
Commun Math. Phys. 162, 47-59 (1994) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1994

A Nonlinear Instability for 3 x 3 Systems
of Conservation Laws

J. L. Joly1, G. Metivier2, J. Rauch3

1 Universite de Bordeaux I
2 Universite de Rennes I
3 Ecole Polytechnique and University of Michigan

Received: 7 February 1993/in revised form: 14 July 1993

Abstract: The phenomenon of nonlinear resonance provides a mechanism for the
unbounded amplification of small solutions of systems of conservation laws. We
construct spatially 2π-periodic solutions UN G C°°([0, t^} x R) with tN bounded,
satisfying

II^IU~([o, fcixR) -> 0, /|
0

The variation grows arbitrarily large, and the sup norm is amplified by arbitrarily
large factors.
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1. Main Result

The main existence theorems for k x k systems of conservation laws [G, CS, GL,
NS, D, Y], have a common feature: either the systems under consideration have
k ̂  2, or the initial data are of small total variation. In the latter cases, the variation
is uniformly bounded by a fixed multiple of the initial variation. In this note we
explain that these restrictions are essential. When k ̂ 3, nonlinear resonance is a
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mechanism which can produce unbounded amplification of the total variation in
finite time.

We construct 3 x 3 genuinely nonlinear systems such that each system has a
sequence of spatially periodic smooth solutions uN with the property that the L°°
norm tends to zero, the initial variation is bounded above and there are uniformly
bounded times fa such that the variations at time fa tend to infinity.

In order to produce unbounded amplification as above we need two things. First
there must be a resonance relation involving three distinct modes of propagation.
Second for i, j , k distinct the interaction coefficient of i, j waves on the k wave
must be large compared to the Λ -selfinteraction coefficient. For the 3 x 3 Euler
equations of compressible gas dynamics the interaction coefficient of two acoustic
waves on shear waves is zero so our analysis does not apply in that case.

The idea of the construction is to use solutions of the profile equations of reso-
nant nonlinear geometric optics with the property that the profiles explode in finite
time. For linearly degenerate systems explicit explosive profiles were constructed by
Majda and Rosales [MR, Remark 4.5]. For genuinely nonlinear systems J. Hunter
[H] constructed explicit explosive profiles which are discontinuous, in fact of saw-
tooth form. The idea is to use the recent justifications of nonlinear geometric optics
to conclude that exact solutions behave similarly. The important recent result of
Schochet [S] for discontinuous profiles does not suffice in the present context for
two reasons. First the Lι error estimate is not strong enough and second the result
does not allow one to approach the blowup time for the profiles. We construct
smooth profiles for genuinely nonlinear systems which explode in finite time. The
strategy is to show that the explosive profiles of Majda-Rosales persist under gen-
uinely nonlinear perturbations. Then our results [JMR1] apply and the program is
complete.

For the Euler equations one knows that the analogous profile equations do not
explode in finite time [MRS]. Whether Euler profiles have unbounded growth as t
tends to infinity is not known.

We would like to thank Blake Temple for calling our attention to this question
and the work of Hunter and also for illuminating conversations.

The examples are 3 x 3 systems of conservation laws

dtu + dx(F(u)) = 0, (1.1)

u(t,x) = (m(ί,x), u2(t,x)9 u3(t,x)), (1.2)

F(u) = (Fl(u)9F2(u)9F3(u))9 (1.3)

F e C°°(IR3:1R3) with F(0) = 0. We make several choices so that the final analysis
is simple.

The systems are

(dt + dx)uλ + c(u\)x - (bu2u3)x = 0, (1.40

(dt)u2 - φ2

2/2)x + (61111*3/2), = 0, (1.42)

{dt ~ δx)u3 + c(u\)x - (buxui)x = 0 (1.43)

with constants c and b > 0 to be specified below. Near u = 0, the systems are
strictly hyperbolic and are genuinely nonlinear as soon as

Introduce the phases

φι(t,x)=x-t, φ2(t9x) = -2x9 φ3(t9x)=x + t. (1.7)
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The ψj are solutions of the eikonal equation for the linearization of (1.4) at « = 0.
The explosive examples are the solutions of (1.4) with initial data

uε(0,x) = ε(sin(x/ε), sin(-2x/ε), sin(jt/ε)). (1.8)

Introduce
n = (1,0,0), r2 = (0,1,0), and r3 = (0, 0, 1) . (1.9)

Linearization yields a first approximation

u£(t,x) «

uniformly valid for times t = o (1) as ε tends to zero.
Nonlinear geometric optics provides an approximation valid for times of order

1 as e tends to zero. In Sect. 2 we show that

Σev(t,φj(t,x)/ε)rj (1.10)

is the leading term in a nonlinear geometric optics expansion for (1.4), (1.8) provided
v is the real valued solution of

dtv + cdθ{υ2) -bv*dθv = 0, (1.11)

f?(0,0) = sin(0). (1.12)

Notice that the same v occurs in each component of the solution. The key is to
show that if c is small compared to b, then the solution v to (1.11), (1.12) explodes
in finite time.

Note that uε and (1.10) are 4πε periodic in x. In particular if ε = 1/2K with
K E N, then uε is 2π periodic with respect to x.

The initial variation, fQ

π \dxu
ε(0,x) \ dx, is independent of ε = \/2K.

Main Theorem. For b > 0 there are positive constants c(b) and T so that for any
\c I f^c(b\ N > 0, and δ > 0, there is an ε0 > 0 so that if ε = \/2K < ε0 with
i [ G N , then there is a t£ G]0,Γ] so that the solutions uε of (1.4), (1.8) belongs
to C°°([0,/ε] x R/2πZ) and satisfy

i. \uε(t,x)\^δ for all (*,*) e [0,tε] x IR ,

iii. ||wε(ίε,x)||Loo(IR)^7V||wε(0,Λ:)||Loo(1R) .

Remarks. 1. The above result should be contrasted with shock formation. To show
that shocks form one shows that sup | ux \ blows up in finite time while u remains
bounded [Jo]. This usually comes about when a single wave becomes steep. The
total variation need not and usually does not become large.

2. The examples are also very different than the 3 x 3 linearly degenerate non-
conservative example of Jeffrey [Je]. There the sup norm of a smooth solution
explodes in finite time. For such an explosion the global behavior of the nonlinear
term is crucial while our construction depends only on the second order Taylor
polynomial of F at u = 0.

3. There is also unbounded amplification of the i^OS1) norm for our examples.
Such growth of L2 norm is not possible if the system has a strictly convex entropy
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[L]. For (1.4), u\ — 2u\ + u\ is a conserved quantity as one sees by multiplying the
equation by u\, —2u2, and W3, and summing. The key is the identity

u\dx(u2u3) + u2dx(uιu2) + u3dx(uιu2) = 2dx(uχu2u3).

Changing the coefficient b/2 in (1.42) to —b produces a system for which Yjή is
a conserved quantity so there will be no such explosion.

4. The result is valid for more general F. Assuming that F'(0) is diagonal with
distinct eigenvalues, what is important is that the self interaction coefficients are
small compared to the others, that is

max I d2Fj(0)/dujduj | < min | d2Fj(0)/dukduι) \
j jjc,l distinct

and that the mutual interactions are explosive. Remark 3 shows that distinguishing
explosive interactions from others is not an obvious affair. However, some insight
is provided by computing explicit solutions of profile equations analogous to the
examples in Sect. 3, (see [H], [JMR2]).

5. Since the solutions are small in sup norm, there is a bound σ = 1 + O(ε)
on the speed of propagation. Thus considering uε(t,x) in a trapezoidal domain of
determinacy {|x|^^4 — σ\t\, O^t^I} shows that the amplification of the variation
occurs locally. This argument does not suffice to construct examples with initial
data of compact support, since if one extends the initial data beyond the base of
the trapezoid one will no longer be sure that there is a smooth solution of (1.4)
up to time tε. It is likely that nonlinear geometric optics argument using profiles
U(t,x,θ) which depend on x suffices in that case.

6. Suppose T and C are as in the theorem. If one wants to prove the existence
of BV solutions for O^t^T with initial data small in L°° and with BV norm
as large as C, our result shows that one cannot do this by deriving uniform BV
estimates for such solutions. This suggests that such a BV existence theorem is
likely to be false.

Proof. Suppose that υ € C°°([0,ίi] x Sl) satisfies (1.11), (1.12). As explained in
Sect. 2, the results of [JMR1] imply that for ε small uε e C°°([0,ίi] x 1R) and

ί, φj(t,x)/ε)rj + o(ε) (1.13)

with o{ε) measured in the L°°([0,ίi] x 1R) norm. In particular

\\uε\\LooaoA)xWi) = ε||ι?ε||z;oo([o^]X]R) + o(ε). (1.14)

In addition,

dxu
£ = ΣdθiKt,φj(t9x)/ε)(dxφj)rj + o(l) in Z°°([(U] x R ) .

2π 2π

/ \dxu
ε(t,x)\dx = const./l dθv(t,θ) |rf0 + o( l ) . (1.15)

0 0

The heart of the proof is to show that the solution v of the initial value problem
(1.11), (1.12) explodes in finite time. In Sect. 5 we prove a theorem stronger than
the following.
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Theorem . Given b > 0 there are constants c(b) > 0 and T < oo so that for
\c I ̂ c(b\ there is a T*(f9b9c) < T so that the solution of (IAI\ (1.12) belongs

to Coo([0,Γ*[x5'1) and as t -> Γ*, f*π\dθv(t,θ)\dθ -• oo, αwrf maxθ\v(t,θ)\-+ oo.

Then for any N > 0 there is a fi(/V) < Γ* so that v is smooth on [09t\] x 6*1 and

f\dθυ(tl9θ)\ dθ > Nf\dθυ(p9θ) I rffl , (1.16)
o o

llKίi,0)ILoo(si) >N\\Ό(09Θ)\\LOO{S1)' (1.17)

The Main Theorem follows from estimates (1.13) to (1.17) upon taking ε = 2/K
with K e IN large. /////

2. Derivation of the Profile Equation

We sketch the derivation of profile equation (1.11). The system (1.4) is of the form

dtu+A(u)dxu = 0, (2.1)

where A(u) is an affine function of w, A = diag(l,0, — 1) + B(u)9 where B(u) is the
linear matrix valued function of u,

B(u) =
" 2cu\ —bus —bu2
bu3/2 -cu2 buι/2 (2.2)

bu2 —bu\

The asymptotic solutions have the form

if(t9x)~εU(t,t/ε,x/ε)9 (2.3)

where the profile

U(t9 T9X) = Σ E / α ί f y ^ (2.4)

is 2π-periodic in the fast variables T, X.
The equations for U depend on projection operators whose definitions we recall,

V α e R 2 L(oc) = <XQI + αii4(0), (2.5)

Vα G R 2 J?α is the projection on Ker (Z(α)) along Rg(L(a)). (2.6)

Then £ α = 0 unless α belongs to the characteristic variety of L(dτ, dχ) The EΛ

serve to define a projection operator on trigonometric series in T9X9

E ( Σ F.β'- ίW) = £(£« F . y tW . (2.7)

As a map of trigonometric series IE projects on KorL(dτdχ) along RgL(dτ,dχ)
([JMR2]).

The profile equations take the form (see [JMR2] for a short derivation in this
case and also [MR, JMR1,3, 4])

ΈU=U and dtU + Έ(B(U)dxU) = 0 . (2.8)
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The results of [JMRl] show that solutions of these profile equations yield correct
asymptotic solutions of (2.1). In the current setting the space of phases, Φ, is the set
of linear functions of t,x. The strong transversality assumption of [JMRl] requires
that if Y is equal to one of the vector fields dt9 dt ± dx and φ = tτ + xξ is a phase
such that Yφ is not identically zero, then Yφ is nonzero at almost every point of
each integral curve of Y. However, Yφ is a constant. Thus, if it is not identically
zero it is nowhere zero, and the assumption is satisfied. Theorems 2.9.1 and 2.10.4
of [JMRl] yield the following result.

Theorem. Suppose that U(t,x,T,X) G C°°([0,ί*] x Sl x Sι) is a smooth doubly
periodic solution of the profile equations (2.8), and t_ G]0,ί*[. Then there is an
So > 0 so that for all ε G [O,εo[ the initial value problem

dtu
ε + A(uε)dxu

ε = 0, uε(0,x) = εU(0,x, 0,x/ε)

has a unique solution uε G C°°([0,ί] x 1R) and as ε —> 0,

\u£(t,x) - εU(t,x,t/ε,x/ε) \ = o(ε),

IV^ (uε(t,x) - εU(t9x9t/ε9x/ε)) | =

uniformly for O^t^t and x G IR.

Since ΊEU = U, (2.6) shows that

U(t9 T,X) = Σ*At, <Pj(T9X))rj (2.9)

with ψj and η as in (1.7), (1.9) and σj(t9θ) 2π-periodic in θ.
Define Γj on scalar valued trigonometric series by

= Σ tWα ( 7 y o (2.10)Σ

Then Έj = \η)Γj(rj \ are projectors which satisfy ΈjΈ = ΈΈj = E/, Έ =
miΈfU = σJ(t9φj(T9X))rJ.

Define the interaction constants y™n as the scalar products

γj"1 = {η \B(rm)rn) . (2.11)

With F from (1.1), Taylor expansion yields

γj1" = (1 + δmn)-1d2Fj(0)/dumdun ,

so the yj71 are symmetric in m, n.

The profile equations (2.8) are equivalent to

dtσj(t9 φj(T9X)) + ΣvFΓj [σm(t9 φm(T,X))dxσn(t, φn(T9X))] - 0 (2.12)y

for l ^ / ^ 3 . Since the yjn are symmetric in mn the sum is an X derivative. It

follows that Jo

 πθj(ty θ)dθ is independent of time. We restrict attention to solutions
for which these integrals vanish.

To analyse (2.12), introduce the Fourier expansions

(2.13);
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Our solutions have mean zero so <3y(/,0) = 0. Inserting (2.13) in (2.12/) one must
compute

Γj(exp(i[kιφm(T9X) + k2φn(T9X)])) (2.14);

for ally,/w,/2 and k — (k\,k2) G Z2, £;Φ0. From the definition 2.10 one gets

Gxp(i[kιφj(T9X) + k2φj(T,X)]) when m = n=j ,

0 if exactly one of m, n is equal to j ,

0 if m — n =j=y, or m, nj are distinct and k\ή=k2 ,

exp(—ikφj(T9X)) if m,nj are distinct and k\ = k2 = k .

The last is most important and is a result of the resonance relation Σψj = 0. The
sum of the m = n —j terms in (2.12); is equal to

ijσjit, φj(T,X))dxσj(t, Ψj{T,X)).

The sum of the terms with m, nj distinct and k\ = k2 = k is equal to

) Σ f t ) ) ( )

Γ + dxφn)dθ(σm * σ n ) ( -

where the convolution of two 2π-periodic function is taken with respect to the
normalized measure dθ/2π. Summarizing, the functions σ(t, θ) satisfies

dtσj + yJdxφjdθ(σj/2) + R [yf\dxφm + dxφn)dθ(σm * σΛ)] = 0 , (2Λ5)j

where in the last term m, nj are distinct and i? is the reflection operator (Rf)(θ) =

Since the convolution of two odd functions is even we see that if the σ7 are odd
at time / = 0 they remain so. We restrict attention to such odd functions to find

<>y + yfdxφjdθ(σf/2) - yfn{dxφm + dxφn)dθ(σm * σn) = 0 . (2.16);

The system (1.4) and phases (1.7) were chosen exactly so that

yj = c for 7=1,2,3, and

yjin(dxφm + dxφn) = b for m,nj distinct .

In that case (σi.σ^σ^) = (v,v,v) is an odd solution of (2.16) if and only if v is an
odd solution of (1.11).

3. Two Explosive Profiles

We present two explicit solutions which show that the triple interaction can lead to
explosive growth.

Example 1 of Hunter [H]. Let S(θ) be the sawtooth function which has slope equal
to one and which jumps down by 2π at θ = 0 so S(θ) = θ — π for 0 < θ < 2π.
Then S(n) = i/n and in the sense of distributions on the circle,
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Sθ = -2πδθ=0 + 1, (S * S)θ = S * Sθ = -S, (S2)θ = IS . (3.1)

Note that convolution is with respect to the normalized measure dθβπ which implies
that δ*S = S/2π. Using the identities (3.1), one sees that v = oc(t)S(θ) satisfies
(1.11) if and only if

α, + (2c + b)oc2 = 0 . (3.2)

Shocks in S satisfy the entropy condition iff cot ^ 0, and in that case the effect of
the Burger's term is dissipative. However if the sign of b is opposite to that of c,
the contribution of the b term is explosive. For example if c > 0, α(0) > 0, and b
so negative that 2c + b < 0, the amplitude α explodes in finite time.

Example 2 of Majda-Rosales [MR]. If c = 0, the equation has no mixing of Fourier
components, that is

dtϋ(t, n) - ibn(υ(t9 ή)f = 0 . (3.3)

For example

υ(t) = j8(Osin(0) = β(t)(eiθ - e~w)/2i (3.4)

with v(t,±l) = ±β(t)/2i is a solution if and only if

βt - bβ2/2 = 0 . (3.5)

The solution

/ί(0 = 2j8(0)/(2-6j8(0)0
explodes at t = 2/bβ(0).

When c = 0, the system (1.4) is not genuinely nonlinear at u = 0, which is
a weakness of this example. Our main result in Sect. 5 proves that there exist
analogous explosive profiles when c is small.

4. Existence for the Profile Equation

As for Burger's equation, the initial value problem for (1.11) has a smooth solution
on a maximal interval [0,Γ*[ and if Γ* < oo, HKOIkip = IKOIloo + IMOIloo must
diverge to oo as t —> Γ*. A much more general result is proved in Sect. 6.3 of
[JMR1]. For completeness we give a simple proof in the present context.

P r o p o s i t i o n . S u p p o s e t h a t c , b E 1 R a n d f e p ζ )

i. There is a T*(f,c,b) > 0 and a unique v uniformly Lipshίtzean on [0, T] x Sι

for all T < Γ* satisfying

vt + Φ2)θ - b(v * υ)θ = 0, vφ, θ) =f(θ). (4.1)

ii. If Γ* < oo, then IKOlkip -^ oo as t -> Γ*.
iii. ί/1/ G ̂ ( S 1 ) /or wme 5 > 3/2, then v e C([0,T*[:Hs(S1)). In particular, if
f G C°°(Sι)9 then v G C°°([09T*[xSl).

Proof The proof is exactly as for the Burger's equation which has b = 0. In a
sense the nonlinear term (v * V)Q is weaker than the term (V2)Q. For example the
sup norm of the former is bounded by ||ι>||i||ι>0||oo, while the latter is bounded by

OJ where H-^ denotes the Lp(Sι) norm.
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For parts i and ii, it suffices to show that for any M > 0 there is an η > 0 such
that for all/Z?,c with Il/Hiip, \b\9 \c\ < M9 there is a v in Lip([0,?;] x Sι) satisfying
(4.1). The solution is constructed as the limit of Picard iterates vv which solve the
linear equations

v\t,θ)=f(θ)9 (4.2)

(dt + cvvdθ)vv+ι - b(vv * vv+ι)θ = 0, ι;v+1(0,θ) = / ( 0 ) , v ^ 1 . (4.3)

It is easy to show by induction that each vv is uniformly Lipshitzean on compact
subsets of [OjOofxS1. It suffices to prove bounds uniform in v for O^t^η.

Suppose that | |UV(0| |LΪP < M' for O^t^η. Integrating (4.3) along characteristics
shows that

ιι*/+1ωιioo s n i c e + c ' j u i t ) * ̂ '(oiioo dt. (4.4)
0

Estimating 11 vv

θ \ \ oo ̂  M' yields

IK+1(0lloo ύ Il/Ίloo + CM7||t)v + 1(0lloc dt. (4.5)
0

For the derivative of v we have the equation

(dt + cυ"dθ)υγι + cvv

θυ
v

θ

+ι - bvv

θ * vv

θ

+ι = 0 .

Then

It follows from GronwalΓs inequality that

Fix Mf = 2M and choose η so that e{C+c)M'ή < 2. It then follows that for v ̂  1 and
* € [0>*?L l l ^ k O l l u p ^ ^ - This proves the existence parts of i. and ii.

For uniqueness suppose that v\ and V2 are Lipshitzean solutions for O^t^T
and set w = v\ — v2. Then

(βt -f

Integrating along characteristics shows that

0

and GronwalΓs inequality shows that w = 0.
The proof of part iii. again resembles arguments for Burger's equation with

modifications as in the previous parts. The key estimates are (5.5), (5.6), (5.7) in
the next section. The details are left to the reader. /////

From uniqueness it follows that if/ is odd in θ then so is v. The corresponding
result with odd replaced by even is not true since the maps dev2 and v * dev do not
preserve the even functions.
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5. Blowup for the Profile Equation

The next result shows that for positive 6, if c is sufficiently small the solution of
(4.1) with/ = sin(0) explodes in finite time. The notation || \\p for If(Sι) norms
and Γ* for lifetimes are taken from Sect. 4.

Theorem. Suppose that f = sin(0) and b > 0. There are constants c(b) > 0 and
T < oo so that T*(f,b,c) < T for \c \ f^c(b). In addition,

2π

fv(t, θ)sin(θ)dθ -> oo as t -> Γ* .
o

Remark. The last conclusion is much stronger than the conclusions of the theorem
at the end of Sect. 1.

Proof. The idea is to view the system as a perturbation of the system with c — 0.
The latter initial value problem is solved in Example 2 of Sect. 3 The Fourier
coefficients with n = ±1 explode at t = 2/6 while the others are identically zero.
The strategy is to show that for c small the coupling between the n = ±\ modes
and the others is sufficiently weak that the coefficients ±1 explode while the others
are smaller

Suppose \c\ 5Π.
Introduce ocn(t) = v(t,n)/i so that the ocn = —oc-n G R. Equation (4.1) is equiva-

lent to
StCCn - cΣnccmotn-m + bncξ = 0 (5.1)

m

for the Fourier components. The initial conditions are α±i = =f 1/2 and an = 0 oth-
erwise.

The equation for n = 1 yields

|d,αi + baj\ = | cΣ>«αi-« | ^ φ | β . (5.2)
m

Equation (5.2) yields lower bounds for |α±i | at the same time as one gets an
upper bound for the other coefficients.

We use the Sobolev Hs(Sι) norms on odd functions.

() \X. (5.3)
The estimate for the coefficients with | n \ ̂  2 follows the idea of the standard

energy estimates for Sobolev norms. With s e N , S>3/2 one multiplies the differ-
ential equation by d2

θ

sv and integrates over the circle. The three terms are estimated
using

jd2

θ

svdtvdθ = (l/2)dt\v\2

s, (5.4)

I Jdfv v*dθvdθ\=\ ffyv ds

θv * dθv dθ |

\v\l , (5.5)

\fd2

θ

svvdθvdθ\ ^Γ\v\3

s, (5.6)
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where Γ denotes a constant which may depend on s and b and may change from
line to line in the proof.

A direct proof of the estimate (5.6) in our case starts with

±fdfv Vdθvdθ = Σn2S*n*n-^OCs
n/ n/

Using the binomial theorem yields

λ, \n\n{jί-e)< ctnccn-w . (5.7)

Use 0Ln = —a-n to get

The tricky case is when a = 0. By symmetry one has

= Σ

This term is bounded by |wβ | | w α w | | } ^ Γ |w|^ since ^ > 3/2. For the terms with
s^.a^.1 estimate

n - n -

The sums on n,£ are again estimated by |w|^||mαm||^. Estimate (5.6) follows.
Inequality (5.6) expressed in terms of the Fourier coefficients reads

| Σ Λ A - ^ I ^ J > L 3 (5.8)
n/

Writing the left-hand side as the sum of two terms yields

Denote the high frequency part of the s-norm by

H2 = Σ n2soc2

n . (5.10)

Equation (5.1) yields

(l/2)dH2/dt = Σ (l/2)(d/dt)n2soc2

n

= — b Σ n2s+la\ + c Σ n2sQLnan-t£at .

The first sum on the right is dominated by H3. The second is estimated in (5.9).
Thus

\dH2/dt\SΓ(H3+ | c | | α i | 3 ) , i/(0) = 0 . (5.11)



58 J.L. Joly, G. Metivier, J. Rauch

This estimate is used in tandem with (5.2) which implies that

δα?| ^ | c | Γ ( # 3 + | α i | 3 ) , αi(0) = - l / 2 . (5.12)

The strategy is to show that a\ diverges while H2 remains smaller than αf/Λ2,
where the parameter λ is chosen below. So long as oc2^λ2H2, one has

d<x\/dt^(b- \c\ Γ) |αi | 3 - \c\ Γ \H\3

^ ( i - | c | r α - 3 + l ) ) | α i | 3 , (5.13)

\dH2/dt I SΓ(λ~3+ I c I) |αi | 3 . (5.14)

Therefore

d(μ\ - λ2H2)/dt^ [b- \c\ Γ(λ'3 + λ2 + 1) - Γ/λ] |αi | 3 . (5.15)

First choose λ positive so that Γ/λ < b/3. Then choose c(b) > 0 so that | c |
Γ(λ~3 +λ2 + 1) < b/3. Then for \c\ ύc(b\ the quantity on the right in (5.15) is
^.(b/3) \oi\\3 ̂ 0 and it follows that oc2 ^ λ2H2 throughout the domain of existence
of v.

Since s > 3/2,

|αiI ^ | |ϋ | |Lip^consφ|j^const.(αj -hH 2) ι / 2 .

As OL\ ^ A2//2 it follows that the blowup time for υ coincides with that for oq.
Let T < oo be the blowup time for the initial value problem

dy/dt = (6/3)/ / 2, y(0) = 1/4 .

Since α? ^ A2//2, (5.13) and (5.14) imply that

throughout the interval of existence, so α2 ^ y. Thus oc2 diverges to infinity no later
than at time T. This completes the proof of the theorem. / / / / /
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