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n+2

Abstract: We construct positive weak solutions to the equation —Δov = vn~2, where
— Δ o denotes the conformal Laplacian on the n-sphere in = 4,6), having singular
sets of Hausdorff dimension greater than or equal to η^-.

1. Introduction

In their paper, Schoen and Yau have stated the following conjecture:
n+2 n+2

Conjecture [8]: All positive weak solutions of — Δoυ = υn-2, with υ G L n ~ 2 (S n ) ,
have singular set of Hausdorff dimension less than or equal to (n — 2)/2. Here —Δo

denotes the conformal Laplacian for the standard metric on the sphere S n .
This problem can be formulated in R n as follows [9]: We define the measure

n+2

dμ = (1 + \x\2)~ndx on W1. Assume that u G Ln-2(Rn,dμ) is a weak positive
solution of

n+2

-Δu = un~2 . (1)
Then, the Hausdorff dimension of the singular set if u is less than or equal to (n—2)/2.

Many attempts have been made to find solutions of (1) with a prescribed singular
set. In a very difficult paper [7], Schoen builds solutions of (1) with prescribed isolated
singularities. In another paper [8], Schoen and Yau have used the geometrical meaning
of Eq. (1) in order to derive, through ideas of conformal geometry, the existence of
singular solutions having a singular set whose Hausdorff dimension is less than or
equal to (n - 2)/2. More recently Mazzeo and Smale have proved in [4] the existence
of solutions of (1) singular over some manifold which is a small deformation of a
sphere § fc, with k < (n — 2)/2. Their method is based on the study of degenerate
operators.

In this paper, we give some counter-examples to the conjecture stated above when
n = 4 and when n = 6. More precisely, we prove the result:
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Theorem 1. Assume that n — 4 or n — 6, then for any d e [(n — 2)/2,n], there
n+2

exists a positive weak solution of (I) in L n ~ 2 (R n , dμ), having a singular set of finite
d-Hausdorjf dimension.

In order to derive the existence of solutions of (1) with prescribed singularities,
we use a variational approach already used in [5, 6] in order to prescribe isolated

n

singularities of — Δu = un~2.

Remark 1. The proof of Theorem 1 by variational techniques does not hold any more
in dimension n φ {4,6}.

We must emphasize an important point: In the case where δ = (n — 2)/2, we are
n+2

able to build positive weak solutions of — Δov = vn~2 whose singular set Σ is given
by a finite union of (n — 2)/2-dimensional spheres. These solutions allow us to define

4

a complete metric g = vn~2g0 on Sn\Σ.

2. Quasi-Solutions

In both cases n = 4 and n = 6, one can write n = 2(ra — 1). With this notation we
notice that

n + 2 m

n — 2 m — 2

In this section, we are only interested in solutions of
m

-Δu = u^112 ,

in a ra-dimensional space. We state some results very similar to the results used in
[6] in order to prescribe the singularities of solutions of

m

-Δu = u^=i in Bm. (2)

More precisely, we produce some positive functions which are quasi-solutions of (2)
m

in the sense that —Δu — un'2 — f in some bounded domain of Mm, where / can be
taken as small as we want in a suitable space.

Definition 1. We will say that (ΰj) e Lm~2(Bm) x Lm+2(Brn) is a quasi-solution
if it satisfies

-Δΰ = u^~2 - f in Bm .

m 2m

For some η > 0, we will say that a quasi-solution (ϋ, /) G Lrn~2(Brn) x LΎnJr2{Brn)
satisfies the hypothesis (S@η) if

/

m Γ / 2m 2m \

v^^-dxKη and / (\Vΰ\™:+2+frn+2)dx<η.
For all η > 0, the existence of quasi-solutions satisfying ( J ^ ) is stated in the
following proposition:
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Proposition 1. Some η > 0 and some sequence of points pi G B171 being given, for
m 2m

all N G N, there exists a sequence (ΰNJN) G Lm-2(Bm) x L'™+2(Bm) of quasi-
solutions satisfying ( ^ ) and the following properties:
1. ΰN is regular in £ m \ { p 0 , . . . , pN}.

2. The supports ofuN and fN are compact in Bm and included in (J B7n(pi, 1/4).

3. The behavior ofΰN near a point of {Pi}ιes\ jγ\ is given by

(c0 +

for some constant c0 > 0 which only depends on m. m

4. The sequence ΰN is increasing and converges strongly in Lrn-2(Brn).

The proof of this proposition is quite technical and is given in the appendix.
In [2] Aviles has derived the following result concerning the behavior of positive

weak solutions of (2) near an isolated singularity.

Theorem 2 [2]. For m > 3, assume that u is a positive solution of —Δu = urn"2 in
Bm(l) C R m , which is regular in £ m ( l)\{0} C R m . Then, either there exists some
constant c0 > 0 such that the behavior of u in a neighborhood ofOe R m is given by

(Cp + 0(D)

or u is regular over Bm(l).

Therefore, all solutions of (2) have the same asymptotic behavior near an isolated
singularity. So, it is natural to look for singular solutions, of both (1) and (2), having
this type of behavior.

3. A Variational Problem

According to the results of the last section, we can consider that we have built a
m 2m

quasi-solution (ϋ, /) G Lrn-2(Bm) x Lrn+2(Brn), with ΰ regular, except at the points
{Po> - •-> PN) We will assume that the set of singular points is chosen so that it is
disjoint from the hyperplane xm = 0. Namely if p% = (xi 1? . . . , xirn), we ask that

Once we have this quasi-solution, we can define

and

where r ^ = x2

m + . . . + x\.
We are looking for a solution of

n+2

— LΛUb — Li 111 ΣJ 5 W/

with special boundary conditions. Our guess is that this solution is not far away from
u, so we search u — u + v9 where v is "more regular" than ύ.
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More precisely, we can measure how far is u from a solution of (3) by computing

nάλ p n — m dΰ
-An = ύn~2 - f - — .

^ Λ 77 777 (JIJ

We define f = f H — . In view of the equation above, we need to solve
the equation ™, w^m

Δv = (u + v)^2 - u^2 + / 'm Bn

ύ + v >0 in Bn

dv
(n-2)v = -2 — on dBn.

dv

The natural functional associated to (4) is the following:

E(v
/

n — 2 f
(- I Vv| 2 — F^ίu, v) — fv) dx H /

βn ββn

v dσ,

where
I ,\~

+ ύv2

— ύ4 — 4ύ3v) if m = 3

i f 777, — 4 .

We define the space

H~{veH\Bn)/v(xv . . . , x n )

,0, . . . , 0)} ,

(4)

(5)

This is the space of Hι functions which are invariant by rotation over the n—ra+ l-last
variables.

The following proposition is almost standard:

Proposition 2. The functional E(.) is well defined for v e H and critical points of
this functional are solutions of

~2 - ύ71'2

ύ7

(n-2)v = -2
—
dv

in Bn

on dBn .
(6)

Proof. Everything relies on the crucial assumption that the support of / and the
supports of the functions u have been prescribed away from the hyperplane xm = 0
(see the assumption xi rn > 1/2 and 2 in Proposition 1). Thus, although v only belongs
to Hι, we can use the rotational invariance of functions of H in order to prove the
following estimates:

1fvdx — c lcA\v\ HI I 2m
m+2

and

/
Bn

.Ίl|2

Frn(u,v)dx
2 ( | H I 2 H N I

cφfffN

if m = 3

^ ) if m = 4,
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for some constant cγ^c2 > 0 depending only on the dimension m. It is now easy to
verify the result of the proposition.

With the help of the last inequalities it is also possible to prove the proposition:

Proposition 3. For all η > 0 small enough, there exists ρ(rf) > 0 and θ(η) > 0 such
that if(ϋ, /) satisfies ( J ^ ) and if \\v\\H = ρ/η, then E(v) > θ(η). In addition, one
can assume that ρ(η) —> 0 as η —> 0.

In order to derive the existence of solutions of (6), we just minimize the functional
E(.) over some small ball in H. The minimum exists and is achieved thanks to the
result of Proposition 3 and the fact that E(0) = 0, if ρ(η) is chosen small enough.
The fact that we minimize over the set of functions with small Hι energy, prevents
the lack of compactness phenomenon to occur [3].

4. Proof of the Theorem

We can now prove Theorem 1.

Stepl. We begin the proof for some singular set of finite (n — 2)/2 Hausdorff
dimension. Using Proposition 2 and Proposition 3, we can find a critical point of
E(.) by solving the problem

min E(υ),
N I

as explained in the previous section.
Therefore u = u + υ is a solution of (6). Next, we define on all Rn the function

u(x) for all \x\ < 1

-i n , for all |x| > 1.

This gives us a solution of —ΔU = \U\ n~2 in Rn.

Step 2. Let us denote by ΣN the union of the set {p0, . . . , pN} x § n ~ m and its image

by the mapping x —> x/|x|2.
We want to prove that U is positve in Rn. Using the regularity result of H. Brezis

and Kato [3], we get that U is regular in Bn\ΣN. In particular, using the definition
of U outside the unit ball given by (7), we prove that U tends to 0 as x goes to +oo.
More precisely \x\n~2 U(x) is bounded when \x\ goes to -foo. The function U is thus

n+2

given by the Newtonian potential of \U\ n~2 which is positive. It is standard to prove,
using Hopf lemma, that U > 0 in Rn. So, U is a solution of (4). In addition, using

n+2

the behavior of U when \x\ goes to +oc, we get easily that U e Ln~2(IRn, dμ).

Step 3. We must prove that U has a singular set of correct dimension. Applying the
result of Theorem 2 and using the rotational invariance of U, we see that, near a point
p of the set ΣN, if U is regular in a neighborhood of p, then υ has a behavior near
p given by

v(x) = ^—
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where we have stated y = (xx - xp x, . . . , xm_ι - X^-M rm ~ r

P,m) a n d > a s before,
rm + χ2m + ' + X n ' rp,m = X\.m + + xl,n

 I I i s e a SY t 0 v e r i fy m a t V does ΠOt
In

belong to Ln~2(Bn), which is not possible since v e H. Therefore, we conclude that
U must be singular at p. This ends the proof of the theorem in the case of a singular
set of finite (n — 2)/2 Hausdorff dimension.

Step 4. Now we want to build solutions of (1) for all dimensions of the singular set
> (n — 2)/2. This existence result is given by limit argument. We will denote by v
the solution obtained in the previous section by the minimizing algorithm. We have
the property:

Lemma 1. There exists η > 0 such that if(ΰ, f) satisfies (^η) then there exists some
constant c3 > 0 depending only on η and n the dimension of the space, such that

For all δ G [0, m], we can find Σ c Bm a closed set included in {x e M m / x m >
1/2} of finite <5-Hausdorff dimension. In addition, there exists a sequence of points pi

which is dense in Σ. Now we use the former construction in order to build a sequence
of quasi-solutions (ΰ^ f{) such that the singular set of ΰi9 is given by {p0, ..., pτ}
and ΰτ is an increasing sequence of positive functions which is strongly convergent

in Lrn-1{Brn). Denoting by υi one solution of (4) associated to u^ we get a solution
of (1), whose singular set is given by {p0, . . . , p j x S n ~ m . By construction, the

n+2

sequence u% converges strongly in Ln-2(Bn) and, using Lemma 1, we can always
assume that the sequence v{ converges weakly to υ in H. In addition

n+2

-Δ{uτ + v%) = (ύi + Vj) n~2 in Bn .

Passing to the limit in this equation gives us the desired result, namely a solution of
(1) having as singular set Σ x S2 in Bn (the fact that the limit is singular on the
correct set can be proved like in Step 3). Thanks to the particular extension of the
solution in the whole space [see (7)] we get a solution of (1) in W1 having a singular
set of finite n - m + ^-Hausdorff dimension. This ends the proof of Theorem 1.

5. Appendix

In this section we give a proof of Proposition 1.
We begin by recalling some existence result of Aviles [1] in a m-dimensional

space:

Theorem 3 [1]. For m > 3, there exist radial positive weak solutions of —Au =
m

u™-1 in Bm C M™ which are regular in Bm\{0} and whose behavior in a
neighborhood ofOe Mm is given by

(cb+ 0(1))
u{x) = — τn-2

for some positive constant c0 depending only on m, thanks to Theorem 2.
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Remark 2. There exists a positive constant R such that

c m-2

y <u(x)(-\x\2log\x\) 2 <2c 0

for all x e Bm(R).

We denote by u a solution obtained in Theorem 3. Using the equation satisfied by
u, a simple computation shows that the following properties hold:

Lemma 2. There exists some constants c4,c5 > 0 such that

(C4 + 0(1)) | 2 i/ x
^—^ and |V w|(:r) = •

771—1 / JQO- I^Tjh 2̂

in a neighborhood of 0.

Remark 3. Reducing R, if necessary, we may always assume that for all x e Bm(R),

\Vu\ (x) < -* —ί and |V2u\ (x) = ^ —^ .

) ~ Γ Ix^ί-logl^D^2"

Let x e ^°°(]Rm) such that χ(x) = 1 if x e Bm(l/2) and χ(x) = 0 if
x G M m \ 5 m ( l ) . We denote by M = sup (|Vχ|(x), |V 2χ|(x)). Given some r > 0,
we define x^Rrn

Using the solution given in Theorem 3, we define

uε(x) = ε^^

Let us notice that for all ε > 0, uε is a solution of —Ziw = t i m ~ 2 .
The proof of Proposition 1 is by induction. The case of zero singularities is

straightforward. Therefore, we may assume that we have already built a quasi-solution

( % - U / N - I ) £ Lm-2(Bm) x L ^ + 2 ( 5 m ) , satisfying all the needed hypotheses. We

may always assume that pN is not a singularity of ΰN_ι, otherwise the proof is

finished. Thus, we can choose r ^ G l such that the support of χrN(x ~ pN) does

not contain any fe}z6{i5...5iv_i} And finally, we may choose εN > 0 such that

£NTN ^ R We set

ΰN(x) = ΰN_{(x) + uεN(x - pN)χrN(x - pN)

Let us check that it is always possible to choose rN and ε^ in order for ΰN to fulfill
all the needed hypotheses.

First Step. We derive an estimate of the norm of uN in LΎn-2(Brn),

ΰχ~ dx\ < / u?~ (X-PN)X™N (x-pN)dx
) \Bm J

( /
+ ί / u^_\dx
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Now we estimate

/

m m r m

uΓN~\x -PN)X?N2(X ~PN)dx < / u™~2dx.B

Using the remark following Theorem 3, we get

J «-*dx <

(-logr) 2

So, we have

/ P r n \ / f r n

i j ύN dx\ <IJ ϋN_ιt

\Bm / \βm
+ (m-2)2

Vsm / ( - \og(εNrN)) 2 m

By assumption, we have

/

m

βm

Therefore, we can always choose εN small enough to get

/

m

UN~2dx < η .

βm

m

Second Step. Let us compute ΔΰN + ΰ^~ ,

TΠ TYl m

ΔύN + ΰ^Γ2= fN_λ + (χ^2 - χrN) uJT5 + 2V(χrN) V(uSN) + Δ(χrN)u,

We denote by

92 = 2V(χ r ] V )V(u £ N ) + Δ(χrN)u£N ,

and

m
( m — 2 \ TΠ—2

9l=[XrN -Xr)U

NJ £N

g3 — \^N-

Notice that g3 is simply

93 = i f m = 4.

Finally, we define / ^ = /A Γ_1 +Pj + ^ 2 + ̂ 3 ^ n e r e n^ark following Theorem 3 allows
us to get the estimate
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Using the estimates of Lemma 2, we get

m-2 '

r%(-log(εNrN)) 2

If we choose rN small enough and if we use the Holder inequality, we get the estimate:

(/
\Bm

< c 1 0 J (ύN^(j?N) + o ( l ) ) — 2 rN

2

\Bm(rN)

(We have used the inequality (x + y ) ^ 1 ^ - x^^ - y^^ < C π ( x ^ : : 2 _j_ xy^^ϊ)^
for all x, y > 0, which allows us to have the previous estimate for all m > 2.) Thus,
it is easy to compute

/ •

m+2
2m \ -^ZΓ

\Bm

/ „ m+2 m-2
2 + ( f l ( p ) + o(l))r2ci2 J (VN-\(PN) + o ( l ) ) — 2 rN

2 + (fl i v_1(p i V) + o(l))r\ u1 2 / V îV-lVFiV/ ' uyi j — > JV ~τ\u'N-l\tJN'~t υyL'''N

2_
m \ m ra-2 Λ

\Bm(rN) J J

If r ^ > 0 and εN > 0 are chosen small enough, we can make the last expression
as small as we want. Therefore, we conclude by saying that, provided rN > 0 and
ε̂ y > 0 are suitably chosen, we can always get

m 2m

/

m 2m

/ Λ _ . _ m —2 λ m+2 Ί\ΔuN +uN j dx < η .
Third Step. It remains to prove the estimate on \VuN\. As in the previous steps, we
only have to prove that the quantity

/

2m

I v\uεN{x — Pw)χrNvx —PN))\ ^ ax

βm

be made as small as we want. We can estimate

2m

/

2m

|V(ti ε j v(z - pN)χrN(x - pN))\™+2 dx

βm

Bm(rN)
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Using the estimates of Lemma 2 we get

1
βm

- pN)χrN(x -

/

~ m(rn—\)

dx

|

mjrn — 2) m(rn — 2)

_
(-log |x |) ™+2 cfe.

So finally

- pN)χrN(x -

βm

c 1 5 ( - if m = 4,

which is a quantity that can be made arbitrarily small if rN > 0 and ε^ > 0 are
chosen small enough.

Remark 4. Reducing, if necessary, the values of rN > 0 and εN > 0, we can ensure
m

that the sequence uN converges strongly in Lm-2(Brn) as N goes to +oo.
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