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Abstract. We estimate the accuracy of the mean field approximation induced by the
Thomas-Fermi potential for the ground state energy of atoms and molecules.
Taking the Dirac exchange correction into account, we show the error to be of the
form O(Z3~% + D for any 6 < 2/231 as the total nuclear charge Z becomes large.
D is an electrostatic energy of the difference density that measures the deviation of
the mean field ground state from self-consistency.

1. Introduction

The nonrelativistic quantum mechanical model for an atom (K = 1) or molecule is
given by the Hamiltonian

N K Z N 1
HN(_Z_’B_):=‘Z<_A1'“Z|—X._]—R.‘)+ e (1)

i=1 j=1 1§i<j|xi—le

acting as a self-adjoint operator on Dy:= /\f.v=1 H S Hy= /\iv=1 H,
H =L (R)QC", # =H*(R)Q®C" Here, Z:=(Zy,...,Zg) and R:=
(Ry, ..., Rg) denote the charges and positions of the nuclei. We will drop this
dependence in our notation henceforth. Unless stated otherwise, the operators are
always assumed to act as identity on C™

We are interested in approximations for the ground state energy

Eo(N) = inf{<Py| Hy| x> PyeDy, | ¥yl = 1} . @)
The most widely used one in physics is the Mean Field approximation. It consists in

. . . 1 .
replacing the pair potential Z;v <i<j m in (1) by an average one-body poten-
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3 3

where D(f, g) = j'clixx_dyff(—x)g( y) induces the Coulomb norm and $D(p, p) is the

electrostatic energy of a nonnegative density peL!(R?®. So, provided
D(p, p) < oo, the substitute Hamiltonian reads

H(p)-—i(—a I L ()) D), @
N T i j-_—llxi'_RjI le_ylpy 2 P pP),

and is defined on Dy. In the case of atoms and molecules with N electrons a natural
candidate for p is the corresponding Thomas-Fermi (TF) density prg, and the
Mean Field potential becomes the TF-potential ¢p (see [11]). We introduce

K A d3 y
hipi= — A — L+

" 2 FRRIr

is1lx—R
self-adjointly realized on D. By general arguments o.(hre) = [0, 0) and
Gaisc(lrr) € (— 0, 0). Moreover, if N = Z then the chemical potential 4 = 0 [11]
and |04 (hrp)| < 0, whereas u > 0 and |64 (hrr)| = 0 for N < Z. We set
PN = X(—oo, 0) [h-n:] in case tr1 {X(_oo‘ 0) [hTF]} é N. OtherWiSC

prr= — A4 — ¢rr(x), ®)

Py:= ) o> <oil, (6
i=1

is a spectral projection onto N eigenfunctions ¢; of hyr with lowest possible
negative eigenvalue. Note that Py might be nonunique due to degeneracy of the N'®
eigenvalue and we pick just any of the possible ones. We observe tr; {Py} < N. For
any nonnegative trace class operator d = Z Ailxi > {x:il on # with orthonormal y;
we call p[d](x):=)__, Z Ailzi(x, 6))* the corresponding density. In particular,
pn = p[Py]. We are now in the position to formulate our main result

Theorem 1. Consider a molecule of nuclear charges Z; at positions R;, 1 £j £ K,
with fixed ratios Z;/Z, where Z = Z Z; and K > 1. Let N<Z +cZ1~%77,
Then for any 0 < § < 2/231 there exists ca > 0 such that

—¢;K?-Z%3 7% < Eg(N) — {th {hre Py} — _D(PTF, PtF) — CDId3xP4/3(x)}

1
S K*-ZP70 + ED(/’N — P1Fs PN — PTE) (7)

3 67'[2 1/3
where cp = E(?) .

The contribution cp || prr |4/3 in Eg(N) has been proposed by Dirac [2] and is due

to exchange corrections. We remark that c; above is independent of Z/Z, K, R, and
N/Z. Theorem 1 states that up to errors of O(Z°’* ~?) the ground state energy Ey(N)
can be evaluated by solving the eigenvalue problem for the Schrdodinger operator
hre, provided this spectral analysis yields

D(py — prr, Py — P1F) = 0(25/3_6) . ®)

Indeed, D*?(py — prr, Py — prr) is @ natural norm to measure the quality of our
choice p = prr of the Mean Field density, for it is positive definite and vanishes in
case of self-consistency py = pre. This indicates that DY*(py — prg, pv — P1F)
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measures the deviation of the Mean Field energy

1
Eyp(N) = tr; {hTFPN} - ED(pl'F’ PTF) — CDfd"'Xp%Q(X) 9)

from the Hartree—Fock energy Eyr(N) of the system, disregarding exchange correc-
tions. The question how far Ey(N) then deviates from Eyg(N) has already been
settled within the desired accuracy in [1] and we consider the present work as
a continuation of [1]. Because of its importance for the present work we quote
Theorem 1 from [1] which we are going to use here as a separate theorem.

Theorem 2. Fix Z, R and let y be the I-particle density matrix of a p-approximate
ground state YyyeDy of Hy, ie. {Yy|HyYy) < Eg(N)+ u. Then for any
0 <0 < 1/12 it holds

5ot~ Euet) 5 doze (BTN (10

where d; = 8285 13m?/3,

In the atomic case, i.e. K =1 with N = Z, pyr is radially symmetric and the
eigenvalue problem for A is even one-dimensional. However, the desired accuracy
Z>37° for try{hrg Py} and D(py — prr, Py — prr) Tequires a quite delicate WKB-
analysis of hrp, which is interesting in its own right, but shall not concern us here.
This analysis has been carried out by Fefferman and Seco [5] and we simply quote
their claim (B) (p. 7) in [6] to supplement Theorem 1 in the atomic case: For
P = plt(-w, o(hrr)] and some § > 0 it holds

D(p' — pre, p' — pre) = O(Z°P7).. (11)

Fefferman and Seco also established Theorem 1 in [6] for atoms with Ey(N)
replaced by infy Eg(NN), but their method is completely different from ours. We will
prove this fact as a corollary of Theorem 1.

Corollary 1. Consider an atom,i.e. K = 1. There exists cs > 0 for any 0 < 6 < 2/231
such that

. 1
— ¢ K*-2°P7° < 1113fEQ(N) - {trl{[hTF]—} - ED(pTFs prF) — chchp%@(x)}

e 1 ! U
< c¢;K*-2°83 5+§D(P — p1F> P — PTF) > (12)

where ¢rg is the neutral TF-potential, prr is the neutral TF-density and
P =Pt~ w, oy(hrE) ]

This corollary follows if we set N:=Z + Z*~?/77 in Theorem 1, because it is
known that Ey(N)=infyEo(N) for N=Z + cZ'7%5° [4,15], and that
Py = Y- w. oy[hre] for N 2 Z + ¢Z2P [7].

Moreover, Fefferman and Seco compute

m 2
tro{[hrel-} = Exe(1,1)Z7° + gzz + §CD I prell33 + 0237379 (13)
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in the case of the neutral TF-atom. This justifies a claim of Schwinger [14] who
predicted the total contribution in order Z°? to the ground state energy of
a neutral atom to be given by 4tcp || pre ||4/3, for in this case | pre 43 = cZ°"
follows from scahng and Z < N £ Z + ¢Z*? is still considered “neutral.”

This paper is organized as follows. In Sect. 2 we reformulate the Hartree—Fock-
and Mean Field approximation in terms of one-particle density matrices. In
Sect. 3 we derive an abstract estimate on the error term in Theorem 1, which is
estimated semiclassically in Sect. 4. For this semiclassical estimate we use a coher-
ent state method rather than invoking a result of Ivrii and Sigal [9]. This is for two
reasons; first it illustrates that leading order asymptotics suffice to make our
method work. And secondly, it enables us to trace back the exchange correction to
the one proposed by Dirac [2] in Sect. 5. Finally, the proof of Theorem 1 is given at
the end of Sect. 5.

2. One-Particle Density Matrices

We set

K Zj
h=—4-— , V= , (14)
j=11x =Ryl Ix — yl

on D:= H*(R3}) ® C" < # and D ® D, respectively, and write

HN—Zh-t- Y Vi, (15)
21#1
the indices specifying the components in ®N D the operators act on. For

a normalized Slater determinant ¢ :== (N!)~ Y/ ZZ = )y ® - - - Qtnewy € Dy We
compute

1
(pn|Hydn) = tri{hy,} + Etrz V(1 — Ex) (74 ® 74)} = eur(7g) » (16)

where y, = Z?,=1|Xi> (il and Ex:=3, [0;® ¢;> {¢; ® ;| for any ON-basis
{¢:}.en in #. Conversely, a given y =97 =92, tr; {7} = N can be associated with
the normalized Slater determinant ¢y built from its eigenfunctions: y = y,. The
Hartree-Fock energy, i.e. the infimum of all the expectation values of the form (16),
may thus be rewritten as

Eur(N) = inf{ene(y) |y =yt =% tr {3} = N, tri {hy} < 0 } . (17)

By Lieb’s variational principle [12, 1], we may weaken y = 9" =9*t0 0 <y £ 1
and by weak lower semicontinuity [16] tr; {y} = N to try{y} < N in (17), so

Egp(N) = inf{exr(7)|0 <y S L, try {y} S N, try {hy} < 0 } . (18)

We rewrite the Mean Field energy in a similar fashion. Define 0 < dir < N on
A by the integral kernel drp(x, 6|X, 6') := g~ 13,4 pr?(x)pit?(y), so its diagonal
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summed over the spin variable equals ptr. Then we obtain

1
Eyp(N) = try {hPy} + try{ V(dre ® Py)} — —tfz{ V(drr @ drr)} — cp [ d° x pF6 (x)

= EMF(N [cpfdz'qu-@ - %trz{ VEX(PN ® PN)}:I . (19)

This notation makes the following lemmata completely transparent.
Lemma 1. Let 0 <y < 1, tr; {y} £ N and try {hy} < oo. Then

~ 1
8HF(y)gEMF(N)__Z’trZ{VEx(y@)V_PN®PN)} . (20)

Proof.
1
enr(y) + —trz{ VEx(y ® y)} = try {hy} + -trz{ Viy ®7v)}

2 try {h?} + trZ{V(dTF ® V)}‘ - %trz{ V(drr ® dTF)}
= try {hrey} — trz{ V(dr ® drr)}

> £ (N)+1tr2{VEx Py@Py)}. 1 1)

A similar estimate in the opposite direction is as follows.

Lemma 2.
~ 1
Eur(N) £ Eyp(N) + ED(pN — PTF> PN — PTE) - (22)

Proof. We estimate
Eyr < eup(Py)

= tl‘l{hPN} +%tr2{V(1 - Ex)(PN®PN)}
< try {hre Py} + %trz{V[(PN — drr) ® (Py — dre)]}

S VEXPy® Py} 23)

Here enters tr; {Py} < N. |

3. Exchange Estimates

From Lemmas 1 and 2 we see that the error bound in Theorem 1 essentially asserts
the smallness of

1
Etrz{VExW@V_PN@PN)}, (24)
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provided eup(y) — Exr(N) is small enough, and
1
Etfz{VEX(PN@)PN)} =cp [ PP () x . (25)

We estimate the above quantities by means of the following lemma.

Lemma 3. Let 0 <a,b <1, try{a}, try{b} < c0 and X = X* be bounded self-
adjoint operators on H#. Then

[tr,{(X ® X)Ex(a® a — b® b)}|
S (try{X(a— b)*H"*-min{Q2tr, {X(a + Y% try {X(@+b)}}. (26)
Proof. Let E, F be trace class and {¢;},.x an ON-basis in #. Then
tr{EX(E®@ F)} = ) {0:®0;(E®F)o;® ¢;)
i,j=1

J

= Z_ {¢ilEl@;><@jlFle:> =try {EF} . (27)

Hence,
[tr;{(X ® X)Ex(a® a —b® b)}| = |tr; {aXaX — bXbX}|
= |tr,{(a — b)X(a + b)X}|
= |tr; {(a — H)X[X(a + b)X1}|
< (try{X(a — b)Y (tr, {[X (@ + D)X 1) .
(28)
Observe that 0 < XFX = 2 implies
try {[XFX]*} < 2tr, {XFX} = 2tr, {XF} . (29)
On the other hand,
try {[XFX]*} < (try {XFX})*, (30)
because of 0 < XFX. This, inserted in (28) proves the assertion. ||
Patterned after Lemma 5 in [1], we can exploit Lemma 3 to show

Lemma 4. Let 0 < a,b < 1, try{a}, tr; {b} < oo be bounded self-adjoint operators
on H. Then, for any ¢ > 0,

[try{(VEx(a®a—b® b)}|
<c (trl{(a——b)z}
=\ try{a+ b}

1152(1007)1/3
36173

1/2-¢
> lola+ b11i% lpLa + bIISS (€20

where C, = “uz

Proof. Using X, ) = X, ;) = X2 ™= Xixi1x - 21 < @ 1(0), we may decompose (see

(3D

©dr
[ 5Xen®Xe0) (32

1 3
V—;Id ZO
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An application of Lemma 3 then yields

[tr;{ VEx(a®a — b®b)}|
1 2 d
é Ejd%j r—:ltrz{(X(r,z) ®X(r,z))Ex(a® a— b®b)}'
0

1 ©d
<-fdz§ —:(trl{X(,,z)(a — b2
T or

xmin{(2tr; {X.»(a + b)})2 tri { X nla + b)}} . (33)

Observe that tr; {X, ,d} = | x_zisrp[d](x)d%c. Denoting p_ == p[(a — b)*] and
p+ = pla+ b], the integran& on the right hand of (33) is bounded above by

;I;Id%{Rf)g—:( § p-(x)d%)m( § p+(x)d3x)

0 |x—z|=Zr |x—z|=sr

® dr 12 1
+25—5< f p_(x)d3x> ( f p+<x)d3><> } (34)

R(z) |x—z|=r |x—z|=r

for any measurable choice of R(z). We introduce the maximal function for
peL'(R%) by

4ur\ 1

M[pl(z) = sup (‘—3—) [ plodx. 35)
r> |x—z|sr

With the aid of the maximal functions M _:= M[p_Jand M ,:= M[p,], choosing

R(z) := 4(4nM ,(z)/3)" /3, we obtain the following upper bound on (34):

(%)[df’zM{/Z(z)Mi’z(Z)li(?n) MYE | Sme2 | ?;]

0 R(z)
4m\*13
<3 <?> [dzMY*(2)M¥®(2)

48 (25\'* _ _
= ;<-2—> e 2 ([p-(d®x) 2 lpo 5+ llp+ 1138 - (36)
To get the last inequality, we applied successively the Holder-, the maximal- and
again the Holder inequality and assumed 0 < ¢ < 1/6. This is very similar to

(88)-(91) in [1]. 1

The form of Lemma 4 is a little inconvenient and for the cases of interest may
easily be reduced to

Lemma 5. Let 0Zab=1 be two self-adjoint operators on H with
tr; {b} < tr;{a} = N < oo and try{ha}, try {hb} < 0. Then there exists C = 0 such
that for all 0 < g < 1/6,

_ 1/2—-¢
]trz{VEx(a®a——b®b)}|§é—1C/—z<ﬂmN—b)}> N3z .  (37)

Proof. Using a kinetic energy bound of Lieb [10] (see also [1]), we derive
lol 1133 < cZ?tr {f} from O0<f<1 and tr {hf} <0. We insert this,
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(x + y)P < 2%(x? + yP)for x,y = 0, and
try {(a — b)z} = try {a2 +b? — 2ab} < 2N — 2tr{ab} = 2tr, {a(1 — b)} (38)

into Lemma 4 and arrive at the upper bound in (37). The lower bound is similar. |}

4. Bounds on Truncated Particle Numbers

In the preceding section we estimated the difference of exchange terms induced by
1-pdm, a, b in terms of a truncated particle number try{a(l — b)}. For large
molecules we bound these quantities in the semiclassical limit. To this end we use
a coherent state method similar to Lieb [11].

For a radial, normalized geL*(R* we define f,,(z):= g(z — q)exp(ipz).
fra€ L*(R?) is normalized and we denote fy, = f,, ® J,..€ #, being normalized, as
well. It is easy to see [11,8] that weakly in H*(R®)® C™ and for
$e L>*(R3) + L*(R?) hold

Bpd® n o dBpd3
ZJ o Ul =1 X B P il = = 4+ Va3,
=1

m d3 d3
L [ g $@U> il = 9x1P (39)

ol = Al =p* + 1Vgll3, faldh =[d=19*1(a),

I @5l Vi @S> =

— . (40)
lq — gl

We choose g(x):= g,(x) = A~ ¥%g,(x/A), g1(x) = n~3*exp( — x?/2) and define
a bounded operator 0 < d; < 1 on 5 by

d*pd’q
d; = z I s ML il 41)

where M(p, q) := @[ — hre(p, )1, h1e(p, q) = p* — ¢rr. Note that, via the TF-
equation [11],

6m2\2/3
[prel@) — 11 = (%) P @) “2)

away from the nuclei. Then

S| LSV ®: 9) = prr(q) 43)

=1 (27[)3 ’ pTF

and, thus, tr; {d;} = || prell; = min{N, Z}. In what follows we will frequently use
0 < [dq{¢rrla) — [$rr*1g:1*1(@)} p(9)

X . 2
<Id3q2{ e M}p(q)

|x — R;]
= cZAM3 Ilp ||5/3 (44)
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for nonnegative pe L3*(R? n L'(IR®). The first two inequalities in (44) follow
from a subharmonicity argument (see [11]) and the third from the Hélder- and
Jensen inequality and the scaling properties of g;. Now, we prove the following
lemma

Lemma 6. Let 0 <y < 1, try {hy} < 0 be either

(i) the 1-pdm y =y, of a Z>3-approximate ground state YyeHy, ie.
YnlHyYyy — Eg(N) £ Z°5, or
(i) y = 74 for a Slater determinant ¢ye SDy and eyr(y) — Exp(N) < Z°3, or

(iii) y = Py.
Then
d’pd’q 5/3 -2 12/571/5
try {hrey} < mIW he(D, M (p, q) + c(Z°7 + ZA72 + Z'2P31%) . (45)
Proof. Both in case (i) and (ii) we apply the Lieb—Oxford inequality [13]

(o

This gives us

1
(Z )l//~> 2 D(p[yyd, plyy]) — 168 [ dxp[1,1*(x) . (46)

i*j]xi - ;]

1 1
try {hreyy} < tro{hyy} + ED(P[WL plyyl) + ED(pTF, PTF)

1
S YnlHyyyy + ED(pTFs PTF)

+cllpDy 112 1Dy 11358 - @7
For both (i) and (i) tr, {hy} < 0implies || p[y]1113/3 < c¢Z" (see [11, 1]). This yields

1
try {hrevy} < Ene(N) + ED(pTF, prE) + cZ°8 (48)
Now, by (40) and (44)

1
Eyr(N) + ED(pTF, OTF)

1 1
<try{hd,} + ztfz{V(d,l ®d;)} + ED(pTFa P1F)

Ppdiq ( us Zilga(x — q)|2>
ém M ) 2+ \V, 2 d3 AL TA N
S MP. 0| P + 1Val3 j;f *TIx R
+ D(ptr, p1F)
dpd?
<mf (57t)3q M(p, q) (P> — () + cZAY3 | prells)s

+ N[Vg:l3 . (49)
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Inserting || prells;s < ¢Z7° and ||Vg,]|3 < cA™? gives (45) in Case (i) and (ii). In
Case (iii)) we observe

try {hyp Py} < try {hrrd;}

d*pdq

Smf——- 2 M(p, 9)(p* + Vg2 113 — [o1r *19:1*1(9))

3,73

d°pd
<mi = M0, )0 = brea)

+eZ'25315 4 eZ)7 (50)

using (44) again. |

We define F(A):= Z3 + ZA~% + Z'*5)'5. Now we derive a bound on
tr; {d;(1 — y)} in all the three above cases by (45).

Lemma 7. Let 0 <y < 1, try {hy} <0, trl{y} < N fulfill

try {hrey} mj he(p, 9 M (p, q) + cF(4) . (51)

(2 )3
Then
try {dy(1 — )} < cKFY(3) . (52)

Proof. For any E > 0 we have

try {d; (1 —9)} = Z (2 Q) Syl (1 = NS>
d3pd3q
é " —pu2htr(p, )2 —pu—E (27‘6)3
dpd’q . .
- Z | 2 M(p, @) [ — hre(p, @)1 Sl (1 — D) fop>
d3pdiq
é " —p2hte(p.9)2 —p—E (277:)3

1 d’pd3q
+ E {trl {hTFy} — mj (27.[)3 M(pa q) hTF(p, q)

+ N1Vgl3 + [d*a(pre() — [pre Igzlz](q))p[ﬂ(q)} - (53

By (44), [Vgal3 = 7% Ilp[¥]1133 < ¢Z7 and (51), this gives
dpdiq
—u2htr(p,9)2 —n—E (2 )3

We distinguish N = Z from N < Z. In the former case u = 0 and it was shown in
[1] that

tr {dy(t =)} <m +EF0). (54

d*pd3q

< K7/4E3/4, 55
ozhe gz -k (21)° =¢ (35)

m
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which, choosing E:= K~ 'F#7(J), leads us to (52). Actually, (55) required
E = 0(Z*®), but if E = cZ*"® then (55) is trivial anyway.

If N < Z we emphasize ¢rr,n(q) = ¢1e(q), uy = pand prg,n(q) = pre(g). From
TF-theory follows [11] [¢rr, w(q) — in1+ = pF n(q) = ap3E 2(q) = ¢rr,2(q), with
o= (6n*m™1)?/3. Thus

d’pd’q

m
3
—uzhre oz —u—E (270)

m

= | Pal{ldrn@—m]¥ — [(Gren(@ — m): — 1)
éreN 2 py
= 6 2§d3q{¢TF 2(@*? — [¢rr.2(q) — E]i/z}

< cK*E34 (56)
again, by (55). |

5. The Dirac Exchange Correction
In this section we link the exchange term induced by d; with the Dirac exchange

correction ¢p || pre ||ﬂ§ (see [2, 14]). Recall from the last section we may represent
the 1-pdm d, by its integral kernel

d3pd3q .
dy(x, ply, v) = | 2 IM(p, g)ga(x — Dgi(y — @)e?=V4,, . (57)

The exchange term induced by d; reads

Wowim 11y {V Ex(d, ® )} = ’"jl‘”d ) (59)

|

where d;(x|y) = d;(x, uly, u). Our specific choice of g, allows us to compute the
right hand of (58) almost explicitly. It requires a tedious integration and the result is

Lemma 8.

%trz {VEx(d, ®d;)} — cp | d*x ptf(x)

<, K ZA™ 4+ Z2In(Z2)(A + Z7 13 7Y)] (59)
for any v > 0.

Proof. We start with a change of variables 2s:= x + y, 2r := x — y. Moreover, we
observe g;(z + r)gi(z — r) = g3(z)-exp( — r*/A%). Hence, abbreviating p,(q):=
[frr(g) — n1¥? = (6n°m™ 1) pif (q),

3
d3sd? re—rz/xz

d3pd3q 2

Wex = 2m.f I (271’)3

M(p,s + q)gi(q)e’”

||

psls+4q) psls + 4)

qd*g
_2mjd3sf B 13 @e2@ Iopdp | pdp

x [ re™1% dr [ dQ,dQ;2n j dxexp(2i|p — plrx) . (60)
0 -1
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Here, we wrote X whenever necessary to distinguish it from |x|. We observe

1 . = 2(2n)® . .
[dQ,dQ;2n | dxexp(2i|p — p|rx) = pre sin(2rp) sin(2rp) . (61)
-1
This yields
o222 psra) 2
w,, = o )3jd3sj dr (Id3q g9 | psm(2rp)dp> : (62)
0
Defining
4m ) e—rZ/A2 . .
&1 1= (2n)3§d3sj dr [&q93(@) 3 93(@)
0
ps(s+ q) pr(s+ g) 2
( [ psin@rp)dp — | pSiIl(z"P)dP> (63)
0 0
and
® [sin(r) — rcos(r)]?dr r?
— 3 14/3 1— I 64
&2 (2 )3jd Sp ()f Zp}(s)lz ’ ( )

we can extract the leading part from W,,;

W, = 3(; [sm(r) r cos( r)]2 >jpf(s)d3s e —
2n)*\ o

=cp [P X)dx — e — ¢, . (65)

It remains to estimate g, &, = 0. We start with &,. Using 1 — e %" < a?e~*, we get
for f(x) = 0,

jf(x)u — e™ ¥ dx <_<§f(x)dx> <§ xe —XZ/“de>1/2

o X 0
¢ dx
a X
This, inserted in (64), yields
TSI (©7)

The estimate on g; is more delicate. We use

. Z 64r°
( J psm(p)dp) <=5 0j = 577 (68)
2rps

for small r > 0 and
[sin(2rp,) — 2rpycos(2rpy) — sin(2rps) + 2rp, cos(2rﬁ,)]2 < crz[pf + ﬁf]z (69)

for large r > 0, denoting p, := py(s + q), ps := ps(s + ). Therefore, for any measur-
able choice of R = R(s, g, §),

~ \2
o1 Scfd’s| d%g%(q)dsqg%(q)[(p} ~ PHR® + W] . (0
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We optimize by choosing R:=(p; + p;)|p} — p}|~*. Furthermore, we apply
(a + b)|a® — b3| £ 2]a* — b*| which holds for a, b = 0 and obtain

e1 S c[d’s[dqgi(a)d*q93(@)|p} — B}l - (71)
We pause to motivate the next step. We would like to estimate

7
Ipf(s + @) — pH(s + DI < [IVPH(s + 5)lds' (72)
q

where s’ is on the straight line between g and §. Then

q
ey S cfd®s[d>qg3(q)d*qg5@) [ IVph(s + s)lds'
q

< c[fqgf(q)dﬁy;(‘i)}<§dss'vp?(s + Sl)’)‘is,

IIA

c <§ IVP?(S)Id3S>Id3q 9:(@)d*4 g2(@la — 4l

c|Vpil-2. (73)

The trouble with this estimate is that |Vp}| ¢ L' (R?), due to singularities at R;. To
overcome this difficulty we have to cut out the region around the nuclei.
To this end, we introduce a cut-off p, > O

I\

\p} — P < OLpo — pr10[po — Brl-1pt — B + 20[p; — pol-p}

+20[p; — pol- b} - (74)
Hence
e1 S cfd’s [dqg3(q) @G 93(@O[po — 1O [po — BrlIpF — FF
+cfd*s [d*q93(q)O[p; — polp} - (75)
Now, we estimate

a
[p}(s + @) — p}(s + @) < [IVpi(s + 5)lds’, (76)

q

where we assume the path s + s’ ¢ A= {xeR?|p;(x) > po} and to be of shortest
possible length. We choose p3 := ¢Z*3** for some v > 0 to be picked later. Then
Ac Uf=1 By-12-(R;), because pF(x) < chzl Z;|x — R;| 71 It follows

q
fds <1qg—q|+ Kz '3, (77)
q
We obtain

g
1 < [ ds [ g 3@ PTGH@ [IVPHs + 9) e als + 9)ds' + ¢ [ phe)dPs
q A
q
< [ P463(@) qugl(qn(wst;(s ) moals + s'>)ds'
q

3
+cKZ*> | d"x

|x| <z ]Xlz
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< C< ) le?(S)Id3S> <KZ"”3‘” + [dqg3(@)d*793(@)1q — cil) + cKZP™
R3\ 4
S cllxrnaVPFIL(KZ7Y37Y 4+ J) + ¢cKZ3P 7Y, (78)
We split up the remaining integral by means of 4’ := Ule Bz-ws(R));

4 2 S d>x 8/3 13,y 73
lxraVPflly S cKZ2 | Y ————=+c [ Z%|\Vpy (Z"x)|d>x
(RNA) A j=1 [x — R A

<¢,K*Z?In(Z) + ¢Z*, (79)
and we finally arrive at

&1+ 6 S K [ZA™  + Z2In(2)A + 27137 .} (80)

Proof of Theorem 1. The first step of the proof consists in linking the quantum
mechanical ground state energy Eo(N) with the Hartree-Fock energy Exp(N). We
invoke Theorem 2:

c _
|Eg(N) — Exp(N)| £ 5 (try {yy — y3 })! 372 2% % (81)
el

for 0 < &< 1/12 and 7, being the 1-pdm of a Z*3-approximate ground state
Yne Ay of Hy. From Lemma 1 and 2 we derive

1
- EtrZ{VEx(‘yHF ® yur — Py ® Py)} — Z%3
1 1
< Eyp(N) — try {hre Py} + ED(pTFa PTF) — Etrz{VEX(PN® Py)}

= =D(py — prr: Px — p1F) (82)

N =

for any orthogonal projection yyr = yiir = V&r, try {yur} = N, with egp(yur) —
Eyr(N) £ Z*3. Now, we use Lemma 5 combined with the triangle inequality and
find for any ¢ < 0,

Itr{ VEX(yur @ yur — Py ® Py)}|

c _
= gm(th{)’HF(l —d;)} +tr {Py(1 = dy)}) 2o Z7e e

S (@l = pr)} + try {da(L = Py)} + 21727 RO (83)

Note that in the second inequality we used N <Z 4 Z'"?"7 and
tr;{d;} = min{N, Z}. Of course, this estimate holds for |tr,{VEx(d;,®d,
— Py ® Py)}|, as well. Moreover, notice that

try {yy — 5} Stri{da(l — py)} + tri {1 — dy)yy} = 2tr {d;(1 —9,)} . (84)
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We insert (81), (83) and (84) into (82) and obtain for any 0 < ¢ < 1/12,
¢
W(th {da1 = py)} + try {di(1 — yur)}
+ trl {dl(l _ PN)} + Zl—2/77)1/3—sz4/3+e

1 1
=< EQ(N) — iy {hTFPN} + ED(.DTF’ PTF) — Etrz{VEx(dz ® dz)}

¢ _
= ;m(th{dz(l — )} + e {di(1 = yup)} + 217277
+ trl {dﬂ.(l - PN)}1/3_£Z4/3+8
1
+ ED(pN — P1F> PN — PTF) - (85)

In (85) exactly the three cases treated in Lemma 6 occur, which, therefore, fulfill the
assumptions in Lemma 7 and imply the bound

S KUR[ZTH 4 752 g 70T ez e

1 1
< Eg(N) — try {hte Py} + ED(pTFs P1E) — Etrz{VEx(d,l ®d;)}

1
= ED(pN — P1F> PN — PTF)
+ 8%1(1/3[27/3—2/33 +Z2+ 212/511/5]1/7—824/3” ] (86)

The error term we pick up when replacing 3tr, {V Ex(d; ® d;)} by cp | ptf is
estimated in Lemma 8 and turns out to be small compared to the A-dependent error
term in (86). More precisely, Theorem 1 follows now from Lemma 8 and the choice
A= Z7?123 and v:=10/33. |

Acknowledgement. I would like to thank C. Fefferman for pointing out that the question presently
addressed was left open in [1] and H. Siedentop for a remark that simplified the proof of
Lemma 3.
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