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Abstract: Integrable hierarchies, viewed as isospectral deformations of an operator
L may admit symmetries; they are time-dependent vector fields, transversal to and
commuting with the hierarchy and forming an algebra. In this work, the commu-
tation relations for the symmetries are shown to be based on a non-commutative
Lie algebra splitting theorem. The symmetries, viewed as vector fields on //, are
expressed in terms of a Lax pair.

This study introduces a "generating symmetry", a generating function for sym-
metries, both of the KP equation (continuous), and the two-dimensional Toda lattice
(discrete), in terms of L and an operator M, introduced by Orlov and Schulman,
such that [L,M] = 1. This "generating symmetry", acting on the wave function (or
wave vector) lifts to a vertex operator a la Date-Jimbo-Kashiwara-Miwa, acting
on the τ-function (or τ-vector). Lifting the algebra of symmetries, acting on wave
functions, to an algebra of symmetries, acting on τ-functions, amounts to passing
from an algebra to its central extension.

This provides a handy technology to find the constraints satisfied by various
matrix integrals, arising in the context of 2d-quantum gravity and moduli space
topology. The point is to first prove the vanishing of symmetries at the Lax pair
level, which usually turns out to be elementary and conceptual, and then use the
lifting above to get the subalgebra of vanishing symmetries for the τ-function (or
τ-vectors).

0. Introduction and Main Results

Most integrable equations are part of a hierarchy of equations, and can be viewed as
isospectral deformations of a system of linear equations, with one or more sequences
of scalar deformation parameters t = (t\,t2,...) as independent variables. They may
come equipped with so-called symmetries, which are vector fields acting on the
space of solutions of the hierarchy, which may explicitly depend on time, and which
commute with the hierarchy, but not necessarily among themselves. Symmetries
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have played important roles in the study of integrable equations since early days of
soliton theory, when the Backhand transformation of the K-dV equation led to the
discovery of infinite sequence of conservation laws, and hence the K-dV hierarchy.

The purpose of this paper is to prove that the symmetries acting on the linear
problem, as introduced by Fuchssteiner, Oevel and coworkers, and extensively stud-
ied by Orlov and coworkers, lifts to its central extension, the symmetries acting on
τ-functions as introduced by Date, Jimbo, Kashiwara and Miwa, and which played
the central role in the Kyoto school's theory of soliton equations in terms of an
infinite dimensional Grassmann manifold. Indeed we get a generating function of
the symmetries, a so-called vertex operator for the linear problem, which lifts to the
vertex operator acting on τ-functions. The result is robust: it holds for continuous
integrable systems (KP) as well as for discrete ones (two-dimensional Toda lattice),
leading to a Lax vertex operator when operating on pseudo-differential operators or
matrices. The proof is given at the same time for the discrete and the continuous
cases, using the same algebraic formalism. In fact, non-Hamiltonian noncommut-
ing generalization of the Adler-Kostant-Symes splitting theorem, which covers the
situation of symmetries, is given in Sect. 2. Indeed, they correspond to two different
Lie algebras, both denoted by ,̂ with splittings.

The KP equations

g = [(!%!], «=1,2,. . . , (0.0)

are deformations of a monic pseudodifferential operator L in x of order 1, L = D -f
α_ι (x, i}D~λ + , where D = d/dx. It is expressible in terms of the customary
splitting of the algebra Q) of formal pseudodifferential operators into differential and
negative order operators:

Σβ^Σ^' + Σ '̂ (o.i)
/^o /<o

A customary eigenfunction Ψ — Ψ(x,t,z) of L with eigenvalue z ~ oo, called the
wave or Baker-Akhiezer function, plays an important role in this theory. In particu-
lar, it enabled Orlov and Shulman to introduce, besides L, another pseudodiflferential
operator M, which acting on Ψ amounts to differentiation by z, so that L,M and
Ψ are related as follows:

dΨ
LΨ=zΨ, MΨ=—, \L,M]=l,

cz L J

fH(I")+'M]' f = [(*%*]. » = u,... . (0.2)

The two-dimensional Toda lattice equations

f = [(I?,0)+,I] and ̂  = ((Q,L"2)+,L\ , B =l,2, . . . (0.3)
Uln Uϊ>n

are deformations of a pair of infinite matrices

Σ a\l)Λ', Σ α | 2 ) Λ ' ) e ® , (0.4)
-oo<z<l -!</<oo '
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where A — ( δ j - ^ i ) . . 2, and a] and a] are diagonal matrices depending on t —

(ίι,£2,. ) and s — (s\>s2> )> such that

flίυ=/ and (a(2\) φO V w .
1 V — 1 / 7 Z W '

It is expressed in terms of the (less customary) splitting of the algebra Q> of pairs
(Pι,P2) of infinite (Z x Z) matrices such that (Pi )/, = 0 for j - i > 0 and (P2)ij =
0 for / — y > 0, used by us in [A-vMO], and also [vM-M]; to wit:

@+ = {(P9P) \ptj = o if |ι - j\ » 0} = {(Pl9p2) e@ PI = P2} ,
®- = {(Pι,P2) (Pι)tJ = 0 if j ^ i, (P2\j = 0 if / > j} ,

so that CPι,P2) - (^1,^2)+ + (Pi, PI)- is given by

(Pl,P2)+=(Plu+P2I,Plu+P2l)9

(Pι,P2)- = (Pιι-P2i,P2u~Piu), (0.5)

where for a matrix P, Pw and P/ denote the upper (including diagonal) and strictly
lower triangular parts of P, respectively. Note that @± are actually associative rings
as in the KP case.

In this context, one also introduces a pair of wave vectors Ψ = (Ψ\,Ψ2) in-
stead of a single wave function, and an operator M — (M\ , MI ), all tied together as
follows:

LΨ = (z9z~l)Ψ9 MΨ= A , A

(0.6)

Sato's theory tells us that the KP or 2-Toda deformations of Ψ9 and hence
can ultimately all be expressed in terms of τ-ίunctions

τ(x + t\9t2,... ) =: τ x ( t ) , x: scalar (KP case),

τw(ίι,ί 2,. . .;5Ί,5 2 s . . . ), n£% (2-Toda case) :

KP 2-Toda

,̂  y ( j =
f

τ x ( t )

= (0.7:

V
where

oo z-/ ^

^ and
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so that

ean+bήf(t,s} = f(t + a[z~l],s + b[z]) (0.9)

with [α] = (α, α2/2, α3/3,... ).
The symmetries of the KP or 2-Toda hierarchy are conveniently expressed in

terms of the operators L and M. In view of the relations

KP:

2-Toda:

the Lie algebra

z — Ψ =
dz

(0.10)

:= span (0.11)

comes naturally into play. To be precise, denoting by φ the algebra antihomomor-
phism

KP:

2-Toda:

: z*(d/dz)

(0.12)
Ό,u*(d/du)β^ t-> (θ, Mξ.

o (2-Toda case), we have a Lie algebraand by w either w^ (KP case) or w^ x
antihomomorphisml

Y : w —» { symmetries on Ψ9 L or

pl^ \Yμ = [-<K/>)_,L],YpM= [-ψ(p)-,M] .

We shall also denote Yp by Yψ(p), if there is no fear of confusion.
A generating function of the symmetries on the Ψ-manifold is given by

and on the L-manifold it takes the Lax form

(0.14)

with

KP:
N = (μ - λ

(0.15)
k=\

Thus — Y is a Lie algebra homomorphism.



Lax Representation for Vertex Operator and Central Extension 551

N = (Nl90) or (09N2) 92-Toda:
Nt = (μ- λ)e(μ~Λ}Mlδ(λ,Ll) 9 (0.16)

where (H/^^ΣΓ^-V'-1.

We now turn to the τ-manifold symmetries; Date, Jimbo, Kashiwara and Miwa
observed in their fundamental work that the symmetries of the τ-manifold are real-
ized by the vertex operator

/OO \ /CO 1 3 \

X(t9λ9μ) := exp Σtt(μl - λ1) exp Σ(λ~l - μ'1)-^ . (0.17)
V 1 / \ \ I OtiJ

Introduce now a small variation of X and generators2 of a W^ -algebra:

KP 2-Toda

s, λ,μ) : = - X(s,λ,μ) , (0.18)

Σ λ-'-*0fΛ α e Z , (0.19)
/=-oo

and

We now state the main theorem:

Theorem 0.1 The vector fields of type ΎN on the Ψ-manίfold and the vertex
operators of type J£(t,λ,μ) on the τ-manifold are related as follows:
(i) continuous (KP) case:

(ii) discrete (2-Toda) case:

ψ

Note that in general the action of a vector field on τ induces its action on Ψ
via (0.7). By logarithmic derivative we have

respectively in the KP and Ψ\ case, and in the Ψ2 case. The theorem means in this
sense that X on τ induces ΎN on Ψ in the KP case, and X and (μ/A)X induce

Using
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ΎN} and Ύ^2, respectively, in the 2-Toda case. Expanding X,X and Y in terms

of the ^generators and M*L; , we have

Corollary 0.1.1. For n, I G %,n ^ 0, we have in terms of the W-generators (0.19)
(i) continuous case:

(020)

(ii) discrete case:

((MfL?+/)

(
~ ( κ + l ) , ~ ( w + l ) \

c-^m,/ (Tm+l) _ Wm_λj(τm) \

?m+ι ^m y

The proof comprises both the continuous and the discrete cases. A similar result
can also be established for the one-dimensional symmetric Toda lattice; this will be
reported elsewhere (see [A-vM2]).

Besides its intrinsic, conceptual relevance, this study has been motivated by
questions arising in string theory. A mathematical formulation of string theory in-
cludes the following: Given a differential operator L, evolving according to the
KP-equations, find another differential operator Q satisfying [L,Q] = 1 or = /(L),
for some reasonable function /. It has been noticed that the exceptional Z's or cor-
responding Ψ's for which this is possible, form a locus on the manifold of L's or
f's, which are fixed points for a certain symmetry vector field; in other terms, this
symmetry vanishes all along that locus. For KP, a simple argument, based on the
fact that differential operators form an associative algebra for multiplication, besides
being a Lie algebra, shows that a whole algebra of symmetries vanishes along that
same locus. The vanishing of these f-manifold symmetries implies the vanishing
of the corresponding τ-manifold symmetries (often called constraints); since it is
also known that, in certain circumstances the corresponding τ-functions are certain
matrix integrals, this provides a set of constraints for the latter. These ideas can
now be applied to the 1-matrix models (see [A-vM2] and [vM]), the Kontsevich
integrals and its generalizations ([A-vMl]) and to the 2-matrix models ([A-vM3]).
These applications are sketched in Sect. 6.

These results have been lectured on by PvM at various stages of their evolution,
at a very early stage at Sophia-Antipolis (June 1991), then later at Como (October
1992), Utrecht (November 1992), Brandeis and MIT (spring 1992); see [vM]. The
present proof, lectured on at Cortona (Sept. 93), simplifies the argument by an
effective use of the bilinear identity.

In the pioneering work [O, O-Sc], Orlov and Schulman have conjectured the
relation (i) for the KP-equation, but formulated in a different language, and proved
partial results in this direction including: (a) the action of ΎN on the first nontrivial
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coefficient (the coefficient of z~l) in exp(-xz - X>z'') Ψ = 1-f O(z'1), and (b)
the action of ΎN on the trivial solution Ψ — exp(xz + X^z*) (or L = D). Aoyama
and Kodama [AK] have also conjectured the relation (i). After completion of this
work, the authors found out that Dickey [D3] provided a slightly different proof of
the relation (i).

1. Preliminaries

Consider for an additive group F the function (character)

χ : F x C* -> (C* ( or F x C -> €*) (1.1)

(*,z) h-> χx(z)

satisfying
χj+;;(z) - z,(z)xXz) and χ_,(z) - (χ.(z))-1 . (1.2)

Regarded as a function of z parametrized by *, this induces a group homomorphism
of F into the multiplicative group of non-vanishing functions

Now we switch the point of view and regard χ as a family of functions of x
parametrized by z. Assume χ is holomorphic in z, and the linear map

p : (C[z,(d/δz)] -> { functions in x,z } : P(z,d/dz) *-* P(z,d/dz)χx(z)

is injecti ve.
Consider a pair of linear operators d and ε acting on the space of functions in

c spanned by {(d/8z)nχx(z) \ z G C*, n = 0, 1,2, . . .}, such that

d
d χ = z χ , £ X = - f c X - (L3)

One computes that

[<3, ε]χ - δεχ - εdχ = d—χ - εzχ

d d

= & Z χ ~ Z & χ

= [Tz'z]X = X9

which, by the injectivity of p, leads to

[δ,β] = l , (1.4)

and to the fact that P(d, ε) ι— > p~l(P(d, ε)χ) gives an antiisomorphism of rings

Since [ ,ε] acts as a derivation in "•", and since by (1.4) this derivation is
continuous in the δ-adic and ^-1-adic topologies, the following holds for any formal
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series f ( z ) in z or z"1:

),β] = f ' ( B ) , and hence ef(d)εe'f(d) = ε + f(d) . (1.5)

Here in the latter formula we assume <^(z) = XXV«!)/(z)n makes sense, e.g.,
/ consists of either strictly negative or strictly positive powers in z, i.e, /(z) G

We also have by (1.3) that

and by Taylor's theorem, as formal power series in a,

The two major examples of this situation are
(i) F = R,C or Spec C[[;c]] (continuous case): χ := exz,

d :— D := d/dx, ε := x.

(ii) F = Z (discrete case):χ := (zz)/ez = (...,z~1,l,z,...)τ,

d := Λ := (δ/>7 _ι)/ > 7 6z =

0 1
0 1

0 1
0 1

0

and

ε := diag (z) l€Z A =

0
-1 0

0 0
1 0

2 0

\

Introducing the operator j := (^ +Λo)z,/€Z : (χι) ~^ (x-ι) we also define

χ*(z) :=jχ(z) =

They satisfy

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

and ε* := jεj~l. (1.11)

(1.12)

Pseudodifferential Operators. Let C(F) be a ring of "smooth" functions on F;
e.g., C[[jc]] if F = Spec C[[x]], and Cz (vectors, and also regarded as the ring
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of diagonal matrices) if F = TL. The ring of pseudodifferential operators and its
discrete analogue3, both denoted by Q)\

^ = ίc(F)((a-1)) - C(F/(Y|Λ }} (continuous case)

[C(F)(((9-1)) ΘC(F)((5)) - C(F)((/1-1)) ΘCF((Λ)) (discrete case),

are associative algebras over C(F). The action of Q) on χ, simply defined by the
formula4

is a formal Laurent series in z"1 times χ in the continuous case, and a pair of formal
Laurent series in zτl times χ in the discrete case; i.e., geometrically the action is
well-defined on the infinitesimal punctured disc(s) around z = oc (continuous case),
or around z = 0,oo (discrete case). Clearly, @χ is a left ^-module isomorphic to
0 itself.

The splitting of ̂  into two subalgebras, ^+ 0 ^_, as explained in the preceding
section, is characterized as follows: every element of @+χ extends holomorphically
to z E C (continuous case) or z £ C* (discrete case), while every element of ^_χ,
still a formal series, has no poles at z = oo (continuous case) or z = oo, 0 (discrete
case), and vanishes at z = oo. The last property (vanishing at oo) is not a canonical
choice, and it is only to exclude constants from ^_. A different choice was made
in [A-vMO, vM-M].

In the discrete case the following simple observation will be useful.

Remark 1.1. For P = (P\,P2) 6 2, we have P_ = 0 if and only if PI = P2. More-
over, if we define an additive group isomorphism Y : (CZxZ — * ^_ by Y(A) =
(A(l}9-A(U)\ then P_ - Y(Pl - P2).

KP Equations (Continuous Case). A solution

— oo

2, with c G F, t = (tι,t2,... ), (1.13)

to the KP equations (0.0) has, in terms of the wave operator S G 1 +^_, the
associated

ΣOO , ΛZ
rr ,_^c 1=1^ , (1.14)

or the wave (Baker- Akhiezer) function

ψ := Wχ = SeΣ^tizlχ(z) , (1.15)

the following representation

L - SdS~l = WdW~l or LΨ = zΨ , (1.16)

3 Note that abstractly the three rings QontOFXΦ"1)), Cdiscκte(W)((Λ±l)) are just different
completions of <C[d,ε].

4 In the continuous case, α/ = at(x) and in the discrete case, a, = diag (αz(«))rtGz
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(note that the last condition determines L uniquely) subjected to the following
equivalent conditions:

!j- = -(L")-S, (1.17)
oιn

(1.18)

dΨ

af-^' <'•">
Conversely, given (equivalently) S,WorΨ satisfying these conditions, L given by
(1.16) satisfies the KP equations (0.0). Indeed, the equivalence of (1.17) and (1.18)
follows from (1.14) and (1.16):

=53-5-' =I ,

and the equivalence of (1.18) and (1.19) follows from the definition (1.15) of Ψ.

Let
α2 α3

[α] :=(α,y,y,... ), t := (x + t\,h,h,... ),

d := (d/dtι9(l/2)d/dt29(l/3)B/dt39... ),

and

According to [DJKM], !P has the following representation in terms of the
τ-ίunction τ:

11=0 τ

->,z(z))eΣΓ^t (L20)

n=0

implying in view of (1.15)

* —
τ(t)

Note that the last equation in (1.16):

zΨ =zWχ= Wzχ= Wdχ = WdW~lΨ (1.25)

= LΨ
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is a half of the dressed version of the relation (1.3). The other half:

-ψ = W-χ = Wεχ =

= MΨ (1.26)

naturally leads to the operator (use (1.5))

M := WεW~l = SeEtk8\e-EtkdkS-1 = S(ε + ̂ fa^*"1)^1 (1.27)

satisfying
[L,M] = W[d,ε]W~l = 1. (1.28)

Thus for any formal series / in ε and d we have

f(M,L) = Wf(ε9d)W~l (1-29)

Two-Dimensional Infinite Toda Lattice (Discrete Case). A solution L = (L\,L2)
of the two-dimensional Toda lattice equations (0.3) has a representation in terms
of the pair of wave operators S = (S\ , £2 ) € exp^_, i.e.,

f s^ΣaΛ* s2 = Σc'iΛ
i

9< i ̂ o /£0 (1.32)
[ cz,c': diagonal matrices, CQ — /, (CQ)Π ΦO V / ,

the associated W = (W\,W2Y

v^oo. Ak v^oo λ—k
Wl(t,s) = Sl(t,s)e^ tkλ , W2(t,s) = S2(t9s)e^ SkΛ , (1.33)

or the pair of vector wave functions Ψ = (Ψ\, ^2):

Ψ l ( t 9 s ' 9 z ) : = W i ( t 9 s ) χ ( z ) 9

as follows (here recall d — A and 5* = Λ~l)

L := W(d,d*)W~λ = S(d,d*)S~\ or LΨ - (z,z~l)Ψ

with the following equivalent conditions satisfied:

^ = -(I?,0)_Sf, ^ - -(0,^)_5, (1.34)
dtn dsn

dW
= (L»l90)+Wi9 -^ = (0,L»2)+Wi9 (1.35)

dtn

SΨi dΨi
-̂  = (L"190)+Ψ19 —^ - (0,15)+^. (1.36)
cιn osn

In accordance with (1.26), we also define

M := (Ml9M2) - W(ε9ε*)W-1 , (1.37)

satisfying [L/,MZ] = 1 and

5 δ •" (1.38)
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Throughout this paper, for a vector τ = (τw)wGZ we shall denote

τλ := Λτ, i.e., (τΛ)n = τπ + i. (1.39)

According to [UT], *F has the following representation in terms of the vector of
τ-functions τ = (τΛ)π€z:

= Σί'AΨ2(t,s;z) = S2e

So we have

Si = —, £2 — ' (1.42)
τ τ

Adjoint Wave Function. In either KP (continuous) or 2-Toda (discrete) case, given
a wave function Ψ = Wχ, the adjoint wave function is defined by

ψ* = (WΎΓlχ* - (1.43)

It satisfies similar equations as Ψ, represented in terms of τ (see [DJKM, UT]),
and, together with Ψ, plays an important role in the bilinear identities (see
Sects. 3 and 4).

^-function. According to [DJKM], the following formal series:

-1 v (-Y - - -" z^ooU/ " z i - ; -λ/z λ 1 — z/λ

is a ^-function in the following sense: given a function /(z) — Σ^-^ fl/^z,

/α)S(λ,z) = /(z)5(λ,z), (1.45)

as is seen from z^^z/λγ = ̂ n(z/l)n+i. Thus

(li - Wίz) = (μ-zKW = -1=^ + f |̂  , (1-46)

and
δ(λ,z)χ(z + μ-λ) = δ(λ,z)χ(μ)χ*(λ)χ(z) (1-47)
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Later we shall use
oo

£ f η ^ X ^ ^ Λ M /> M 1

<5(λ,d) = £) Λ 5

n=—oo

for which formally

2. Symmetries and a Non-Commutative Splitting Theorem

We shall need the following Lie algebra splitting lemma, dealing with operators
and their eigenfunctions, which generalizes the Adler-Konstant-Symes Theorem.

Lemma 2.1 Let 3) be a Lie algebra with a vector space decomposition 2 —
@+ 0 &- into two Lie subalgebras &+ ana ®-\ let V be a representation space
of Q>, and let Wi CV be a submanifold preserved under the vector fields defined
by the action of &-, i.e.,

@-xcτxwι V j t e a n .

For any function p : 9R-* @9 let Ύp be the vector field on 501 defined by

(a) Consider a set stf of functions p : 9)1 — » 2 such that

holds. Then Ύ : p H-* Ύ p gives a Lie algebra homomorphism of the Lie algebra
generated by stf to the Lie algebra &($R) of vector fields on Wl:

and hence we can assume without loss of generality that stf itself is a Lie algebra.
(b) Suppose for a subset & C stf of functions

Zq(x) := q(χ)+χ G TXΏI, VxeWl,qe@,

and hence defines another vector field TLq G (̂501) when q G < ,̂ and such that

holds. Then

Remark. A special case of this which applies to many integrable systems is:
V — Q)1 , a Lie algebra containing ®, and Q) acts on Q)' by Lie bracket, i.e.,
Y/,00 = [~p(x)-,x], etc.

Proof. Let p\,p2 G J/, and first consider the infinitesimal flow

exp(ειY / 7 l)exp(ε2Yp 2) mod (ε^ε^).
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Since (exp(εYp(Λ:)))jc = (1 -f εYp(jc)) x mod ε2, at x e 9JI this becomes

(1 + εi Y^C* + ε2YΛ*)) - (x + ε2Y/,2(*))

*)-) - (x - ε2/?2(x)_x)

)- + ειε2(-Yp2(.x:)(/?ι(>:))_ + pi(x)-p2(x

Hence

[Ypp Yp2](jt) = coefficient of ειβ2 in

exp(ειYP l) exp (ε2 ΎP2 )x - exp (ε2 ΎP2 ) exp(ειYP l)x mod

where

using ^_ is a Lie subalgebra,

[p\,p2~] + [pi-, P2-] - [p\+, P2+])- ,
using ^+ is a Lie subalgebra,

[pi, P2-] + [/?! + , P2+])- ,

combining the 1st and 3rd terms

— ~([p\>P2+] + [/7ι,/?2-])- 5 combining the 1st and 3rd terms

Similarly,

where

Z2 := (^(j,))_ -f

since ^± are Lie subalgebras

ending the proof of the lemma.

Remark 2.1.0. In the setup of the lemma, if we are given a Lie algebra (anti)homo-
morphism φ : g —>• j/, we denote Y </>(*) by Y^ and %φ(X) by Zx if there is no fear
of confusion.

Consider the Lie algebra w^ (introduced in Sect. 1) of ordinary differential
operators with Laurent polynomial coefficients spanned by

d
\z" I —
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The Lie algebra span{zα<9/& | α e 2£} of vector fields on the circle Sl is a subal-
gebra of w^.

We now apply the above setup to

2 \— the algebra of

( pseudodifferential operators (KP case),

< pairs of infinite matrices (2.Toda case)

I as in preceding sections v "

2' := 2 x ®, (see remark at the end of Lemma 2.1)

on which 2 acts via diagonal embedding 3) -̂> & : p *—> (p,p),

V :=@,&χ or ®',

9JΪ := respectively, the space of wave operators W, of wave functions Ψ

or of pairs (L,M) such that [L,M]=1,

J2/ := the space of polynomials in

ί L and M (KP case),
\ (Lι,0),(0,L2),(Mι,0) and (0,M2) (2-Toda case),

$ := the space of polynomials in

/ L (KP case),
\(Lι,0),(0,I2) (2-Toda case),

and

q •= >μ
y '

with the antihomomorphism φ : 9

(KP case)
x Woo (2-Toda case),

stf given by

(KP case), or

,0)
(2-Toda case),

where 5Z = d/dz, M = z""',δM = d/d(z~ί). Noting

ZL» Ψ = (Ln)+Ψ=^-Ψ, (KP case)
titn

(2-Toda case)

etc., yields

Theorem 2.1 (i) case. There is an antihomomorphism of Lie algebras

( Lie algebra of vector fields on ^
oo -^ \ ^e Ψ-manifold commuting >

[ with the KP-flows )

( Lie algebra of vector fields on î
the (L,M)'inanifold commuting >
with the KP-flows }
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'=•<*)'
Z V &

i.e., it satisfies

(ii) Two-dimensional Toda lattice. There is an antihomomorphism of Lie algebras

( Lie algebra of vector fields on the "j
WQO x Woo —* \ Ψ — (^ij ^2) manifold commuting >

[ w/ίΛ /Λe 3/δ/ί α^J 3/35 z /7ow,y J

i Lze algebra of vector fields on the "j
(L,M) - ((I1,Z2),(M1,M2)) mαm/oW I
commuting with the d/dtj and d/dst flows )

\dz)

&

Y

i.e., it satisfies

<2 2)
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Remark 2.1.1. These vector fields induce vector fields on S and MkLJ \j\k G 2£,
k ^ 0, as follows:

and

¥ f!l.f(MklJ) = [-(Ml>L'ί)-,MkIJ]. (2.3)

Remark 2.1.2. It will be necessary to understand the relationship between the flows
Vπ := Yz/7 and the KP flows Zπ := TLzn = d/dtn, in the notation of Lemma 2.1
and Remark 2.1.0. To do so, take the partial derivative with regard to the initial
condition s in τs :=τ(s + t\ where s = (sι,S2,.. ) is another sequence of scalar
variables, bearing no relation to the ^-variables in the 2-Toda hierarchy, and

yielding
dΨ dΨ
-—- = -—-znψ = (Ln)+Ψ-L"Ψ = -(!")_ψ .
osn ctn

This relation implies

dsn dsn

and so

dsn ~ dtn

So, at the level of Ψ, the vector fields Ύn = d/dsn and TLn — d/dtn are different, but
they coincide at the level of S and L.

Special Subalgebra: There are other realizations of w^, namely WOO(M(Z)), where
M(Z) is a formal series in z: (see [FKN])

O Ω

1
rx) ' 'r oc) \v"\M i i r i ^ i v "* i r i /-,

Jy

In particular for w(z) = zp

w _> w (z^) ' vα ( —- i i—>• zα;;
00 °° \d>v V / 7 V^ ^z

Fix /? ^ 1. Since

' ^ £_ 7(a~ 1 )P r/ 1 > 1Z (Λ 1 ^- 1

3z 2
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is a subalgebra, it is natural to consider the subalgebra of (Virasoro) vector fields
on Ψ generated by

--
P

inducing the following vector fields on L :

n - -

n > -1.

Corollary 2.2. If Lp is a differential operator, then Lp remains differential under
the vector fields JLn(L), n ^ —1; the latter form a Virasoro algebra (with zero
central charge} and they interact with the symmetry Ύ^ — d/dSk induced by the
KP flows (using the notation of Remark 2.1.2) as follows:

(2.9)and [JLΠ, Y*] - -- Ύnp

Proof. The vector fields d/dSk and 1Ln correspond respectively to the elements zk

and

1
Vn = -

P

of Woo, which satisfy

{_d_
fy

k
= (m- n)vn+m and [vn,z

k] = -2

1
n ^ -1 ,

(2.10)

and we apply (2.2) to get (2.9).
The vector field ILW acting on Lp reads:

--(MLnp+l)_,Lp\ , which has order at most p - 1,
. P \

--MLnp+\Lp] +-[(MLnp+})+,Lp]
. P J P

(2.11)

using \znp+λ -j^,zp] — pz^n+l^p; this expression is a differential operator as long as
n + 1 ^0. Therefore ΊLn(Lp) is a differential operator of order at most p - 1,
implying the statement.

Example. The Korteweg-de Vries equation (p = 2) and its symmetries. The sym-
metries for KdV were also used, although in a different context, by Duistermaat-
Griinbaum and Magri-Zubelli; we now show that their vector fields coincide with
ours, i.e. (2.11) for p = 2 and evaluated at t — 0. Since

--(ML2n+l)
1

/=o
= --SxD2n+lS~l
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the vector fields IL^0) = IL«|/=0 for n ^ — 1 act on the differential operator L2 =

D2 +q = D2 + 2(log τ)" as in (2.11):

(Z2)rt+1 . (2.12)

We now compute a few examples; note that

-b, (2.13)

for some functions a(t) and b(t) to be determined. Expanding SxD"S~l up to order

+ -D-1 +.
τ

= Jc£>" + (nx(log τ)" + (log τ)')D"-2 + •••

nxq

yields

fq) . (2.14)
oo /

The function b can be determined, either by expanding further or by the following
(more efficient) argument. The bracket appearing in (2.12) is a symmetric operator,

since L2 and ΊL^\L2) are symmetric. Since the bracket of a symmetric and a skew-
symmetric operator is symmetric, one expects ^(SxD2n+lS~l)+ to become skew-

symmetric, after adding an appropriate differential operator commuting with L2, to
wit an operator of the form Σ^>oc^2^ ^or instance? if we assume

(2.15)

then the constants cl and c' and the function / are readily obtained by setting the
expression (2.13) for ^(SxD3S~l)+ into (2.15) and comparing both sides, yielding

c0 = \,c\ = \,c' = -\,f = a and

1 3 3 1
b = -a1 + -q = -xq + -q, setting (2.14) for a . (2.16)
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Since Corollary 2.2 implies that the D-part of (2.12) is absent, it suffices to compute
the independent term in:

I
2

~D3 -aD- b,D2 + q\ + (D2 + q)2

(2.17)

Using (2.13) and substituting (2.14) and (2.16) for a and b into (2.17), lead to

IL(_°k</) = 1 ,

= l- (V' + 6X99' + V + Sq2 + 2q' } q] .
o V -oo /

3. Bilinear Identities (Continuous)

As a foreshadowing of the future, we provide a proof of the bilinear identities,
essentially the same as in [DJKM], depending on the following two lemmas:

Lemma 3.1. The wave operator W(t} (see (1.14)) satisfies

W(t)W-\t')\ -0,

where t — (t\,t2, . . .) and tr = (t(,t'29 . . .) are two independent sequences of variables.

Proof. The proof proceeds by induction: assume for some

we have

(VW(t)W~\t))} =0. (3.1)

Then

Using (3.1), that
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and that Q)+ is a ring, this implies

Since (W(ί)W~l(t))_ = 1_ = 0, the induction establishes (3.1) for all partials V.
It follows that

has a zero Taylor series about /' = /, and so is identically zero, proving the lemma.

Lemma 3.2. If U(x,D) and V(x,D) are pseudodifferential operators, then5

(U(x,Dx)V(x,Dx))_δ(x - y)

= § (u(X,Dx)Ix(Z)}(vΎ(y,Dy)χ*y(Z))^Y(X-y),
z=oo /7ΓZ

where the integrals are taken over a small circle around z — oo, δ(x) is the usual
Dirac delta function supported at the origin, and Y(x) = D~lδ(x) is the Heaviside
function.

Proof. Using the following representations

U(x9D) = X>i(*)Di and V(x9D) = Yyyxbt(x),
i i

we have
(U(x,Dx)V(x,Dx))-δ(x - y)

= Σ a,(x)bj(y)D?'δ(x-y)
i+ji-l

= Σ afcWyfij. *\ '_ ' Y(x - y),

using

D-kδ(x) = —

Also, using χx(z) = exz = ^xfzf/ί\ we have

dz
§ (u(x,Dx)χx(z))(vΎ(y,Dy)χ*y(zή

proving the lemma.

Remember χ^(z) — e^z and χ*(z) = e
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Proposition 3.1. If P(t,x,D) is an arbitrary pseudodifferential operator depending
on the parameters /, then

(i) § PΨ(X,t,z)Ψ*(x',t',z)^Y(x-x')
z=oo ^πι

= (p(t,x,D)W(x,t)W(x,t'Γl>) δ(x-x'), for all x , x f , t , t f .

(ii) We have P G Q)+ if and only if

§ PΨ(x9t9z)Φ*(x'9t'9z)—. = 0, for all x,x'9t,t'. (3.2)

Proof. By setting U(x,D) = P(t,x,D)W(x,t) and V(x,D) = W~l(x,t') in Lemma
3.2, and using (1.15) and (1.43), we obtain (i). If P G 2+, then since by
Lemma 3.1 W(x9t)W(x,t')~l G ®+9 (i) implies (3.2), for Q)+ is a ring. Conversely,
(3.2) implies P G ̂ +, because the right-hand side of (i) reduces to P-δ(x -x1)
when t = t f . Thus we have (ii), ending the proof.

Proposition 3.2. For a wave function and its adjoint wave function, we have

§ Ψ(x,t,z)Ψ\x',tf,z)dz = 0 , (3.3)
z=oo

and also a modified version (useful in Sect. 5)

Proof. Identity (3.3) follows at once from Proposition 3.1 (ii) by setting P = I and
noting P- = /_ = 0. Version (3.4) is obtained by shifting t in (3.3):

f + [λ-1] - [μ-l],z) Ψ*(x',t'9z)dz = 09

multiplying both sides by e^
(μl~λl^τ (f + [λ~l] - [μ~1]) /τ(t\ and noting

- [z-'j + [A"'] -

τ(F-[z-']) τ(ί)

',λ,μ)e~"τ(t) l-z/μm/

e-iτ(t) l-z/λ
(3.5)

where we used (1.20) and e ΣΓa'/> = \ - a. This ends the proof of
Proposition 3.2.
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4. Bilinear Identities (Discrete)

In this section we present the bilinear identities for the discrete case as initiated by
Ueno & Takesaki; properly reformulated, they will become strikingly similar to the
continuous case, and will play a crucial role in the proof of the main theorem.

Lemma 4.1. The pair of matrices W — (W\9 W2) (see (1.33)) satisfies the bilinear
relation

, _ = « , (4.1)

or equivalently (see Remark 1.1)

Proof. Noting that

and W~} = (0,Lk

2)+

and that Qι+ is a ring, we can apply the proof of Lemma 3.1 to the present case,
after replacing V by

y\3tj \ds,

and d/dtk by either d/dtk or d/ds^.
We now state the discrete analogue of Lemma 3.2:

Lemma 4.2. Given two operators U := (t/i, 6/2), V \—(V\,Vι) ^ Q) whose co-
efficients depend on t and s,
(i) the following matrix identities hold6

_ r /_ , Λ _ /~τ *, Λ ί/z

U2V2= § (c/2χ(z))
-,—Λ \ /

dz

2niz

(ii) PFe Aαw (ί/F)_ = 0 if and only if

Remark. Actually this is a precise analogue of Lemma 3.2. The analogue of (5(jc -
y) is not missing, but it is hidden. Indeed for a pseudodifferential operator (or any
linear operator) P(x,D), the two variable "function" k(x,y) = P(x,D)δ(x - y) is
nothing but its distribution kernel:

fk(x,y)f(y)dy = P(

(̂ 4 ®B)ιj = AtBj and remember χ*(z) = χ(z [).
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in the discrete case it merely associates to a linear operator the corresponding matrix
as we implicitly do. Having this in mind, and using Remark 1.1, we can restate
part (ii) of the lemma as

the matrix pair representing (C/F)_

z=0

Proof of Lemma 4.2. Set

U^uΛ* and Vi =

where ut^ and ι̂ α are diagonal matrices. It suffices to compare the («,«'gentries
on each side. On the left side of the first formula we have

Σ

and on the right side

r I τ—v ,v , , \ / x—> R , —λ ^ \ UZ

= ί

- §

Σ

establishing the first formula in (i); the second formula is proved in exactly the
same way. Then (i) implies (ii) in view of Remark 1.1.

In the rest of this section, for simplicity we shall denote Ψfas z) (8) Ψ*(tf,sf;z)
by Ψi®Ψf.

Proposition 4.1. Given P = (Pι,P2) € ®, ™e have

z=oo

' ' λP2W2(t,sW2(t',s'Γλ = § P2Ψ2 ®Ψίr (4-2)
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Thus we have P G ^+, i.e., P\ ~ P2, if and only if

Proof. Setting

Ui(t,s) = PiWfas) and Vi(t',s') = Wi(t'9s'Γ\ i = 1,2,

in Lemma 4.2 and using (1.43) immediately imply (4.2), while (4.3) is proven in
the same way as (3.2) in Proposition 3.1.

Proposition 4.2. For a wave function and its adjoint wave function, we have

§ Ψι ® n^~ = § *2 ® Ψl^r (4.4)[2πιz Zi0

 Z2τπz

In analogy with (3.4), we also have modified versions of (4.4):

,
~^oo e τ l — z / λ 2πιz Z=Q e~^τΛ 2nιz

and

_dz_ X ( . , A , μ ) β - -

' ' ~ - 2 2- 1/Az 22π/z'
(4.6)

For P, = /, the relation (4.3) becomes (4.4). Relation (4.5) follows from
the identity

= § Ψ2(t+ [A-1] -
z=0

by means of the same calculation as (3.5), with Ψ replaced by Ψι9e
μ λ^' by

λ)e^'(μl~/^tl and τ by the vector τ, together with

0*-** τ(t+ \*~l- Ψl(t+

(4.7)
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Finally (4.6) follows from the identity

§ Ψλ(t,S+(λ^}
=oo

= § Ψ2(t9s+

upon noticing a modified version of (3.5):

-,
)* χ*(z)

(s,λ,μ)e-*τΛ(t,s) 1 - l/μz

and a modified version of (4.7):

thus ending the proof of Proposition 4.2.

5. Proof of the Main Theorem

In this section we prove, at the same time, the continuous and discrete statements,
contained in the main theorem. The continuous case uses the same algebra as the
discrete one, with MI, L\, NI and Ψ\ replaced by M, L, N and Ψ respectively.
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Step L In view of the definition of Nl in (0.16), we first prove the following
relations:

μ-λ

Y" *,_μ_)^δ(λίZ}ψ^

μ-λ

^ -δ(λ,z~l)Ψ2 , (5.1)

where the first relation also serves the continuous case. Indeed, remembering that
d and ε act on the x-component of the character χx(z), we have

— i-rM^i = Wle
(μ-λ)eδ(λ,d)χ(z) using (0.16), (1.29) and (1.15)

μ-λ

= Wιδ(λ,z)χ(z + μ-λ) using (1.6) and (1.7)

using (1.33) and (1.42)

^ [(z + μ - ̂ λls)e^tk(2+μ^ +

using (1.6) |z-+2+μ_;.

using (1.45) (and (1.47))

using (0.18)

using (1.40)

proving the first relation. To prove the second relation, just simultaneously sub-
stitute in the former argument ^ — > 2 ( = Λ^, !P, ^F), ε -» ε*, d —> d* = 3""1, χ -̂
χ*, z — > z"1, ί <-> ,̂ and in the last two lines e~ητ — > β"'7!^, keeping in mind the
differing formulas (1.40), (1.41) and (1.42) for Ψ} and Ψ2 in terms of τ, and
the relationships (1.12) between ε*,χ*,z and d/dz~~l, and also χ*(z~]) = χ(z); this
confirms (5.1).
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Step 2. Next we prove the following:

where7

/ι(z) := -e

/2(z) := -β

(5.2)

( . ^
+ (negative powers in z) ,

.
h (positive powers m z)

_ η 9 ,
gι(z) := -e ^

τ

and so, for some a^b^Ci and dt,

and g2(z) := -e
τΛ

/ι(oo),

(5.3)

0

0

oo

0

(5.4)

The //(z) and ^(z) are functions in the continuous case and diagonal matrices in
the discrete case; and it is interpreted that in the same development, the variable z
appears on the right when one substitutes L\ or L^1 for z.

Proof of (5.2). We shall need the following identities for the operators e±η and

e±ηX(t,λ,μ) -

7 The variable z appears in ?y and ή
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and similarly

X(s^μ)e±iί . (5.6)

Note also the trivial commutation relations

[e^,X(s, λ,μ)] = 0 = [e^,X(t, λ,μ)] , (5.7)

λ

X(ί, /, μ)A =

We have

f,;i,μ) and X(,s,A,μ)yl = ΛX(,s,λ,μ). (5.8)
μ A

since L}Ψl=zΨl

μ\-z/μ 1 - μ

by (5.1), (5.3) and the expression (1.46) for (μ - λ)δ(λ,z)

-"
and similarly

μl-l/μz 1 - μz^ + g ,

by (5.1), (5.3) and (1.46)

jL(s,λ,μ)e~ΐτA μ 1 - l/μz

λ l-l/h
Ψ2 by (5.6).

The last two relations in (5.2) follow from the last line in (5.3) and the commutation
relations (5.7), confirming (5.2).

Step 3. Next we establish the following relations:
in the continuous case

(N - /(£))_ = 0 (5.9)

in the discrete case

(N, - /,(!,), -(μlλ)g2(L^))_ = 0 ,

(-(μlλ)g,(L,\N2 - /2(I2"'))_ = 0 , (5.10)

i.e.,
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(recall that (P1,P2)- — (P\ι —PihPiu — Λw), with diagonals included in the upper
part).

Indeed, in the continuous case, integrating (5.2) against Ψ*(xf,t',z), and using
the modified version (3.4) of the bilinear identity, we have

§ (N-f(L))Ψ(x,t9z)Ψ*(x',t',z)dz
z=oo

_ X(t,λ,μ)e-iτμl-z/μ , , _

~J Fίϊ JίT=ϊλψ(x't'z>ψ( x't'z'dz-0

Applying Proposition 3.1 (ίi) to this identity yields (5.9).
In the discrete case, the first relation of (5.10) follows from the computation:

§ (Nl~fl(Ll))Ψl(t,S;z)®Ψ*l(t',S';z)f7-
=oo zmz

by (5.2)
z=0

and then applying (4.3) to this identity. The second relation of (5.10) follows
similarly.

Step 4. Finally we prove
in the continuous case:

in the discrete case:

Ψ V V ~ " τ~'(Λe~η-^-^-

-^-(ϊ<.-.> .̂̂ - -.,̂

Proof. In the continuous case (5.9) implies, since f(L) — Σ^aiL~l

(N)- = /(!)_ = f ( L ) - /(oo) ,
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which, applied to Ψ, yields

_ Ψ = f(z)Ψ - f(oo)Ψ

577

using LΨ = zΨ

using (5.3).

In the discrete case (5.10) implies

(M,0)_=

using (5.4),

using (5.4),

which, applied to f = (Ψlt Ψ2), yield

(0,N2)-Ψ= I Ψ

_ 1
'

using IiϊΊ =zf1,LJ1 >ί /2 =zΨ2, (5.3) and (5.8), ending the proof of the main
theorem.

Proof of Corollary 0.1.1. Comparing the expansions for the vertex operators Y#
as in (0.15) and for X as in (0.19) establishes the corollary.
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Remark. By (5.10) and (5.3), we immediately have the decomposition

tf, := (μ - λ^'

| μX(t,λ,μ)τΛ(t,s-[Lϊ1])

N2 -.= (μ -

where

as in Sect. 1. The appearance of the same vector, X(f,λ,μ)τ/τ or ^(.s1,/!̂ )!/!,
on the right-hand side of each formula is the key to the consistency, i.e., that the
actions of Y^ can be lifted to actions on the vector of τ-functions.

6. Remarks and Applications

Let Gr be the Grassmann manifold of subspaces VQ in (C((z~1)) of relative dimen-
sion 0 with respect to C[z], i.e., σ : F0 -> <C((z~l))/C[[z-l]]z-l(~ C[z]) satisfies
dimKerσ = dimCokerσ < oo. Let VQ G Gr, and let {VQ,VI,...} be a basis of
VQ. Since a perturbation δVo of K0 is given by assigning to each vn a vector δυn

mod FO 6 Cίίz"1))/^, we have

ΓFo Gr -

Thus given

^ €

we have a vector field Ϋ^ on Gr induced by a family of linear maps parametrized
by FO G Gr:

YΛFb) - (πκ0 o^ : FO ̂  Cίίz-1))/^) G ΓFo Gr ,

where πj/0 : C((z-1)) -» ^(z"1))/^ is the quotient map. The fixed, points of Y^,

Y^(^o) = 0, are given by the condition

AV0 C V0 .

We show that Y^ can be identified with the vector field — YΛ on the ^-manifold
studied in preceding sections.
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Consider the subspace F0 C C((z~1)) generated by the wave function Ψ:

d k n

n \°'n

= 0,1, . . .>, (6.1)

where the last equality, which follows from Eq. (1.19), implies that K0 € Gr, and
gives a specific choice of basis8 {VQ,v\,...} of FQ

c,0,z) = Σ^«'». (6-2)

Conversely, each FO G Gr is obtained by a unique choice of KP wave function Ψ in
this way. Hence Gr can be identified with the ^-manifold, and a vector field on Gr
with one on the Ψ-manifold. The latter looks more specific because the condition

determines δυn itself rather than δvn mod FO, and defines a linear map

In view of the fact that Ψ is determined uniquely by FO, and that πVo o φvQ(= Φv0

mod FO) gives the corresponding δVo, we observe that

φyQ = 0 if and only if φyQ = 0 mod F0 . (6.3)

Now for A G w^, let PA — P^(Fo) G 2 be the unique pseudodifferential operator
such that

Q,z) = PAΨ(x,Q,z) . (6.4)

More explicitly, if A — Y^atjZ
l(d/dzy\ then PA = ΣaijMJLl\t=Q, and the map

A i— >• P^ gives an antihomomoφhism of rings, P^^ = PB^A- Clearly from (6.1) and
(6.4), A is given in terms of the basis {vn} by

Avn= (Jλ PAΨ(0,z)9

so that Y^(FO) — Ίiv^o A is given by the generating function PAΨ(x, 0,z) mod FQ.
But since F0 = span{yn} = ^^(0,7), the Taylor coefficients in t of(PA)+Ψ(x,Q9z)
are in FO, so that

PAΨ(x,0,z) = (PA)-Ψ(x,09z) mod F0

= -ΎAΨ(x,Q9z) .

Hence in view of (6.3) above, ΎA precisely corresponds to —ΎA.
8 These formulas are for VQ in the big stratum GΓQ of Gr. When VQ G Gr\Gro we have similar

explicit formulas depending on the Schubert stratum to which VQ belongs (see [Sal]).
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Noting that (PA)_Ψ = (PA)-Wχ = 0 & (PA)-W = 0 <£> (PA)_ = 0 since W is
invertible, we observe that the following conditions are equivalent:

(Hi)
(iv)

We can define PA(t) = PA(V0,t) by

AΨ(t,z) = PA(t)Ψ(t,z) ,

so that PA(Q) is the old PA, and noting that

we can introduce t in (iii) and (iv) of the above equivalence statement. This follows
from the above argument itself (since, up to the t-aάic completion {(d/dx)nΨ(t,z)}^
generates the same space FQ as {(d/dx)n *f(0,z)}^0 by (6.1)), or from the differ-
ential equations PA(t) satsify:

Given VQ, such ^'s leading to fixed points (vanishing of Y^(F0)) form an
associative subalgebra of w^, the stabilizer algebra ZγQ (or w-constraint).

Kontsevich integral. Along with Kac and Schwarz [K-S, Sc], let us consider the
case where Zj/0 contains two elements of the form

= zq -h lower degree in z ,

i.e., VQ is fixed by the corresponding vector fields:

called the (p,q) case. Observe

AiVoCVo yields

and

[A29A{\ = \ yields
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the so-called string relation. As seen from (6.5), the differential operators PA, take
the form

P:=PAl = LP =SDPS~1

= Dp 4- lower order terms,

β :- PA, = ~
P

Pp
ql

— ((P + #)/ ' p)Dq + lower order terms (when t — 0).

Specializing to the case where q = 1 leads to matrix integrals of the Kontsevich
type [K, A-vMl]. Indeed the precise form of A2 implies, by the method of stationary
phase, the following asymptotics:

Ak

2Ψ(0,z)=z£^e p+ z/HY
dyj

p-\ P ,p+l
z — ~" z

v=zP

), A: = 0,1,...

we have VQ — span {̂  ̂ (0,^)1 ̂  = 0, 1, . . .} G GΓQ (the big stratum), which in terms

of the Vandermonde A(z) — det(z/~1)1<. .<N/ has two crucial implications:

(1) A,Ψ = Σ
o

^ Q , z l l < , J < N _n/(2) τ(0 λ . λ - ? y ~ , where ίw = -£>,. n/« (Miwa time).
-1

The asymptotics above for A^(0,z) implies that α, = 0 for 0 ^ i ^ p — 1,

and Up = 1; setting p(z) := z~^e~~p~^z , it follows that the function

satisfies the higher Airy differential equation:

d "

The only solution satisfying the asymptotics above is given by the higher Airy
function, where the integral is taken appropriately:

,
+xy dx .
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Since Ak

2Ψ(ΰ,z} = p(z)(-j-) φ(y) for y = zp, we have, modulo constant prefactors,

Λ(z) 4*

τ

f dYe "
. upon setting ^=

where Jf ̂  denotes the space N x N Hermitean matrices and where the notation
( )jt refers to taking the terms of degree k in F; in the computations above, we
used Mehta's formula and we performed an explicit Gaussian integration. For more
details the reader is referred to [K, A-vMl].

Moreover Al,A2eZγQ implies A\A\ G ZFo, or ffpj e &+ (P = PA{9 Q = PAl\
so in particular

-f

leading to w^-constraints on τ via Corollary 0.1.1. For instance, the Virasoro con-
straints, i — 1, j = k + 1 (k = —1,0,1,...), become

0 = - MLkp+l Ψ

-P δ
2 dtkp

τ,

yielding

for A: — —1,0, 1,... . Since (by adding an appropriate constant to

we conclude by substituting JSfjj. τ = c^τ into the above that c^ = 0.
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2-Matrix Integral. Consider the matrix integral [A-vM3, Me]

ZN(t,s,c) := / / dM,dM2 exp(tr(F(M1?M2))) ,
{Λ^xTV Hermitian}2

oo oo

V(x, y) := K,(*) + V2(y) + Vu(x, y) := ^t,x' + ̂ >/ + cxy . (6.6)
1 1

By the Mehta formula this becomes (λ = diag(λι,...,

V(l^ . (6.7)

Consider the monic biorthogonal polynomials {/>«}, {

(Pa(x),p*a(y)) : = ϊfpn(X)p*m(y)e

= δn,mhn(t,s,c), n,m ^ 0.

Then

Z(t,s,c) = vol(U(N)) -ho hi - hN-ι .

Defining also L = (L\,Lι), and (Q\,Q2) by

zp*=L*2p*, ip*=

where p = (PQ, p\,. . .)τ, h = diag(/zo,/2ι, . . .)• Then the pair of matrices L as func-
tions of ( t , s ) satisfies the Toda flow relations (0.3), and

ZN(t,s,c) = vol(ί/C/\0) - τN(t,s,c)9 0 ^ N < oc

moreover, we may consider in the formula (6.7) (but not in (6.6)) the more general
potential

V(x,y) =Vλ + V2+ Vι2(x,y) :
/ / /,7>0

which has the effect of introducing more time evolutions

-J = [-Y(L\L{),L] ,
V<-ιj

where 7(M) = (M/ — Mu) is as in Remark 1.1, and which commute with the Toda
flows and amongst themselves.

For the 2-Toda lattice with generic initial conditions, the products L\LJ

2 and thus

the vector fields d/dctj will not make sense. However in this context, L\LJ

2 is well-
defined, because L\ (resp. L2) has a finite number of non-zero entries in each row
(resp. column).
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Define (Ψ^Ψ^) and (M1?M2*) as in equation (0.6), with [LZ,M/] = 1. In the
context of bi-orthogonal polynomials, we find

M! = & + ^p-(£ι ) and M2* - β2* + 1*"1 , M2 = M2*
τ.

The four matrices M/ and Lt are constrained by two relations ("string equations"):

Ml + ̂ (Ll9L2) = 0, M2 - I"1 - ^ϋ(Z,,L2) = 0 . (6.8)

From (6.8), we deduce immediately:

= M,Z*+1 +(*+!)£,* + ΣiCijL\+kL{ = 0 , (6.9)

β* : = M2£*+1 - 1* - ΣΛtylilf* = 0 ,

and one checks that the vector fields:

form two sets of decoupled Virasoro vector fields, i.e.,

[X;, X*] = (/ ~

Using Corollary 0.1.1 conclude that

and similarly

o =((*-'- ,

n,k ~Wk - Σ>,;a/3c,-H,;)τm+1 _ (fUQ)
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The generators W and W can be expressed in terms of the customary Virasoro
generators,

~τ~ ( ft jΐ ji ano>
utn i+j=n

the J's being the same as above, but with ί's replaced by s's. The relation (6.10)
imply the following constraints for the two-matrix integrals τm, for k ^ —1 and
m > 0:

Σ ̂-

^. r i r , ^ 1 1 ΛJk - Σ jcij Σ (I^Lf )αα τm - -- - - τmδko , (6.11)

The details on the formulae above can be found in [A-vM3]. It is interesting to
note that equations (6.10) also provide the exact values of the constants on the right
hand side of (6.11).

Appendix

In this appendix we give an indication of an alternative proof for Corollary 0.1.1 in
the continuous case; in particular we provide a proof "by hand" of statement (0.20)
for n — 0 and 1.

Theorem A.I.

Ψ

»+i _f _n i Λ

~(e 'Ψ

The proof of this theorem requires several crucial lemmas and it will be post-
poned until later.

Lemma A.2. For m ^ 0

(MLΓm+l)_ Ψ = B_m Ψ , (A.2)

where

B-m ;— ~~ Z^ ntn~^~ Wtrn + z "T" (m = 0)
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Proof. By straightforward computation, one finds

Y-m+ι,ι ψ = (ML~m+{ )_ψ= (ML-" +I - (ML-m+l )+) ψ

Ψ
+

Ψ

ending the proof of Lemma A.2.

Proof of Theorem A.I. Since the first line in (A.I) is trivial, we now proceed to
the second line for m ^ 0. In order to prove this, we need a few computational
facts: since the operator B-m is a derivation except for the term —mtm, write

and observe that

m—\ \
- l)mtmj

'
n>m vn—m n=l

m-1
τ + X] ntn(m - n)tm-nτ + (m - l)mtmτ

therefore n=l

#° (τϊ 1 W^τ 1 m~l

(e-ι _ i)-^sLL = _ L(e-n _ ̂ ^HL. + ι(e-v _ ! ) Σ ntn(m _ n}tm_n

τ z τ 2 n=ι

+ (e-ι - l)m(m - l)tm

1m-l / 1 1

- Σ n(m - n)((ίB - -z-" )(*„,_„ --
2 \ n m — n

(e-' - 1) - E^-m+" - (A3)
2 ^ Λ=l

Using these facts yields

(ML~m+l)-Ψ =B.m ΓβΣ^— using Lemma A.2

since 5^w is a derivation ,
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v- lc~~ητm~l v- / (>~ητ B° (τ}= e^
1 e—Σ Σ ntnZn-m + ̂

 e__L(e-n _ l }^=^2
τ πtι τ τ

using the definition of B°_m and [B°_m, η] = 0

- - Ψ(e~η - I) 2 ~m % using (A3)

this ends the proof of Theorem A.I for m ^ 0; the case ra < 0 and the full corollary
0.1.1 can be established using the Lie algebra structures of w^ and Woo', see [vM].
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