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Abstract. We classify when local instability of orbits of closeby points can occur for
billiards in two dimensional polygons, for billiards inside three dimensional polyhedra
and for geodesic flows on surfaces of three dimensional polyhedra. We sharpen a
theorem of Boldrighini, Keane and Marchetti. We show that polygonal and polyhedral
billiards have zero topological entropy. We also prove that billiards in polygons are
positive expansive when restricted to the set of non-periodic points. The methods used
are elementary geometry and symbolic dynamics.

1. Introduction

We consider billiards inside polygons and polyhedra. Such billiards have been well
studied; good surveys are given in the references [Gu2, GaZ and CGa]. None-the-less,
many fundamental questions about these systems remain unanswered: are billiards
flows in polygons (polyhedral) ergodic, do they all have periodic points, etc.? In
this article we study the topological dynamics of polygonal (polyhedral) billiards.
The main tool used is coding of orbits by the sequence of edges (faces) they hit.
A similar coding was considered in [K]. In the two dimensional case we prove that
if two points code to the same forward sequence then they are both periodic. As a
corollary we get a strengthening of a result of Katok [K], polygonal billiards have
zero topological entropy. As a second corollary we get that any point is either periodic
or the closure of its forward orbit includes a vertex, which gives a full topological
classification of an a.e. result in [BKM]. Furthermore we show that the billiard flow,
when restricted to the set of non-periodic points is positively expansive. These results
hold for geodesic flows on polyhedra as well. In the convex three dimensional case
more complicated behavior can arise. Every periodic symbolic sequence corresponds
to at least one periodic billiard trajectory, however they can correspond to some
quasi-periodic billiard trajectories as well. Nonperiodic symbolic sequences do not
necessarily determine a unique billiard trajectory. None-the-less we get as a corollary
to our results that polyhedral billiards have zero topological entropy and that any
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point either has a periodic symbolic orbit or the closure of its forward orbit intersects
an edge.

2. Statement of Theorems

2.1 Polygonal Billiards

Suppose Q C R2 is a simply connected polygon, that is Q is compact and dQ consists
if a finite union of straight line segments. The unit tangent bundle TQ is defined to
be the set of all unit tangent vectors with base points in Q which are pointing into Q.
The phase spcae of the billiard flow {φt} is TQ. The billiard trajectory of x G TQ
moves with unit speed along a straight line until it reaches the boundary of Q, then
instantaneously changes direction according to the rule "the angle of incidence is
equal to the angle of reflection," and continues along the new line. This motion is
determined for all times unless the orbit hits a vertex of Q. For any q G Q the set of
directions which hit a vertex is countable. The natural phase volume μ is an invariant
measure and the set of points which have finite trajectories has measure 0.

Let Γ be the boundary of Q and TΓ be the set of all unit tangent vectors with
base points in Γ which are directed inside Q. Let us denote by / the first return
map (Poincare map) to the set TΓ. This map and its iterates are defined and smooth
everywhere except for the vectors whose billiard orbits hits vertices of Q.

Let & — {Pl, P2, . . . , Pn} be the partition of the set TΓ for which all the vectors
with base point in one side of Q form an element of the partition. Here n is the number
of sides of Q. When it does not lead to confusion we will also label the sides of Q
by the same symbols Pl9 P2, . . . , Pn. Let Σ+ := {1,2, . . . , n}N and σ be the shift
transformation. Let TΓV := {x G TΓ: the forward orbit of x never hits a vertex}.
The ^-name w(x) G Σ+ of the forward orbit of x G TΓ{ is defined by the formula:
w(x)i = j iff fl(x) G PJ. Then the symbolic encoding ΣQ of the billiard map /

is given by Σ^ := {w G Σ+ : Ξb G TΓ\ s.t. w = w(x)}. For each w G ΣQ let
X(w) = {x G TΓλ : w = w(x)}. For shortness we denote by x(w) an arbitrary
element of the set X(w).

We call a set 5 C TΓλ a strip if all x G S are parallel vectors whose base points
form an interval and all x G S have the same symbolic description w (Fig. 1). If its
base points form an open interval we call it an open strip.

Theorem 1. Suppose Q is an arbitrary polygon and w G ΣQ is a periodic sequence
with period n. Then all x(w) have periodic trajectories and the set X(w) forms an
open strip. If n is even then all x(w) have period n and if n is odd then there is one
point x(w) with period n and the rest of the points in the strip have period 2n.

Theorem 2. For an arbitrary polygon Q and for any w G ΣQ which is not periodic
the set X(w) consists of only one point.

As a straightforward corollary of Theorems 1 and 2 we get:

Corollary 1. The topological entropy of polygonal billiards is zero.

Fig.l S - s t r i p
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For a definition of topological entropy in the noncontinuous case see [PP].
It follows that the number of generalized diagonals of length < T, the number
of different words of length n, the number of branches of discontinuity and the
number of families of periodic orbits of length n all grow slower than exponentially
("subexponentially" in the terminology of [K]). Katok has shown that the topological
entropy of the shift map restricted to the closure of ΣQ is zero [K].

Let πl : TQ —> Q be the natural projection. In [BKM] it was proven that for all
q G Q and for a.e. (with respect to Lebesgue measure) v G S1 the closure of the set
πι {/*(#> v) : ί >0} contains at least one vertex of the polygon Q. As a corollary to
Theorem 2 we have the following strengthening of this theorem.

Corollary 2. For an arbitrary polygon Q and for any x G TQ either the orbit ofx is
periodic or the closure of the set πl{flx : i > 0} contains at least one vertex of the
polygon.

The corollary is not true if the second option is replaced by the stronger
requirement: the closure of the projection of the forward orbit contains all the vertices.
A family of counterexamples was constructed in [Ga], where a polygon with n-sides
(n > 4) is constructed for which the closure of the projection of a certain non-periodic
orbit contains only two vertices. However the theorem in [BKM] may well still hold
under this strengthened requirement.

A flow {φt} is said to be positive expansive with respect to the metric d if there
exists a δ > 0 such that if x φ φtQy V|t0 | < diam(<3) then there exists t G R+ such

that d(φtx, φty) > δ. Let TQ be the set of non-periodic points of the billiard flow.
Let d be the metric on T Q induced by the Euclidean metric on TQ.

Theorem 3. The flow φt\γQ is positive expansive.

The flow is called spatially positive expansive if φt\fQ is positive expansive with
respect to the Euclidean metric of Q.

Question: For which polygons is the billiard flow spatially expansive?

The billiard flow in any Weyl chamber (i.e. rectangle, 30° - 60° - 90° triangle,
45° - 45° - 90° triangle, isoceles triangle) is not spatially positive expansive. Two
close parallel points will always be close in Q and if their original direction is not
rational then they are not periodic.

If Q is an arbitrary polygon of genus g < oo then we are able to prove slightly
less. If w is periodic with period n then the base points of X(w) form at most gn -f-1
open intervals. If w is not periodic then the set X(w) is a finite set. All points in X(w)
are parallel and the base points are separated by at least the minimal diameter (inf
of diameters of all orthogonal projections) of the holes of Q. A sufficient condition
for the set X(w) consisting of a unique point is the following condition holding for
each hole: the maximum of the lengths of the edges of the hole is less than or equal
to the minimal diameter of the hole. For example this condition is satisfied by any
hole which is a regular polygon. With this extra condition it is not hard to see that if
cardX(w) > 1 then the set X(w) forms a strip. Corollaries 1 and 2 and Theorem 3
hold in the finite genus case.

2.2 Geodesic Flow on Polyhedra

Suppose that Q is a simply connected polyhedron, that is Q is a simply connected
topological surface with a metric which makes it a Euclidean complex (i.e. Q is the
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union of Euclidean polygons). We do not necessarily assume that Q is embeddable
in R3. If Qi are the faces of Q then the unit tangent bundle TQ of Q is defined
to be the union of the unit tangent bundles TQi (in the two dimensional sense as
defined above) with the obvious identifications. The set TQ is the phase space of the
geodesic flow on the surface Q. As with two dimensional billiards the flow is straight
within each face and bounces off boundary edges in the obvious way, that is when
the trajectory comes to an edge between two faces Qτ and Qj then if we "straighten"
Qz U Q3 along that edge into a single polygon the geodesic would continue as a
straight line from one face to the other. If the geodesic comes to a vertex the motion
stops. Again the phase volume μ is invariant and the set of points whose orbits are
defined forever has full measure. Again we code the geodesic flow on the surface by
the edges it crosses; all definitions are analogous to the billiard inside the polygon
and we will not repeat them.

Remark. If we think of a polygon as a degenerate polyhedron then the geodesic flow
on the polyhedron which is homeomorphis to a disc is a double cover of the billiard
flow in the polygon.

Theorem 4. Theorems 1-3 and Corollaries 1 and 2 hold for the geodesic flow on the
surface of any polyhedron.

2.3 Polyhedral Billiards

Next we turn to the 3-dimensional case. Suppose Q is a convex simply connected
polyhedron embedded in R3. The unit tangent bundle TQ and the billiard flow
{φt} are defined completely analogously to the polygonal case. In this case the
motion is determined for all time if the orbit never hits an edge of Q. Again
these points have full measure with respect to the invariant phase volume. For
the Poincare map we introduce symbolic dynamics Σ^ induced by the partition

3P = {Pl,P2, •--> ^n} °f TΓ into faces. Here we again abuse terminology and
also call the faces P l5P2, . . . , Pn. We call a set S C TΓλ a tube if all x G S
are parallel vectors whose base points form a convex set and all x G S have the
same symbolic description. A tube is called a polygonal (elliptical) tube if there is an
open polygon (ellipse) F such that F C X(w) C F. The rest of the terminology is
analogous to the two dimensional case.

Theorem 5. Suppose Q is an arbitrary convex polyhedron and w G ΣQ is a periodic
sequence with period n then the following hold:
(a) 3x(w) s.t. x(w) is periodic with period n,
(b) one of the following two cases hold:

(i) there exists q > I such that all y(w) G X(w)\x(w) are periodic with period
qn and the set X(w) is an open polygonal tube,

(ii) the set X(w) is an elliptical tube and there exists a unique point x(w) which
is periodic and is at the center of mass of X(w),
(c) ifn is odd then only (i) can happen and q — 2,
(d) if Q is rational then only (i) can happen.

Theorem 6. For an arbitrary convex polyhedron Q and for any w G ΣQ which is not
periodic one of the following two statements occurs:
(a) the set X(w) consists of only one point.
(b) the set X(w) is a strip.
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Question: Classify when (b) can occur.

Theorems 5 and 6 yield the following corollary:

Corollary 3. Convex polyhedral billiards have zero topological entropy.

The growth rate of the number of generalized diagonals of length < T, the number
of different words of length n, the number of branches of discontinuity and the number
of families of periodic orbits of length n again grow slower than exponentially. As
another corollary to Theorem 6 we get a three dimensional analogy to [BKM]'s
theorem:

Corollary 4. For an arbitrary convex polyhedron Q and for any x G TQ either w(x)
is periodic or the closure of the πl{fz(x) : i > 0} contains at least one point of an
edge of Q.

Question: When does the closure contain a vertex? a whole edge?

The closure cannot contain a vertex if x is an interior point of a strip in case (6b).
A second example when the closure does not contain a vertex is a billiard orbit in
a cube whose projection on one face is periodic and on a perpendicular face is not
periodic.

Next we will construct examples of non-periodic orbits whose closure contains
vertices and no other points of an edge. Take Q a nondegenerate (i.e. the angle
between adjacent faces is not π) polyhedron in the sense of Sect. 2.2. An enveloping
polyhedron Q' has the following properties: each edge Pi of Q lies in some face P[
of Q' and P( is perpendicular to the angular bisector of the two faces of Q which
form that edge. Any face P/ if Q' which is not perpendicularly tangent to an edge Pi

of Q does not intersect Q at all. The billiard flow in Q' has the following property:
if the orbit starts on Q then its orbit will always stay on Q. Because of this property
we call Q a generalized periodic orbit in Q1'. Any orbit which starts on Q will have
the desired property: its closure contains vertices and no other points of an edge.

We give some examples when Theorem (6b) can occur. Suppose Q is a right prism.
Then we decompose Q as a direct product along its right angle: Q = Q0 x [0,1].
Tahe a two dimensional billiard in Q0. By Theorem 1 any x which is not periodic
is the only point with the symbolic description w(x). Notice that since Q is a right
prism x has the same symbolic description when considered as a trajectory in Q or
in QQ. Now in Q consider the billiard trajectory of the vertical strip which is parallel
to x. Clearly all the points in this strip have the symbolic description w(x), and other
close by parallel points cannot have this symbolic description since in a right prism
they would then have the same two dimensional symbolic decription as well. One
can construct a wider class of examples by attaching arbitrary polygons to the top
and bottom of a right prism.

In the convex higher dimensional case the theorems hold with only the obvious
modifications. In particular in Theorem (6b) the set X(w) is a co-dimensional 2
convex tube.

3. Unfolding of Trajectories

A simple but important tool which will be used in the proofs of all the theorems is
the method of unfolding (or straightening) a trajectory. We will describe this method
for polygonal billiards with the changes for polyhedral billiards noted in parenthesis.
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Fig. 2

Q 2

The method for geodesic flows on polyhedra will be discussed afterwards. Let 7 be a
billiard trajectory of a point x e TΓV. A part of 7 between two consecutive reflections
off the boundary is called a link of 7. Fix the link 70 and reflect Q about the side of
Γ where 70 ends. The reflection of the link 7t then becomes the straight continuation
of the link 70. Continuing this process for n steps gives a sequence QQ = Q, Ql9

Q2, . . . , Qn of polygons (polyhedra). The images of the first n links of the trajectory
70, 7 l7 . . . , 7n in this unfolding form a straight line segment whose first part is 70.
Continuing the unfolding process to infinity gives an infinite sequence of polygons
(polyhedra) Q°°(x) := {Qo>Qι> ...} skewered on a half infinite line whose initial
piece is 70 (Fig. 2). We call this object an infinite corridor along the (half infinite)
line determined by 70. Refolding the corridor the line folds back to the trajectory 7.

For geodesic flows on polyhedra the process is quite similar, but now instead of
reflecting the polygon when we reach an edge, we rotate the plane containing the
next polygon around this edge until it is in the same plane as the original polygon.
This procedure iterated straightens the trajectory into a line. If the polyhedron is
embeddable in R3 then this can be described in another way: fix a straight line, dip
the polyhedron in ink and roll it on the plane so that it always follows the line.
The resulting "stamps" will be a straightening of a geodesic on the polyhedron. The
following simple lemmas will be used in the proofs of the theorems.

Lemma 1. If x and y are not parallel vectors than w(x) ^ w(y).

Proof. Consider the unfoldings of Q for the forward orbits of x and y. The lines
in R2 (resp. R3) determined by x and y may first converge but eventually are
linearly diverging. Thus eventually the distance between them is greater than twice
the diameter of Q, thus the corridors determined by x and y must be different. The
first time they disagree, the reflections must have been made in different edges (resp.
faces), thus w(x) φ w(y). D
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Lemma 2. If S is a maximal strip (resp. maximal tube in the 3d case) all of
whose points have the same symbolic description then the set fτS never contains
a vertex (resp. intersects an edge) for all i > 0 but MX G OS the closure of the set
{fl(x) : i > 0} contains a vertex (resp. intersects an edge).

Proof. For i > 0 the set flS never contains a vertex since the points all have the same
symbolic description. The maximality of 5 implies that all boundary points must hit
a vertex (resp. edge) or be limit points of a vertex (resp. edge). D

By definition a strip S is a set of parallel vectors corresponding to a single w
whose base points form a segment /, i.e. S can be written as / <8> θ. In an unfolding
the forward orbit of a strip under the flow {φt : t > 0} will look like an ordinary
strip, hence the name. We call this forward orbit S°°. As in the two dimensional
case a tube S can be written as C x θ, where C is a convex set. We introduce some
convenient notation. Let 1L(S°°) and 1R(S°°) be the half infinite lines bounding a
strip's unfolding. Let OS = dC x θ, diam(S) — diam(C), etc.

4. Proofs of Two Dimensional Theorems

Proof of Theorem 1. Lemma 1 implies that all the x(w)'s are parallel. Suppose w
has period n. We assume n is even, if n is odd then it suffices to consider 2n. Fix
x(w) and consider the unfolding Q°°(x). Suppose that the sides of Q are numbered
so that x G Pj. We claim that Qn G Q°°(x) has its edge Pλ parallel to the edge Pλ in
the original copy QQ € Q°°(x). Since n is even the sides Q0 and Qn have the same
orientation. If they are not parallel then the vectors fnx and x are not parallel, but
since w is periodic this cannot occur because of Lemma 1. Thus Qn can be gotten
from the original copy Q0 by a translation in the direction of the vector x(w). This
implies that all x(w) are fixed points of the mapping fn. Thus the set X(w) forms
a maximal strip. The periodicity of x(w) G X(w) implies that x(w)'s orbit stays a
bounded distance away from all vertices and thus the strip must be an open one.
Finally if the period of w was odd then Qn can be gotten from the original copy
QO by a translation plus a reflection [C]. Thus the point of reflection symmetry has
period n. Π

Proof of Theorem 2. Suppose w is not periodic. We suppose the theorem is not true,
that is the cardinality of the set X(w) is strictly greater than one. Lemma 1 implies
that all the x(w)'s are parallel. Since Q is simply connected all points z G TΓ parallel
to this direction whose base points lie between the base points of two members of
X(w) also belong to X(w). Thus the set X(w) forms a maximal width strip which
we call 5. Fix x(w) G X(w) whose base point lies exactly in the center of S. For
emphasis we will write S(x) for S.

If Q is a rational polygon the proof takes an especially simple form and thus we
will give it first. Since w is not periodic the trajectory of x must hit some side, say
P1? infinitely often and since Q is rational it hits Pl infinitely often with some fixed
direction. Call these points xi \— fnτx and let Sτ(x) := fUίS(x). The strips S^x) are
of constant width, thus two of them must intersect. Suppose S^x) and Sj(x) intersect.

They cannot coincide since then the orbit of the x(w) would be periodic. Let S^x)
and §j(x) be the maximal width strips containing S^x) and S3(x) respectively. The

strips §i(x) and §3(x) also intersect and since they are parallel part of the boundary
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of §i(x) must fall in the interior of the strip §j(x) of vice versa. This contradicts
Lemma 2 and finishes the proof in the rational case.

Now we consider the case when Q is not rational. In this case the strip S(x) need
not return to any side an infinite number of times each time being parallel to itself. It
turns out that we can prove the theorem only using the fact that it returns an infinite
number of times being approximately parallel to some direction. A point x G TΓ± is
called uniformly recurrent if for any neighborhood V(x) there exists a constant C > 0
such that the return times mi > 0 define by frn"tx G V satisfy mz+l —ml\<C. Let
ω+ denote the forward limit set. Then the positive width of the strip S(x) implies that
the set Y := {ω+(flx)} is closed. Y is also invariant and bounded and thus compact.
Consider the dynamical system (Y, /). Notice that f\γ is continuous since the set Y
is a bounded distance away from the discontinuity points of /. We now apply the
following strengthened version of Birkhoff s recurrence theorem which is proven in
[F]:

Lemma 3. If Z is compact and T is continuous then (Z, T) contains a uniformly
recurrent point.

Let x* be such a point. Assume that the sides of Q are so labeled that x* G Pl.
Then the point x* is not tangent to the side Pl since then the forward orbit of x
would come arbitrarily close to one of the endpoints of the side Pl which contradicts
the positive width of the strip S(x).

Suppose that the sequence xi := fnίx —» x*. Again we define 5^(x):— fniS(x),
§i(x) to be the maximal width strip around xτ and £(x*) to be the maximal width strip
around x*. Consider the image S°°(x*) of the strip 5(»*) in the unfolding Q°°(x*).
Fix ε > 0 much smaller than the width of S(x). Consider ζ)°°(x*) as embedded in
R2 and let Nε(y) be the ε neighborhood of the (base) point y in this embedding.
Then let 7Vε

L = 7Vε

L(S°°(x*)) := A^ε(/L(5°°(x*)))\interior(S'00(x*)). Define N* in
an analogous fashion. The uniform recurrence of x* implies that vertices fall inside
each of N^ and N^ with bounded gaps between (the heights of) their occurrences.
Note that if x* is periodic then the vertices actually fall periodically on dS°°(x*).
Consider the intersection of the 7Vε's with the interior of Sf°(x). This intersection
contains an ε-wide rectangle whose height, Li9 goes to infinity as i —> oo. Thus it must
eventually include a vertex (Fig. 3). This contradicts Lemma 2. Thus our assumption
that the cardinality of the set X(w) is strictly greather than one cannot hold. D

Proof of Corollary 1. We have shown that the time 0 partition (i.e. the image of ̂ )
is a forward topological generator of ΣQ. Thus for any ergodic invariant measure
v the metric entropy of the shift map is zero. To apply the variational principle we
first take the closure ΣQ of ΣQ. Katok has shown that every ergodic non-atomic

shift-invariant measure on ΣQ is supported on the set ΣQ [K]. Therefore applying

the variational principle we conclude that the topological entropy of the shift on ΣQ is
zero (Katok's theorem). Thus the topological entropy of the shift on ΣQ is also zero.
Now 7Γ : (TΓλ,/) —> (ΣQ,σ) is a continuous factor map; thus if ΣQ and TΓλ were
compact and / were continuous a theorem of Bowen would imply that the topological
entropy of the two systems would be the same [B]. However it is not hard to see that
Bowen's theorem holds also in this case. We indicate, in the following, the needed
modifications to Bowen's proof [B Theorem 17]. The reason that compactness is not
needed is that f\π-i(y) is an isometry and π~l(y) is of bounded diameter for all

y G ΣQ. Therefore any ε dense set on π~l(y) is an (n, ε) spanning set for all n > 0

and thus Bowen's sets Uy can be replaced by neighborhoods Bε(π~l(y)) and 36 > 0
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L,

-Nt

Fig. 3

such that π lBδ(y) c Uy Vy G ΣQ. The fact that 5 does not depend on y allows us
to conclude all of Bowen's arguments which used compactness. D

Proof of Theorem 3. Suppose x φ φtQy are not periodic. By Theorem 2, w(x) ^ w(y).
Consider the first time in the forward orbit when they hit different sides Pl9 P2 of Q.
Call the points of collision x0 and yQ. If the orbits of x and y are close enough then
we can suppose that Pl and P2 share a vertex VQ. Let α0 be the angle between Pl

and P2. Then the angle between the links ending at XG and yQ or the angle between
the links starting at these points is greater than α0/2. Thus the expansivity constant
can be taken to be half of the minimal angle between adjacent sides.

Proof of Theorem 4. The proofs of the first two theorems hold verbatim for geodesic
flows on polyhedra. For Theorem 3 the expansivity constant must be taken to be half
the minimal angle between adjacent faces. D

5. Proofs of Three Dimensional Theorems

Proof of Theorem 5. (a) Suppose w has period n. Suppose n is even, if n is odd
consider 2n. Consider the unfolding Q°°(w). Since n is even the polyhedra Qn and
Q0 have the same orientation. Since Q is convex and simply connected the set X(w)
is convex and bounded. We can extend the mapping / to the boundary of X(w) by
continuity from the inside. Since fnX(w) = X(w) the Brouwer fixed point theorem
tell us that there is a x(w) G X(w) such that fnx(w) = x(w). This implies that
Qn G Q°°(w) can be gotten from Q0 G Q°°(w) by a translation along the straightened
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trajectory of x(w) plues a rotation (in R3) by an angle a around this axis. If a = 0
then all y(w) are periodic with period n. If a φ 0 then x(w) must be at the center
of mass of X(w) since X(w) is convex and invariant under a rotation around x(w).
The point x(w) is periodic with period n. In part (c) we will show that the period of
x(w) equals the period of w in the case that the period of w is odd.
(b) (i) If a = 2πp/q then Qqn(w) can be gotten from Q0 by translation alone, and all
y(w) are periodic. The shape of the tune X(w) can be described as follows: consider
the unfolding of length qn — 1 and project all n polygons in this unfolding onto a
perpendicular section. This intersection is a polygon. The periodicity of each y(w)
implies that its orbit stays a bounded distance from all vertices and thus the tube is
open.
(ii) If a is irrational then Qm is never a translation alone of QQ. Thus no point in
X(w)\x(w) can be periodic. The shape of the tube is an ellipse swept out by the
closest vertex to x(w).
(c) If the period of w is odd then by it is not hard to conclude that Qn E QΌG(w)
can be gotten from Q0 E Q°°(w) by a translation along the straightened trajectory of
x(w) plus a reflection [C]. Thus Q2n is a translation of Q0 and the claim follows.
(d) If Q is rational then a must be a rational multiple of π. D

Proof of Theorem 6. Suppose w is not periodic. We suppose the theorem is not
true, then the set S = X(w) contains at least three non-colinear points. Lemma 1
implies that all the x(u>)'s are parallel. The simple connectedness and convexity of
Q imply that the base points of the set S form a convex set and S is a tube. Fix
x(w) E S(x) = S whose base point lies in the interior of S(x).

If Q is a rational polyhedron the proof again is simpler and thus we will give it
first. Since w is not periodic the trajectory of x must hit some face, say Pl, infinitely
often and since Q is rational it hits Pv infinitely often with some fixed direction. Call
these points xi := fnίx and let S^x) := fnτS(x). The tubes S^(x) are all exactly
the same shape, are convex and contain three non-colinear points. Thus two of them
must intersect. Suppose S^(x) and S3(x) intersect. They cannot coincide since then

the orbit of the x(w) would be periodic. Let S^x) and §j(x) be the maximal tubes

containing S^x) and Sj(x) respectively. The tubes S^(x) and §3(x) also intersect and

thus part of the boundary of S^x) must fall in the interior of the strip Sj(x) or vice
versa. This contradicts Lemma 2 and finishes the proof in the rational case.

Now we consider the case when Q is not rational. In this case the tube S(x)
need not return to any face an infinite number of times each time being parallel
to itself. The minimal diameter of the tube S(x) being positive implies that the set
Y := {ω+(fτx)} is closed. Y is invariant and bounded and thus compact. Consider
the dynamical system (Y, /). Lemma 3 tells us that there exists a x* € Y which is
uniformly recurrent. Assume that the faces of Q are so labeled that x* E Pl. Then
the point x* is not tangent to the face Pl since then the forward orbit of x would
come arbitrarily close to one of the edges of the face Pl which contradicts the fact
that 5 contains three non-colinear points.

Suppose that the sequence xi := fnix —> x*. Define S' (x) := fniS(x), S^x)
to be the maximal tube around xi and S(x*) to be the maximal tube around x*.
Consider the image S°°(x*) of the tube 5(x*) in the unfolding Q°°(x*). Fix
ε > 0 much smaller than the minimal diameter of S(x). As in the two dimensional
case if x* is periodic ε could be taken to be zero. Consider Q°°(x*) as embedded
in R3 and let Nε(A) be the ε neighborhood of the set A C R3. Then let
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Nε(S°°(x*)) := AΓε(a5°°(x*))\interior(S'00(x*)). Consider any cross-section C to
Nε which contains the orbit of x*. C is the union of two strips. The uniform
recurrence of x* implies that C intersects edges with bounded gaps between the
heights of their occurrences. Furthermore the bound on the gap size can be taken
uniform over all such cross-sections. Consider the intersection of Nε with the interior
of 5f°(x). Some of the above mentioned cross-sections C must contain an ε-wide
rectangle in C Π S°°(x*) Π Sf°(x) whose height goes to infinity as i -» oo. Thus
some such cross-section must eventually intersect an edge (see proof of Theorem
2). This contradicts Lemma 2. Thus the original strip S(x) could not contain three
non-colinear points. D

Proof of Corollary 3. The proof is the same as of Corollary 1. The time 0 partition
is again a forward topological generator of ΣQ and Katok's proof that no nonatomic

measure has support on ΣQ\ΣQ works in any dimension without change [K].
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