) are smooth the integrand is clearly

L' on X. Hence the fiber integral is L' on S and we may calculate the g derivatives
in the sense of currents. This is done in the same manner as in the proof of
Theorem 3.1, and we obtain for a C* function ¥ with compact support on S.

3=35(Vhs = Vho)lW) = 32/ (Vhs = Vi) @)

_hm—— J 6{,u/\l//}+hm—— f (6;1)/\1#

8——vO Ty~ 2B,

where u is the integrand { } in (4.7) which only has singularities at X% and B,
denotes the ¢ balls around each point of 2. Hence we have

i { rk(E) rk(E)

lim
" 6

a¢ A Cl(vw“l ) +

0P A —66¢ + = 8(;5 A cl(VE)} ¥

+Sf{f[Td(Tz,|| ll7z) = Td(Tz, || llo_,)] ch (E,VE)} v, (4.8)

X/S
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where the last term follows from Proposition 2.2. In the limit term in (4.8) the only
contributions with pole of order 3 is

nlim (_) rk(E)ft//@d)/\aa(b—nl ’ (E)fw 0 ”’k(E)w(O)
e—0 \ 21 0B,
Thus we obtain
57 05(Vhs = Vo)
nrk(E)

=X£[{Td(Tz,|| lrz) = Td (T2, || ll,-1)} ch (E,Ve)la +

5. (49)

Proposition 4.1 now follows by adding (4.5) and (4.9).

Remark. 1t is also possible to calculate 05V, directly without making use of
Theorem 3.1 and comparing with V9. However the detailed calculations here are
considerably more involved than that for Theorem 3.1 which is essentially contained
in Lemma 2.3.

Let ¢ be a simple smooth curve in 4, — {0} enclosing 0 once and let 4 be
the interior of ¢. Let 19 be the holonomy of the parallel transport of iz for the
connection V) once around ¢ in the positive sense.

Corollary 4.4. ([BB, Theorem 6.3])

9 = exp {zm (ff Td (TZ,| ||12) ch (E, Vi) + ””kéE))} .
an

Proof. Suppose A is trivialized in 4., with local basis e and suppose fe is a parallel
section:

Vis(fe)=dfe+ fle =0,
where 6 is the connection form with respect to e. Then over a portion of ¢ where
S =*0,
I ‘4
o _ju

? VA
From this it follows readily that 19 = ele=? Then by Proposition 4.3,

) = exp(— [00)
4

= exp {Zni (ff Td (7Z,|| |lzz) ch (E,VEg) + nrk6(E)>} .

Vi
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