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Abstract. We study the Grassmannian Gr consisting of equivalence classes of
rank n algebraic vector bundles over a Riemann surface X with an holomorphic
trivialization at a fixed point p. Commutative subalgebras of gl(n, H,), H, being the
ring of functions holomorphic on a punctured disc about p, define flows on the
Grassmannian, giving rise to classes of solutions to multi-component KP hierar-
chies. These commutative subalgebras correspond to Heisenberg algebras in the
Kac-Moody algebra associated to gl(n, H;). One can obtain, by the Krichever
map, points of Gry (and solutions of mcKP) from coverings f: Y — X and other
geometric data. Conversely for every point of Gr and for every choice of Heisen-
berg algebra we construct, using the cotangent bundle of Gry, an algebraic curve
covering X and other data, thus inverting the Krichever map. We show the explicit
relation between the choice of Heisenberg algebra and the geometry of the covering
space.

1. Introduction

1.1. In the seventies it was discovered that one could obtain solutions of certain
non-linear evolutionary equations of “soliton type” in terms of f-functions of
Riemann surfaces or, more generally, one could construct solutions from coherent
sheaves on algebraic curves, see e.g., [Kr, Mum1, Du, KrN, vMM]. (In fact, certain
solutions of the Korteweg—de Vries equation (KdV) in terms of elliptic functions
were known classically [KdV].) Somewhat later it was discovered that solutions of
such equations could be identified with points of infinite dimensional Grassman-
nians, or, equivalently, with the orbits of infinite dimensional groups in representa-
tion spaces (see e.g., [Sa, DaJKM, Kal]).

Both points of view, the algebro-geometric one and the representation theor-
etic, could be connected by associating to a Riemann surface (along with a line
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bundle and other ingredients that won’t concern us for the moment) a point
of an infinite dimensional Grassmannian, [SeW]. This map from algebro-
geometric data to Grassmannians we will call (as is now standard) the Krichever
map.

In the representation theoretic approach one starts with, say, an affine,
simply laced, Kac-Moody algebra § and a highest weight representation
(see [Ka]). For every maximal Heisenberg algebra # in § one has an explicit
construction of the basic representation in terms of vertex operators, certain
formal infinite order differential operators in an infinite number of variables
(see [KaP, Lep]). In the realization determined by # the defining equations
of the orbit of the associated Kac—-Moody group through the highest weight
vector are then differential equations in terms of the variables occurring in
the corresponding vertex operators, see, €.g., [KaW]. For the simplest choice of
Heisenberg algebra, the principal one, one obtains the generalized Korteweg—de
Vries hierarchies and it is mainly in this context that the Krichever map is
studied (especially in connection with the Schottky problem [Mull, Sh]), but
see also [Di].

The question we want to address in this paper is the significance of the choice of
Heisenberg algebra (which plays such an important role in the representation
theory) for the algebro-geometric picture.

First recall ([KaP, Lep]) that every partition n of an integer n determines
a Heisenberg algebra #* in sl(n, C), the non-twisted affine Kac-Moody algebra
based on the loop group of si(n, C), and that every conjugacy class of Heisenberg
algebras corresponds to one unique partition. The principal Heisenberg algebra
A#'Pire of Sl(n, €) corresponds to the partition of n into a single part. Next
recall that in the standard treatment of algebro-geometric solutions of generalized
KdV hierarchies, corresponding to the principal Heisenberg # 1i"°, the geometric
data for the Krichever map involves a Riemann surface Y covering the Riemann
sphere in such a way that inverse image of the North Pole (“infinity”) is a single
point of Y.

We will explain that this generalizes as follows: the number of points over
infinity should correspond to the number of parts in the partition. More precisely,
solutions of soliton hierachies, coming from other choices of Heisenbergs 2,
where n = (ny, n,, . .., n;) is a partition of n into k parts, can be obtained from
Riemann surfaces covering the Riemann sphere with k points (with ramification
index n; at the i'® point) lying over the north pole.

In fact, we study a more general situation of algebraic curves Y covering a
fixed nonsingular and irreducible Riemann surface X. Any coherent torsion free
sheaf on Y will push forward to a vector bundle on X. The collection of vector
bundles on X of fixed rank together with a trivialization at some fixed point pe X
forms an infinite dimensional Grassmannian Gry described in Sect. 2, (see also
[PrS]). In this situation the Krichever map associates a point We Gry to any
covering f: Y — X, a coherent sheaf on Y and data at f ~*(p). This is described in
detail in Sect. 5.

To invert the Krichever map and obtain the geometric data from the point
We Gry we introduce in Sect. 3 the non-commutative stabilizer algebra Sy of W.
This is the subalgebra of elements s of the loop algebra such that sW < W. We
show that it may be thought of as a subspace (of codimension 2n?g, with g the
genus of X)) of the fiber of the cotangent bundle T*Gr%, and that for the case of
X = P! it may be identified with this fiber. In a similar context cotangent bundles
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of moduli spaces have appeared earlier in Hitchin’s work on Higgs bundles and
spectral curves, see [Hi] (see also [AHH, B]).!

By projection from the Kac-Moody algebra to the loop algebra we obtain from
every Heisenberg algebra #% a maximal Abelian subalgebra s#% of the loop
algebra. We will refer also to this as a Heisenberg algebra (of type n). The finite
order part of the intersection Sj, = Sy N A#” is a finitely generated commutative
C-algebra. So we can associate to every point of the infinite Grassmannian Gry,
¢(n) (the number of partitions of n) distinct commutative rings and we prove in
Sects. 6 and 7 that the compactification of the spectrum of each of these rings is an
algebraic curve Y covering X with the branching behaviour over p e X determined
by the choice of partition. (In the best case the pullback divisor f*(p) is of the form
Y n;p;, pi€ Y if the n; are the parts of the partition. In general the situation can be
considerably more complicated, see Theorem 7.5.1 for a more precise statement.
We stress that for most W the curve constructed by this method is just the original
X, see Example 6.2.) We can also construct a coherent sheaf on Y corresponding to
the S}, module W, as well as the other geometric data, so that we obtain in this way
an inverse of the Krichever map, generalizing a procedure in [SeW], cf. also
[Muml]. (In this paper we study only the finite order parts of these stabilizer
algebras so that our curves are algebraic. More generally one can study holomor-
phic stabilizer algebras but in that setting the geometric data may be more
complicated, see Example 6.2.)

Now there are, again for every Heisenberg algebra, natural flows on the
Grassmannian that preserve the curves and are called therefore isospectral. In
Sect. 8 we briefly discuss the associated differential equations and their Hamil-
tonian structure. They turn out to be certain subsystems of the multicomponent
KP hierarchy studied in, e.g., [UT, Di]. Other papers that consider the relation
between vector bundles and soliton equations are [Mul2, PrW].

We conclude with some remarks in Sect. 9. Some of the results of this paper
were announced in [AB].

2. The Infinite Grassmannian GrY

2.0. Pressley and Segal introduced in [PrS] (Sect. 8.11) an infinite dimensional
Grassmannian which can be identified with the space of holomorphic vector
bundles over a Riemann surface X together with an holomorphic trivialization in
a disc around a fixed point pe X. The Grassmannian consists of certain subspaces
of the Hilbert space L*(S!, C"), where S! is the boundary of the disk, given by the
L?-completion of the restriction of the holomorphic sections of the vector bundle in
the complement of the disk to the boundary. There is a natural transitive action of
the smooth loop group on this Grassmannian, so it is also an homogeneous space
for this group. In this section we will describe a variant of their construction so as
to study the space Gr% of equivalence classes of pairs (&, t), where & is an algebraic
vector bundle over X and ¢ is an holomorphic trivialization of & at p. In this set-up
there is no a priori connection between the radius of convergence of the local

! After completing this paper we received a preprint by Landi and Reina [LR] in which the
holomorphic cotangent bundle to the Grassmannian is used to study the Hamiltonian structure
of soliton equations. In that paper, only the principal Heisenberg algebra is used and also, the
base curve is always P!



268 M.R. Adams and M.J. Bergvelt

holomorphic coordinate at p and that of the local trivialization, cf. [ADKP]. Along
the way we will also make some remarks about formal trivializations and the
corresponding formal Grassmannian as in, for instance, [KNTY].

2.1. Let X be an integral, smooth, projective, algebraic curve (over the complex
numbers as always in this paper) and p some point on X fixed once and for all. In
this sub-section we recall the definitions of algebraic and holomorphic local
coordinates 4! at p. (We use 4~ ! instead of just A so that our conventions match
those of the usual infinite Grassmannian based on the Riemann sphere, where p is
considered to be the point at infinity.)

Let Ox be the (algebraic) structure sheaf of X and let O, , be the ring of rational
functions which are regular at p. This is a local ring with maximal ideal m, given
by functions which vanish at p. An algebraic local coordinate is a generator 47!
of m,. Notice that this defines an injective local C-algebra homomorphism
I:0x.,— C[A™'] of the local ring to the ring of formal power series.

Recall [Ser] that an algebraic curve (X, Ox) (or more generally an algebraic
variety) has canonically associated to it an analytic space (X, 0%), where 0% is the
sheaf of germs of holomorphic functions on X. (So X has now the complex, instead
of the Zariski, topology.) To define an holomorphic local coordinate the ring Oy, , is

replaced by 0%, the ring of germs of holomorphic functions at p on X. This, too, is

a local ring with maximal ideal mb®, the germs of holomorphic functions at p which

vanish at p. A generator A~ of mh® gives then an holomorphic local coordinate.
As above, this defines an injective local homomorphism of C-algebras
1: 0%, — C[A7']. (The image is C{A~'}, the formal power series in A~' which
converge in some neighborhood of o0.) Of course any algebraic local coordinate is
also holomorphic. For both kinds of local coordinates we have by definition
I(1) = 1. We will denote the image [(Oy,,) by 4, when [ is either algebraic or
holomorphic.

From now on we will fix an holomorphic local coordinate A~ ! (which might
happen to be algebraic).

A local coordinate induces an injection:

I:KysL =C[A]@A 'C{A"}. (2.1.1)

Here Ky is the function field of X, i.e., the quotient field of the integral domain Oy,
and L, is the field of Laurent series (in A~ '), the quotient field of the ring of
convergent power series (in ™). We will in the sequel not distinguish between K x
and its image in L;.

For any point g on X the local ring Oy , is a subring of Ky, so the map (2.1.1)
gives a map Oy ,5 Kys L;. Let us denote by A, = [(0x,,) the image in L;. Define

oo}

H°(X, Ox(xp)) = | H°(X, Ox(kp)) . (2.1.2)

k=0

Then HO(X, Ox(*p)) is the subring of K y consisting of the meromorphic functions
on X with only possible pole (of finite order) at p. H°(X, Ox(xp)) is the (algebraic)
coordinate ring of the affine curve X — p, in particular H°(X, Ox(*p)) is a
Dedekind domain. Since H°(X, Ox(*p)) is the intersection of the local rings Ox ,,
q # p we get an inclusion H°(X, Ox(*p))s L,. We will denote the image by Ay, i.e.,

Ay = () A, = I(H°(X, Ox(*p)) . (2.1.3)

q¥p
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Remark. The local ring Ox, , has the formal completion Oy, ,; this is a local ring
with maximal ideal 1,. A formal local coordinate at p is given by [ ~*(A7'), where
I is any isomorphism of local C-algebras [: Oy ,~C[A™']; in particular the
maximal ideal 1ft, maps isomorphically to the ideal generated by A7'. We will
denote the formal local coordinate simply by A~!. Using this we can inject the
function field Ky in F; = C[A] ® A~ 'C[A™ '], the field of formal Laurent series.
The field L, is a subfield of F, and this gives also Ay as a subring of F,.

2.2. Examples. If X has genus 0, we take 1 to be the usual affine coordinate on IP?,
and p the point at infinity. Then 47! is an algebraic coordinate at oo and Ay is the
polynomial ring C[A] < L;.

If X has genus 1, i.e., X is an elliptic curve, we use the Weierstrass g-function:
for z a local holomorphic coordinate around p there is a unique meromorphic
function g (z) on X which is holomorphic outside p and has polar part 1/z* at p.
Then, identifying g (z) with its Laurent series in L,-1,

Ay =COCP2)DCP' (D) D®CP()?® < L,-s . 2.2.1)

If one prefers, one can introduce a new holomorphic local coordinate
27 1:= p(2)”"Y/? around p. Then, using the differential equation relating the Weier-
strass g-function and its derivative:

92} =4p@)° — g0 —gs, (222)
we get, defining p:= 13(4 — g,A~* — g347°)Y/2, for the coordinate ring
Ay =C[2ulc L, . 2.2.3)

The inclusion €C[4?] = Ay induces a very simple covering map X — P!, showing
that it is in general natural to choose a local coordinate A~ ! such that a power of
4 has no poles outside p. We will see similar choices of local coordinates in Sect. 5.
Note that here we might have started with z being a local algebraic coordinate, but
that if one wants Ay to have the form (2.2.3) one ends up with ™' being not
algebraic, but holomorphic.

2.3. Now let & be the sheaf of algebraic sections of a rank » algebraic vector bundle
E over X. We want to discuss trivializations of & at p. As with local coordinates this
depends on whether we are working in the algebraic, holomorphic, or formal
category. Recall that the stalk &, is a free Oy ,-module of rank n, and so is
isomorphic to (O, ,)", the direct sum of n copies of the stalk at p of the structure
sheaf. An algebraic trivialization of & at p is a choice of isomorphism i: &, = (O ,)".
If 27! is a local holomorphic coordinate, inducing the injection I: Oy ,— C{1™ '},
we continue to call the composition

t=10i:8, (Ox,) = (C{A 1}y, (2.3.1)

an algebraic trivialization, where [ acts componentwise.

Letting &™! denote the sheaf of germs of holomorphic sections of E, we note
that the stalk at p, &5, is simply given by 0%, ® &, and that this is a free
0%*, module of rank n. An holomorphic trivialization is a choice of isomorphism
i1 65" 5 (OFL). Again, if 17! is a local holomorphic coordinate, giving the isomor-
phism [:(O%,)" - (C{A™*})", we continue to call the composition ¢ =l°i an
holomorphic trivialization.
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Note that the basis picked out by the choice of the isomorphism i corresponds
under the trivialization ¢ to the standard basis {e;}7=¢ of (C{A~!})", since I(1) = 1,
e; being the column vector with a 1 on the i™ place as its only non-zero entry. (We
have the, maybe deplorable, convention of indexing n-component vectors, matrices
etc. by the integers 0,1, ...,n—1.)

We will call two pairs (&, t) and (8", t') isomorphic (notation: (&, t) ~ (8, t')) if
there exists an isomorphism of O%'-modules ¢ : &' — £ such that the induced
map t'ogot™ 1 (C{A7*})" > (C{A~'})" is the identity. In other words ¢ gives an
isomorphism of the holomorphic vector bundles E™' and E™! and maps one
trivialization at p to the other. We will denote the isomorphism class containing
(&,t) by [&,t]. We remark here that by the GAGA principle [Ser] ¢ actually
comes from an isomorphism of the algebraic sheaves & and &".

Definition 2.3.1. The set of equivalence classes [&,t], where t is an holomorphic
trivialization at p, is the Grassmannian, Gr'y; the algebraic Grassmannian, Gry™®, is
then the set of equivalence classes [&, t], where t is an algebraic trivialization.

Note that our Grassmannians depend also on the choices of the point p and of
the local coordinate A~ 1, although, for simplicity’s sake, we suppress this from the
notation.

Remark. We can of course also define a formal Grassmannian Gr’;™™ by taking
equivalence classes of pairs (&, t), where t is now a formal trivialization. To define
forma] trivializations introduce the formal stalk, &, of the bundle E at p by
é,=0x,® &, This is_a free module of rank n over Oy , and a_choice of
isomorphism i:6, 3 (Ox,,)" defines a formal trivialization t=Ilci, where
I:(Ox,,)" = (C[A~1])" is given by the formal local coordinate.

2.4. In this subsection we describe Gr’ as a collection of subspaces of the space of
n-component Laurent series L}. We first recall the X-lattice approach to vector
bundles (cf. [H]). Let V be an n dimensional vector space over the function field K y
of X and let a family {M, = V'},.x be given where M, is a free rank n module over
the local ring Oy, ,. Assume furthermore that for almost all ge X, for some fixed
basis ¢; of V, M, = @ 0x, ,&:. Then the family {M} is (essentially) what is called an
X-lattice in [H]. Their study leads to the adélic description of the moduli space of
vector bundles over X, cf. also [AtB].

Let &, = Kx ®¢, & be the space of meromorphic sections of our rank n vector
bundle E. This is an n dimensional vector space over Ky and there is for every g in
X an injection i,: &, — &, from the stalk at g to the “generic stalk” &,. The image of
i, will be still denoted by &,. Then the collection {&,} in &, is an X-lattice.
Conversely every X-lattice {M,} determines a locally free sheaf & by defining
EU) = (4ev M, for all open U in X. Isomorphic locally free sheaves &, &” give rise
to equivalent X-lattices, i.e., families {&,}, {&;} with &, = y&, for ye Gl(n, Kx), and
vice versa.

Now return to the situation where we fix an holomorphic trivialization ¢ of & at
p. We can identify the space of meromorphic sections of & with Ky ® &,. Any
element e of &, extends to a meromorphic section of E, so determines, by taking the
germ at p, an element i (e) of Ky ® &,. The holomorphic trivialization t induces
(using also (2.1.1)) an homomorphism:

t:Ky®8,- L. (2.4.1)
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We will still denote by &, the image in L} = (L;)". In this way we obtain an
X-lattice {&,} in t(Kx ® &,) inside L;.

Lemma 2.4.1. Isomorphic pairs (&, t) give identical families {&,} in Lj.

Proof. Assume (&,t) ~(&',t') and let ¢ denote the isomorphism. Then ¢ gives
isomorphisms ¢,:6, - &, and ¢,:6,— &, and we know that t =t'>¢,. Let i,
denote the map &, — Kx ® &, and i; the corresponding map on &;. Then the
following diagram commutes:

8, —Ky®8,——1L,
bq by I . (24.2)
& Ky ®&E——1L,

i t

q

Since we wished to show that toi, = t' o, ¢,, this proves the Lemma. n
The vector bundle analogue of (2.1.2) is the following:
HO(X, &(xp))= | H°(X, &(kp)) . (2.4.3)

k20

This is the space of meromorphic sections of E with possible poles at p, and it is the
intersection (in Ky ® &,) of the &,, g # p. So, using the trivialization as described
above, we get a subspace in Lj:

W=Wwé,t)= () <L, (2.4.4)

p¥q

which depends only on the isomorphism class [&, t], by the commutative diagram
2.4.2. This is a finitely generated projective module of rank n over Ay, the
coordinate ring of X — p. In general this module is not free, however it has the
following property: the Kx-vector space V =Ky ® 4, W =t(Kx ® &,) = L} has
a basis {¢; = ye;} with ye Gl(n, C{A~'}). Indeed any (algebraic) basis of &, gives
a basis of V" and will be related to the trivializing basis of the holomorphic stalk,
{e;}, by an element of Gl(n, C{.~*}). The W’s arising from algebraic trivializations
are then characterized by the fact that V' = Ky ® 4, W has a basis related to {e;} by
an element of GI(n, A,), so that in this case we could take in fact {e; } as basis for V.
Conversely, let W be a finitely generated projective Ax-module of rank n in
% such that V' = Ky ® 4, W has some basis {¢; } related to the standard basis by an
element of Gl(n, C{A~'}). Then we have for each qe X, an A, = Uy ,-module
&, = A, ® W of rank n, which is free because W is projective. Automatically the
&, are of the form (P A,¢; for almost all ge X — p. Indeed any basis {&;} of &; for
some ge X — p will be a basis also for almost all &, and {&;} is related to {e;}
by an element of Gl(n, Kx). To complete the collection {&,},cx-, to an X-lattice
in V (in order to obtain a locally free sheaf) we just have to specify &,. Any free
A, module in ¥ will do, so we can take &, = (P 4,¢;. Any other choice of basis
{e;} of V, with & =7y'e;, yeGl(n,C{A'}), will be related by an element of
Gl(n, Kx) N Gl(n, C{A"'}) = Gl(n, A,) to {¢;}. This does not change &,and so gives
the same X-lattice and the same locally free sheaf &. This sheaf has a distinguished
trivialization t; = y~'¢; = 7'~ '¢}. Note that the construction depends on the choice
of basis {e;} in L} and that we are free to perform Gl(n, Kx) transformations on it.
Taking this into account we find that we have proven
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Proposition 2.4.2. Gry is in one to one correspondence with the collection of rank
n projective Ay-modules W in L} such that V = Ky ® 4, W has a basis {¢; = ge;},
where the g belongs to Gl(n, C{1™'}).

The algebraic Grassmannian is distinguished by the fact that the standard basis
{e;} gives a basis for V, or in other words that the element g connecting the
standard basis {¢;} and {e;} belongs to the subgroup Gl(n, 4,).

Remark. The formal Grassmannian is similarly equivalent to the finitely generated
rank n projective Ay-modules W in F}, such that V' = Ky ®,, W has a basis
{&; = ge;, g€ Gl(n, [A71])} that is also a basis for almost all localizations.

2.5. Let us consider the special case where X = P! and A~ ! is the standard
algebraic coordinates at oo. Then Ay is the principal ideal domain C[Z] and all
locally free Ay modules W < L, coming from an element of Grp: are in this case
free as Axy-modules. Geometrically this reflects the fact that all algebraic vector
bundles over P! — oo are algebraically trivializable. So we have a basis {w;} for
W which gives, by juxtaposition, an element g of Gl(n, L;), i.e., the columns of g are
the w;’s. (We can think of Gl(n, L;) as the group of real analytic maps from an
infinitesimal circle around p with only possibly a finite order pole at p in the
interior of the circle.) This shows that for X = P! the elements of the Grassmannian
lie on the orbit of Gl(n, L,;) through the distinguished subspace
n—1
H{*® = P Aye; = L, (2.5.1)
i=0
corresponding to the trivial bundle @p: with its natural trivialization at oo, since
W =gH{®,
Conversely for any Riemann surface an element of the Gl(n, L;) orbit through
H{#9 lies in the Grassmannian Gr. This follows from the following proposition:

Proposition 2.5.1. Let ge Gl(n, L,), then
g=gxg-, withgxeGln,Kx), g-eGln,C{A7'}). (25.2)

Proof. Let 6~ ! be an algebraic local coordinate at p. Then there is a unique
isomorphism ¢: L; — L, that restricts to an isomorphism C{A" '} > C{c~'}. We
extend ¢ by componentwise action to matrices. Then by the Birkhoff factorization
(cf. [PrS, Theorem 8.2.1]) we have for § = ¢(g) a decomposition g =g, D-§_,
with g, polynomial in o, D =diag(c*,0%,...,0%), aeZ and
g-€Gl(n,C{c~'}). Then, clearly, §. - De Gl(n, Kx) and applying ¢ ! proves the
proposition. [ ]

So if geGl(n, L;) then W =gHE® = @', Axge: = P)_, Axgxes with
{&: =g-e;}. Then V = Ky ® W has the basis required by Proposition 2.4.2 and the
free, rank n, Ay-module W belongs to the Grassmannian. If g_ happens to belong
to Gl(n, A,) we get in this manner an element of the algebraic Grassmannian.

Since this W is free as an 4y module, we see that for general X the orbit of
Gl(n, L,) through the element (2.5.1) will give us the part of the Grassmannian
corresponding to bundles & such that & is algebraically trivializable over X — p.
For X = P! this gives the whole Grassmannian.

To describe the Grassmannian for an arbitrary curve X as an homogeneous
space, we will in the next subsection change the framework to allow the action of
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matrices with infinite order poles at p, essentially by tensoring everything in sight
by the appropriate ring of holomorphic functions. Another approach would be to
use the X-lattices of 4, modules &, included in the n-component Laurent series
L’ (or in the n-component formal Laurent series F} in the formal category) briefly
mentioned in Sect. 2.4. This would exhibit our Grassmannians as homogeneous
spaces of adelic groups, which seems to be more complicated than the holomorphic
loop group setting that we are going to use. However if one is interested in these
curves in arbitrary characteristic (for instance in the context of string theory, see for
example [KaSU]), the adélic setting seems appropriate.

2.6. We have noted in the previous subsection that for X = P* an element W of the
Grassmannian is free as an Ay-module. This is not the case, of course, for an
arbitrary algebraic curve X. However, as is well known, every holomorphic bundle
on X — p, now thought of as a complex manifold, is trivial, since X — p is a Stein
manifold. So we can consider instead of W the tensor product W™= A¥' @, W,
which is then free of rank n over A%', where 4% is the ring of holomorphic
functions on X — p, usually denoted O(X — p). If W corresponds to the equiva-
lence class of a pair (&, t), then W™ is the space H°(X — p, &) of holomorphic
sections of &' over X — p. Now A% is not contained in L,, since there are in
A% functions with essential singularities at p. This leads us to look for a space in
which both L, and A% are contained. This will also allow us later on to consider
“time flows” of points of the Grassmannians with exponential singularities.

Let A1 be a local holomorphic coordinate at p. We can think of A™! as an
holomorphic function from a neighborhood of pe X to a neighborhood of the
origin in € and we can consider for small ¢ the disks D, of radius ¢ around pe X,
using the holomorphic local coordinate. Let D, be this disk with p deleted. Define
then (cf. [ADKP]):

H = lim 0%'(D,) (2.6.1)
e~>0
the space of germs of functions holomorphic in a deleted neighborhood of p. We
can think of H as consisting of certain functions with, in general, expansions in
4 infinite in both directions, in which case we will write H = H,. In the sequel we
will refer to functions (or more generally vectors or matrices) having a finite
number of positive powers in A in their expansions as being finite order. For instance
the subfield of Laurent series L, of the field of formal Laurent series F, makes up
the finite order elements in H, (and hence, in particular Ky is made up of finite
order elements). However A%, which contains functions with essential singularities
at p, is also included in H,, but a general element of F, does not belong to H;.
The group Gl(n, H;) acts on H} = C"®¢ H,. Put
n—1
H{rY = @ A¥'e; < HY . (2.6.2)
i=0
Consider an element W of the Grassmannian Gr%y. Then W™ = A% @ W is
a subspace of H}.

Lemma 2.6.1. The map
Wi Whel = A2l @ w (2.6.3)

from elements We Gr to subspaces of H} is injective.
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Proof. Let W' be the finite order part of W so that we have an exact sequence of
Ax-modules:

O-W->W ->W/W-0. (2.6.4)
Since A% is flat over Ay we get, by tensoring, another exact sequence:
05 AP' QW AR QW - A¥' Q@ (W//W)—-0. (2.6.5)

Now Wl = AF'@ W' = A¥' ® W so we get AX'® (W'/W) = 0. On the other
hand we can construct (see 2.4) from W and W’ coherent sheaves & and &’ on X by
gluing in the stalk &, = &, = @ A,¢; at p, where ¢; is the basis of V' = Wy ® W that
exists by Proposition 2.4.2. Then &'/& is an algebraic coherent sheaf on the
projective curve X and 0%°' ® (&£'/€) the corresponding analytic sheaf. But by the
sequence 2.6.5 and because &, = &, we see that in fact O%'® (6/&) = 0, so, by
GAGA, also ¢’/& = 0 and hence W W' So the finite order part of W"'is W and
whe! determines W uniquely. n

As we said before W™ is free of rank n over 43", so we have a basis {w;}/-; of
whel Then W' = gH """, for g € Gl(n, H;) given by the juxtaposition of the basis
{w;}1-,. The stabilizer of H}""“"” in Gl(n, H;) is the subgroup Gl(n, A%") so we find
that the (holomorphic) Grassmannian is contained in the homogeneous space:

Gl(n, H;)/Gl(n, A%¥") . (2.6.6)
In fact,

Proposition 2.6.2.
Gry = Gl(n, H;)/Gl(n, A%¥") .

Proof. It remains to show that if W = gH {rob for ge Gl(n, H;), then W = Wbl for
some W in Gry. Since g gives an holomorphic matrix valued function on a deleted
neighborhood D, of p it gives a transition function from D, to X — p, and thus an
holomorphic vector bundle on X with trivializations on D, and X — p. The sections
of this bundle over X — p in the trivialization over D, give back W. By the GAGA
principle, every holomorphic vector bundle on X is indeed algebraic and thus
W = W*! for this algebraic bundle with holomorphic trivialization at p. |

Remark. We have seen in Sect. 2.5 that We Grk is free iff W = gH$*® for some
geGl(n, L;). So in this case we also have W' = gH$" for the same g. The
converse is also true: if W' = gH ™" for a finite order g then W is free, as easily
follows from Lemma 2.6.1.

If {w;}7-, is a set of linearly independent elements of W (over Ax) then the
1mages of these elements in W' = A%' ® W are independent over A% However,
since A% is not a field, they may not span. If one takes the element ge Gl(n, L;)
obtained by juxtaposition of the vectors w; then the vector bundle & obtained by
this transition matrix will be algebraically trivializable over X — p. Its algebraic
sections over X — p will be given by gH {»*'® which is in general just a subset of the
finite order part W of W™ there will be elements of W not obtainable by A -linear
combinations of the finite order set w; = g+ ¢;, except in case that the w; form a basis
for W over Ay to begin with. So the algebraic and holomorphic bundles &, & are
just subbundles of & and &™), in general.

2.7. Any Riemann surface X admits a covering map f: X — P! of degree k, for all
sufficiently large k, so in a sense all Grassmannians Gr based on X are included in
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the Grassmannian Gr'l',kl (in many different ways). More concretely, if we choose for
instance, as in Sect. 2.2, the local coordinate 4 on X at p in such a way that
Ay =C® CA* @ ... we can define z = 1* and think of z as the standard algebraic
coordinate on P!. Then Ay is free over €[z] of rank k and hence W e GrY is free of
rank nk over C[z]. We can identify in an 0bV10us way L% with L*" (see Sect. 4.2) and
using this we see that ¥ is an element of GrP1 corresponding to the class [ f,. &, f,.t],
if W corresponds to the bundle &. Here ft is the trivialization of the push forward
bundle f,.& determined by the basis {zft‘l(ei)}i 2ob TR of the @pl’ « module
(f«&)s; this will be explained in more detail in Sect. 5.

One can also map Gr% into an universal Grassmannian Gr of subspaces W of
H, (see 2.6) that have a Fredholm projection W — H, ,, where H, ; is the
subspace of H, consisting of holomorphic functions on P* — oo (here we think
of z as a coordinate on P!). (This is the definition in [ADKP], see also [SeW,
PrS].) This works as follows. First note that Ay = L, has a projection to C[4]
with zero kernel and cokernel of dimension g. Then H{"*®, and thus also
HY™ = 4% @ HY"™'®, has a projection to ©[4] (respectively HJ ) with zero
kernel and cokernel of d1men510n ng. Finally, we use the isomorphism H} - H,
given by Ae;— 2™ * o get a subspace W(X, n) = H, which belongs to Gr. Now, Gr
is an homogeneous space of the group A, consisting of invertible operators on H,
whose diagonal blocks with respect to the decomposition H,=H, ,®H, _ are
Fredholm; here H, _ is the ring of convergent power series_in z~'. The action of
Gl(n, H;) on H{ then translates to an action of a subgroup Gl(n H;)of A, on H..
Thus we see that G’y = Gl(n, H,;)H2™ corresponds to the orbit Gl(n, H,) W(X, n)
contained in the universal Grassmannian Gr. In fact the points of Gr considered in
Gr are characterized by the fact that they are stable under the action of the image of
A%! thought of as a subring of H, using the map A~ z" (cf. [PrS]). (Note that for
every n we get a different subring in H, isomorphic to A%".) The fact that W (X, n)
belongs to Gr implies that there exists an infinite matrix y(X, n)e 4,, such that

W(X9 n) = V(X5 n)Hz,+ .

In general y(X, n) however will not belong to the image of the loop group in the
group of infinite matrices.

3. The Cotangent Bundle to the Grassmannian

3.1. In this section we study the cotangent bundle to the Grassmannian Gry of
vector bundles on X and we will show that the fiber of the cotangent bundle at
a point W contains as a finite codimensional subspace the stabilizer algebra S¥" of
Whl: the linear transformations of H" that map W' onto itself. In the sequel,
commutative subalgebras of the finite order part of Si' will be used to construct
covering spaces for X.

3.2. We recall here some well known facts about symplectic reduction for homo-
geneous spaces, see for more details e.g., Guillemin, Sternberg [GS1]. Let G
be a Lie group, g its Lic algebra and denote by L,, R, the action of geG on G
from the left and the right respectively. These actions lift to symplectic actions
on the cotangent bundle T*G with moment maps J;, Jg: T*G — g* given by
Jo(pg) = R¥py, Jr(py) = —L¥p, for all u,e T}rG. We trivialize T *G by right
identification: pu,eT,*G is identified with the pair (g, u)e G x g*, such that
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{py XD =iy, Rye X ), X eg. Then in these coordinates
a* T G x g* JReg*
poe— (g ) — —AdF(p)’

where Ad} denotes the coadjoint action of g on g¥*, ie., Ad} is the dual map to
Ady-:.

Now let K be a Lie subgroup of G and f the corresponding subalgebra of g. The
right action of G on T*G restricts to a right action of K with moment map
Jr x: T*G — T*. Infact Jg g = 7 o Jg, where my« is the restriction of linear forms on
gtof.

Now consider the Marsden-Weinstein reduction Jg k(0)/K at 0ef* of T*G
under the K-action. The inverse image of zero under m+ is isomorphic to (g/f)*. Let
us choose a complement of fin g: g = & @ f. Here £ is just a vector subspace, not in
general a subalgebra. Then (g/f)* ~ £* and

Jr k(0 = {(g, e G x g*|AdJ-1(n)e £*} .

Now the right action of K on T*G in the right trivialization is just (g, p)+— (gk, p),
hence the Marsden—Weinstein reduction of 7*G by this action in this trivialization
is a bundle over the quotient G/K, with fiber at the point gK given by the space
Ad}(2*). If we choose on g an Ad-invariant nondegenerate bilinear form {,):
g x g — € we can identify g* with g and under this identification £* gets identified
with the perpendicular T = {xeg|<{x, y), Vyel}. The fiber over gK can then
finally be identified with Ad, ().

Summing up: the cotangent bundle to G/K can be identified, given the choice of
bilinear form, with pairs (gK, s), with se Ad,(t*).

We remark here that in the infinite dimensional situation one must take care
about what is meant by the cotangent bundle. If one is not working in the Hilbert
space setting then it is usually not the case that a nondegenerate bilinear form gives
an identification of g with g*, but if the form is continuous then it does give a map
g — g*. In the case that g is split into f @ £ then f* gives in general only a subspace
of £* and thus the above formulation gives only a subspace of the fiber of the
cotangent bundle. We ignore this subtlety in this paper.

3.3. We now apply this to our situation: the holomorphic Grassmannian, which is
according to Sect. 2.6 a homogeneous space for the loop group Gl(n, H;) with
stabilizer at the origin Gl(n, A%"). Since elements of these groups may be considered
as holomorphic maps into Gl(n, C), we may differentiate pointwise to get the Lie
algebras g = gl(n, H,) and f = gl(n, A%'). We will identify a complementary sub-
space for gl(n, A%") in the Lie algebra gl(n, H,) and an invariant bilinear form such
that with respect to this form (gl(n, A%"))* is easily identified. To this end we first
study a bilinear form on the space H, of germs of holomorphic functions in
a deleted neighborhood of p.

First recall some basic facts about complex valued harmonic functions of one
complex variable. Recall that a smooth function A is harmonic if doh = 0. If h is
harmonic on a disc, D, then h may be written h = h, + h_, where h, is holomor-
phic and h_ is antiholomorphic on D. This fact easily follows by noting that dh is
a closed holomorphic one form. On a punctured disc, D, it is similarly follows that
hmay be written in the form h = h, + h_ (on D)if and only if §,5 0h = 0 (otherwise
there is a logzz term).
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We will be interested in global harmonic functions on X — p, the set of which
we denote by Har(X — p). A basic fact we need is that given any positive integer k,
one can construct an harmonic function h, on X — p such that (k) — A* is regular
at p. Furthermore A, is unique up to a constant. The uniqueness follows easily from
the fact that the only global harmonic functions on X are constants. Existence
comes from looking at the long exact sequence of

0 - Har - Har(np) » O(np)/0 -0 ,

where Har denotes the sheaf of harmonic functions which are regular at p, Har(np)
is the sheaf of harmonic functions whose behaviour at p is at worst A", and O(np)/0
is the skyscraper sheaf of principal parts of meromorphic funtions with poles at
p of order at most n. In the long exact sequence one must see that
H*'(Har) ~ H'(Har(np)) ~ C in order to see that 0 — H°(Har) — H°(Har(np))
— H%(O(np)/0) — 0 is exact. However H ! of these sheaves is easily computed from
the short exact sequence

0 — O(np) —» Har(np)——K — 0,

where K denotes the sheaf of anti-holomorphic one forms.

Now assume that the genus of X is g and let {a,, a,, . . ., a,} be the gap-values
of pe X, see [GH, p. 273]. For each g; let h, be the harmonic function on X — p
with h,, — A%*! regular at p. Considering the h,, as harmonic functions on D,, set
d(h, )+ = h;d) and let

V= (g@c@m . (3.3.1)

Proposition 3.3.1.
H,=A¥'"®C{i }Ai @V, (3.3.2)

Proof. The gaps a; are precisely those integers for which there is no holomorphic
function on X — p with pole of order g; at p, thus the three subspaces are clearly
pairwise disjoint. To see that they span H, define a sheaf % := 0%'(X —p)
® (Oh"'(D ) on the Riemann surface X (with the complex topology). The stalk of
Z at q is isomorphic to 02 iff g ¢ D, and to ¢0™°' @ 04" if g€ D,. Hence we have an
exact sequence of sheaves

0> 0% > F - 0%Y(D,) >0 .

Here on the level of the stalks the injection of O%" is given by fim> (f|x -, f| p,) and
the surjection is given by (f, g)— 1/2(f — g). In cohomology we get:

0 HO(X, 0%") > HO(X, #) > HO(X, 0%\(D,)) » H'(X, 0%") -0, (33.3)

since all the higher cohomology groups vanish (X — p and D, are Stein). This gives,
after taking the limit & — O:

05CoAY@COTCA A 5> H,» HI(X,0%) >0, (334

where the injection of constants is given by c+(c, ¢, 0). Now H(X, O%') ~
H'(X, Oy) is g dimensional and one easily checks that ¥ maps injectively to
HY(X, Oy).
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There is another description of the gap-values, namely g; is a gap-value if and
only if there is a global holomorphic one-form on X which vanishes at p to
precisely the order a; — 1. For each i let w; be a global holomorphic one form with
leading term A!"*d(1™') = —A~"*"!dA. Locally, on a disc around p, w; = g;dA
where g;(A) = — A7%~ ! 4 lower order. Let

g9
U=PCy;. (3.3.5)
1

Note that although the g;’s are not uniquely determined, the space U is indepen-
dent of the choices, furthermore, if we let Q°(X) denote the holomorphic
one-forms on X, U is isomorphic to Q1°(X).

We now define a bilinear form on H; by

{f, 9> =Res,(fgdA) = § fgdi, f,geH, . (3.3.6)

Since fand g are just germs of holomorphic functions on a deleted neighborhood of
p the integral must be interpreted as occurring on the boundary of a small disc D,
on which representative functions for f and g are defined.

Proposition 3.3.2. With respect to the pairing (3.3.6) we have
Ay =4A¥'erveUu. (3.3.7

Proof. To see that AP @ V@ U < (AYP)* first take fe A% and ge A% @ U. Then
fgdA extends to an holomorphic one-form on X — p so it must have zero residue. If
instead we take geV then g = h, for some harmonic function on X — p and
gdA = d(h.) = dh. So by Stokes’ theorem §fgdi = §foh = [x_p, d(f0h) = 0, since
df = 0 and doh = 00h = 0.

Conversely, it is a result of A.H. Read [R] (see also [Ro]) that if w is
a continuous section over 0D, of the holomorphic cotangent bundle, and

$op, fo = 0 for all functions f which are holomorphic on X — D, and continuous up
to the boundary, then w extends holomorphically to X — D,. Using the fact that an

holomorphic function on X — D, can be approximated uniformly by an holomor-
phic function on X — p (cf. Simha [Si]), and shrinking the neighborhood slightly, it
follows that if w is an holomorphic one-form on a punctured disc about p and
$ap, foo = 0 for all fe O(X — p) then w extends to an holomorphic one-form on
X — p. Hence, from the assumption that g e (4%")* we conclude that gdA extends to
a global holomorphic one-form w on X — p satisfying §,p, @ = 0. Now note that
0: Har(X — p) - QV%(X — p)/Q1°(X) is onto, and that for heHar(X — p),
0h =dh,, so we can identify (A%")* with the holomorphic parts of harmonic
functions on X — p, ie, ge AP @V U. |

Note that the direct sums in (3.3.7) is the direct sum of vector spaces. We now
extend this result to Mat,(H ), the vector space of n x n matrices with coefficients in
H,, by defining the bilinear form

CA(A), B(A)) = § tr(A(A)B(A)d7), A(A), B(A)eMat,(H;) . (3.3.8)
It follows immediately from the above proposition that

Mat, (A8 = Mat, (42 @ V@ U), (3.3.9)
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and thus we may identify the fiber of the cotangent bundle of the holomorphic
Grassmannian at the point W' = gH¥™! as the space

THGry = Ad,(Mat, (4 @ V® U) . (3.3.10)
Let us define
Sh' = Ad,(gl(n, A%")) . (3.3.11)
Since, clearly,
St = {segl(n, H,)|; W' < wr'}, (3.3.12)
we refer to Si' as the holomorphic stabilizer algebra of W' in gl(n, H,). Since
T3 GrYy = i ® Ad,(Mat,(V @ U)) (3.3.13)

we see that the fiber of the cotangent bundle of the Grassmannian at W contains
the stabilizer algebra as codimension 2n%g subspace S%, where g is the genus of X.
The AY'-module S§' is just Endpa(W"). Slmllarly we can introduce
Stir = {segl(n, L W< W} so that Sij fin = End 4 (W). The relation between the
two endomorphism rings is given by:

Lemma 3.3.3.
S > A @ ST

Proof. We have an homomorphism
A¥' ® End (W) = End 43 (AY' ® W), (3.3.14)

so that the tensor product b ® f, with be A", fe End 4 (W), gets mapped to the
endomorphism of W™ that sends f ® w to b ® f(w), where Be AR, we W. This
homomorphism is easily checked to be injective. Note that, as W“"1 is free,
End gpo(W™') = gl(n, AY"), and that, if W were free, we would have
EndAX(W) ~ gl(n, AX) Since gl(n, A%¥") = AW ® gl(n, Ax) in this case @ is an
isomorphism. For the general case write the projective 4y-module W as a direct
summand, F = W@ W', of a free module F and put F™' = A% ® F. Then any
element s of End Ahox(W’“") can be extended to an endomorphism of F ™! (say by the
zero map on the complement of W™') and hence it can be written as
s =) fi(1l ®35;) with f;e A% and §;e End(F). Let ny: F — W be the projection on
the first summand in the decomposition F = W@ W' and define s; = 7y © 5;° myy;
this is an element of End(W). Then, since tensoring with a fixed module is a
functor, 1®s;=(1®@ ny)e(1 ®S)o(1 ®nw). But 1® ny = Tybe, s0 1@ s;
= Tynor° (1 @ §;) o e and Y, fi(l ® s;) = myr© gf, (1®8)emy =mwosemy. So
we get for s, thought of as an endomorphism of W™, the expressions = Y fi(1 ® s;)
and @ is surjective. |

In case W is free there is a simple expression for the finite order stabilizer
algebra. Recall from 2.6 that W is free iff Wh! = gH%! for g finite order. Then we
have:

Lemma 3.34. If W = gH¥'! with g a finite order element of Gl(n, H,) then
Stir = Ad,(gl(n, Ay)) .

Proof. The holomorphic stabilizer algebra of H¥™! is of course gl(n, AY¥") and
the finite order part is gl(n, Ax). Let s be an element of SH°, then
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sWhl = sgHp™ < Wh' = gHg™ ', so Ad,-i(s) is an element of the finite order
stabilizer of H mhol je., of gl(n, Ax), as g is assumed to be of finite order. Hence
SH™ = Ad,(gl(n, Ax)). The reverse inclusion is immediate. |

~Note that in case X = P! the situation becomes much simpler: we can identify
SH™ with the fiber at W of the cotangent bundle of the Grassmannian.
We will study stabilizer algebras in more detail in Sect. 6.

4. Heisenberg Algebras
4.1. Let gl(r, H;) be the “real analytic loop algebra on an infinitesimal circle

around p.” Consider the subalgebra #" = H,[P,] of gl(r, H;) consisting of poly-
nomials over H, in the generator P,, the r x r matrix

010 ...0°0
001 ...0°0
A
A =2E,_10+i;0EiH1. 4.1.1)
000 ...0 1
A 00 ... 0 0

Note that, since P} = AI,, the general element of #" may be written in the two
distinct forms:
r—1
Y, h(APL, h(A)eH,, 4.1.2)
i=0
or,

Y 4P, teC. (4.1.3)
A" is an abelian subalgebra of gl(r, H;) which extends to the principal Heisenberg
subalgebra of the Kac-Moody central extension of gl(r, H;). In general we will
refer to such Abelian subalgebras of gl(r, H;) also as Heisenberg subalgebras.
Let n be a positive integer and fix a partition n=(n; 2 n, =...n > 0) of
n into k parts. (So we have n = ) *_ n;.) The Heisenberg subalgebra #* of type
nin gl(r, H,) is

k
H= P A" < gl(r,H;) , 4.1.4)

i=1
where each principal Heisenberg subalgebra #" is embedded in gl(r, H;) as
a diagonal block, i.e.:

A= . o H%e#™ ) . (4.1.5)
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When the partition n is understood we shall denote by Z,, 1 < a < k, the element of
#" with P,_in the a'® block and zeroes elsewhere. Thus, the general element of #°2
may be written in either of the following forms:

r—1 k
Z Z hAPL, hi(A)eH,, (4.1.6)
i=0 a=1
or,
0 k .
ooy w2l teC. 4.1.7)

i=—w a=1
The algebras #°% exhaust, up to isomorphism, all maximum Abelian subalge-

bras of gl(n, H,) that are stable under the Cartan involution wq: gl(n, C) — gl(n, C)
given by X - — X * (see for instance [tKr]).

4.2. We can identify the principal Heisenberg algebra s#” with H, by the C-
algebra isomorphism #" — H, given by

r—1 r—1
Y h(APi— Y, ()7 . 4.2.1)
i=0 i=0

This shows that J#" is an integral domain.

The space H} is an #"-module and the space H, is a H,-module. Using the
above C-algebra isomorphism there is a module isomorphism H — H, given by

r—1 r—1
w(Me— Y a2z 4.2.2)
i=0 i=0

Similarly, given a fixed partition n = (n; =2 n, = ... n, > 0), we have a C-algebra
isomorphism #* — H} by identifying the diagonal n; x n; block of #” with the i'*
component of HX. The ring structure of H¥ is given by componentwise multiplica-
tion. This also induces a module isomorphism from HY to H¥. Note that arbitrary

Heisenberg algebras are not integral domains: they contain zero-divisors.

4.3. The finite order part of #%, L} = @Ll [2,] is built up out of blocks L,[Z,]
of principal finite order Heisenberg algebras. There is a natural filtration on
L% which will be important for us in the later sections.

In general if R is a C-algebra an order function on R is a map o: R — Z such that
o(r1ry) < o(rq)o(ry) and ofcr) = o(r) for all r,r{,r,eR,ceC. Given an order
function we define a filtration. . . R; = R;+{ = . .. of R by declaring R; to be the set
of elements r of R that have order o(r) less than or equal i.

On the ring of Laurent series we define an order by o(f(1) =k if
A =X*_ fid, fi +0. Define then on the finite order principal Heisenberg
algebra L;[P,] an order o, by giving the generator P, order 1 and A order n.
In other words if se L,[P,] has an expansion s=)"_1 fi(2)P; then o,(s) =
max;(n-o(f;(4)) + i). Note that this filtration corresponds to the natural filtration
on L, < H, under the isomorphism s#* — H, of Eq. (4.2.1).

Finally for s an element of an arbitrary finite order Heisenberg algebra L7 we
define

Oy, = maxlic=1 Dni[ni(s)] s (431)

where

A A (4.3.2)
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is the projection of the i'® block of size n; x n; in the Heisenberg algebra. Let us
denote by L, the elements of order s in L7. Then we have L, L,,; and
Ly, /Ly ~ C*, where k is the number of parts of n.

5. Covering Maps and Direct Images

5.1. Our Grassmannians Gr are constructed from rank »n bundles & on the curve
X. Now it is known that “generically” such bundles are the direct image of a line
bundle under an n-sheeted covering map f: ¥ — X, where Y is a smooth curve; for
a precise formulation see [BNR]. We will consider more generally curves Y that
may be singular, reducible or even decomposable. This makes it then natural to
consider also torsion free coherent sheaves, not only bundles. For the reader’s
convenience we will include some of the standard defintions and results; for more
details see e.g., [Ha].

5.2. Let Y be an algebraic projective curve and Oy its algebraic structure sheaf. An
algebraic coherent sheaf & is a sheaf of Oy-modules that is locally the cokernel of
a morphism of free finite modules: we have for every ge Y a subset U containing
q and an exact sequence, for some nonnegative integers a, f5:

Oy(U)Y - O0y(UY > F(U)-0. (5.2.1)

A coherent sheaf & is called torsion-free if s*f = 0, se Oy, ,, f ¥ 0€ &,, with s not
a zero divisor, implies s = 0. We will always assume sheaves to be coherent and
torsion-free in the sequel.

The rank of # at q is the maximal number of linearly independent elements
(over Oy ,) in #,. The rank of a coherent sheaf is constant inside every irreducible
component of Y. Another local invariant of & is the fiber dimension p,(¥#) at
a closed point g defined as follows: let m, = Oy , be the maximal ideal of g and
K, = Oy,q/m, ~ C the local residue field. Then we put u,(#) = dimg, (F,/m,%,).
By Nakayama’s lemma this is also the minimal number of generators of %,; in
other words the fiber dimension is the minimal f that can occur in the sequence
(5.2.1). The rank of & and the fiber dimension of & at g will be equal if and only if
Z, is free. If q is a nonsingular point the stalk 0y , is a Dedekind domain. Since
a finitely generated torsion-free module over a Dedekind domain is locally free (see
[Bo, VII, Sect. 5.10]) in the case of a smooth point the stalk of & is free. In
particular if Y'is a nonsingular irreducible curve every torsion free coherent sheaf is
locally free, i.e., the sheaf of sections of an algebraic vector bundle.

5.3. Continue with X being an irreducible, reduced, nonsingular, projective curve
and Y an arbitrary reduced projective curve. An I-fold branched cover of X by Y is
amorphism f: ¥ — X such that for every x € X the inverse image f ~!(x) consists of
a finite number of points {y, y2, . . . , yi}, With k = ¢ for all but a finite number of
x, and such that the rank of Oy, ,, (over Oy ,) is £;, with Y ¥ ¢; = /. Here we use the
local homomorphism

f;f : @X,x - @Y,yi (531)

to give Oy,,, the structure of an O ,-module. We will refer to the rank ¢; as the
ramification index of the covering map at y;.
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Let now # be a sheaf (i.e., a coherent torsion-free sheaf) on Y, of rank m; at
the i" point lying over xe X. We don’t assume these m; to be constant or
even non-zero. Then the direct image sheaf f,# on X is defined by f,
F(U):= F(f 1 (U)); the structure of Ox(U) module is again provided by using
the homomorphism f #. The direct image sheaf is then a coherent torsion free sheaf
of rank n = ), I;m; (this is independent of the choice of the point x) on X, and since
X is non-singular this is in fact a rank »n vector bundle.

In this way we obtain from sheaves % on Y vector bundles & =f, % on X.
Next we investigate how to obtain the other ingredient going into the concoction of
an element of Gr: the local trivialization ¢ of & at the point pe X.

5.4. If (Y, Oy) is an algebraic curve, there exists a unique analytic space (Y, 05!)
associated to it and for any algebraic coherent sheaf # we have a unique analytic
coherent sheaf 1! = 08! ® #. If f: Y — X is an algebraic /-fold branched cover
we can extend it to the corresponding analytic spaces and f, % ™! is for any
coherent sheaf # an analytic coherent sheaf on (X, 0%"). If X is nonsingular this is
the sheaf of sections of an holomorphic bundle on X.

We will be interested in the situation where the fiber f ~!(p) = {p;, .. ., pi} of
the special point p on X contains only nonsingular points. In this case the stalk
(fi« Z "), can be described very explicitly. If A~ is a local holomorphic coordinate
at p then f,” (A~!) belongs to m% but not to m4**, where £ is the ramification index
at p;. By choosing a local holomorphlc coordmate z; at p; approprlately we may
assume that f,7 (A7) = zfi. Then a basis for Oy, » as a Ox , module is provided by

1,2, 27, .. ., Z071 If # has rank m; at p; then we can choose a basis
(O 159,00 [P} for F,, over Oy, and doing this at all points of the fiber
£~ Yp) w111 glve a basis of (f*?)p over Oy ,, viz,,
APy Sm, 0Sp<4—1L1<i<k}. (5.4.1)
v

Summarizing, the following

Geometric Data.

(1) An /-fold branched covering map f: ¥ — X, where Y is an arbitrary projective
reduced curve and X is a smooth integral projective curve, such that ' ~(p)
consists of k nonsingular points p; with ramification indices /,»,

(2) Local holomorphic coordinates z; at p; such that z{* = f,7(A71),

(3) A torsion-free coherent sheaf # of rank m; at p; with a basis of %, at each
point p;,

determine an element [&, t] of the Grassmannian Gry, where n = Z/imi: namely,
put & = f, % and construct the trivialization from the basis (5.4.1).
The equivalent description of [&, t]€ Grk in terms of an Ay submodule W of
% is obtained from the geometric data as follows: let ¢ be a section of & over
Y —f"Yp),ie,ceH(Y —f " (p), #). Then ¢ determines a section of the rank
nbundle & =f,, & over X — p and using the basis (5.4.1) and the local coordinate
471 we obtain, an element of L} as in Sect. (2.3). The space W < L} is the collection
of elements of L% obtained in this way from sections of H°(Y —f ~1(p), #).
Similarly W™!is obtained by pushing down the sections of H(Y — f ~*(p), 1)
and again using the basis (5.4.1) to obtain an element of H}.
The simplest case of this construction is that where the sheaf &% has rank
1 everywhere on Y. Then the covering map f. Y — X has degree n and the partition
of n that defines the relevant Heisenberg algebra is given by the ramification indices
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at the p;. The simplest subcase here is maybe that where there is a single point lying
over pe X and the associated Heisenberg is the principal Heisenberg of size n. This
is the situation that leads to the KdV hierarchies, in case X = P!, cf. [SW].

5.5. In this subsection we study the stabilizer algebra of the element W e Gr which
we obtain from the above geometric data. Recall from Sect. 3.3 that the stabilizer
algebra of WeGry, is given by Sy’ = {segl(n, H;)|sW™" = W*'}. Now notice
that multiplication by an holomorphic funtion §on Y — f ~!(p) preserves the space
H(Y — f ~Y(p), #™') of holomorphic sections. Thus the pushforward s = f, ()
gives an element of S§ when expanded in the basis (5.4.1). Indeed we will argue
that s belongs to the intersection of this stabilizer algebra and an Heisenberg
algebra corresponding to a partition of n to be determined below.

First observe that the action of the element z; on Oy ,, considered as an
Oy, ,-module with basis {1, z;, z7, . . ., zl{ "1}, is given with respect to this basis by
multiplication by the matrix:

0 0 it

10 0 o0

0 1 0 0

. . . ) (5.5.1)

00 ... 1.0 O

0 0 ... 01 0
i.e., z; is represented by the inverse of the generator of the principal Heisenberg
algebra of size £, see Sect. 4.4. The basis {1,z;,27,...,2 '} of Oy, as Oy,
module, along with a basis {fg, f{, ..., fm—1} of %, as Oy, ,-module, induces a

basis of %, as Uy, , module, namely;

{f()i’fli, e ’fnl;i-17zif0i’ Ziflia ) Zifnilf—b L] Zéiqlfois Zgi_lflia LI Zlii—lfrriz.—-l} .
(5.5.2)

With respect to this basis the action of z; ! on %, is represented by the element
P, the m™ power of the generator of the principal Heisenberg algebra of size
limi.

Next observe that any holomorphic function § on ¥ — f ~*(p) may be expanded
in terms of the local coordinates at the points p; over p to give a k-tuple
{s1(z1) $2(22)s - - ., si(z1)}, with si(z;)€ H-1. Hence in the pushforward, s = f,(3),
each component s;(z;) is represented as an expansion in the element Pj;, of the
principal Heisenberg algebra #™". Putting this all together we get a representa-
tion for § as an element of J#% where n is the partition of n = myl; + myl, + - -+

+ ml, into the k parts m;l;. So we find, as promised, that the pushforward of
a holomorphic function on ¥ — f ~1(p) belongs to S5' N #2 In fact:

Lemma 5.5.1. Let W be a point of the Grassmannian given by the geometric data in
Sect. 5.4. Then

L HOY —f7Hp), OF") = SiF' n ™. (5.5.3)

Proof. 1t remains to be shown that (S§' N #%) < [ (H°(Y — f ~(p), 0%")). Let
se S N #2. Using the isomorphism #” — H¥ induced by the partition n into
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k parts (see Sect. 4.2) and identifying H¥-: with @ H,-. we see that s can be
thought of as an holomorphlc function §in a deleted nelghborhood of f~1(p). Since
seSB! the function § stabilizes H°(Y — f ~(p), %), and therefore § extends to an
holomorphic function on all of Y —f~1(p). (We use here the fact that
HO(Y —f " 1(p), F) is free.) |

It follows then that we also have:
S HO(Y —f ~Hp), Oy)) = S A" . (5.5.4)

Note that we have made here a choice of ordering of the basis (5.4.1) to represent
holomorphic functions by explicit matrices. The choice we made seems the most
natural; it has the fortunate effect that for a covering map f: ¥ — X with k points
over pe X the holomorphic functions on ¥ — f ~*(p) corresponds to a subalgebra
of an Heisenberg algebra determined by a partition with also k parts. However
other choices are possible and this will give the holomorphic functions as subalge-
bras of more complicated Heisenbergs. For instance we might take as basis for %,

{fOl, ZifOi) ey Z:’i—lfoi’fliaziflia LR ) Zgi—lflia LR afni,—l)zifnl;,—b vy Zgl_lfnl;,»—l} .

In this case z; ! acts on %, as the matrix diag(P,, P,, ..., P,) (m; terms) and

a holomorphic section will be represented using this ordering at all points
p; by a matrix from the Heisenberg algebra corresponding to the partition
n=lL+-+lL+L+-+L+ - +L+ -+ (every [, repeated m; times).
Also intermediate conventions for the ordering can of course be chosen. In
the direct Krichever problem (obtaining a point in the infinite Grassmannian
from geometric data) we can choose not to use these artificially complicated
Heisenbergs, but in the inverse process of obtaining geometric data from a point in
the Grassmannian we can’t avoid them. This is the reason that Theorem 7.5.1 is
rather complicated.

5.6. This ring S}, = SHin ~ ", where W comes from the geometric data in (5.4) is,
as we have seen, 1Isomorphic to the ring Ay of rational functions on Y regular except
possibly at points in f ~!(p). We have a filtration

Ay=Agc A, c Ay ..., A =HY,0ysD)), (5.6.1)

where D=p;+p,+ "+ p. So A, consists of the regular functions on
Y — f ~(p) that have at most a pole of order s at any of the points in f ~*(p). By
Riemann—Roch we have for large s:

Ager /Ay~ CF . (5.6.2)

In Sect. 4.3 we introduced a filtration on the finite order Heisenberg algebra
;= L L:[2,]. We have to change this slightly to obtain a ﬁltration on
S5 < @L 2[2,,] that corresponds to the filtration on Ay. We saw that z; ! corres-
ponds to the element 27 . Since z; ' has a single pole at p; we should give
P, order 1, not m; as in Sect. 4.3.

In other words if n; = #;m; we define on the subalgebra

Li[2Fm] = LilZ4m,] (5.6.3)
a modified order function

04,0, (8) = 0y(8)/m;, seL;[PF.]. (5.6.4)
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Then, on the subalgebra

_@ L,[27.] . (5.6.5)

define the order
0, £(s) = max§ [, ,(m(s)], self. (5.6.6)

With this new definition of the filtration the correspondence of 4y and S3, is an
isomorphism of filtered C-algebras.

6. Stabilizer Algebras and Their Spectra

6.1. Let W be an element of Gry and recall from Sect. 3.3 that the stabilizer algebra
of Wbl is

Sk' = {segl(n, H;)| sW < wh} . (6.1.1)

This is a noncommutative algebra associated to W which can be identified with
a large subspace of the fiber of the cotangent bundle of the Grassmannian at W. We
saw in the previous section that for W coming from a covering map f: ¥ — X, and
additional data, the commutative subalgebra SN A" has a natural geometric
interpretation: it is essentially the ring of holomorphic functions on the analytic
space Y — f ~1(p). In the same way the finite order part SH" N #°” can be identified
with the coordinate ring of the affine curve Y —f ~*(p).

Wanting to obtain the geometric data from W we define for arbitrary W (not
a priori coming from the Geometric Data of Sect. 5.4) and arbitrary partition of n:

St =Sptn A, 6.1.2)

For brevity we refer to this as the stabilizer algebra of type n. This is an abelian
subalgebra of the finite order stabilizer SH" which in general is not maximal. We
will see that S7, is the affine coordinate ring of a curve, Spec(S},), covering X. In
Sect. 7 we will construct a compactification for Spec(S;,) and we will show that we
can in fact reconstruct all the data from W and the choice of Heisenberg algebra

HE

6.2. Example. Although s is a maximal Abelian subalgebra of gl(n, H,), it is in
general not true that the stabilizer $% is maximal Abelian in Si". For example let

1 0

b <1>,where b¢ Ky, for
Ky the quotient field of Ay. Consider then the principal stabilizer subalgebra S,
corresponding to the partition of 2 into one part. It consists of polynomials over L,

W e Gr} have a basis over Ay consisting of w; = ( , Wy =

2 (1) stabilizing W, since W is free over Ay. But for any
f(A)e L, we have f () P,w, ¢ W, since clearly no element of ¥ has a zero as second
component. Hence S7 = Ax*1,,. This means that any element of Sy commutes
with S, which is therefore not maximal.

We can also use this example to point out that, despite Lemma 3.3.3, it is not in
general true that the holomorphic stabilizer of type n, S;‘V"‘“, is obtained by
tensoring the finite order stabilizer of type n, S%,, with A%"'. Indeed, if we take for

in the matrix P, =
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simplicity X = P! and b above to be of the form h/g, where h and g are holomor-
phic on X — p and have an essential singularity at p, then the ring

A0

certainly belongs to S#1' if f(4) = g2(A). So S#' is strictly bigger than
AP ® SZ = A%!- 1, ,. Note that in this example Spec(S) is just X — p, but that
R can be thought of as the ring of analytic functions of the “hyperelliptic analytic
curve” z2 = A(g(4))* In general, it seems that to study the holomorphic stabilizer
algebra Sﬁ;‘w‘ one has to introduce infinite genus curves or similar complicated

objects [McK].

R=A¥"1,,®4¥" f(}) <O 1) (6.2.1)

6.3. Let us list some algebraic properties of the finite order stabilizer algebra Sg, . It
is a reduced ring, i.e., it does not contain any nilpotents, and it is torsion free as
Ax-module. Furthermore, W is finitely generated and projective, so there is a free
finite rank Ay module F and an other module W’ with F = W@ W’. Thus
S#* (=End(W)), and hence S%, is an Ay-submodule of the endomorphism ring
End(F), which is itself of finite rank and free. Since Ay is Noetherian it follows that

% is finitely generated and Noetherian. Finally, since the ring Ay is always con-

tained as a diagonal subring in S, it follows that S3, is an integral extension of Ay.
This last fact can be seen very explicitly in the case W'is free: let se Sj,, then s is
conjugate to an element of gl(n, Ax) (see Lemma 3.3.4). Hence the characteristic

polynomial of s, Py(t) = det(t1, — s) belongs to Ax[t], and is of the form
"+at" '+ +a,=0, agedy. (6.3.1)

Since s satisfies, by the Cayley—Hamilton theorem, its own characteristic equation
we see that s is integral over Ay.

6.4. Associated to a commutative ring A4 is a topological space Spec(A4), the set of
prime ideals in A4, with as basis of open sets D(f) = {pe Spec(4)|f¢p}, where fe A.
X = Spec(A4) comes naturally equipped with a sheaf of local rings, the structure
sheaf 0. The space of sections of the structure sheaf over the open set D( f) is the
localization A4, and the stalk at a point p of X is the local ring Oy ,= A4,. For
instance Spec(Ay) is the affine curve X — p together with its sheaf of regular
functions. Here we want to consider the space Spec(Sy,).

Since the commutative ring Sﬁ, is an integral extension of Ay, the Krull

dimensions of S7, and Ay are equal and hence also Spec(S},) is a curve.

As a topological space Spec(S};,) decomposes into a finite number of irreducible
components V(p,) = {peSpec(4)|p, < p}, where the p, are the minimal primes of
S5, a=1,...,r The elements of the minimal primes p, are precisely the zero
divisors of S7, . Since S3, is a subring of an Heisenberg algebra the zero-divisors are
easy to identify using the block structure and so we can determine the minimal
primes and hence the decomposition of Spec(S§,) into irreducible components.

Recall from Sect. 3.2 that a principal Heisenberg algebra (corresponding to
a partition of n into one part) is an integral domain. Hence also a stabilizer algebra
S of principal type is an integral domain and in this case <0) is the unique
minimal prime and Spec(Sy) is irreducible. (This is the situation one usually finds
discussed in the literature on the Krichever method in soliton theory, where one
studies the KdV or KP hierarchies related to the principal Heisenberg algebra, see
e.g., [SeW].)
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To study the general case of a stabilizer algebra S}, contained in a non-principal
Heisenberg, we use the projections 7; introduced in (4.3.2). Let se S}, n a partition
of n into k > 1 parts, so #* is not an integral domain in this case, although
S%, might be. Then we define the support of s as the subset

S(s) = {iel|m(s) =0}, I={1,2,...,k}. (6.4.1)

We say that s has full support if S(s) = I. If s and ¢t are two elements in S}, then
S(st) = S(s) n S(¢) since the principal Heisenberg algebras are integral domains.
Thus it follows that if s has full support then it can not be a zero-divisor. In fact
from the following lemma we see that s is a zero-divisor if and only if it does not
have full support:

Lemma 6.4.1. Let se Sy, Then there exists a te Sy, with S(t) = I — S(s) and hence
st = 0.

Proof. Consider the projection s = (D), 5 7;. Then 7ge(s) = s is a non-zero-
divisor in 7w (Sh,). Now 75, (S5,) is an integral extension of Ay (since S}, is) and
hence we have an equation for nS(s)(s) of the form (m5()(s))" + Y., ai(mts(s))' = 0,
with a;€ Ax and a, % 0 (since s (5) is a non-zero-divisor). Define then

t=apl, +<s + Z a;s >eS" (6.4.2)
i=1
This element has support S(t) = I — S(s). |
Because of the multiplicative property of supports, S(s;s,) = S(s1) N S(s3), we
obtain r minimal subsets S,, | Sa<r<kof I ={1,2,...,k} such that
1) S.nSy=0ifa+b;
(2) I=1) 58

(3) 3z,€85, with S(z,) = Sg;
(4) if for some z # 0€ Sy, we have S(z) = S, then S(z) =

Consider the projection:

fisa: St — @ m;(SL) . (6.4.3)

jeSa

The image is (by (4)) an integral domain and the kernel p, = ker g, is a prime ideal.
In fact this is a minimal prime ideal: suppose that p < p, is a prime ideal and let
X €p,; then by Lemma 6.4.1 there exists a ze S, with S(z) = S, and zx = 0; now
zmod p is not zero and hence x mod p must be zero for otherwise there would be
a zero-divisor in the integral domain S3, /p; this means that p = p, and p, is indeed
minimal. So in this case Spec(Sy,) has r irreducible components isomorphic to
Spec(S2,/v.).

For example, consider an elliptic curve X with affine coordinate ring Ay

1

given in Eq. (2.2.3). Take g={ . _ 0 eGl(2,H;) and the free Ax-module
AT
2k

W=g-H¢*®eGri. Thens = 0 - 12"> is an element of the stabilizer subal-

gebra Si ! of type (1, 1), corresponding to the “homogeneous” Heisenberg algebra
P



Krichever Map, Vector Bundles and Heisenberg Algebras 289

of gl(2, H,), since g 'sgegl(2, Ax). But i* e Ay and 1eS}! so also the zero-
2k

. A 0 0 A0
divisors (0 0) and (0 /12,‘) belong to Sj'. In fact Siy! :AX< 0 0)
0
@ Ayx 8 2k is the direct sum of two copies of Ay and its spectrum consists of

two copies of the affine curve X — p touching to order k at the points over the
origin of the Riemann sphere. Of course the method of Sect. 5 provides us with
examples of non-principal stabilizer algebras which are irreducible.

It can happen that S, is the Cartesian product of x > 1 C-algebras. In this case
Spec(Sy,) is the d1s10mt union of x components and S;, will contain nontrmal
1dempotents an idempotent is an element eeS% such that e 0,1 and e* =e.
Idempotents are zero-divisors that are independent of 2. Now since the restriction
of e to any of the diagonal blocks is not a zero-divisor we must have

e=y el,,
i

where ¢; = 0 or 1, 1, is the identity matrix in the n;® diagonal block of H” and not
all of the e;s are simultaneously 0 or 1. The fact that S}, contains an idempotent
means that W is a direct sum

W=eW®d(1 —e)W

and that the summands are embeddings of elements of lower rank Grassmannians
Grs and Gr%. In other words, there is an eclement gegl(n, H;) such that
W = gH ™" and such that ¢ is the direct sum of two elements, eg and (1 — e)g, of
lower dlmenswnal loop groups gl(p, H;) and gl(q, H;) (where p = z L €,
q=- (1 —e)n).

6.5. The total quotient ring Q(S, ) is the ring of fractions (S ~ ! )(S5,), where S is the
multiplicative set of non-zero-divisors in S3,. As is well known (see e.g., [Ku]) this
is the Cartesian product of the fields F' = Q(S7, /p;) of rational functions on the
irreducible components Spec(S3, /p;). Another convenient description of this ring of
rational functions is given by the following

Lemma 6.5.1. Q(S%) = Ky ®,, 52,

Proof. Recall that if B, C are rings, S a multiplicative subset in B and ¢: B— C
a homomorphism such that:

(1) For all se8, ¢(s) is invertible in C;

(2) If ¢(b) = O then there exists an s€ S such that sb = 0,

(3) Every element of C can be written as ¢(b)¢(s)~ !, for beB, seS, then
C~S"'B. We check these conditions for the homomorphism
W: S5 > Ky ®4,S5, s> 1®s and the multiplicative set of non-zero-
divisors in Sg,.

Since S, is an integral extension of Ay also Ky ® 4, S% is an integral extension
of K X Let seS. Then y(s) satisfies a monic equatlon Y(S)" + ky_ y(s)" 1
+ -+ ky=0, k;e Ky. Since for seS also ¥(s) is a non-zero-divisor we may

assume that ko # 0 and we see that /(s) is invertible (since Y (s) ™! = — ki(x//(s)"‘1
0

+ koW (s)" % + - - + ky)), verifying property (1).
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Next suppose that y/(t) = 0, and t€Sj,. Then there exists an ae Ay such that
= 0. But S, is torsion free as Ay-module and hence t = 0. This proves part (2).

For part (3) let Y = Z%@sieKX ® S5,. Then Y = Z%@Su where
i 1Pt
1
B; = ni*jﬁj and we find ¥ = —,B B ®Z o;B;s; = l//(z Bis)Y(By ... B,
1 .. t
and also point (3) is verified. |

So Ky ® S& = F; x F,x. .. F,, where F, is the function field of the a™ irredu-
cible component Spec(S /pa) of Spec( i)- The support of F, is of course the subset

S,cI={12...,k} introduced in Sect. 6.4 to determine the minimal primes of
S5,

6.6. In the previous subsection we saw that we could determine the irreducible
components of Spec(S;,) by studying the decomposition into fields of the tensor
product Ky @ Sj,. By tensoring with the larger field L, of Laurent series we get
even more detailed information about Spec(Sy,): we will use the field decomposi-
tion of the tensor product L; ® Sg to define a filtration on S7, which allows us (in
the next chapter) to compactify Spec(S3,) to a projective curve Y with a natural
covering map ¥ — X.

Each field F, occurring in Ky @ S, will decompose in general into more fields
after tensoring with L;: L, ® F, = F} xF2 x...x Fk. (The number of fields k,
occurring in this decomposition will turn out to be the number of points lying over
pe X in the irreducible component of the compactrﬁcatron Y of Spec(Sj,) with
function field F,.) The number of fields Z k,in L; ® S5 is at most k, the number of
blocks in the Heisenberg algebra.

Let us denote by S¢ the support of the field F¢. Let fe F¢ and ie S;. If m;( f) is the
zero of a polynomial P(t)e L;[t], then the i™ diagonal block of P(f)eF¢ is the
zero matrix. Hence P(f) is identically zero and all projections w;(f), ie S¢ satisfy
the same equations. This means that all projections 7;(F) are isomorphic field
extensions of L, of degree /¢ = [F¢: L,]. Each m;(F¢) is a subfield of L,[P;].

First we state some general facts about L,;[P,]. L,[P,] is a finite field extension
of L, with [L,[P,]: L,] = n(since P, = A). In fact L,[P,] is a Galois extension of
L, with Galois group Z,, = {1, w, ®?% . .., ®" "'}, where o is a primitive n' root of
unity. This group acts by multiplication P, »'P,, i=0,1,...,n— 1 on the
generator of the extension. By Galois theory the only subfield extensions of L,[P,]
are the fixed fields of subgroups H of Z,. These fields are of the form L,[P}'],

n . .
m=_ corresponding to the subgroups Z, of Z,, where ¢ runs over the divisors of

n. In particular this means that the minimal polynomial of an element X of L,[P,]
(generating some subfield L,[ X ] of L,[P,]) must have degree ¢ dividing n, and in

this case X e L,[PI'], m = —Z;

Hence if i is in the support S of the field F¢ and £¢ is the degree [F¢: L;] of the
extension (equivalently /7 is the rank of 7;(S};)), then /7 divides n;, the size of the i
block: n; = m;Z{ and we have:

k
St e @ LIPM]. (6.6.1)
i=1
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We then define on S, the filtration o, ,, see (5.6.6), induced by the inclusion (6.6.1)
where Z is the collection of integers #; = n;/m;. Note that for all i, je S7, se S}, we
have o, /(m;(s)) = o,, +,(m;(s)). In other words the blocks within the support of
a single field component contribute in the same way to the order of s. If each of the
fields F; has support in a single block, (i.e., if there are exactly k fieldsin L; ® S3,),
is a partition of the rank / of S3, over Ay.

Proposition 6.6.1. Let Si = Sy"n#" be the stabilizer algebra of type n
=ny +ny + -+ mof WeGrk. If ko < k is the number of fields in L, ® Sk, and
(85 )i> denotes the elements of order at most i in Si,, then

(S2)i+1/(S8); = T, (6.6.2)
for all i larger than some iy.

Proof. We first study the simplest case: a principal stabilizer algebra Sy, of rank
n over Ax. Let {s;,s,,...,s,} be a maximal independent set in Sj. Then
{s15 82, ..., S, is also a basis for L; ® Sy = L;[P,] (or rather the elements 1 ® s;
are, but we will not make this distinction). Hence in particular we can write

p, = Z a(D)s, a(Mel;. (6.6.3)

We can split each of the Laurent series a;(4) into a Laurent polynomial
Bi(A)eC[A, A~*] and another Laurent series y;(4) such that a;(1) = B;(A) + y:(4),
and o,(f;(4)s;) = 1, 0,(y:(4)s;) < 1. Then we have, recalling that P, has order 1:

Y. Bi(A)s; = P, + lower order terms . (6.6.4)
i=1

Now every Laurent polynomial f;(1), when multiplied by any sufficiently high
power of 4, is the highest order part of an element f;(1) € Ax: fi(4) = B:(A)A™ + lower
order terms. We fix an m, that works for all f;(2) and find:

o= Y fi(A)s; = A"™P, + lower order terms . (6.6.5)
i=1

Now, as f;e Ay and s;€ S}, we have o€ S}, and we have found an element of order
1 (mod n). The first n powers of ¢ are then independent and, remembering that
multiplication by 4 increases the order of an element by n, we see that there is at
least one element of every sufficiently high order in Sy,. Since Sy < L,[P,] there is
exactly one independent element of each high enough order (up to addition of
lower order elements) and we find (Sy);+1/(S#); = C for large i.

The general case is essentially the same: for every field F7 in L; ® S3,, with
support S; and of dimension /7 over L;, one shows that there is an element g7 € S,
which has its highest order term in the blocks indexed by ie S and with order
0, ¢(0g) = 1 (mod ). The first /¢ powers of o, are independent and since multiply-
ing by 4 increases the order in this block /¢, we find again an element of every high
enough order in S . Since such elements o3, ¢¢ (and their first 72, respectively
¢& powers) for distinct subfields F¢ and F£ are linearly independent we find for
every field in L; ® S, one independent element and S, contains ko independent

elements of all high eu;lough orders. |
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To finish this discussion of the filtration of Sj, we note that (S, ), is isomorphic
to C*if S% is the Cartesian product of x C-algebras (see the discussion at the end of

Sect. 6.4) and that
(85)=0, i<0. (6.6.6)

To prove this last statement we use the natural filtration of the n-component
Laurent series L% given by o(s) = max?={(s;(4) if s = (so(A), ..., s,—1(4))eLh.
This induces a filtration on the subspaces W e Gr which has the following inter-
pretation: if W corresponds to a bundle E and we W has order k then w corres-
ponds to a section ¢ of & which has a pole of order k at p and is regular elsewhere. If
k is negative then ¢ has a zero and is a global section of &. Since the space of global
sections is finite dimensional there can occur only a finite number of negative
orders for elements of a fixed W. Consider then an element se S, and we W such
that s - w % 0. One easily chekcs that if the order of s were negative the order of s w
would be strictly less than the order of w. But this would imply, since sW < W, that
in the set {s'*w} = W an infinite number of elements of distinct negative order
occur, which is impossible. This proves (6.6.6).

7. The Compactification of Spec(S;,)

7.1. Next we want to compactify the affine curve Spec(S7,). This uses the filtration
on S3, described in Sect. 6.6. Let us first recall some elementary facts about filtered
and graded rings and homogeneous spectra (see e.g. Hartshorne [Ha]).

Let A be a ring with some order function o and corresponding filtration

Agc Ay c A, ..., (so A_; is zero). Define an associated graded ring
R(A4)= DR, (7.1.1)

where R; = A4;. To simplify notation we will write usually R if it is clear to which
filtered ring A we refer. Let w denote the element of degree 1 in R which is the image
of 1€ A under the embedding of A, in A;. So if « belongs to 4; we obtain an
element o e R; and we have o) = a@w/~Hif j > i,

Define for arbitrary homogeneous element fe R the homogeneous ring of quo-
tients of R by R,y = {g/f"|deg(g) = deg(f"), n = 0}. Then one can recover the
original ring A and its filtration from the pair (R, w): we have 4 ~ R, via
aeA;—a?/weR,,.

Consider next the homogeneous spectrum of R. Let R, = ()2 | R; and define

Proj(R) = { peSpec(R)|p is homogeneous and R, ¢ p} . (7.1.2)

Recall that an ideal I of a graded ring is called homogeneous if I = @I N R; or
equivalently if it is generated by homogeneous elements. Proj(R) is a topological
space with basic open sets

D.(f) = {peProj(R)|f¢p} , (7.1.3)

for fa homogeneous element of R. Just as Spec(4) also X = Proj(R) has its sheaf of
local rings, again denoted by Oy and called the structure sheaf The space of
sections of the structure sheaf over the basic open set D, (f) is the ring Ry, and the
stalk at a point pe X is the local ring O, , = R,), the degree zero part of the ring of
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quotients of R with denominator set the homogeneous elements of R not in p.
Closed sets of Proj(R) are the components of D, (f) or more generally of the form
V(I) = {peProj(R)|I < p} for homogeneous ideals I.

In contrast to an open subset D, (f) (which is isomorphic to the affine scheme
Spec(Ry))), the closed sets ¥(I) don’t have a canonical scheme structure. However,
note that V' (I") = V(I), n > 0 and that we have an isomorphism of topological
spaces

¢,: Proj(R/I"y— V(I"), qeProj(R/I" -y, 1(q), (7.1.4)

where ¥,,: R — R/I" is the canonical surjection.
Letting Y, = Proj(R/I") and 0y, its structure sheaf we have a closed immersion

(@, 87): (Y, Oy,) > (X, Ox) . (7.1.5)

This means that the map ¢/ : Ox — ¢, Oy is surjective, where ¢ is, on the level of
stalks, the canonical map Ry, = (R/I"),)- Hence each closed immersion defines
a sheaf of ideals 3", the kernel of ¢#, and 05 /J" is a sheaf with support on V' (I). We
define the n™ infinitesimal neighborhood of V(1) as the scheme (V' (1), Ox/3"); it
carries information about the way V/(I) is embedded in X. It is then natural to
consider the inverse limit of these scheme structures on V(I'). The locally ringed
space X = (V(I), 03) with O3 = hm 0x/3" is called the formal completion of
X along the subscheme V(I). The formal completion is independent of the ideal we
use to define the subset V(I).

Lemma 7.1.1. Let R be a Noetherian graded ring and I a homogeneous ideal of
R such that V(I) contains only a finite number of maximal ideals py, p,, ..., Dk-
Then the structure sheaf Ok of the formal completion of X = Proj(R) along V(I) has
a stalk at p; isomorphic to the m,-adic completion Ox_ ,, of the local ring Ox_,,, where
My, is the maximal ideal of Oy ..

Proof. Without loss of generality we may assume that [ is a radical ideal; then we
have I = ﬂ p;. Using the fact that R is Noetherian and hence the ideals p; are
finitely generated one checks that also 1" = () pf. Now the ideals p}, p} are coprime
if i % j and hence by the Chinese remainder theorem we have R/I" = (P R/p}.
Hence we also have R = hm R/I" = (—B lim R/p!. The rmg R determines the
formal completion sheaf (OX we have O3 , = R(p )» where p; = lim lim p; /1" But

R(i».) = (hﬂR(pi)/mm = (hﬂ(OX,p;/mm = (OX,px . (7.1.6)
n

If R is a finitely generated graded C-algebra with Proj(R) isomorphic to the
Proj of a quotient S of the polynomial algebra C[t, . . ., ty] with deg(t;) = 1 we
call Proj(R) and also R projective, since in that case Proj(R) is isomorphic to
a closed subscheme in the projective space PV

Let us return to the case where we have a filtered ring A4, an associated graded
ring R(A). Then we have

Proj(R) = D, (w)u V(w) . (7.1.7)

Now D (w) ~ Spec(R,,) >~ Spec(A), so we see that V'(I) is “the divisor at infinity”
that has to be added to Spec(4) to obtain the projective scheme Proj(R). We have
seen that each of the rings R/w"R determines, via Proj(R/w"R), a closed subscheme
structure on V(w).
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We will be interested in the case where X = Proj(R) is projective of dimension
1 and V(w) contains a finite number of closed points. Then Lemma 7.1.1 tells us in
particular that the points in V'(w) that we have to add to complete Spec(A) are all
nonsingular if and only if the stalks of the formal completion are isomorphic to the
ring of formal power series in dim(X ) = 1 variables.

7.2. We can first of all apply this to the ring Ay of Sect. 2.1. This ring is filtered by
the order of the pole at p. It will be no surprise that the Proj of R(4y) is nothing but
a projective nonsingular integral scheme isomorphic to X itself and that the Proj of
R/w"R can be identified with the n'® infinitesimal neighborhood of p, the missing
point which has to be added to the space Spec(4x) =~ X — p to get X back.

This can be seen as follows. Ay is a subalgebra of L, = C[A] ® C{4™'}/A and
for every i = iy, for some iy, there are normalized elements

fi= Y el =1 (7.2.1)
jzo ’
of order i. Then the graded ring R = R(A4y) is a subalgebraof Lz ,-1 = L; ® L,,-:
generated by a subset of the elements of R of the form

0= ;A iw, (7.2.2)
jzo0
corresponding to a set of generators for Ay. (So one can identify A with 4/w.) One
checks that R is a quotient of a quasi-homogeneous polynomial algebra and that
Proj(R) is projective and hence complete.

Next we investigate V(w), the divisor at infinity that we have to add to make
Spec(4x) complete in X' = Proj(R). Let us for simplicity first consider the closed
subscheme structure on ¥(w) determined by R/wR. The normalization of the f; in
(7.2.1) is such that f;f; = 2'*/ + lower order for all i, j = iy. These elements f; of Ay
give elements f;”) of R satisfying f;”' ;) = 2'*/ (mod wR). This allows us to define
a map

é: R/WR - C[t], deg(t)=1, (7.2.3)

by setting the restriction ¢; to (R/wR); for j < i, equal to zero and defining
¢:(f?) = t' (and extending linearly). So t can be identified with A (mod wR). Then
¢ is a graded ring homomorphism and ¢;, i = i, is the isomorphism. In general if
¢: R — S is a homomorphism of graded rings such that the restriction ¢,: R, — S,
is an isomorphism for all n large enough, then we have Proj(R) ~ Proj(S). We call
R and S isomorphic in large degree in this case. So in our case, where R = R(Ay), the
quotient R/wR is isomorphic in large degree to the polynomial ring in one variable
and one sees that Proj(R/wR) consists of one point p (corresponding to the zero
ideal in C[¢]). Hence Proj(R(Ax)) is obtained from Spec(A) by adding a single
point p.

To investigate whether this added point is nonsingular or not we study the
formal completion of Proj(R) along the point V(w). The structure sheaf of this
formal completion is obtained from the inverse limit of the rings R/w"R. Now for
i>iy+n we have Ry/w'R,_,=CA®CwA '@ - @w' 'A*1"" (mod w'R).
Hence the ring R/w"R is isomorphic in large degree to C[w, A]/<{w" ), The stalk of
the structure sheaf of Proj(R/w"R) at the unique maximal ideal is isomorphic to the
localization of €[w, A]/<{w") at {w) which is easily calculated to be C[pu]/u",
where u = w/A = 1/11is a local coordinate at p e V(w). Hence the stalk of the formal
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completion is C[u] and the added point is indeed nonsingular. Since
Proj(R) = Spec(4x) U V(w) and Ay is the coordinate ring of a nonsingular curve
we see that all points of Proj(R) are nonsingular and X’ = Proj(R) is a nonsingular
reduced curve with Spec(A4y) as open subscheme. In particular X and X' have the
same function field. By the uniqueness, up to isomorphism, of a nonsingular
irreducible projective curve with given function field we have then Proj(R) = X,
and we have recovered our complete curve from the affine coordinate ring together
with its filtration and the local coordinate u = 1/4 at p.

7.3. Next we consider the stabilizer algebra S, for We Gr and n a partition into
k parts. Let R = R(S}). Then, since S, is finitely generated, as before R is
a quotient of a quasi-homogeneous polynomial ring and hence Proj(R) is a projec-
tive complete curve. We have Proj(R) = Spec(S YU V(w). Similar to the dis-
cussion for Ay we introduce normalized elements in S7,. To that end let S7 be the
support of the field F7 in the decomposition of L; ® S7, and define

= PreH", (7.3.1)
ieS¢
where n;/m; is the degree of the field extension F¢ over L,. Note that A is an
element of order 1 in the filtration o, ,, see Sect. 5.6. Then we require that the
hlghest order term of the normalized element o7 ;€ S3, of order i with highest order
term in the blocks indexed by S¢ is precisely (42). (It is easy to check that we can
indeed normalize elements of S, in this way.)
Then we have

08,104 ;= 00 100 p(A5) 1 + lower order, i,j =i . (7.3.2)

We find in the same way as before that R/w"R ~ [[ C[w, 4¢]/w" (isomorphism in
large degree), where AS/w = ¢ and the product is taken over the indices describing
the ko fields in L; ® S;,. Hence the k, stalks of the formal completlon of Proj(R)
along V(w) are 1somorphlc to the formal power series rings C[us], where
ue = w/i¢ = (A¢)~ 1. Hence V(w) consists of exactly ko, nonsingular points p¢ that
have to be added to Spec(S%,) to obtain the reduced complete curve ¥ = Y =
Proj(R(S§,)). Here again the ug are local coordinates at the points p;.

So now we have constructed from S%, a curve Yj,. Since Ay is a subring of
S3, and the filtration of Ay is obtained by restriction of the filtration of S}, we have
also an inclusion of R(Ax) in R(S},). This defines an /-fold branched covering map
f: Y5, — X. The fiber of the point pe X consists of the points p; corresponding to
one of the fields F;. Since multiplication by 4 of an element o7 of S, with its highest
order component in the blocks indexed by the support of the field F;; increases the
order by /¢ =[F¢:L;], the ramification index of p{ is indeed /;. The local
coordinate y¢ satisfies clearly ¢ (A™1) = (ug)’e.

7.4. Now consider the element W of Gry. It is a finitely generated torsion free
module over S, and hence defines a torsion free coherent sheaf over Spec(Sg,). To
extend it to Y3, we need a filtration on W compatible with the filtration on S7 .
Recall from Sect. 6.6 that S%, < k_ L, L[ Py, with n; = m;; and that the filtration
of S, is obtained from this inclusion, see (5.5.6). Similarly the filtration on W is
obtained from the inclusion W < Lj, where we decompose L; = (P;_, L} and
introduce a filtration on it as follows. If (e, e, ..., e¥_ 1} is the natural basis of
the component L%, i e(-” =¢,, with t=mn, + Ny + -+ m_q +j, we give
el order q; where j = g Jm + r;, 0 < r; < m; and within this block multiplication by
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A increases the order by ¢;. One easily checks that this gives L} = ?=1 L% the
structure of filtered Pf_, L; [ ]-module.

Define then F = @Fi, where F; = W, are the elements of W of order i or less.
Then F is a graded, torsion free, finitely generated R = R(S}, ) module. It defines
a torsion free coherent sheaf # on the curve Y, in the usual way. The space of
sections of # over Yj, — [~ 1( p) can then be identified with W, if we take as basis
for the holomorph1c stalks Z,., thought of as free Oy» ,. submodules of L,, the

basis {e, e, . . . , el ~1 }icse- Note that in this manner we get as basis for %, over
Oy, , the elements
{ef, e, ... e 1, (k) leo = €, (A) Ter = e egu?—l}iesg . (7140)
This uses the fact that
(o)t = (Pr) e = e, J<mi—m;. (7.4.2)

In this way we have found also the sheaf & and the trivialization of it at the points
in the inverse image of pe X.

7.5. Let us summarize in the following theorem our construction of the inverse of
the Krichever map of 5.4.

Theorem 7.5.1. Let X be a nonsingular curve, pe X a point, A~ * a local holomorphic
coordinate at p and Gry the Grassmannian (of rank n bundles + trivializations)
constructed from these data (see Sect. 2). Let WeGry, let n be a partition
(ny,na, ..., m) of nand let Sy, be the finite order stabilizer algebra of W of type n
(Sect. 6), correspondzng to the Hezsenberg algebra A" (Sect. 4). Let {F¢} be the kg
fields occurring in the decomposition of the tensor product L; ® S, (Sect. 6.6) and let
L& be the degree of the field extension F§ over L, the field of Laurent series (Sect. 2.1).

Then there exists a curve Y3, and a covering map f: Y3, — X such that f “p)
consists of ko nonsingular points p¢, one for each field F£2, and such that the pull back
divisor f*(p) is Y ££pe.

Let S = {1,2, ..., k} be the support of the field F ¢ (Sect. 6.4). For each i€ S{ the
part n; of n is divisible by £, say m; = n;/£¢, and we put mg = .o, m;. Then there
exists an algebraic coherent torsion free sheaf % on Y}, such that thestalk Fpeis free
of rank m¢, for each point p¢ in the inverse image of p. Furthermore there is a basis for
each of the holomorphic stalks F ' such that the space of algebraic sections of
F over Yz, —f~ (p), with respect to these bases, can be identified with the element
W in Gr (Sect. 5.4).

8. Time Evolution, Lax Equation, and Multi-component KP Equations

8.1. In this section we study the flows on the Grassmannian by exponentiation of
elements of #°2. These flows leave invariant the commutative algebra S} and hence
also the curve Spec(S7,). The flow on the Grassmannian gives a flow of modules
over this ring which can be interpreted as a flow of bundles over the curve. In the
case that the bundles have rank one, these flows are linear with respect to the toral
structure of the Jacobian of the curve.

In Sect. 8.3 we relate these flows to multi-component KP equations by mapping
Gr into the universal Grassmannian. Finally, in Sect. 8.4, we give an Hamiltonian
interpretation of these flows on the cotangent bundle of the Grassmannian.
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8.2. Let e #®. Consider the flow on Gry given by:
W(t) = exp(to) W . (8.2.1)
Since for W = gH{™Y we have that SE' = g(gl(n, A¥"))g ™1, it follows that
St = exp(t0)g(gl(n, A¥"))g ™~ 'exp(—10) . (8.22)

Thus if seS%‘;ﬁ’}t) N " then, since #" is commutative, it follows that s=exp(—to)-s

-exp(to) is an element of Sy, N #2, ie., SW(,)m,%”ﬂ does not depend on the
parameter t. In particular, the finite order part, S3 ), is also independent of ¢, as is
its completion Y3, . Thus the curve Spec(S3,) is independent of the flows. Further-
more the one parameter family of SZ modules W(t) corresponds to a one para-

meter family of bundles E(t) over thg, curve Spec(Sy,) as constructed in Chap. 7.

8.3. As we explained in Sect. 2.7 the Grassmannian Gry is a subvariety of the
universal Grassmannian Gr = Gr(H,). When we are interested in flows on Gr%
determined by a partition n = (ny, . . ., m;), of n into k parts, it is more convenient
to map Gr into Gr(HY), the Grassmannian of subspaces of HX whose projection to
HE | is Fredholm. Here we use the map H} — H given by

Mejrs 2l tie (8.3.1)

wherei=n; + - - -+ n,_; + j, and e; (respectively e,) give a basis for C" (resp. C¥).
(Of course the Grassmannians Gr(H}) and Gr(H,) are isomorphic.)

The action of the Heisenberg algebra #* translates into an action of the
algebra of diagonal k x k matrices on H* generated by Al = Z'E,,, where i€ Z and
1 £ a £ k. Indeed the map (8.3.1) induces the map 2, zE,,, where the element 2,
of #" is defined in Sect. 4.1. Let I'* denote the group of transformations on H¥ of
the form ¢%(t) = exp(}.,. , 2. 5_, tiA}), where the ¢ are thought of as time vari-
ables. For We Gr(HY), put W(t) = ¢" (t)‘lW We say that #(t) belongs to the big
cell when the projection W(t)— HF , is an isomorphism, where HY . is the
subspace of H; of k-component vectors of the form ), , fi', fie €*. If Wis in the
big cell there is a unique k x k matrix wave function

wi(t) = ¢*(t) <1kxk + Y WiZ_i>€ w, (8.3.2)

i>0
where the w; are k x k matrix functions of the t,, and we say that a k x k matrix

belongs to W if its columns do. We let 0= Z (3,a act as a differential operator on
matrices from the right. More generally we con51der k x k matrices with coefficients
pseudo-differential operators in d. Then we have

¢“(t)(OE) = ¢"(t) (zE), (8.3.3)

for any k x k matrix E (possibly dependent upon t). The wave operator is then the
matrix pseudo-differential operator defined by

W= lpxr + Y 07w, (8.3.4)

i>0

and we have

wi(t) = () W . (8.3.5)
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The wave operator w satisfies the equation
O W = —W(RY) -, (8.3.6)

where R: = w1+ 0/(E,)* W and the subscript — denotes the formal integral oper-
ator part of a pseudo-differential operator (i.e., the negative order part). The
multi-component KP equation is then given by

020 = [0, (Ri). 1, (83.7)

where Q = w™140W, for a constant diagonal matrix A with distinct non-zero
eigenvalues (cf. [DaJKM, UT, Di]). In [BtK] it is explained that with the multi-
component KP equation naturally are associated also difference equations (besides
the differential equations (8.3.7)), coming from group elements commuting with the
Heisenberg algebra. In this paper we will not discuss these discrete equations,
which are in the simplest case the equations for the Toda-lattice.

Now let us assume that We Gr’ maps to an element of Gr(H¥) of index zero
(this is not essential but will make the formulae much simpler). Then the flow on
Gr from Sect. 8.2 will give rise to a multi-component KP flow on the image, W, of
W in Gr(H¥). The elements of W coming from finite order elements of W(t) ie.,
those of the form ¢2(¢)(}." _ a;z'), generate a free rank k module over the ring of
differential operators. A basis for this module is given by the k columns of the wave
function (see [DS, SeW, BtK]). This means that for any fe Ax (so fW < W) we
have

fow(t) = ww(t) Py, (8.3.8)

where f denotes f realized as a matrix of size k x k acting on H¥, using 8.1.3, and P,
is a k x k matrix of differential operators. The map f+ fi— P, gives a map from Ay
to a commutative subring Ay of all k x k matrix differential operators. (For the
51mplest case of X = P! and the pr1n01pal Heisenberg algebra (k = 1) this rmg is
Ay = C[L], the ring of polynomials in the Lax-operator L, the unique n'® order
differential operator such that Awy = wy L.)
Similarly, we have, for any element s of the stabilizer algebra S, of type n for
We Gry, a differential operator P;. This gives a ring of commutatlve matrix
differential operators S" Of course Ay = S5

8.4. We now sketch how the Heisenberg flows on Grk are related to Hamiltonian
flows on the duals of loop algebras and to Hamiltonian flows on the cotangent
bundle of Gr%.

First note that the action of the group Gl(n, H;) on Gr% lifts to an Hamiltonian
action on T*GrY in the usual way that any group action on a manifold lifts to an
Hamiltonian action on the cotangent bundle. On the other hand, to give an
Hamiltonian version of the Heisenberg flows on the dual of a loop algebra one
must consider Lax pairs and the Adler, Kostant, Symes (AKS) theorem
[Ad, Ko, Sy] (see also [FNR, RSTS]). This version of the flows works out com-
pletely only in the standard setting with X = P!, however we can make some
comments on the more general situation.

We first discuss the case in which X = P! so that A% = H,_ ., the space of
holomorphic functions on P* — oo. Let ) /2] be an element of #” and set
W(t) = exp(—, t¢PL)W. Assume that W(t) belongs to the big cell of Grp1, so that
W(t) = g-(t)H} ., where g(t) = exp(— ), t!2})g admits a Birkhoff decomposition
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of the form g(t) = g-(t)g+(t) without diagonal term. Define the resolvents (cf.
[GD]):

R,(t)=g="(t)Zag-(t) . (8.4.1)

Let R(t) = Z AR, for some choice of constants 4, € €. We have the Lax equation
0.aR =[(RL)+, R] (84.2)

since g='0ag- = —(R.)-. Equation (8.4.2) can be realized as an Hamiltonian

flow on the dual of the Lie algebra gl(n, H 1, +) with Hamiltonian function given by
the restriction of an Ad*-invariant function on gl(n, H,)*. Indeed, the splitting of
gl(n, H;) from Proposition 3.3.1, applied to the case X = P?, yields

glin, H;) = gln, A" 'C{A"'}) @ gl(n, H; +) - (8.4.3)
Using the pairing (3.3.6) this gives an identification
glin, H; o )* ~gln, A7'C{A71}). (8.4.4)

If F is an Ad*-invariant function on gl(n, H,;)* we may restrict to gl(n, H, ,)* since
(8.4.3) gives

gl(n, H,)* = gl(n, A" C{A" 1)) @ gl(n, H,, , )* . (8.4.5)

Using the identification (8.4.4) the Hamiltonian flow for F on gl(n, H, . )* is given
by the Lax pair

d

A= [(dF(A4))+,A], (8.4.6)
where Aegl(n, 2~*C{A™'}) and dF (4) is the differential at A of F as a function on
gl(n, H;)*, thought of as an element of T§(gl(n, H;)*) ~ gl(n, H;). For example, if

Fy(A() = ]1.§ (A (Y) 8.4.7)

then
dF;j(A(A) = FAR) 7. (8.4.8)

To realize (8.4.2) as a flow of this type we must first consider R(z) as an element of
gl(n, A~*C{A~1}). Since R,(t) has order 1 in A this is easily achieved by multiplying
Eq. (84.2) by 472 Next, we must find an Ad*-invariant function F such that
dF (2 2R(t)) = R.. This is possible provided we choose the constants, 4,,, distinct.
Indeed, since R is the conjugate of the matrix £ = Z A,2, which is in block form,
so that R/71(¢) is the conjugate of 277" =) AJ~'2]7', it is possible to find
a linear combination, F, of the F;;’s which gives dF (1" 2R(t)) = R..

Consider now the situation where there is a Laurent series f(4)e L, such that
L(4) =f(A)R belongs to gl(n, H; ;). Then we see that s =f(1)A4,2, belongs to
Shel A A", the holomorphic stabilizer algebra of type n for W. Since from chapter
3 we have that S is contained in the cotangent fiber to Gr at the point W, we
may consider the evolution of the pair (W (t), L(4)(t)) as a flow through the point
(W(0), L(4)(0)) in the cotangent bundle T*Gr%. For X = P! this flow can be related
to the AKS theorem and collective integrability by using a modification of the
Ad*-invariant function used to give the Hamiltonian. This modification depends
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on the function f(4) and thus on the initial value, W(0). Thus the flow for
a particular Heisenberg element ¢ on the whole of the Grassmannian does not arise
in this way from a single Hamiltonian. However, this description of the flows does
give a collective Hamiltonian version that generalizes to the case of a general base
curve X. To justify these remarks we now give a brief excursion into the geometric
proof of the AKS theorem (see e.g., [RSTS, GS2]).

Recall from Sect. 3 that the cotangent bundle T*(G/K) of the homogeneous
space G/K is symplectically equivalent to the Marsden—Weinstein reduction of
T*G under the right action of K. We now consider Hamiltonian flows on this
cotangent bundle arising from Ad*-invariant functions on g*.

If fis a function on g* we can pull it back via the moment map for the left action
of G on T*G to form a function F on T*G which is invariant under the left action of
G on T*G. In the case that f is invariant under the Ad* action then F is also
invariant under the right action of G on T*G, in particular, F is invariant under the
right K action and so reduces to a function F on T*(G/K).

To compute the Hamiltonian flow of F on T*(G/K) we follow the prescription
of [GS2] for computing flows for collective Hamiltonians: For (g, u) e G x g*, let

C=df(We(@*)* ~g. (8.4.9)
Then the Hamiltonian flow of F through (g, p) is given by
(9, W) — (exp(t€)g, 1) - (8.4.10)

Now, as in chapter 3, we let Ji x denote the moment map for the right K action
on T*G, so that we may identify 7*(G/K) with J g x(0)/K. If (g, p) is in J g x(0) then
the flow for F through the point (gK, p)e T*(G/K) is just the projection of the
above flow, i.e.

(9K, p) = (exp(t€)gK, p) . (8.4.11)

If the algebra g splits into two subalgebras, g = f @ £, then there is a left L action
on T*(G/K) with moment map

(9K, ) Ad¥pe 2% . (8.4.12)

In this case, the Hamiltonian on T*(G/K) is just the pullback by this map of the
restriction of f'to £*. Thus the Lax pair flow for fon £* given by the AKS theorem
is just the image of the flow (8.4.10) under the moment map (8.4.11).

We now apply this construction to our situation where G = Gl(n, H;) and
K = Gl(n, A%") so g = gl(n, H,) and t = gl(n, AY"). Again, we begin with the case
X =P? so that A'fﬁ‘ = H, , and (8.4.3) gives a splitting of gl(n, H;) into two
subalgebras. The above construction suggests we consider AKS flow on £*
=gl(n, A'C{A7*})* ~gl(n, H; ). In order that Eq. (8.4.2) be considered as
a Lax pair flow on gl(n,H, ;) we must find a function f(4) such that
L) =f(HR(Aegln,H, ). In this case, s=g_L(A)g ' =f(A)) A.P.e
Sl ~ 2 If F is the Ad*-invariant function on gl(n, H,)* which gives the flow
(8.4.2) as an Hamiltonian flow on gl(n, H; .)*, then we must find a new Hamil-
tonian F such that dF(L(A)) =dF(R(4)). For instance, if F=F; so
F(R(%)) = $tr(A'R(4)’) then F will be given by

F(L(2) = § (A2 (f(2) ' LA)) . (8.4.13)
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Example (The non-linear Schrodinger flows). Take n = 2, n = (1, 1), and X = P,
We choose W = gH™" = gH?} | € Grg and soe S%,. We assume that W is in the
“big cell” so that we may take g = g_ € Lgl_(n, C). Then s; = g_ L(A)g_* for some
matricial polynomial L(4), by Lemma 3.3.4, (6.1.2), and the fact that 4y = C[4].
Since the leading order term in g is the identity matrix, s, and L(4) must have the

. . i 0
same leading order terms. Assume this to be A* 0 . |. Furthermore assume

that L(4) is traceless. Then s, is also traceless and hence has the form

s =ry ° ).

where p(4) = A* + p,_1A*"1 + ... isin C((4"!)). Then we have
i 0

0 _i> +0(™),

1
E dA(Fy,2 — pu—1Fi-1,2)(s0) = A <

and

1 i 0 _
Ed(Fk+1,2 — Pi-1Fi 2 — (Pe-2 — PR-1)Fi-1,2)(50) = A (0 —i) +0(7Y).

These give the x and ¢ flows respectively on Gr} that give rise to solutions of the
non-linear Schrédinger equation. So we see in this example that the Hamiltonians
for the flows in the cotangent bundle to the Grassmannian depend on the initial
condition (viz., s¢) chosen in the fiber.

Finally we remark that when X is more general than P!, the Lie algebra
splitting from chapter 3 is not a splitting into two subalgebras but only into
a subalgebra plus a linear subspace. Thus we cannot apply the AKS theorem in this
setting. However, the Heisenberg flows may still be realized as Hamiltonian flows
on T*Gry with Ad*-invariant Hamiltonian, as in Eq. (8.4.11). Indeed, if we choose
a flow generator o€ #%, it is then necessary to find se S}, and an Ad*-invariant
function f on gl(n, H,)* so that the Hamiltonian flow for f through (W, s)e T*GrY,
given by (8.4.11) is just (exp(to) W, s). This is achieved by finding f and s so that
(df (s))+ = 0. This may not be possible for all choices of o € #” but since s e #% it
follows that df (s) e #°* as well so that at least some of the Heisenberg flows may be
realized in this way.

9. Remarks

9.1. According to Theorem 7.5.1 we obtain for every point W of Gr and every
choice of Heisenberg algebra, i.e., for every choice of partition n of n, a curve
Y;, covering X. We have not discussed the relation between these curves for the
various choices of Heisenberg algebra. In fact this is rather mysterious to us. The
first idea that one has is that somehow the curves corresponding to a single
W should be the same. This can however not be literally true since for the principal
Heisenberg algebra one obtains always an irreducible curve while, as we have seen
in Sect. 6.4, for other Heisenbergs one can get reducible curves. Also note that if we
consider the flows Wi— W(t) of type n on Gr%, i.e., the flows corresponding to the
Heisenberg algebra #°*, the curve Y7, remains invariant, while the curves obtained
from the choice of other Heisenbergs will change.
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9.2. In Sect. 8 we derived differential equations coming from Heisenberg flows on
the Grassmannian by embedding Gry into a universal Grassmannian, thereby
exhibiting these equations as subsystems of multicomponent KP systems.

Now in case X = P! the equations corresponding to the various Heisenbergs
can be formulated entirely in terms of the representation theory of the loop algebra
of gl(n, €) (cf. [KaW, BtK]). These representations involve a decomposition of the
loop algebra in elements containing only positive or only negative powers of 4, i.e.
the decomposition of Proposition 3.3.1 for X = P. One can also formulate these
equations in terms of Lax equations on the dual of the loop algebra, again using the
decomposition in positive and negative parts related to the Riemann sphere.

This makes one think that it should be possible to formulate the equations of
Sect. 8 intrinsically in terms of constructions related to the Riemann surface X,
without using the embedding into a universal Grassmannian. However there are
a lot of things apparently still unknown. For instance the representation theory
seems not to be developed yet (see however the papers [CEH, Che, DJM]). One
way of constructing representations related to X would be to consider the sections
of a determinant bundle over Gr% as in for instance [ PrS] for the case of X = P1.In
[Br] noncommutative theta functions related to vector bundles on curves are
constructed using this determinant bundle. The connection to differential equa-
tions remains to be worked out. If one wants to get Lax equations on the dual of
the loop algebra related to the curve X one runs into the problem that the
decomposition of Proposition 3.3.1 is not, as is usual in AKS theory, into two
subspaces but that there is a finite dimensional piece in the middle. Lax type
equations coming from such decompositions into three subspaces have been
studied in [Mi]. Of course there is also the theory of Poisson-Lie groups, R-
matrices etc. (see e.g., [Lu, LuW, STS1, STS2]) that could be developed in the
context of GrYk, see alo [KS].

9.3. The Grassmannian Gr that we have used in this paper depended on choosing
a point p on the Riemann surface X. Of course it is possible to extend the theory by
choosing a finite number of points {p;} on X, so that the elements of the
generalized Grassmannian consists of equivalence classes of vector bundles on
X together with trivializations at {p;}. To obtain an inverse Krichever map
analogous to the one described in Theorem 7.5.1 one should then choose at every
point in {p; } an Heisenberg algebra. The case of two points is relevant for the study
of harmonic maps. For instance in [Hi2] one can find that both the homogeneous
and the principal Heisenberg algebra of the loop group of sl(2, €) are relevant for
the construction of all harmonic maps from the 2-torus to the 3-sphere, using
spectral curves.
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