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Abstract: We develop the notions of fusion for representations of the WA2 algebra
along the lines of Feigin and Fuchs. We present some explicit calculations for a
WA2 minimal model.

1. Introduction

The concept of fusion is central in the application of algebraic techniques in two-
dimensional conformal field theory. In conformal field theory one supposes the pres-
ence of an infinite dimensional symmetry algebra, and local fields which transform
under the algebra. The local fields are operator valued distributions, and it is taken
as an axiom that the product of two fields may be written as a sum of fields; this
is the operator product expansion. In particular there is a particular class of fields
called primary fields, and in its simplest form the fusion algebra describes which
irreducible representations pk of the symmetry algebra can occur in the operator
product of two primary fields, which we write symbolically as

ΦiXΦj^Nfpk , (1.1)

where Nj are the Verlinde fusion algebra coefficients, and are integers or infinite.
For algebras with a non-zero central extension the operator product of two fields
cannot simply correspond to the tensor product of two highest weight representa-
tions, as in the former case the value of the central charge is unchanged, whereas
it adds under tensor product.

The simplest non-trivial algebra with which one must deal is the Virasoro alge-
bra. Belavin, Polyakov and Zamolodchikov showed how null vectors of the Virasoro
algebra affected allowed fusions [1], but Feigin and Fuchs were the first to translate
their ideas into mathematical language and were able to prove the conjectured fusion
rules of the Virasoro minimal models, as well as providing an algebraic definition of
a minimal model in terms of a quasi-finite-representation [2]. A standard treatment
would be to consider the detailed structure of the representation pz in Eq. (1.1) and
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find the constraints on the allowed representations p*. Feigin and Fuchs method
differs from a standard approach in that they consider instead the representation p#,
and derive constraints on the pairs of fields Φu Φj which can couple to it. Their
method also naturally extends to any number of fields

ΦiX x Φ M - > / ) 0 . (1.2)

It is the aim of this paper to show how to extend these results to PF-algebras, and
in particular the W3 or WA2 algebra introduced by Zamolodchikov in [3]. We shall
show how these can be adapted to the WΛ2 algebra, for 3-ρt and w-pt functions,
we provide a couple of examples and conclude with suggestions how the main
conjectures in this paper may be proven.

2. Quantum WAi Algebra and its Representations

We take the quantum WA2 algebra to have generations Lm, Qm with relations

C 2

[Lm9Ln] = — m(m - \)δm+n$ + (m - n)Lm+n ,

[Lm,Qn] = (2rn-n)Qm+n ,

[Qm,Qn] = ^g 3 ^ 5 7 ^ ~ 4 ^ ^ 2 ~ ^^^w+w + -^(jn - Λ)/lOT+n

+ ( 2 2

4

+

8

5 c ) ( m

3 Q ' 2 ) ( 2 m 2 - w/i + 2^2 - 8)LW +, , (2.1)

where

^m — Σ Lm-pLp+ Σ LpLm-p ——(m-\-2)(m ^r 3)Lm , (2.2)
p>—2 p^—2 ^

and c is a central element.
The representation theory of the W$ algebra can be developed in analogy with

that of the Virasoro algebra. A W?> highest weight vector \h,q) satisfies

Lm\h9q) = δmfih\h,q),Qm\h,q) = δmfiq\h9q)9 m ^ 0 . (2.3)

The Verma module Vh,q,c of the ^-algebra is spanned by states of the form

Llχ ...LijQkι ...Qk^Kq), im S im+i ^ ~hkm S km+\ S - 1 , (2.4)

and by the usual abuse of notation the central element c takes the value c. If the
Verma module is reducible, then the irreducible representation L^c is the quotient
of the Verma module by its maximal invariant submodule.

We can parametrise the weights of a W-highest weight vector as follows [5],

h = λ-(x2 +xy + y2- 3a2) , q = ±(x - y)(2x + y)(x + 2y) , (2.5)

where we define a,cc± by

c = 2- 24a2,oc2

± - oc±a - 1 = 0 . (2.6)
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The condition that V^q,c has a null vector with eigenvalues h',q' is that we can find
some x, y such that h,q are given by Eq. (2.5) and x satisfies

x = m+ + sα_, r,x E N , rs > 0 , (2.7)

in which case h\q' are given by Eqs. (2.5) with x' = x — 2m+,y' = y + rα+ . If

, x = rα+ + sα_ , y = toc+ -f wα_ ;r,t,s,u £ N + , (2.8)

then there are two independent null states in Vh^c

 a n d we call such a representation
doubly-degenerate. We write h and q as h[rt;su],q[rt,su] and the highest weight
state as \rt,su), or simply denote the representation by [rt su].

The Wi minimal models are those which have

i P Q

α+ = Λ/p/q, p,q G N,p,q coprime,c = c(p,q) = 50 — 24 24— , (2.9)

and the fields in these models are of the form \rt\su] with 0 < r,s,t,u,r -f-1 <
q,s + u < p (see[6]). These representations have three independent null vectors in
Vh,q,c Those minimal models with p = m -\- l,q = m,m ^ 3 are unitary since they
can be constructed in the explicitly unitary coset construction [7].

For each state \ψ) in a highest weight representation, we can define a field,
φ(z) such that ψ(β)\0) = \φ). For each operator Xm, where X — L or Q we can
define the field Xmφ(z) by Xmφ(0)\0) =Xm\φ). Then it is possible to write the
commutation relations of Lm and Qm with an arbitrary field as a sum,

[Lm,ψ]= Σ^m'J (j+l^JLjψ , (2.10)

y=-2

With a primary field Φ^q{z\Lm and Qm have commutation relations

[Lm,Φh,q(z)] = (Λ(/» + \)zm+zm+xd) ΦKq{z) ,

(m -f 2)(m + l)zm + (m-\- 2)zm Q_} + zm Q_7 ) Φh «(z) .

(2.12)

Since L-\φ(z) = dφ(z), this results in a representation of the Virasoro algebra on
the modes of φ(z), whereas for the modes Qm this is not possible, as the commutator
(2.11) includes the new fields Q_ιΦ(z) and Q_2φ{z). This fact is responsible for
many of the difficulties in the theory of the WA2 algebra.

The approach of Feigin and Fuchs is the consider the correlation functions of
the form (1.2) as a map ψ from the irreducible representation Lh,q^

n

i = l

Although the modes Lm and Qm do not have nice commutation relations with
primary fields, as for the Virasoro case [2] one can define combinations of these
modes which have much simpler commutation relations. By cancelling all the poles
in the operators product of L(z) or Q(z) with a primary field, we can arrange that
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certain operators em and fm commute with a field, and by cancelling all but the
leading pole we can pick out the weights of the fields. If we wish to consider
correlation functions of the form

^ ) , W l Φ 0 (2.14)

for arbitrary states \ψ), then it is sensible to consider the operators

Π<2- (2-15)
i

The operators em and fm clearly depend on the points wt but we suppress the
dependence if it is clear from context. If the points w, are finite and distinct, then
we can also consider the operators

2πι

For these operators

{h^,q°°\ Π Φhh9l(w,χem - δmfih™ Π wΓ2) = 0, m ύ 0

^ , « 5 m , o ^ 0 0 Π w Γ 3 ) = 0, m ^ 0 ,

(h°°,q°°\ Π Φ* I.,1(w.X/θ"' y ) " ί>) = ° (2 1 7 )

Let us define for wt Φ 0,

τr<(wi,...wπ) = span (em,fm,m < 0) , (2.18)

and in the case wz finite and distinct,

(4 M ' l ) ,/ 0

M ' l ) , . . . ;4 o o ) ,/ (

0

o o ) ) (2.19)

For any highest weight representation space N, it is easy to see by direct calculation
of their commutators that the element of W° act as an Abelian algebra on N/"0r

<N.
The space of maps φ which satisfy (2.17) is given as L//10r

<L, and the space of
maps (P{hl,q

1} w i m fiχe(* values of weights is given as the quotient of L/i^L by the

relations {e^i] - h1,/^ - q\ }. The structure of Z / ^ < Z as a representation of 7T°
may lead to restrictions on the allowed values of {h\q1}. In the worst case there are
no restrictions on the weights of the fields and the space of maps ψ{hι,q1} ̂ s infinite
dimensional for each choice of weights. In the best case, the space of maps φ is



Fusion in the Wι Algebra 91

finite dimensional and hence there is only a finite set of allowed weights {h\q1}
which give non-zero correlation functions with the irreducible representation Lh^c.
If the points wz are distinct then in this case we expect iΓ° to be diagonalisable
and the eigenvalues of {e^f^} give the allowed weights.

Conjecture. άimL/i^'<(w\...wn)L is independent of the points wz , for all c =
c(p,q) with n — 2 (p,q coprime, p,q > 2), and for all n with c — c(3,p%(p
coprίme to 3,p > 3), provided these points are all non-zero. In particular the
dimension does not change if w/ are coincident or infinite.

Clearly the dimension of this space is constant for generic points wi9 and can only
increase at special points. We conjecture that this does not happen. This has been
shown to be the case for the Virasoro algebra with the special series of central
charges c(2,p) — —(p — 3)(3/? — 4)//? by Feigin and Frenkel in [19].

If we are only interested in the dimensionality of L/ifr

<L then we can choose
the Wj all infinite and restrict attention to the simpler space L/if^L, where

Ψn = TT<((X)...OO)

I _ 2 n - i , . . . ; β - 3 Λ - i , . . . ) . (2.21)

Whereas for the wt finite and distinct L/^<L carries a representation of (C2"+2

generated by Ψ"°, the space LjifnL carries a representation of (C2 π + 2 generated by

,.. .Z_ 2 w ;β_«,.. .β-3π) (2.22)

2.1. Three-Point Functions. Let us consider a three point function

(huq{\Φh2m(w)\ψ) . (2.23)

From the preceding discussion, we need only consider the space

, (2.24)

and if we are interested only in the dimensionality of this space we can restrict
attention to the somewhat simpler space

^ ^ ^ . (2.25)

Lh,q,c is a quotient of the space FA^,CJ

^ = W * i ^ > (2 2 6)

where V^c has a canonical basis

U(Ψl)\h,q,c), HT_ = span(/,_,,I_2,β-,,β-2,β-3) (2.27)

If MhtqiC9 the maximal invariant submodule of F/^,c, is generated by a finite set of
highest weight null states Nt, then

L = VIM, M = ί/(#l)span(7V,) . (2.28)
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As mentioned above, the modes {L-\,L-2,Q-2,Q-3} act as an Abelian algebra on
Z, but we can also consider the whole of # 1 , which (acting on L) has relations

[Q-uQ-2] ~ \L-iL-\ [Q-uQ-3] ~ μ-2^-2 (2.29)

We can represent this in terms of a differential polynomial ring, with generators

L-\ = X,Z_2 = }>, Q-2 = Z, β-3 = « ,

β-,=JD = 4 + 3 " f + ^ F + ̂ F (2 30)

& 3 j 3 dz 3 <9w
£> has a non-trivial kernel, containing, amongst other things, — 2Ίu2 + 4y3 and
—9wxz + x2y2 + 3jz2. This is particularly useful in the vacuum representation as
we need only consider the action of D on the null highest-weight states to find all
the restrictions on Zo,o,c

2.2. Classes of WA2 Representations. There is not yet a complete classification of
WA2 Verma module structures, and so we can present only some partial results.
In ref. [8] we considered four classes of WA2 algebra representations. Of these the
classes 2c(i) and l(c) of ref. [4] are of special interest, as "quasi-rational" and
"quasi-finite" representations respectively.

We say an irreducible highest weight representation is quasi-finite if

ά\m{Lh^c/ir<{wu...,wrι)Lh^c) < 00 (2.31)

for any set of non-zero points wι. We have

Conjecture. A representation Lh^c is quasi-finite if and only if it is a mini-
mal model representation. If it is quasi-finite, then for any set of distinct points
{wJ,iT 0({wJ) is diagonalisable on Lhiq)P/ir<({wi})Lh)qiP.

The term quasi-rational has been used by Nahm in [9] for those representations for
which in Eq. (2.23) for given irreducible representation p\ there are only a finite
number of allowed representations P2 In the context of the WA2 models, if we fix
{h\,q\} then the number of allowed values d of {̂ 2,̂ 2} is given by

d = d i m L Λ ^ / ( 4 o o ) , / ^ o o ) , τ r < ( l ) ) L Λ ^

/(L_ 2 , I_3, . . . ;ρ_3,e-4. . . }^, c (2.32)

In Nahm's terminology, the representation is quasi-rational if d is finite, and
Eq. (2.32) is his requirement of quasi-rationality. In [8] we conjectured that the
doubly degenerate representations are quasi-rational.

At the minimal values for c, the quasi-rational representations acquire a third
independent null vector. This will reduce the allowed fusions of the form (2.23)
to a finite set of pairs {Λi,#i},{A2»#2} The restrictions this imposes on the rep-
resentations which arise in the minimal models can be derived from the vacuum
representation alone, as Feigin et al. described in [10]. The fusion rules of the other
Lh,q,c c a n be derived from the structure of L^c.

We now present two simple examples, the vacuum representation and the
doubly-degenerate representation [11; 12], for generic ovalues, and then in the case
of the minimal model c = c(7,3) = -114/7.
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2.3. The vacuum Representation. The first representation in which we might be
interested is the vacuum representation. This has weights h = q — 0 and has null
vectors

for all c values. As a result, Lo,o,c

 m u s t factor through the space with basis

elχ...eipfh...fjqL
a_2Q

b_,\Kq) ,

in S I'm+l ύ -1,7m S jm+1 S ~1 (2.33)

If wφoo, then we can define 4°°^ e^\/o°° ) a n d / o ^ a n c * it is straightforward to
see that e^ — e^ and /Q O O ) = /Q W ) on the space Zo,o,c so that the only possible
fusions with the vacuum sector are of the form

so from Eq. (2.32) the vacuum representation is quasi-rational. For generic c values,
Zo,o,c is infinite dimensional, as we can see by looking at the restriction of the
Shapovalov from (inner product matrix) to the space spanned by the states (2.33).
The determinant of this form is non-zero, as the leading contributions come from
the diagonal, and so Zo,o,c is reducible for a countable set of c values only.

If there is another independent null vector in the vacuum sector, then there may
be a restriction on the allowed values of h and q in a field theory. This is expected
to be the case for the minimal models, for which we expect that the number of
allowed representations is given by

j Wo,o,c . (2.34)

We present a calculation of the space LQ,O,C/^< (1 )̂ o,o,c f°r c — —114/7 in Sect. 3.

2.4. The Representation [1ΓJ2]. This representation has h and q as given in
(2.5,2.8), with α = α+,

There are the following null vectors in the Verma module Vh[\\^\2iq[\\\\2},c for all c
values

l#2>= ( Q-2 + γ^-2 ~ *L2_X ) |11; 12) ,

= (Q-3-OL3L3_I + f 7- + ̂  )z_ 3 + αZ,_2£_i ) 111; 12) . (2.35)

V V 6 α 2 J J
The state jiV̂ ) is a descendant of \N\) and |A^) As a result, Lh[w,i2iq[iu\2]tc factors
through the space with basis
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For generic c values, there are no more identities as we can again see by looking

at the c —> oo limit. On L we see 4°° ) and 4 ^ may be taken as independent, and

from the null vectors (2.35) /Q°O ) and / ^ are given as

9α 4 (4 1 } ) 2 ~

18α2 - 8) x

(9α 4 (4 o o ) ) 2 - l β α 4 ^ 1 * + 9α4(e<1))2 - 9α4

- 6 α 2 4 o o ) - 3α2β^1} + 18α2 - 8) x (3α 2 4 α ) - 3α2β^υ + 1) . (2.36)

We find that L is equivalent to C ^ ^ ^ / o ^ / o ^ l modulo the relations (2.36),
so that the representation [11; 12] is quasi-rational. We shall again consider this
representation and the restrictions which arise from the extra null vector in the
minimal model c = -114/7 in Sect. 3.

3. The Model c = -114/7

The minimal models of the WA2 algebra are parameterised by coprime integers p, q
greater than 2. There are at least two series of special interest, (p, q) = (m,m + 1 )
and (p,q) = (3,#). The first is the unitary series, and the second is a non-unitary
series. For the Virasoro algebra the corresponding non-unitary series of models
c = cyιr(2,q) lead to relations with Gordon identities [10] and the fusion rings and
representations have special properties. There is every reason to believe that the
(3,#) series of the WA2 algebra will also have interesting properties. Here we shall
limit ourselves to the model (3,7) which has 5 representations and central charge
c — —114/7. We choose α = y/l/3, in which case the model's representations are
[ll αfr] with 1 g α, 1 ^ b,a + b g 6 with each representation occurring three times
in this list. We shall focus in particular on the vacuum representation [l l l l ] and the
[11; 12] representation, and calculate the spaces Lh^c/^Lh^c a n d L\liqfil'W< (1 )Lh,q,c

for these two representations.
As a point of notation, we shall = to denote equivalence in the irreducible

representation L and ~ to denote equivalence in the space L/iV\L.

3.1. The Vacuum Representation. The vacuum representation has three equivalent
parameterisations,

[l l l l ] , [11; 15], [11;51] ,

which implies that there is a null vector at level 5, which is not a descendant of
those at level 1. From Sect. 2.3 we need only consider as a basis of Zo,o,c the states

La-2&-3\0) (3.1)

We can find the explicit form of the additional null state at level 5 from ref. [11].
After reduction modulo the generic vacuum sector relations, we find the expression

(7L_ 2 ρ_3-3ρ_5) |O)EΞθ, (3.2)

which tells us that there is another relation in L/#JL,

Z _ 2 ρ _ 3 | 0 ) ~ 0 . (3.3)
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We can derive extra information from considering the repeated action of Q-\ on the
state (3.2), or alternatively from the action of D on (3.3), from which we deduce
that

(2L3_2 + 9β2_3)|0> ~ 0, Li 2 |0) ~ 0 , (3.4)

which leaves us with a 5 dimensional basis of £o,o,-114/7/^23 A),o,-Π4/7' Nlz-

|0), I_ 2 |0), 0_3|O), L_2L-2|0>, I_ 2 I- 2 I-2 |0> ,

from which we deduce that there are 5 fields in this theory. There can be no more
restrictions on Zo,o,-114/7 as null states at higher levels clearly cannot reduce the
dimension further.

We can consider the extra relations in L/ifr

<L from the null vectors at levels
5 and 6, which are

3)|0) - 0, (2eo(7eo + 4)(7e0 + 5) -f 441/2) |0) ~ 0 .

There are five solutions to these equations as expected,

(3.5)

We can also find a basis of Lo,o,-ii4/7/^<(l)^o,o,-114/7 and diagonalise the algebra
#^° on this space. We find that, as expected,

L/i^L = e C ι ? , , (3.6)
'=1

where
e{

o

l)va = hava, f(

o

l)Va = qava -

Explicitly we can find expressions for representatives of the va,

vx = (e0 + 3/7)(e0 + 4/7)(e0 + 5/7)|0) ,

v2 = eo(eo + 3/7)(e0 + 5/7)|0> ,

2/(7V5ϊ))|O> ,

5̂ = /o(/o - 2/(7v/2l))|0) , (3.7)

for which we find the eigenvalues,

jo 0 ~Ξi n π ΓΪ
e 0 u 7 7 7 7

/o° 0 0 0 ^ - ^ (3.8)
which are exactly the allowed representations in the c = -114/7 minimal model.
This is very clearly related to the procedure of Feigin et al. in [10], and we obtain
the same equations from the null vectors at levels 5 and 6 as they obtain in ref. [10]
Eq. (4.10). We may also consider other representations and obtain their fusion rules
in an analogous fashion.

3.2. The [1ΓJ2] Representation. The [11; 12] representation can also be para-
meterised as the [11;41] and [11;24] representations and there are independent null
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vectors at levels 1,2, and 4. The highest weight state has Lo a n d βo eigenvalues
—3/7 and ω — 2/(7 Λ/2Ϊ) respectively. In L/Ψ\L the null vectors at levels 1,2 and
3 from Eq. (2.35) which are generic to representations of type [11; 12] imply

i -912) - - - L ^ - 2L_2)|n; 12) ,
21

i=£-i |Π; 12>> Q-i\n912) - L
v21 v21

l;12) , (3.9)

which leaves us with a possible basis of L/H^2^L of the form

We can now use the independent null vector at level 4,

and the repeated action of Q_\ on this state to obtain

2I?_X - ljL5_Λ 111; 12) - O,Z,Z_i | l l ; 12) - 0

and reduce the possible basis states to

|11; 12), L_2 | l l;12), I _ 2 I _ i | l l ; 12),L_2I?_1|11; 12) ,

. (3.10)

We can now try to find "fusion basis," that is a basis of L//Wr

<(\)L. From
the null vectors at levels 1 to 7 we obtain equations which lead to a total of 10
solutions for the fusion,

with the following eigenvalues of iV^ on the basis states:

v\ v2 v3 v4 v5 v6 υΊ v& v9

(oo)
eo

4°

and s

-3/7

—ω

-3/7

ω

-3/7

—ω

-4/7

0

o in this case

dimL_3/7?(»,-114/7

-3/7

ω

-5/7

0

we find

/^I_3/

-3/7

ω

0

0

that

7,ω,-114/7

-4/7

0

-3/7

ω

-4/7

0

-5/7

0

L-3/7,ω,-1

-5/7

0

-3/7

—ω

H/l/^

-5/7

0

-4/7

0

<(1)I_3

-5/7

0

-5/7

0

>/7,ω,-114/7

0

0

-3/7

- ω

4. Conclusions

Building on our work in [8], we have outlined an algebraic way to extend the work
of Feigin and Fuchs in ref. [2] to the WA2 algebra. Clearly this will extend to all the
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algebras Wgn, and probably all the algebras which can be obtained by generalised

DrinfeΓd-Sokolov construction.

How could one prove the conjectures we have made here? The proofs in Feigin

and Fuchs relied on their calculation of the embedding structure of Verma modules

of the Virasoro algebra in [12]. The corresponding calculation has not yet been

performed for the WA2 algebra representations, and there are new problems such

as the presence of subsingular vectors, and the fact the action of QQ is on many

occasions not diagonalisable on doubly-degenerate Verma module representations.

The consideration of these problems is work in progress.

Interesting developments which might help are the work on the structure of finite

W algebra modules by de Vos and van Driel [13] and Bajnok's construction of null

vectors of the WA2 algebra using complex powers of generators [14]. Certainly there

are some interesting results for the c = c(3,/?) models [15].

This method is most suitable for the study of the minimal models, but for the

study of quasi-rational models as suggested by Nahm in [9], it is necessary to

consider some more general ideas, and attempt to construct some form of tensor

product of WA2 representations, as proposed by Gaberdiel in [16].

The fusion rules for the representations of W-algebras obtained by quantum

Hamiltonian reduction were obtained in [17] from the modular properties of the

characters obtained on the basis of conjectured resolutions by Wakimoto modules.

It would be nice if one could obtain a direct connection with this work.
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Note added in proof. The construction in Sect. 2.1 is the same as that of Zhu's algebra A(V)

in [18], with V = Lo,o,c, A{V) = Lo^c/iΓ^—^Lo^, and with the multiplications L* = e ( o o ) and
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